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Abstract

As the recent financial crisis illustrated, the default of certain entities can have disastrous
effects on the economy. This paper presents a framework aimed at analysing the asset pricing
and macro implications of the existence of “systemic defaults”. This framework is flexible and
tractable enough to simultaneously replicate the price fluctuations of various far-out-of-the-
money (disaster-exposed) credit and equity derivatives. According to our estimation results,
market data imply that the default of a systemic entity is anticipated to be followed by a 4%
decrease in consumption. The recessionary influence of systemic defaults implies that financial
instruments whose payoffs are exposed to such credit events carry substantial risk premiums.
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Introduction

1 Introduction

Following the seminal contribution of Rietz (1988), many studies have shown that disaster risk
helps solve many asset-pricing puzzles [see e.g. Barro (2006), Gabaix (2012), Gourio (2013)].
Disaster risk has notably been proven to successfully account for features of equity option mar-
kets [e.g. Du (2011), Wachter (2013), Tsai and Wachter (2015), Siriwardane (2016)], or credit
derivatives [Collin-Dufresne et al. (2012), or Seo and Wachter (2016)].

In these asset-pricing studies, disasters are modelled as exogenous events causing dramatic
increases in the default probabilities of bond issuers (or dramatic decreases in the asset values
of firms). However, in some cases, this appears to be the default of a systemic entity per se that
constitutes a disaster. Typically, since its inception, the largest drop in the University of Michigan
Consumer Sentiment index took place in September 2008, the month when Lehman Brothers went
bankrupt. The existence of systemic entities is at the core of novel regulations on Systemically
Important Financial Institutions (SIFIs) [International Monetary Fund (2010), Basel Committee
on Banking Supervision (2013), Battiston et al. (2016) or Brownlees and Engle (2017)].

In this paper, we propose a no-arbitrage asset-pricing framework where the defaults of some
entities, called systemic entities, have economy-wide effects. The underlying credit risk model
is that of Gouriéroux et al. (2014).1 This model features a finite number of homogeneous credit
segments, some of them gathering systemic entities. Because of contagion effects, a systemic
default can be the source of default cascades, amplifying the costs of the original bankruptcy
[Allen and Gale (2000), Stiglitz (2011)].

In our equilibrium pricing model, the number of systemic defaults affects consumption.2 Be-
cause bankruptcy cascades can be triggered by the default of a systemic entity, each systemic
default is likely to eventually result in a sharp decline in consumption. In this context, financial
instruments exposed to the default of systemic entities are expected to command substantial risk
premiums, the latter being defined as those components of prices that would not exist if agents’
were risk-neutral.

We estimate our model by making use of market data on two types of financial instruments
directly exposed to systemic risk: senior tranches of synthetic Collateralised Debt Obligations
(CDOs) and far-out-of-the-money put options written on market equity indices. In synthetic CDO

1This framework falls in the category of “top-down” models, which focus on default counting (or loss) processes
[see e.g. Giesecke et al. (2011), or Azizpour et al. (2011)], contrary to “bottom-up” approaches that consider default
processes of individual firms as the model primitives [see e.g. Lando (1998), Duffie and Singleton (1999), Duffie and
Gârleanu (2001)]. The “top-down” approach has been shown to satisfactorily capture the existence of default clusters
[see Brigo et al. (2007), or Errais et al. (2010)].

2Bruneau et al. (2012) find evidence of reciprocal links between the bankruptcy rate and real activity; they also
highlight significant “second round effects” of shocks to the output gap on bankruptcies. This evidence is in line with
the findings of Lown and Morgan (2006), who show that indicators of financial fragility, as measured by business
failures, together with credit standards, have explanatory power for GDP growth.
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transactions, the protection buyer receives payments when a pre-specified amount of credit losses
in the reference portfolio has been reached. Losses are allocated first to the lowest tranche, known
as the equity tranche, and then to successively prioritised tranches (mezzanine tranches, followed
by senior tranches). Senior tranches therefore provide non-null payoffs to the protection buyer
only once a sufficiently large number of entities in the underlying portfolio have defaulted. Ac-
cordingly, the market prices of senior tranches reflect investors’ expectations regarding catastrophic
events [Longstaff and Rajan (2008), Coval et al. (2007), or Collin-Dufresne et al. (2012)].3 The
second type of financial instruments, far-out-of-the-money put options, deliver payoffs when the
underlying equity index experiences crashes. Typically, if the strike of the option is equal to 70%
of the current value of the equity index, this option gives strictly positive payoff if the equity index
falls by 30% between the inception date of the contract and the maturity date. Therefore, such
equity options should also convey information regarding market perception of systemic risk [e.g.
Santa-Clara and Yan (2010), or Backus et al. (2011)].

The task of bringing our equilibrium pricing model to the data is facilitated by the existence
of closed-from formulas to price a wide range of equity and credit market derivatives, including
synthetic CDOs. Such a degree of tractability is not present in the models employed by Collin-
Dufresne et al. (2012), Seo and Wachter (2016), or Christoffersen et al. (2017), who resort to
computer-demanding simulations so as to price tranche products. As a consequence, we can fit our
equilibrium model to a wide range of derivative data, covering the pre-crisis, crisis and post-crisis
periods.

Our empirical application demonstrates the ability of our model to capture a substantial share
of the joint fluctuations of stock and credit markets, both in tranquil and stressed periods. The
estimation is conducted on euro area data spanning the period from January 2006 to September
2017. We show that two factors allow to jointly account for the main fluctuations of options
written on both (i) the EURO STOXX 50 index, one of the main benchmarks of European equity
markets, and (ii) the iTraxx Europe main indices, including synthetic CDOs of different maturities
and seniority levels. Our estimation procedure recognizes that the 125 constituent entities of the
iTraxx indices, that are the most liquid European investment grade credits, are systemic.

Our findings point to the existence of substantial credit risk premiums in the credit derivatives
written on systemic entities. In particular, our results suggest that about two thirds of 10-year Credit
Default Swaps (CDSs) spreads written on systemic entities correspond to credit risk premiums. In
other words, if agents were not risk-averse, these spreads would be three times lower. In line with
previous studies [Azizpour et al. (2011), Giesecke and Kim (2011), or Brigo et al. (2009)], we find
that an overwhelming share of the prices of the most senior tranches corresponds to risk premiums.

3As highlighted by Longstaff and Rajan (2008), the crash-risk information embedded in CDO tranche prices cannot
be inferred from the marginal distributions associated with single-name Credit Default Swaps.
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We also analyse the pricing of credit derivatives written on entities that are not systemic. Non-
systemic entities are defined as entities whose default does not cause other entities’ defaults and
that have no macroeconomic impact. These non-systemic entities may however be exposed to
systemic defaults – through contagion effects – and/or to other macroeconomic variables. We
show that, for a fixed probability of default, the higher the exposure of these entities to systemic
defaults, the higher the spreads of CDS written on these (non-systemic) entities.

As a by-product of our calibration exercise, we deduce estimates of the influence of systemic
defaults on consumption (in the spirit of Backus et al. (2011)). Our calculations suggest that the
default of a systemic entity is expected to be followed by a 4% decrease in consumption after two
years, taking contagion effects into account. Let us provide some intuition for why this influence
can be inferred from our estimation. Our equilibrium model provides some structure regarding
credit risk premiums: based on agents’ risk preferences, it determines how the size of risk premi-
ums depends on the relationship between the payoffs of a given instrument and consumption. For
a CDS written on a systemic entity, the payoffs critically depend on systemic default. As a result,
the potential influence of a “systemic default” on consumption can be inferred from indications
regarding the size of credit risk premiums included in a CDS spread written on a systemic entity.4

As in Bhansali et al. (2008), Santa-Clara and Yan (2010), or Giesecke and Kim (2011), we
finally exploit our estimated model to derive systemic risk indicators. These indicators are defined
as the probabilities of observing a certain number of systemic defaults over specific horizons.5 The
resulting systemic indicators reach their highest levels in late 2008, after the Lehman bankruptcy
and in late 2011, when the European sovereign crisis was at its peak. The probabilities of hav-
ing more than 10% of defaults among iTraxx constituents within two years were of 6% and 4%,
respectively, at the time.

The remainder of this paper is organised as follows. Section 2 presents the general framework
and derives associated pricing formulas. Section 3 documents the estimation approach. Section 4
explores the asset pricing implications. The data description and the derivation of pricing formulas
are gathered in appendices.

4In our approach, indications regarding the size of credit risk premiums are notably introduced through the con-
straint that the (model-implied) marginal default frequency of systemic entities is equal to historical averages of default
frequencies of investment-grade entities.

5Using prices of far-out-of-the-money put options to infer disaster probabilities dates back to Bates (1991). This
approach has been applied recently by, among others, Bollerslev and Todorov (2011), Backus et al. (2011), Seo and
Wachter (2016), Barro and Liao (2016), or Siriwardane (2016). For a discussion regarding the difficulty in measuring
systemic risk, see Hansen (2013).
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2 Model

2.1 Credit segments and notations

We consider J homogeneous segments of defaultable entities. For any j, the I j entities of Segment j

share the same credit characteristics.
Let N j,t be the number of Segment- j entities in default at date t and let Nt be the vector Nt =

[N1,t , . . . ,NJ,t ]
′. We denote by n j,t the number of default occurring in Segment j on date t, i.e.

n j,t = N j,t−N j,t−1. With obvious notations, we also have nt = Nt−Nt−1.
For any process kt (say), we use the notation kt = {kt ,kt−1, . . .}. It is easily seen that, condi-

tional on N0≡ 0, the information contained in the information set n j,t (respectively nt) is equivalent
to that in N j,t (resp. Nt).

The first two segments of entities gather large firms supposed to be systemic. We denote by Ns
t

the cumulated number of systemic defaults, i.e. Ns
t = N1,t +N2,t and by ns

t the number of systemic
defaults occurring on date t, i.e. ns

t = n1,t + n2,t . The only distinction between these first two
segments is that the first contains the constituents of a credit index used as the reference portfolio
for traded credit derivatives, whose prices are used to calibrate the model. Having a single segment
of systemic entities would be restrictive because it would mean that this specific credit index,
namely the iTraxx Europe main, covers all systemic entities in our economy, which may not be
true. The other segments gather non-systemic firms, that can be thought of as small firms.

2.2 Default-count processes

We assume that defaults are caused by two exogenous and non-negative factors that we denote by
xt and yt .6 Without loss of generality, we impose E(xt) = E(yt) = 1. Appendix A.1 proposes a
specification based on vector auto-regressive gamma processes [see Gouriéroux and Jasiak (2006),
or Monfort et al. (2017)]. These processes are Markov processes, with gamma-type transition
distributions. In particular, they are such that:{

xt−1 = ρx(xt−1−1)+σx,tεx,t

yt− xt = ρy(yt−1− xt−1)+σy,tεy,t ,
(1)

where εt = [εx,t ,εy,t ]
′ is a martingale difference sequence with unit-variance components and where

[σ2
x,t ,σ

2
y,t ]
′ is affine in [xt−1,yt−1]

′.

6Collin-Dufresne et al. (2012) and Seo and Wachter (2016) also use two-factor models to price equity and credit
derivatives, including tranche products. This allows to distinguish between long-run and short-run fluctuations of
aggregate credit risk. Typically, while we had a relatively short-lived peak in (various) credit spreads in late 2008 -
early 2009, the average level of spreads has remained higher several years afterwards (see e.g. Figure 3).
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Intuitively, if the autonomous factor xt is more persistent than yt − xt , i.e. if 0 < ρy < ρx < 1,
then xt can be seen as the low-frequency component of yt . The residual component yt − xt , which
has a marginal expectation of zero, can then be interpreted as the higher-frequency component of
yt .

Let us now turn to the conditional distribution of the number of defaults. For any Segment j,
we assume:

n j,t+1|xt+1,yt+1,Nt ∼ P(β jyt+1 + c jns
t ), (2)

where ns
t is the number of systemic defaults taking place on date t. If c j > 0, then the occurrence

of systemic defaults on date t increases the conditional probability of having defaults in Segment j

on the next date. In other words, systemic defaults are infectious, or contagious, if c j > 0 for some
j.7,8 By contrast, the defaults of non-systemic segments are not contagious: for j > 2, n j,t does not
appear in parameter of the Poisson distribution in eq. (2).

For parsimony, we consider that entities from the two systemic segments are alike, the only
difference being that those from Segment 1 are the constituents of traded credit indices. Accord-
ingly, we assume that c1 = c2 and that β1 = β2. That is, assuming also that I1 = I2, the conditional
default probabilities of a systemic entity, be it of Segment 1 or 2, are the same.

It can be remarked that eq. (2) specifies a default process N j,t that does not necessarily terminate
at I j, the number of entities in Segment j. This feature is, however, innocuous because for the
relatively large portfolios of interest, the probability of N j,t exceeding I j during standard contract
terms is small for our sample.9

2.3 Consumption growth process

We assume that systemic defaults have a negative impact on the log growth rate of per capita
consumption, that we denote by ∆ct = log(Ct/Ct−1). To have this, a possibility is to make ∆ct

directly depend on the number of systemic defaults ns
t . However, this would have the nonrealistic

implication that all systemic defaults have exactly the same effect on consumption growth. Instead,
we assume that ∆ct depends on a factor wt that depends itself on systemic defaults according to:

wt |xt ,yt ,Nt ∼ γ0(ξwns
t−1,µw), (3)

7In particular, if c j > 0 for j ∈ {1,2} (systemic segments), then systemic defaults are “self-excited” [Aït-Sahalia
et al. (2014)].

8The use of the word “Infectious” refers to Davis and Lo (2001)’s paper, whose title –Infectious Defaults– inspired
ours.

9Size effects are captured by parameters β j and c j. In our empirical study, the segment sizes we use are 50 (EURO
STOXX 50, see Appendix D.2) and 125 (iTraxx index, Appendix D.1).
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where the zero-gamma distribution γ0, introduced by Monfort et al. (2017), is a distribution fea-
turing a point mass at zero. Specifically, when ns

t−1 > 0, wt is drawn from a gamma distribution
whose scale parameter is µw and whose shape parameter is drawn from P(ξwns

t−1). When the
shape parameter is zero, we have wt ≡ 0. Therefore, in this context, the conditional probability
that wt = 0 is exp(−ξwns

t−1). In particular, we have wt = 0 as long as there has been no systemic
defaults in the previous period. For identification, we impose E(wt) = 1, which is obtained by
setting µw = 1/(ξwE(ns

t )).
The consumption growth process is then specified as follows:

∆ct = µc,0 +µc,xxt +µc,yyt +µc,wwt . (4)

Figure 1 provides a graphical representation of the resulting causality scheme. In this model,
the defaults of non-systemic segments ( j > 2) have no causal impact on consumption or on defaults
in other segments. As a result, non-systemic segments play no role in the model estimation. We
will however use Segment 3 in Section 4, when it will come to study the implications of the model
for the pricing of credit derivatives written on non-systemic entities.

Figure 1: Causality scheme

Systemic entities

ytxt

n1,t

iTraxx

n2,t

n3,t

Non systemic
entities

wt ∆ct

Consumption
growth

This figure provides a graphical representation of the causality scheme underlying the model. Arrows represent
Granger-causality relationships.
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2.4 State vector and agents’ information sets

On date t, the information set of the representative agent is Ωt = {xt ,yt ,wt ,Nt}. In the following,
the operator Et denotes the expectation conditional on the information available at time t, i.e.
Et(•) = E(•|Ωt). This information set includes the factors and the consumption stream Ct .

In the following, we will focus on the state vector Xt = [xt ,yt ,wt ,N′t ,N
′
t−1]

′. As shown below,
the payoffs of the financial instruments we consider are functions of Xt . The tractability of our
approach results from to the fact that Xt is an affine process: the log conditional Laplace transform,
denoted by ψ(v,Xt) and defined by:

Et
(
exp(v′Xt+1)

)
= exp(ψ(v,Xt)),

is affine in Xt . Formally, there exist functions ψ0 and ψ1 such that:

ψ(v,Xt) = ψ0(v)+ψ1(v)′Xt , (5)

for all values of v. Functions ψ0 and ψ1 are made explicit in Appendix A.2 (eqs. a.2 and a.3).
As is well-known, affine processes result in closed-form or quasi closed-form expressions for a
wide range of financial instruments [e.g. Duffie et al. (2002)]. As illustrated below, this property
notably facilitates the estimation of the latent factors included in Xt by employing Kalman filtering
techniques.

2.5 Preferences, stochastic discount factor and risk-neutral dynamics

The preferences of the representative agent are of the Epstein and Zin (1989) type, with a unit
elasticity of intertemporal substitution (EIS).10 Specifically, the time-t utility of a consumption
stream (Ct) is recursively defined by

ut = (1−δ )ct +
δ

1− γ
log(Et exp [(1− γ)ut+1]) . (6)

where ct denotes the logarithm of the agent’s consumption level Ct , δ denotes the time discount
factor and γ is the risk aversion parameter.11 Exploiting the affine property of the state vector Xt ,
we obtain the following solution for ut .

10Using a unit EIS facilitates resolution. Piazzesi and Schneider (2007), or Seo and Wachter (2016), among oth-
ers, also work under this assumption of a unit EIS. For other values of the EIS, one can resort to approximate log-
linearisation (see e.g. Campbell (1993), Campbell (1996)).

11eq. (6) results from a first-order Taylor expansion around ρ = 1 of the general Epstein and Zin (1989) utility

defined by ut =
1

1−ρ
log
(
(1−δ )C1−ρ

t +δ (Et [exp{(1− γ)ut+1}])
1−ρ

1−γ

)
, where ρ is the inverse of the EIS.
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Proposition 1. ut = ut−1 +µc,0 +µ ′u,1Xt +(µc,1−µu,1)
′Xt−1 satisfies eq. (6) for any [X ′t ,X

′
t−1]

′ iff

µu,1 satisfies:
δ

1− γ
ψ1((1− γ)µu,1) = µu,1−µc,1. (7)

Proof. Appendix B.1.

The stochastic discount factor (s.d.f.) can then be deduced from Proposition 1:

Proposition 2. We have:

Mt,t+1 = exp[−(η0 +η
′
1Xt)+π

′Xt+1−ψ(π,Xt)], (8)

with 
π = (1− γ)µu,1−µc,1

η0 = − log(δ )+µc,0 +ψ0((1− γ)µu,1)−ψ0(π)

η1 = ψ1((1− γ)µu,1)−ψ1(π).

Proof. Appendix B.2.

Vector π is the vector of “prices of risk”, which characterises the innovation of the s.d.f. [see
e.g. Campbell (2000)]. Because Et(Mt,t+1) = exp[−(η0 +η ′1Xt)], the short-term risk-free interest
rate rt is affine in Xt and given by:12

rt = η0 +η
′
1Xt . (9)

The risk-neutral measure is then defined by means of the Radon-Nikodym derivative:

dQ
dP

=
Mt,t+1

Et(Mt,t+1)
= exp[π ′Xt+1−ψ(π,Xt)].

Let us consider the risk-neutral conditional log Laplace transform ψQ of Xt . We have:

exp
(

ψ
Q(v,Xt)

)
= EQ

t
(
exp(v′Xt+1)

)
= Et

(
exp[π ′Xt+1−ψ(π,Xt)+ v′Xt+1]

)
= exp(ψ(v+π,Xt)−ψ(π,Xt)) = exp

(
ψ

Q
0 (v)+ψ

Q
1 (v)′Xt

)
,

12eq. (9) shows that the short-term risk-free rate depends on Nt and Nt−1, which are not stationary. However, since
(i) η1 = ψ1[(1− γ)µu,1]−ψ1[(1− γ)µu,1−µc,1], (ii) µc,1 loads neither on Nt , nor on Nt−1 and (iii) using the definition
of ψ1 (eqs. a.3 and a.4), it can be shown that the short-term rate depends on Nt and Nt−1 only through nt = Nt −Nt−1,
which is stationary as long as 0 < ρy < ρx < 1.
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with {
ψ

Q
0 (v) = ψ0(v+π)−ψ0(π)

ψ
Q
1 (v) = ψ1(v+π)−ψ1(π).

(10)

Hence, Xt is also an affine process under the risk-neutral measure Q. This facilitates the pric-
ing of various assets whose payoffs depends on future values of Xt . In particular, Appendix
C.1 provides closed-form formulae to compute date-t prices of payoffs of the form exp(a′Xt+h),
exp(a′Xt+h)1{b′Xt+h<y}, a′Xt+h or a′Xt+h1{b′Xt+h<y}, settled on date t +h.13 As is shown in the next
subsection, these formulae are key building blocks to price specific financial instruments.

2.6 Pricing credit and equity derivatives

2.6.1 Pricing credit index swaps

A credit index swap allows an investor to either buy or sell protection on a credit index, which is a
basket of reference entities. There are two main families of credit indices, which serve as reference
points for CDS markets, that are the Dow Jones CDX and iTraxx indices.14 The U.S. Investment-
Grade CDX main index and the iTraxx Europe main are each comprised of 125 equally-weighted
underlying credits (see Appendix D.1 for more details on the iTraxx Europe main index, the one
used in our application).

In a credit index swap transaction, a protection seller agrees to pay all default losses in the
index in return for a fixed periodic spread SCI

t,h/q paid on the total notional of obligors remaining
in the index over a period of h years. Should there be no credit event, the protection buyer pays
a regular spread until maturity. Upon default of one of the reference entities, the protection seller
provides the buyer with the amount that the latter would have lost if she had held the index bond
portfolio.15 Following this default, the trade continues with the notional amount reduced by the
weight of the defaulted credit.16

In our context, we consider that the names in the credit index coincides with Segment 1. The
payoffs therefore critically depends on N1,t . The spread SCI

t,h is determined by equalizing the date-t

13These formulae can in particular be directly used to price risk-free bonds of any maturity h, the payoff of such an
asset being obtained by setting a = 0 in exp(a′Xt+h).

14These indices are compiled, managed and owned by Markit, a financial services information company with a
specific focus on credit derivatives pricing.

15For instance, for a $100,000 position in a 20-name index, with a recovery rate of 50%, the amount would be
$2,500 (= 50%×100,000/20).

16In the example of the previous footnote, the new notional would be $95mm; the number of reference entities in
the index would be reduced to the remaining (non-defaulted) 19 entities.
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values of the protection leg and of the premium leg, that is:17

EQ
t

{
qh

∑
k=1

Λt,t+k(1−RR)
N1,t+k−N1,t+k−1

I1

}
︸ ︷︷ ︸

Protection leg

=
SCI

t,h

q
EQ

t

{
qh

∑
k=1

Λt,t+k
I1−N1,t+k

I1

}
︸ ︷︷ ︸

Premium leg

, (11)

where q is the number of time periods per year, I1 is the number of entities in Segment 1, i.e. the
number of names in the index, where RR is the contractual recovery rate, assumed independent of
time, and where:

Λt,t+k = exp(−rt− rt+1−·· ·− rt+h−1), (12)

rt being the riskfree short-term interest rate between periods t and t +1.
Hence, credit index swap spreads result from the knowledge of conditional expectations of the

form EQ
t (Λt,t+kN1,t+k) and EQ

t (Λt,t+kN1,t+k−1), whose computation is addressed by Corollary 1.
Online Appendix O.5 shows that the spread on a CDS written on any entity of Segment 1 is

also given by eq. (11).

2.6.2 Pricing synthetic Collateralised Debt Obligations (CDOs)

Collateralised Debt Obligations (CDOs), or credit tranches, allow an investor to gain a specified
exposure to the credit risk of the underlying reference portfolio, or credit index, while in return
receiving periodic coupon payments.18 Losses due to credit events in the underlying portfolio
are allocated first to the lowest tranche, known as the equity tranche, and then to successively
prioritised tranches (mezzanine tranches, followed by senior tranches).

The risk of a tranche is determined by attachment and detachment points. The attachment
point, denoted by a, determines the subordination of a tranche. The detachment point, denoted
by b, b > a, determines the point beyond which the tranche has lost its complete notional. The
equity tranche takes the first losses on the portfolio, from a1 = 0 up to b1. When the portfolio has
accumulated losses exceeding the fraction b1 of notional, the next tranche, (a2,b2) with a2 = b1,
will incur losses from any additional defaults up to b2, and so on.

Let us detail the cash-flows induced by an (a,b) credit tranche in the context of the reference
portfolio made of Segment 1 entities. Consider a protection buyer and a protection seller who meet

17This formula implicitly assumes that the model frequency matches the payment frequency, in the sense that spread
payments take place at every period. This assumption can be relaxed, but this comes at the price of substantial notation
complications. Potentially-induced pricing errors are small in standard instances.

18The credit-tranche market consists of an actively traded segment and an illiquid “buy-and-hold” segment [Sche-
icher (2008)]. In the actively-traded segment, the underlying credit portfolio is based on the standardised portfolio
of a credit index such as the iTraxx or the CDX index. The less-actively-traded segment of the credit-tranche market
consists of tailor-made tranches of Collateralised Debt Obligations (CDOs) in which various loans are bundled.
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at date t. Their negotiation results in a spread ST DS
t,h (a,b), which is the quote associated with this

credit tranche at date t, the maturity date of this derivative product being t +h. Let us denote by `t

the ratio of cumulated loss, that is:

`t =
(1−RR)N1,t

I1
.

From dates t +1 to t +h, cash-flows are exchanged between the two parties unless the cumulated
losses `t+k (for k = 1, . . . ,h) have exceeded the detachment point b. Specifically, at date t+k, these
cash-flows are the following:

• If cumulated losses `t+k have not reached the attachment point a: (i) there is no cash-flow
paid by the protection seller and (ii) the protection buyer pays the full premium ST DS

t,h (a,b)/q.

• If cumulated losses `t+k exceed the attachment point a but remain lower than the detachment
point b: (i) the protection seller provides the protection buyer with an amount equal to the
fraction of the tranche consumed by new losses between t + k− 1 and t + k, that is (`t+k−
`t+k−1)/(b−a), and (ii) the protection buyer pays a premium equal to the multiplication of
the full premium ST DS

t,h (a,b)/q by the fraction of the tranche that has not been consumed at
date t + k, that is (b− `t+k)/(b−a).

The spread ST DS
t,h (a,b)/q is such that the two legs have the same value at date t, that is:19

EQ
t

{
qh

∑
k=1

Λt,t+k
`t+k− `t+k−1

b−a
1{a<`t+k≤b}

}
︸ ︷︷ ︸

Protection leg

= UT DS
t,h (a,b)+EQ

t

{
ST DS

t,h (a,b)

q

qh

∑
k=1

Λt,t+k

(
1{`t+k≤a}+

b− `t+k

b−a
1{a<`t+k≤b}

)}
︸ ︷︷ ︸

Premium leg

, (13)

where UT DS
t,h (a,b) is an upfront payment and where Λt,t+k is defined in eq. (12).20 Credit tranches

are either quoted in terms of spreads ST DS
t,h (a,b), or in terms of up-front payments UT DS

t,h (a,b).
Typically, in the former case, the up-front payment is fixed, and vice versa.

Appendix C.2 shows that by expanding both sides of eq. (13), computing ST DS
t,h (a,b) – or, equiv-

alently, UT DS
t,h (a,b) – amounts to calculating date-t prices of payoffs of the forms: 1{N1,t+k<z},

19The price of the protection leg in eq. (13) is actually based on an approximation. The exact value of the protection
leg is:

EQ
t

{
qh

∑
k=1

Λt,t+k(min(`t+k,b)−max(`t+k−1,a))1{a<`t+k}1{`t+k−1≤b}

}
.

20See e.g. O’Kane and Sen (2003), D’Amato and Gyntelberg (2005), or Morgan Stanley (2011) for an analysis of
upfront versus running spread quoting conventions.
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N1,t+k1{N1,t+k <z}, and N1,t+k−11{N1,t+k<z}, these payoffs being settled at date t + k. The computa-
tion of such prices is addressed in Corollaries 2 and 3 (Appendix C.1).

2.6.3 Stock returns and pricing of equity derivatives

Let us denote by Dt the dividends paid by a stock whose date-t price is denoted by Pt . In equilib-
rium, the stock returns rs

t+1 = log([Pt+1+Dt+1]/Pt) should satisfy the Euler equation EQ
t (exprs

t+1)=

exp(rt). Equivalently, we have:

Pt =
∞

∑
h=1

EQ
t (Λt,t+hDt+h),

where Λt,t+h is defined in eq. (12). We assume that, as consumption growth, the dividend log
growth rate gd,t = log(Dt/Dt−1) is affine in [xt ,yt ,wt ]

′:

gd,t = µd,0 +µd,xxt +µd,yyt +µd,wwt . (14)

Proposition 5 (Appendix C.3) provides an approximated solution for the stock returns in the
general case where the log growth rate of dividends is affine in Xt . As in Bansal and Yaron (2004),
this approximated solution is based on the Campbell and Shiller (1988) linearisation of stock re-
turns around the average log price-dividend ratio zt = log(Pt/Dt). In the solution, zt is expressed
as an affine function of Xt .

The payoffs of equity derivatives depend on Pt . The dynamics of Pt is deduced from that of the
ex-dividend return r∗t+1 = log(Pt+1/Pt), that we denote by r∗t . This return is given by:

r∗t+1 = log
(

Pt+1

Dt+1
× Dt

Pt
× Dt+1

Dt

)
= zt+1− zt +gd,t+1. (15)

We therefore have, for any horizon h:

Pt+h = Pt exp
(
r∗t+1 + · · ·+ r∗t+h

)
(16)

= exp
(
zt+h− zt +gd,t+1 +gd,t+2 + · · ·+gd,t+h

)
. (17)

Let us consider the price of a European put option of maturity h and strike K. This price is
given by EQ

t
(
Λt,t+h(K−Pt+h)1{K>Pt+h}

)
. Using eq. (16), we obtain:

EQ
t
(
Λt,t+h(K−Pt+h)1{K>Pt+h}

)
= KEQ

t

(
Λt,t+h1{r∗t+1+···+r∗t+h<log(K)−logPt}

)
−PtEQ

t

(
Λt,t+h exp(r∗t+1 + · · ·+ r∗t+h)1{r∗t+1+···+r∗t+h<log(K)−logPt}

)
. (18)
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Appendix C.4 provides details about the computation of the two conditional expectations ap-
pearing on the right-hand side of eq. (18).

3 Estimation

To bring our model to the data, two types of objects have to be estimated: model parameters and
latent variables. Some of the model parameters, in particular preference parameters, are calibrated.
Thanks to the tractability of our framework, the estimation of remaining parameters and the filter-
ing of unobserved variables are performed jointly by Kalman filter techniques.

3.1 Data

The data cover the period from January 2006 to September 2017 at a bi-monthly frequency. We
use credit index swap spreads and prices of tranches associated with the iTraxx Europe main index.
The constituents of this index are 125 large European firms whose credit default swaps are actively
traded (see Appendix D.1). For credit index swap spreads, we use the following maturities: 3, 5,
7 and 10 years. We consider three maturities of synthetic CDOs, 3, 5 and 7 years and, for each
maturity, 5 tranches: 0%-3%, 3%-6%, 6%-9%, 9%-12% and 12%-22% (see Subsection 2.6.2). The
financial data also include prices of far-out-of-the-money (far-OTM) equity put options written on
the EURO STOXX 50, which is one of the most important benchmarks of European equity markets.
More precisely, we consider 6-month and 12-month put options protecting against larger-than-30%
falls in the equity index (see Appendix D.2).

3.2 Calibrated parameters

The left panel of Table 1 reports the calibrated parameters. Following Seo and Wachter (2016),
the risk aversion parameter γ is set to 3 and the annualized rate of time preference to 1.2%.
Because our model is at the bi-monthly frequency, this rate of time preference translates into
δ = (1−1.2%)1/6 ≈ 0.998. As mentioned above (Subsection 2.5), we consider a unit elasticity of
intertemporal substitution. Another calibrated moment is the population expectation of consump-
tion growth, that is set to 1.5% (annualized). As in Bansal and Yaron (2004), the log growth rate
of dividends is given the same marginal expectation (1.5%, annualized). We take a contractual
recovery rate RR of 40%, consistently with standard market practice. We also set the average de-
fault rate of the systemic entities to be of 0.3% per year. This is consistent with historical data on
investment-grade entities compiled by Moody’s.21

21More precisely, this corresponds to the average cumulative issuer-weighted global default rates for Baa-rated firms
on the period 1920-2016 [see Moody’s (2017), Exhibit 32]. In March 2016, the median rating for the iTraxx index
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3.3 State-space model

During the period we consider (2006-2017), there has been no systemic default in the euro area.22

Accordingly, we have ns
t = 0 and therefore wt = 0 for all dates t in our sample. Then we can focus

on the filtering of the other exogenous factors xt and yt . Let us stress that in spite of the fact that
wt = 0 over our sample, the threat of having wt+k > 0, k > 0, is taken into account by investors
on each date t of the sample. Accordingly, parameters ξw, µw, µc,w and µd,w, in particular, are
identifiable through observed derivative prices.

Observed variables include credit index swap spreads of different maturities, tranche spreads
and equity put prices. Let us denote by Γt the vector of observed prices and by Θ the vector of
model parameters to be estimated. Over our estimation period, our model predicts that these prices
are functions of Wt = [xt ,yt ]

′ (and of wt = 0) and Θ. Allowing for measurement errors denoted by
εt , the set of measurement equations reads:

Γt = F(Wt ;Θ)+ εt , (19)

where the components of εt are mutually and serially uncorrelated Gaussian shocks, i.e. εt ∼
i.i.d.N (0,Σε), where Σε is a diagonal matrix.

The transition equation describes the dynamics of Wt . Using the formula provided in Ap-
pendix A, the dynamics of Wt can be expressed as follows:

Wt+1 = µW +ΦWWt +ΣW (Wt)ξt+1, (20)

where ξt+1 is a martingale difference sequence that, conditional on Ωt , is zero mean and admits an
identity covariance matrix.

Eqs. (19) and (20) constitute the state-space form of our model. We employ the extended
Kalman filter to approximate the log-likelihood function associated with this state-space model.23

By maximising this function with respect to Θ, we obtain estimates of the parameters that have not

(series 25) is BBB+ at S&P [Société Générale (2016)].
22On October 22 2009, CDS contracts written on the French electronics firm Thomson were triggered. This entity

was included among the iTraxx constituents. However, we do not consider this credit event to be a systemic event.
Indeed, this credit event was not a failure of the firm but a restructuring of its debt. In the U.S., following the so-called
“Big Bang” changes in practices on credit events (April 8 2009) restructuring was excluded from the list of credit
events triggering American CDSs [see Coudert and Gex (2010)]. The recovery rate was determined through auctions;
for the shortest maturity (2.5 years), the recovery rate was of 96.26%. This event had no noticeable repercussions on
the credit market.

23Derivative of function F with respect to Wt are obtained numerically. In order reduce the number of parameters
to estimate, the diagonal entries of Σε (variances of the measurement errors) are calibrated in a preliminary step. We
employ the approach of Green and Silverman (1994) and proceed as follows. We apply a smoothing spline to series
of observed prices. Next, we compute the sample variances of the differences between the prices and their smoothed
counterparts. The variances of the measurement equations are set to these values.

15



Results

been calibrated (Subsection 3.2). A final pass of the Kalman algorithm provides us with filtered
values of the latent factors Wt .

4 Results

4.1 Model fit

Table 1 shows calibrated and estimated parameters. It notably appears that c j parameters (i, j ∈
{1,2}) are equal to 0.35, suggestive of a substantial level of contagion. It implies that an additional
default by one systemic firm on date t leads to an increase in the expected number of systemic
default on date t + 1 by 0.70 (2× 0.35) on date t + 1. Responses to systemic defaults will be
studied more extensively, through impulse response functions, in Subsection 4.2. The fact that
ρx = 0.977 and ρy = 0.895, with associated half-lives of 5 and 1 years, respectively, indicates that
the persistence of xt is larger than that of yt− xt .

Table 2 documents the fit resulting from our estimation approach. Panel (a) compares our static
targets to their model-implied counterparts. This panel also reports a few additional features of our
model. It indicates for instance that the average excess return for our stock index is of 2.00% and
that the maximum Sharpe ratio [Hansen and Jagannathan (1991)] has a reasonable value of 62%.24

Panels (b), (c) and (d) of Table 2 compare the sample averages of observed financial data to their
model-implied counterparts (i.e. the averages of the model-implied prices based on filtered values
Xt derived from the extended Kalman filter, see Subection 3.3).

The model fit is also illustrated by Figures 3 to 5. Figure 3 illustrates the fit of the iTraxx
index swap spreads of different maturities. Figure 4 compares observed and model-based implied
volatilities of far-OTM put options and Figure 5 displays tranche price estimates. These figures
suggest that the model is successful in capturing the main joint fluctuations of stock and credit
derivatives exposed to systemic risk. In particular, in spite of using a longer sample (2006-2017
versus 2005-2008) and a larger cross-section of prices than in Collin-Dufresne et al. (2012), Seo
and Wachter (2016), or Christoffersen et al. (2017), the fit we obtain is comparable to theirs.

24This value is evaluated at the average values of the state vector Xt . It is comparable to the 70% maximum Sharpe
ratio value used by Brennan et al. (2004). The importance of Sharpe ratios to match empirical regularities across
markets is highlighted by Chen et al. (2009). Appendix O.6 details the computation of the maximum Sharpe ratio in
our context.
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Table 1: Estimated parameters

Panel (a) – Calibrated parameters Panel (b) – Estimated parameters
γ 3 ci i ∈ {1,2} 0.35
δ 0.997
EIS 1.00 βi i ∈ {1,2} (×102) 1.81

µw 118.07
E(∆ct) (×6) 1.50% ξw 0.13
E(gd,t) (×6) 1.50%

µx (×102) 1.22
µy (×102) 5.63

ρx 0.978
ρy 0.858

µc,x (×105) −0.08
µc,y (×105) −12.61
µc,w (×104) −8.17

µd,x (×105) −0.00
µd,y (×105) −0.00
µd,w (×104) −16.15

This table presents the model parameterisation. E(∆ct) is multiplied by 6 so as to be expressed in annu-
alised terms. The parameterisation is such that E(xt) = E(yt) = 1 (see Appendix A.1). The specification of
the consumption growth rate is given by eq. (4). The specification of the dividend growth rate is given by
eq. (14). Panel (a) reports calibrated parameters. Panel (b) reports parameters estimated by maximising an
approximation of the log-likelihood associated with the state-space model defined by measurement equations
(19) and transition equations (20) (see Subsection 3.3).
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Table 2: Model fit

Panel (a) Model-implied population moments
Avg. short-term risk-free rate 1.97%
St. dev. short-term risk-free rate 0.66%
Avg. equity excess return 2.00%
Maximum Sharpe ratio (at Xt = X̄ , for a one-year investment) 62.2%

Panel (b) ITRAXX indices (sample averages, in b.p.) Model Data
3 years 60 65
5 years 71 88
7 years 83 101
10 years 115 112

Panel (c) ITRAXX tranches (sample averages, in b.p.) Model Data
3 years, Tranche: 0-3% 1832 1879
3 years, Tranche: 3-6% 486 772
3 years, Tranche: 6-9% 243 452
3 years, Tranche: 9-12% 145 160
3 years, Tranche: 12-22% 34 113
5 years, Tranche: 0-3% 1497 1444
5 years, Tranche: 3-6% 468 663
5 years, Tranche: 6-9% 260 421
5 years, Tranche: 9-12% 188 151
5 years, Tranche: 12-22% 77 91
7 years, Tranche: 0-3% 1384 1241
7 years, Tranche: 3-6% 471 672
7 years, Tranche: 6-9% 265 439
7 years, Tranche: 9-12% 195 146
7 years, Tranche: 12-22% 90 94

Panel (d) Implied Volatility (sample averages, in p.p.) Model Data
Maturity: 6 months 30% 33%
Maturity: 12 months 31% 30%

This table documents the fit of the model. Model-implied prices are evaluated by setting factors xt and
yt to their filtered values derived from the extended Kalman filter applied to the state-space model defined
by measurement equations (19) and transition equations (20) (see Subsection 3.3). The reported maximum
Sharpe ratio (see the Online Appendix O.6 for its computation) is evaluated at the population mean of the
state vector, i.e. for Xt = X̄ .
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Figure 2: Estimated factors xt and yt
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This figure displays the filtered values of xt and yt . These values stem from the extended Kalman filter applied on the
state-space model whose measurement and transition are eqs. (19) and (20), respectively. Grey-shaded areas are 95%
(prediction) confidence intervals.
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Figure 3: Fit of iTraxx index swap spreads
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This figure displays index swap spreads (iTraxx Europe main index, solid lines) and their model-implied counterparts
(symbols). The data cover the period from January 2006 to September 2017 at the bi-monthly frequency.
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Figure 4: Equity options
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This figure displays implied volatilities of put options written on the EURO STOXX 50 index (black dots) and their
model-implied counterparts (grey lines). The dashed black lines represent (model-based) implied volatilities that
would prevail if agents were risk-neutral, i.e. they correspond to the implied volatilities computed under the physical
measure P).
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4.2 Dynamic effects of systemic defaults

This subsection examines the dynamic implications of a systemic default. We focus on consump-
tion and stock returns; the implications on credit derivative prices will be considered in the next
subsection. The dynamic analysis relies on impulse response functions (IRFs) where the initial
shock consists of an unexpected additional default by a systemic entity.25 Figure 6 displays the
results.

The left-hand panel of Figure 6 shows the dynamic responses of the number of systemic de-
faults following an unexpected systemic default on date t = 0. Because of contagion phenomena,
the initial default increases the expected number of subsequent systemic defaults. More precisely,
it appears that a systemic default triggers two additional systemic defaults in the subsequent two
years, on average. The middle panel shows, in black, the response of consumption following
the systemic default. This response is gradual, going from 0 to −4% in the two years following
the shock. The economic impact of a systemic default is therefore substantial.26 Interestingly,
in our model, a systemic default has not only an impact on conditional expectations, but also on
conditional variances: upon arrival of a systemic default, we observe a jump of the volatility of
consumption growth, i.e. a dramatic increase in economic uncertainty (right-hand plot of Figure 6).

The middle and right-hand panels of Figure 6 further display the respective responses of stock
returns r∗t and their volatility. Following a systemic default, the conditional level and volatility of
the stock index undergo the same effects as consumption does, except that (i) the stock return re-
sponse is immediate, which is consistent with the forward-looking nature of stock returns, and that
(ii) the stock return responses are expanded with respect to that of consumption. This expansion
essentially reflects the fact that the sensitivity of the dividend growth rate to the systemic shock wt

is larger than the sensitivity of consumption growth (compare µc,w and µd,w in Table 1).

4.3 Credit risk premiums

Let us now turn to the study of credit risk premiums, defined as the differences between model-
implied prices and those prices that would be observed if agents were not risk averse. The latter
prices are computed by replacing EQ by EP ≡ E in the pricing formulae. Such counterfactual
prices are said to be computed under the physical, or P, measure; standard model-implied prices
are said to be computed under the risk-neutral, or Q, measure.

25Formally, for different variables Yt (including consumption growth ∆ct ), we consider E(Yt+h − E(Yt)|nx,t =
E(nx,t)+ 1) for different horizons h. In our set-up, these IRFs are straightforward to compute as long as the vari-
able Yt is an affine function of the state vector Xt .

26For the sake of comparison, Laeven and Valencia (2012) find that a systemic banking crisis is, on average, fol-
lowed by a 23% decrease in output, which would correspond to about 6 defaults of systemic entities (assuming that
consumption and GDP move in tandem).
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Figure 6: Responses to an unexpected default of a systemic entity
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This figure displays response functions of different variables to an additional default of a systemic entity at date t = 0.
That is, the initial shock is ns

t=0 = E(ns
t )+ 1. The left-hand panel displays the reactions of the number of systemic

defaults. The middle panel displays changes in expectations of future consumption and of future stock index. The
right-hand panel shows the effect on the expectations of future conditional variances of consumption growth and of
stock returns. To facilitate the reading, we plot the square roots of the expected conditional variance.
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We start with decompositions of Credit Default Swap (CDS) spreads.27 Figure 7 displays the
P (grey) and Q (black) CDS spreads for two maturities, 5 and 10 years. The differences between
the two types of spreads are credit risk premiums. The solid lines correspond to spreads of CDSs
written on systemic entities. In late 2011, CDS premiums accounted for almost 80% of the 10-
year CDS spread. Such high risk premiums reflect the fact that the default of a systemic entity is
a particularly bad state of the world, i.e. a state of high marginal utility: when it happens, agents
dramatically revise their future consumption path downward (consistently with the IRF plotted on
the middle panel of Figure 6). In the context of a CDS written on a systemic entity, the protection
seller expects to face large losses in bad states of the world. As a result, she is willing to provide
this protection only if the compensation is high enough, i.e. if the CDS spread is sufficiently above
her expected loss, which translates into high credit risk premiums.

The triangles in Figure 7 correspond to P (grey) and Q (black) CDS spreads associated with
non-systemic entities. Note that, at this stage, we have not discussed the parameterisation of the
number of non-systemic defaults (n3,t). Because this number does not cause any other variable in
the model (see Figure 1), it does not affect the prices we have considered until then. In particular,
it was not necessary to parameterise the conditional distribution of n3,t to estimate the model. This
means that we now are free to choose the exposure of non-systemic entities. The triangles in
Figure 7 are obtained for the following exposures: β3 = E(ns

t ) and c3 = 0. Assuming arbitrarily
that I3 = I1, these exposures (β3,c3) are such that Segment-3 entities feature the same average
default probability than the systemic entities (Segments 1 and 2). However, Figure 7 shows that the
spreads of CDS written on these entities are far lower than those for systemic entities. This figure
also shows that the “P parts” of the CDS spreads of systemic entities and Segment-3 entities are
close. This was expected as P CDS spreads essentially reflect default probabilities and Segment-3
entities have, on average, the same default probability as systemic entities. The reason why credit
risk premiums are lower for Segment-3 entities is that the defaults of such entities tend to occur
in relatively better states of the world than is the case for systemic entities. Though defaults of
Segment-3 entities are more likely to happen when yt is high, the decline in consumption may
then remain subdued as long as such a high level of yt has not triggered (recessionary) defaults of
systemic entities.

Again, the exposure (β3,c3) chosen for the Segment-3 entities was arbitrary. Another exposure
(β3,c3) would have resulted in different dotted lines in Figure 7. In particular, we could have
chosen β3 < β1 and c3 > c1 (say), still keeping the average default probability constant. In this
case, compared to systemic entities, a larger fraction of Segment-3 entities would take place in
particularly bad states of the world. Accordingly, we would expect higher CDS spreads for this

27Recall that, in the model, a single-name CDS written on a an entity from Segment j (say) has the same spread as
a credit index swap whose reference portfolio is Segment j (Online Appendix O.5).
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new type of entities than for the systemic ones. Note that they would remain “non systemic”
because their default would still not cause consumption growth or other defaults.

Let us define the Q-P ratio as the ratio between model-implied CDS spreads and the coun-
terfactual P CDS spreads. Figure 8 explores in a systematic way the relationship between the
exposures to the risk factors (β3,c3) on the one hand, and the 10-year-maturity Q-P ratio on the
other hand. On Figure 8, we connect, with black lines, those pairs of exposures resulting in the
same average Q-P ratio. We also connect, with dashed grey lines, pairs of exposures resulting in
the same average one-year probability of default. While the black square represents the Segment-3
entities we considered in Figure 7, the triangle indicates an entity that features the same exposures
as our systemic entities. While the average default probabilities of these two types of entities are
close, their Q-P ratios differ substantially (3 and 1, respectively). The figure also shows that, for
each average probability of default, there exists a maximum Q-P ratio. Typically, for a one-year
probability of default of 0.4%, the maximum Q-P ratio is about 3.75.

Credit risk premiums are also present in iTraxx tranche spreads. On Figure 5, these risk premi-
ums are the differences between the grey lines and the dashed black lines: while the grey lines are
the model-implied tranche prices, the dotted lines are their P counterparts, i.e. the (model-implied)
prices that would prevail if agents were not risk averse. The more senior the tranche, the higher
the relative importance of credit risk premiums. This is consistent with the fact that more senior
tranches are more exposed to catastrophic events.

4.4 Measuring systemic risk

Our approach provides us with natural measures of systemic risk, by considering the probabilities
of having at least q systemic defaults (say) at any given horizon h.28

As an illustration, Figure 9 plots the probability to observe at least 10 defaults of iTraxx con-
stituents in the next 12 months (dotted line) and 24 months (solid line). We also report vertical lines
indicating significant dates of the financial crisis. Our systemic indicators reached their maximum
levels in late 2008, after the Lehman bankruptcy and in late 2011, when the European sovereign cri-
sis was at its peak. The probabilities to have more than 10% of defaults among iTraxx constituents
within two years were of 6% and 4%, respectively, at the time.

28Closed-form formulae can be deduced from a straightforward adaptation of Corollary 2.

26



Results

Figure 7: Credit risk premiums in iTraxx Europe main indices
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This figure illustrates the importance of credit risk premiums in iTraxx Europe main indices. The black solid line is
the model-implied iTraxx index. The grey solid line is the (counterfactual) iTraxx index that would prevail if agents
were not risk averse (said to be the iTraxx index “under the physical measure P”). The difference between the black
and grey solid lines reflects credit risk premiums. The dotted lines correspond to (P and Q) CDS spreads associated
with a firm from the third segment. See Subsection 4.2 for more details.
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Figure 8: Impact of exposures to the exogenous factor yt (measured by β j) and to the number of
systemic defaults ns

t (measured by c j) on the average size of credit risk premiums
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This figure illustrates the influence of the exposure to the risk factors – that are the exogenous variable yt and the
number of systemic defaults ns

t – on the relative importance of risk premiums in CDS spreads. The coordinates of each
point correspond to the exposure of a given non-systemic entity to factor yt (abscissa) and to the number of systemic
defaults, i.e. ns

t (ordinate). The black lines connect those pairs of exposures implying the same Q-P ratio, defined
as the ratio between the (model-implied) CDS spread and the counterfactual CDS spread that would be observed if
agents were risk-neutral. (The former is the one computed under the pricing, or risk-neutral, measure Q; the latter is
computed under the physical measure P, hence the denomination “Q-P ratio”.) We consider the 10-year maturity. The
grey dashed lines connect pairs of exposures implying the same average probability of default. Figures reported in
grey are probabilities of default expressed in annualized percentage points. The triangle indicates a pair of exposures
corresponding to the systemic entities. The square indicates the pair of exposures of those non-systemic entities whose
CDS indices are displayed on Figure 7.
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Figure 9: Probability that at least 10% of iTraxx constituents default in the next two years
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This figure displays the (model-implied) probabilities that at least 10% of the iTraxx constituents – considered to be
systemic entities – default in the coming 12 months (grey line) and 24 months (black line). Grey-shaded areas are 95%
confidence bands; they reflect the uncertainty surrounding filtered xt and yt . The vertical bars correspond to important
dates of the financial crisis (see Bruegel, http://bruegel.org/2015/09/euro-crisis/): (1) August 2007: Euro-
pean interbank markets seize-up; (2) 15 September 2008: Collapse of Lehman Brothers; (3) 7 May 2010: Emergency
measures to safeguard financial stability; (4) October 2011: Spain and Italy are hit by a wave of rating downgrades by
the three main rating agencies; (5) 26 July 2012: ECB President Mario Draghi says that the ECB will do “whatever it
takes to preserve the euro”.
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State-vector dynamics

A State-vector dynamics

A.1 The dynamics of Wt = [xt ,yt ]
′

We assume that, conditional on {xt ,yt}, xt+1 and yt+1 are independently drawn from non-centered
Gamma distributions:29

xt+1|xt ,yt ∼ γνx(ζxxt ,µx)

yt+1|xt ,yt ∼ γνy(ζy,xxt +ζy,yyt ,µy).

In this case, we have that (see Monfort et al. (2017)):

xt = µxνx +µxζxxt−1 +σx,tεx,t

yt = µyνy +ζy,xxt−1 +µyζy,yyt−1 + σ̃y,t ε̃y,t ,

where ε̃t = [εx,t , ε̃y,t ]
′ is a martingale difference sequence with identity covariance matrix and

where:

σx,t = µx
√

νx +2ζxxt−1

σ̃y,t = µy

√
νy +2ζy,yyt−1 +2ζy,xxt−1.

Let us use the notations ρx = µxζx and ρy = µyζy,y and let us assume that (i) 1−ρx = µxνx = µyνy

and that (ii) ρx−ρy = µyζy,x. We get:{
xt−1 = ρx(xt−1−1)+σx,tεx,t

yt = 1−ρx +ρxxt−1 +ρy(yt−1− xt−1)+ σ̃y,t ε̃y,t .

Defining εy,t =
σ̃y,t ε̃y,t−σx,tεx,t√

σ̃2
y,t +σ2

x,t

and σy,t =
√

σ̃2
y,t +σ2

x,t leads to System (1).

29The random variable W is drawn from a non-centered Gamma distribution γν(ϕ,µ), iif there exists a P(ϕ)-
distributed variable Z such that W |Z ∼ γ(ν +Z,µ) where Z and µ are, respectively, the shape and scale parameters of
the Gamma distribution [see e.g. Gouriéroux and Jasiak (2006)]. When Z = 0 and ν = 0, then W = 0. When ν = 0,
this distribution is called Gamma0 distribution; this case is introduced and studied by Monfort et al. (2017).
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State-vector dynamics

A.2 The conditional log-Laplace transform of Xt = [xt ,yt ,wt ,N′t ,N
′
t−1]

′

The dynamics followed by Xt = [xt ,yt ,wt ,N′t ,N
′
t−1]

′ is a special case of the general case treated in
the Online Appendix (see O.1) with:

ζF =

 ζx ζy,x 0
0 ζy,y 0
0 0 0

 , ζn =

 0 0 ξw

0 0 ξw

0 0 0

 , β =

 0 0 0
β1 β2 β3

0 0 0

 , c =

 c1 c2 c3

c1 c2 c3

0 0 0

 ,
and µ = [µx,µy,µw]

′, ν = [νx,νy,0]′.
As shown in the Online Appendix, in this case, the conditional log Laplace transform of Xt is

given by:
Et
(
exp(v′Xt+1)

)
= exp(ψ(v,Xt)) = exp(ψ0(ν)+ψ1(ν)

′Xt), (a.1)

where {
ψ0(v) = d

(
∑

J
j=1(exp(vB, j)−1)β j + vA

)
ψ1(v) = [ψ1,A(v)′,ψ1,B(v)′,ψ1,C(v)′]′,

(a.2)

with d(w) = −ν ′ log(1−w� µ), where � is the element-by-element (Hadamard) product (and
where, by abuse of notations, the log operator is applied element-by-element wise) and where:

ψ1,A(v) = a(∑J
j=1(exp(vB, j)−1)β j + vA)

ψ1,B(v) = b(∑J
j=1(exp(vB, j)−1)β j + vA)+∑

J
j=1(exp(vB, j)−1)c j + vB + vC

ψ1,C(v) = c(∑J
j=1(exp(vB, j)−1)β j + vA)−∑

J
j=1(exp(vB, j)−1)c j,

(a.3)

where β j and c j respectively denote the jth columns of β and of c, and where v = [v′A,v
′
B,v
′
C]
′, vA

being a nF -dimensional vector and vB and vC being J-dimensional vectors, and with:

a(w) = ζF

(
w�µ

1−w�µ

)
, b(w) = ζn

(
w�µ

1−w�µ

)
, c(w) =−b(w),

where, again, the log and division operator are applied element-by-element wise, by abuse of
notations.
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S.d.f. derivation

B S.d.f. derivation

B.1 Proof of Prop. 1

Let us consider the following specification for ∆ut :

∆ut = µu,0 +µ
′
u,1Xt +µ

′
u,2Xt−1.

Then, for a given [X ′t ,X
′
t−1]

′, we have:

eq. (6) ⇔ µu,0 +µ
′
u,1Xt +µ

′
u,2Xt−1

= µc,0 +µ
′
c,1Xt +

δ

1−δ

1
1− γ

{
[ψ1((1− γ)µu,1)+(1− γ)µu,2]

′(Xt−Xt−1)
}
.

Therefore eq. (6) is satisfied for any [X ′t ,X
′
t−1]

′ iff
δ

1−δ

1
1−γ

ψ1((1− γ)µu,1)+
1

1−δ
µu,2 = 0

µu,1−µc,1− δ

1−δ

1
1−γ

ψ1((1− γ)µu,1)− δ

1−δ
µu,2 = 0

µu,0 = µc,0,

or 
δ

1−δ

1
1−γ

ψ1((1− γ)µu,1)+
1

1−δ
µu,2 = 0

µu,1 +µu,2−µc,1 = 0
µu,0 = µc,0,

(a.4)

which leads to the result.

B.2 Proof of Prop. 2

Epstein and Zin (1989) have shown that when agent’s preferences are as in eq. (6), the s.d.f. is
given by:

Mt,t+1 = δ

(
Ct+1

Ct

)−1 exp[(1− γ)ut+1]

Et(exp[(1− γ)ut+1])
.
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Pricing formulae

Therefore, we have:

logMt,t+1 = logδ −∆ct+1 +(1− γ)ut+1− logEt(exp[(1− γ)ut+1])

= log(δ )−µc,0−µ
′
c,1Xt+1 +(1− γ)(µu,0 +µ

′
u,1Xt+1 +µ

′
u,2Xt)

− logEt(exp[(1− γ)(µu,0 +µ
′
u,1Xt+1 +µ

′
u,2Xt)])

= log(δ )−µc,0−ψ0((1− γ)µu,1)+ [(1− γ)µu,1−µc,1]
′Xt+1−ψ1((1− γ)µu,1)

′Xt ,

which leads to the result.

C Pricing formulae

C.1 Generic pricing formulae

C.1.1 Pricing of exp(u′Xt+h) and v′Xt+h, settled at date t +h

Proposition 3. The date-t price p(u,h,Xt) of the payoff exp(u′Xt+h), that is settled at date t +h is

given by exp(Γ0,h(u)+Γ′1,h(u)Xt), where:Γ1,h+1(u) = ψ
Q
1 (Γ1,h(u))−η1

Γ0,h+1(u) = ψ
Q
0 (Γ1,h(u))−η0 +Γ0,h(u)

with Γ1,0(u) = u and Γ0,0(u) = 0.

Proof. This proposition is clearly satisfied for h = 0. Assume that, for a given h ≥ 0 and for all
admissible u and Xt , we have p(u,h,Xt) = exp(Γ0,h(u)+Γ1,h(u)′Xt), then

p(u,h+1,Xt) = exp(−rt)EQ
t (p(u,h,Xt+1))

= exp(−rt)EQ
t (exp(Γ0,h(u)+Γ1,h(u)′Xt+1))

= exp(−η0 +Γ0,h(u)−η
′
1Xt)EQ

t (exp(Γ1,h(u)′Xt+1))

= exp(−η0 +Γ0,h(u)−η
′
1Xt)exp

(
ψ

Q
0 (Γ1,h(u))+ψ

Q
1 (Γ1,h(u))′Xt

)
,

which leads to the result.

Corollary 1. The date-t price of the payoff v′Xt+h, conditional on Xt = x, with payoff settlement at

date t +h, is given by:

Π(v,h,x) = v′∇u p(u,h,x)
∣∣
u=0 , (a.5)
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Pricing formulae

where p(u,h,x) is defined in Proposition 3 and where ∇u denotes the Jacobian operator with

respect to the first argument of the function.

Let us denote by 0r×c and 1r×c the matrices of dimensions r×c filled with 0 and 1, respectively.
In addition, let e j denote the jth row vector of the identify matrix of dimension J× J. Using the
previous corollary with v′ = [01×nF ,e j,01×J] and v′ = [01×nF ,01×J,e j] respectively results in the
prices of the payoffs N j,t+h and N j,t+h−1, settled at date t +h.

Corollary 2. The date-t price of the payoff exp(a′Xt+h)1{b′Xt+h<y}, conditional on Xt = x, with

payoff settlement at date t +h, is given by:

g(a,b,y,h,x) = EQ
t
(
Λt,t+h exp(a′Xt+h)1{b′Xt+h<y}|Xt = x

)
=

p(a,h,x)
2

− 1
π

∫
∞

0

Im [p(a+ ivb,h,x)exp(−ivy)]
v

dv, (a.6)

where Im(z) denotes the imaginary part of the complex number z.

This result is proved in Duffie et al. (2000). Note that the formula for g(a,b,y,h,x) is quasi
explicit since it only involves a simple (one-dimensional) integration.

Corollary 3. The date-t price of the payoff a′Xt+h1{b′Xt+h<y}, conditional on Xt = x, with payoff

settlement at date t +h, is given by:

Γ(a,b,y,h,x) = a′∇ug(u,b,y,h,x)
∣∣
u=0 . (a.7)

Let us consider the date-t prices of the following payoffs, settled at date t + k: (i) 1{N1,t+k<z},
(ii) N1,t+k1{N1,t+k <z} and (iii) N1,t+k−11{N1,t+k<z}. Using the notations introduced in Corollar-
ies 2 and 3, these prices respectively write: (i) g(0,ω0,z,h,Xt), (ii) Γ(ω0,ω0,z,h,Xt) and (iii)
Γ(ω1,ω0,z,h,Xt), with ω0 = [01×nF ,ι1,01×J]

′ and ω1 = [01×nF ,01×J,ι1]
′, where ι1 is a J-dimensional

vector whose entries are 0, except the first one that is equal to 1.

C.1.2 Pricing of exp(u′1Xt+1 + · · ·+u′1Xt+h−1 +u′2Xt+h), settled at date t +h

Proposition 4. Using the notation u = {u1,u2}, the date-t price p̃(u,h,Xt) of the payoff

exp(u′1Xt+1 + · · ·+u′1Xt+h−1 +u′2Xt+h), for h > 1

and of exp(u′2Xt+1) for h = 1, settled at date t +h, is given by exp
(
Γ̃0,h(u)+ Γ̃1,h(u)′Xt

)
, where:Γ̃1,h+1(u) = ψ

Q
1 (Γ̃1,h(u)+u1)−η1

Γ̃0,h+1(u) = ψ
Q
0 (Γ̃1,h(u)+u1)−η0 + Γ̃0,h(u)
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Pricing formulae

with Γ̃1,1(u) = Γ1,1(u) and Γ̃0,1(u) = Γ0,1(u).

Proof. This proposition is clearly satisfied for h = 1. Assume that, for a given h ≥ 1 and for all
admissible u and Xt , we have exp

(
Γ̃0,h(u)+ Γ̃1,h(u)′Xt

)
, then

p̃(u,h+1,Xt) = exp(−rt)EQ
t (exp(u′1Xt+1)p̃(u,h,Xt+1))

= exp(−rt)EQ
t (exp(Γ̃0,h(u)+ Γ̃1,h(u)′Xt+1 +u′1Xt+1))

= exp(−η0 + Γ̃0,h(u)−η
′
1Xt)EQ

t (exp([Γ̃1,h(u)+u1]
′Xt+1))

= exp(−η0 + Γ̃0,h(u)−η
′
1Xt)exp

(
ψ

Q
0 (Γ̃1,h(u)+u1)+ψ

Q
1 (Γ̃1,h(u)+u1)

′Xt

)
,

which leads to the result.

C.2 Tranche products formula

Let’s rewrite eq. (13):

EQ
t

{
qh

∑
k=1

Λt,t+k
Ñt+k− Ñt+k−1

b̄− ā
1{a<Ñt+k≤b}

}

= UT DS
t,h (a,b)+EQ

t

{
ST DS

t,h (a,b)

q

qh

∑
k=1

Λt,t+k

(
1{Ñt+k≤a}+

b− Ñt+k

b−a
1{a<Ñt+k≤b}

)}
,

where a = a Ĩ
1−RR and b = b Ĩ

1−RR . We obtain:

ST DS
t,h (a,b) =

EQ
t

{
∑

qh
k=1 Λt,t+k(Ñt+k− Ñt+k−1)

(
1{Ñt+k≤b}−1{Ñt+k≤a}

)}
− (b−a)UT DS

t,h (a,b)

EQ
t

{
∑

qh
k=1 Λt,t+k

(
(b−a)1{Ñt+k≤a}+(b− Ñt+k)

(
1{Ñt+k≤b}−1{Ñt+k≤a}

))} .

C.3 Approximated stock returns

Proposition 5. If the log growth rate of dividends is affine in Xt , i.e. if:

gd,t = µd,0 +µ
′
d,1Xt , (a.8)

then stock returns are approximately given by:

rs
t+1 = κ0 +A0(κ1−1)+µd,0 +(κ1A1 +µd,1)

′Xt+1−A′1Xt , (a.9)
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Pricing formulae

where κ0 and κ1 are given by  κ1 =
exp(z̄)

1+ exp(z̄)
κ0 = log(1+ exp(z̄))−κ1z̄,

(a.10)

where A1 satisfies

ψ1(κ1A1 +µd,1 +δ ) = A1 +η1 +ψ1(δ ),

and where

A0 =
−κ0−µd,0 +η0 +ψ0(δ )−ψ0(κ1A1 +µd,1 +δ )

κ1−1
.

Proof. Let us introduce the log price-dividend ratio defined by zt = log(Pt/Dt) and let us denote
by z̄ its marginal expectation. The following lemma is based on the log-linearisation proposed by
Campbell and Shiller (1988).

Lemma 1. if zt− z̄ is relatively small, then the stock return rs
t+1 can be approximated by

rs
t+1 = log

(
Pt+1 +Dt+1

Dt

)
≈ κ0 +κ1zt+1− zt +gd,t+1. (a.11)

Proof. See Online Appendix O.3

Assume that zt is affine in Xt , i.e.:

zt = A0 +A′1Xt . (a.12)

Substituting for zt in eq. (a.11) leads to eq. (a.9). Let us now determine the constraints that should
be satisfied by A0 and A1. The returns of stocks have to satisfy the Euler equation:

0 = logEQ
t (Λt,t+1 exp(rs

t+1)). (a.13)

Using eqs. (8) and (a.9), we obtain:

Mt,t+1 exp(rs
t+1)) = (a.14)

exp(κ0 +A0(κ1−1)+µd,0−η0−ψ0(δ )+(κ1A1 +µd,1 +δ )′Xt+1− (A1 +η1 +ψ1(δ ))
′Xt).

eqs. (a.14) and (a.13) are satisfied if:{
κ0 +A0(κ1−1)+µd,0−η0−ψ0(δ )+ψ0(κ1A1 +µd,1 +δ ) = 0

ψ1(κ1A1 +µd,1 +δ )− (A1 +η1 +ψ1(δ )) = 0,
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Data

which proves Prop. 5.

C.4 Equity option pricing

If zt and gd,t are affine in Xt (as in eqs. (a.8) and (a.12)), then eq. (17) implies that Pt+h/Pt is
exponential affine in Xt .

Let us introduce function ϕ defined by:

(u,h,Xt)→ ϕ(u,h,Xt) = EQ
t

(
Λt,t+h exp

(
u log

(
Pt+h

Pt

)))
.

Using eq. (17) and Prop. 4 (see Subsection C.1.1), one can find functions as
h(•) and bs

h(•) that
are such that:

ϕ(u,h,Xt) = exp(as
h(u)+bs

h(u)
′Xt).

Replacing p(a,h,x) by ϕ(a,h,x) in Corollary 2 provides formulae to compute

EQ
t

(
Λt,t+h exp

[
a log

(
Pt+h

Pt

)]
1{

b log
(

Pt+h
Pt

)
<y
}∣∣∣∣Xt = x

)
.

Let us denote by g∗(a,b,y,h,x) the previous expression. With this notation, the price of a put
option (eq. 18) reads:

EQ
t
(
Λt,t+h(K−Pt+h)1{K>Pt+h}

)
= KEQ

t

(
Λt,t+h1{r∗t+1+···+r∗t+h<log(K)−logPt}

)
−PtEQ

t

(
Λt,t+h exp(r∗t+1 + · · ·+ r∗t+h)1{r∗t+1+···+r∗t+h<log(K)−logPt}

)
= Kg∗(0,1, log(K)− logPt ,h,Xt)−Ptg∗(1,1, log(K)− logPt ,h,Xt).

D Data

D.1 Credit index and tranche prices (iTraxx)

D.1.1 The iTraxx credit index and constituents

To estimate the model, we employ financial data based on the iTraxx Europe main index, an index
involving 125 large European firms. iTraxx indices roll every six month. That is, every six months,
a new series of the index is created with updated constituents. Derivatives written on previous
series continues trading, although liquidity is concentrated on options written on the on-the-run
series [see Markit (2014)].
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The roll consists of a series of steps which are administered by Markit. For the Markit iTraxx
Europe indices, liquidity lists are formed from the trading volumes from the DTCC Trade Infor-
mation Warehouse.30 Markit then applies index rules to determine the index constituents among
the most liquid names [see e.g. Markit (2016)]. For iTraxx Europe main (the index used in this
study), the final Index comprises 30 Autos & Industrials, 30 Consumers, 20 Energy, 20 TMT, 25
Financials.

Constituents of the iTraxx Europe main index must have an investment grade rating. That
is, to be included in the list of constituents, entities have to be rated BBB-/Baa3/BBB- (Fitch/-
Moody’s/S&P) or higher. In March 2016, the median rating for the iTraxx index (series 25) is
BBB+ at S&P [Société Générale (2016)].

D.1.2 Data sources and preliminary transformations

We extract spreads of iTraxx indices from Thomson Datastream. These spreads correspond to
maturities of 3, 5, 7 and 10 years. iTraxx tranche prices come from the Markit website.31 For each
maturity, we use prices associated with the following tranches: 0%-3%, 3%-6%, 6%-9%, 9%-12%
and 12%-22%. We do not use prices associated with the super-senior tranche (22%-100%) as well
as prices associated with the 10-year maturity given the very low liquidity of these contracts. Note
also that, for liquidity reasons, our Markit data do not cover all dates in our sample. In particular,
we do not have tranche prices before January 2007 and after March 2013.

Because each index roll features fixed maturity dates, market prices are not of the “constant-
maturity” type. To deal with this, for each considered maturity and for (i) each date and (ii) each
pair of attachment/detachment points, we look for the tranche price whose residual maturity is the
closest to the considered one. If the residual maturity of the resulting tranche is not in a ±1 year
window around the targeted maturity, no price is reported.

D.2 Equity options (EURO STOXX 50)

Equity put options are far out-of-the-money options written on the EURO STOXX 50 index. We
consider two maturities, 6 and 12 months, and strikes equal to 70% of the current value of the
index. That is, the payoffs of these options become strictly positive in case of a fall of the index by
more than 30%. Note that such option prices are not directly available on Thomson Datastream;
option prices reported on those database are for contracts with standardized maturity dates and
strikes. We compute the prices of our out-of-money options by applying interpolation splines on

30http://www.dtcc.com/derivatives-services/trade-information-warehouse.
31http://www.creditfixings.com/CreditEventAuctions/itraxx.jsp. For each date, maturity and

tranche, we convert all quotes into an equivalent running spread with no upfront payment by using the risky dura-
tion approach [see e.g. O’Kane and Sen (2003), D’Amato and Gyntelberg (2005), or Morgan Stanley (2011)].
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Data

available data, in both the time and strike dimensions. Following market convention, we convert
our put option prices into implied volatilities using the Black-Scholes formula.
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– Online Appendix –

Disastrous Defaults
Christian GOURIÉROUX, Alain MONFORT, Sarah MOUABBI and Jean-Paul RENNE

O.1 A general model of Xt’s dynamics

We consider the state vector Xt = [F ′t ,N
′
t ,N
′
t−1]

′. Vectors Ft and Nt are, respectively, nF -dimensional
and J-dimensional. Conditional on Xt = {Xt ,Xt−1, . . .}, the different components of Ft+1 are inde-
pendent and drawn from non-centered Gamma distributions:32

Fi,t+1|Xt ∼ γνi(ζi,0 +ζ
′
i,FFt +ζ

′
i,nnt ,µi),

where νi, ζi,0 and µi are scalar, ζi,F is a nF -dimensional vector and ζi,n is a J-dimensional vector.
In this case, we have (see Monfort et al. (2017)):

Et
(
exp(w′Ft+1)

)
= exp

(
a(w)′Ft +b(w)′Nt + c(w)′Nt−1 +d(w)

)
, for any w ∈V. (a.15)

with

a(w) = ζF

(
w�µ

1−w�µ

)
, b(w) = ζn

(
w�µ

1−w�µ

)
, c(w) =−b(w),

d(w) = ζ
′
0

(
w�µ

1−w�µ

)
−ν

′ log(1−w�µ), (a.16)

and where V is the set of vector w whose components wi are in ]−∞,1/µi[. with ζF = [ζ1,F , . . . ,ζnF ,F ],
ζn = [ζ1,n, . . . ,ζJ,n], ζ0 = [ζ1,0, . . . ,ζnF ,0]

′, µ = [µ1, . . . ,µnF ]
′, ν = [ν1, . . . ,νnF ]

′, where � is the
element-by-element (Hadamard) product and where, by abuse of notations, the log and division
operator are applied element-by-element wise.

32The random variable W is drawn from a non-centered Gamma distribution γν(ϕ,µ), iif there exists a P(ϕ)-
distributed variable Z such that W |Z ∼ γ(ν +Z,µ) where Z and µ are, respectively, the shape and scale parameters of
the Gamma distribution [see e.g. Gouriéroux and Jasiak (2006)]. When Z = 0 and ν = 0, then W = 0. When ν = 0,
this distribution is called Gamma0 distribution; this case is introduced and studied by Monfort et al. (2017).
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Besides, conditional on Ω∗t = {Ft+1,Ωt}, we assume that n j,t = ∆N j,t , j = 1, . . . ,J are indepen-
dent with Poisson distributions:

n j,t+1|Ω∗t ∼P(β ′jFt+1 + c′jnt + γ j). (a.17)

Proposition O.1. The log conditional Laplace transform of process (Xt), denoted by ψ(v,Xt) and

defined by:

Et
(
exp(v′Xt+1)

)
= exp(ψ(v,Xt)), (a.18)

is affine in Xt . That is, we have:

ψ(v,Xt) = ψ0(ν)+ψ1(ν)
′Xt , (a.19)

with

ψ0(v) = d

(
J

∑
j=1

(exp(vB, j)−1)β j + vA

)
+

J

∑
j=1

(exp(vB, j)−1)γ j,

and where ψ1(v) = [ψ1,A(v)′,ψ1,B(v)′,ψ1,C(v)′]′, where:
ψ1,A(v) = a(∑J

j=1(exp(vB, j)−1)β j + vA)

ψ1,B(v) = b(∑J
j=1(exp(vB, j)−1)β j + vA)+∑

J
j=1(exp(vB, j)−1)c j + vB + vC

ψ1,C(v) = c(∑J
j=1(exp(vB, j)−1)β j + vA)−∑

J
j=1(exp(vB, j)−1)c j,

(a.20)

with v= [v′A,v
′
B,v
′
C]
′, vA being a nF -dimensional vector and vB and vC being J-dimensional vectors.

Proof. We have:

Et
(
exp((v′A,v

′
B,v
′
C)Xt+1)

)
= Et

(
exp(v′AFt+1 + v′BNt+1 + v′CNt)

)
= Et

(
E
(

exp(v′AFt+1 + v′BNt+1 + v′CNt)
∣∣Ωt ,Ft+1

))
= Et

(
exp(v′AFt+1 +(vB + vC)

′Nt)E
(
exp(v′B(Nt+1−Nt))

∣∣Ω∗t ))
= Et

(
exp(v′AFt+1 +(vB + vC)

′Nt)E

(
exp

[
J

∑
j=1

vB, j(N j,t+1−N j,t)

]∣∣∣∣∣Ω∗t
))

= Et

(
exp

(
v′AFt+1 +(vB + vC)

′Nt +
J

∑
j=1

(
β
′
jFt+1 + c′j(Nt−Nt−1)+ γ j

)
(evB, j −1)

))
,

the last equality resulting from the fact that the n j,t+1s, are independent conditional on Ω∗t . There-

2



fore:

Et
(
exp((v′A,v

′
B,v
′
C)Xt+1)

)
= exp

({
J

∑
j=1

(evB, j −1)c j + vB + vC

}′
Nt−

{
J

∑
j=1

(evB, j −1)c j

}′
Nt−1 +

J

∑
j=1

γ j(evB, j −1)

)
×

Et

(
exp

({
J

∑
j=1

(evB, j −1)β j + vA

}′
Ft+1

))
,

and the result follows.

O.2 Conditional and unconditional moments of [F ′t ,n′t ]′

We have (see Monfort et al. (2017)):

E(Ft+1|Xt) = µ� (ζ0 +ν)+µ� (ζ ′FFt +ζ
′
nnt) (a.21)

=: µF +ΦFFFt +ΦFnnt

Var(Ft+1|Xt) = diag
[
µ�µ� (2ζ0 +ν)+2({µ�µ}1′)� (ζ ′FFt +ζ

′
nnt)

]
(a.22)

=: diag(µvar
F +Φ

var
FFFt +Φ

var
Fn nt) ,

where 1 is a nF -dimensional vector of ones. Using further eq. (a.17), we obtain:

Et

([
Ft+1

nt+1

])
=

[
µF

γ +β ′µF

]
+

[
ΦFF ΦFn

β ′ΦFF β ′ΦFn + c′

][
Ft

nt

]

Vart

([
Ft+1

nt+1

])
= Et

(
Var

([
Ft+1

nt+1

]∣∣∣∣∣Xt
∗

))
+Vart

(
E

([
Ft+1

nt+1

]∣∣∣∣∣Xt
∗

))

= Et

([
0 0
0 diag(β ′Ft+1 + c′nt + γ)

])
+Vart

([
Ft+1

β ′Ft+1 + c′nt + γ

])

=

[
0nF×nF 0nF×J

0J×nF diag(β ′(µF +ΦFFFt +ΦFnnt)+ c′nt + γ)

]
+[

InF

β ′

]
diag(µvar

F +Φ
var
FFFt +Φ

var
Fn nt)

[
InF β

]
=

[
0nF×J

IJ

]
diag(β ′(µF +ΦFFFt +ΦFnnt)+ c′nt + γ)

[
0J×nF IJ

]
[

InF

β ′

]
diag(µvar

F +Φ
var
FFFt +Φ

var
Fn nt)

[
InF β

]
.
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Using the fact that, for any n-dimensional vector a:

vec(diag(a)) =
n

∑
i=1

vec(diag[eie′ia]) =
n

∑
i=1

vec(eie′i)ai =

(
n

∑
i=1

vec(eie′i)e
′
i

)
︸ ︷︷ ︸

=:Sn

a,

we obtain:

vec

(
Vart

([
Ft+1

nt+1

]))

=

([
0nF×J

IJ

]
⊗

[
0nF×J

IJ

])
SJ(β

′(µF +ΦFFFt +ΦFnnt)+ c′nt + γ)+([
InF

β ′

]
⊗

[
InF

β ′

])
SnF (µ

var
F +Φ

var
FFFt +Φ

var
Fn nt)

=

([
0nF×J

IJ

]
⊗

[
0nF×J

IJ

])
SJ(β

′
µF + γ)+

([
InF

β ′

]
⊗

[
InF

β ′

])
SnF µ

var
F +{([

0nF×J

IJ

]
⊗

[
0nF×J

IJ

])
SJβ

′
ΦFF +

([
InF

β ′

]
⊗

[
InF

β ′

])
SnF Φ

var
FF

}
Ft +{([

0nF×J

IJ

]
⊗

[
0nF×J

IJ

])
SJβ

′
ΦFn +

([
InF

β ′

]
⊗

[
InF

β ′

])
SnF Φ

var
Fn

}
nt .

Therefore:

vec

(
Vart

([
Ft+1

nt+1

]))

=


SnF (µ

var
F +Φvar

FFFt +Φvar
Fn nt)

(InF ⊗β ′)SnF (µ
var
F +Φvar

FFFt +Φvar
Fn nt)

(β ′⊗ InF )SnF (µ
var
F +Φvar

FFFt +Φvar
Fn nt)

SJ(β
′(µF +ΦFFFt +ΦFnnt)+ c′nt + γ)+(β ′⊗β ′)SnF (µ

var
F +Φvar

FFFt +Φvar
Fn nt)


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=


SnF µvar

F

(InF ⊗β ′)SnF µvar
F

(β ′⊗ InF )SnF µvar
F

SJ(β
′µF + γ)+(β ′⊗β ′)SnF µvar

F

+


SnF Φvar
FF

(InF ⊗β ′)SnF Φvar
FF

(β ′⊗ InF )SnF Φvar
FF

SJβ ′ΦFF +(β ′⊗β ′)SnF Φvar
FF

Ft +


SnF Φvar

Fn

(InF ⊗β ′)SnF Φvar
Fn

(β ′⊗ InF )SnF Φvar
Fn

SJβ ′ΦFn +(β ′⊗β ′)SnF Φvar
Fn

nt .

Hence, both vec

(
Vart

([
Ft+1

nt+1

]))
and Et

([
Ft+1

nt+1

])
are affine functions of

[
Ft

nt

]
. Let

us introduce the obvious notations:

Et

([
Ft+1

nt+1

])
= µE +ΦE

[
Ft

nt

]

vec

(
Vart

([
Ft+1

nt+1

]))
= µV +ΦV

[
Ft

nt

]
.

Assuming that

[
Ft

nt

]
is covariance-stationary, we have:

E

([
Ft

nt

])
= E

([
Ft+1

nt+1

])
= µE +ΦEE

([
Ft

nt

])
,

which leads to

E

([
Ft

nt

])
= (I−ΦE)

−1
µE .

We also have:

Var

([
Ft

nt

])
= E

(
Vart

([
Ft

nt

]))
+Var

(
Et

([
Ft

nt

]))
.

Using that
E

(
Vart

([
Ft

nt

]))
= E

(
µV +ΦV

[
Ft

nt

])

Var

(
Et

([
Ft

nt

]))
= Var

(
µE +ΦE

[
Ft

nt

])
= ΦEVar

([
Ft

nt

])
Φ′E ,
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we get:

vec

(
Var

([
Ft

nt

]))
= (I−ΦE ⊗ΦE)

−1

[
µV +ΦVE

([
Ft

nt

])]
.

O.3 Proof of Lemma 1

We have:

rs
t+1 = log

(
Pt+1 +Dt+1

Pt

)
= log(Pt+1 +Dt+1)− log(Pt)+ log(Pt+1)− log(Pt+1)+

log(Dt+1)− log(Dt+1)+ log(Dt)− log(Dt)

= zt+1− zt +gd,t+1 + log
(

1+
Dt+1

Pt+1

)
. (a.23)

Besides:

log[1+Dt+1/Pt+1] = log[1+ exp(−zt+1)]

≈ log[1+ exp(−z̄){1− (zt+1− z̄)}]

≈ log[1+ exp(−z̄)− exp(−z̄)(zt+1− z̄)]

≈ log[1+ exp(−z̄)]− zt+1− z̄
1+ exp(z̄)

.

Therefore:

rs
t+1 ≈ zt+1− zt +gd,t+1 + log[1+ exp(−z̄)]− zt+1− z̄

1+ exp(z̄)

≈ log[1+ exp(−z̄)]+
z̄

1+ exp(z̄)
+

exp(z̄)
1+ exp(z̄)

zt+1− zt +gd,t+1

≈ log[1+ exp(z̄)]− exp(z̄)
1+ exp(z̄)

z̄+
exp(z̄)

1+ exp(z̄)
zt+1− zt +gd,t+1,

which leads to eq. (a.11).

O.4 Pricing Credit Default Swaps

O.5 Credit Default Swap

The Credit Default Swap (CDS) is the most common credit derivative. It is an agreement between
a protection buyer and a protection seller, whereby the buyer pays a periodic fee in return for a
contingent payment by the seller upon a credit event, such as bankruptcy or failure to pay, of a

6



reference entity. The contingent payment usually replicates the loss incurred by a creditor of the
reference entity in the event of its default [See e.g. Duffie (1999)].

More specifically, a CDS works as follows: the protection buyer pays a regular (annual, semi-
annual or quarterly) premium to the so-called protection seller. These payments end either after
a given period of time (the maturity of the CDS) or at default of the reference entity i from Seg-
ment j. In the case of the default of this debtor, the protection seller compensates the protection
buyer for the loss the latter would incur upon default of the reference entity (assuming that the
latter effectively holds a bond issued by the reference entity). The CDS spread, also called CDS
premium, is the regular payment paid by the protection buyer (expressed in percentage of the no-
tional and in annualized terms). Since, in our model, the segments of credit are homogeneous, the
CDS spreads are the same for all entities belonging to the same segment. Let us denote by SCDS

j,t,h

the maturity-h CDS spread of segment- j entities, by q the number of premium payments made per
year and by RR the recovery rate.33

Let d j,i,t be the indicator of default of entity i belonging to segment j: d j,i,t = 1 if entity i is in
default at time t (or before) and d j,i,t = 0 otherwise.34 Note that we have N j,t = Σ

I j
i=1d j,i,t .

At inception of the CDS contract, there is no cash-flow exchanged between both parties: In-
deed, the CDS spread SCDS

j,t,h is determined so as to equalize the present discounted values of the
payments promised by each of them. If the maturity h is expressed in years, we have:

EQ
t

{
qh

∑
k=1

Λt,t+k(1−RR)(d j,i,t+k−d j,i,t+k−1)

}
︸ ︷︷ ︸

Protection leg

= EQ
t

{
SCDS

j,t,h

q

qh

∑
k=1

Λt,t+k(1−d j,i,t+k)

}
︸ ︷︷ ︸

Premium leg

. (a.24)

By expanding the latter equality, it is clear that the CDS spread S j,t,h is easily derived if one
can compute EQ

t (Λt,t+k), EQ
t (Λt,t+kd j,i,t+k) and EQ

t (Λt,t+kd j,i,t+k−1) for all k > 0. By symmetry
arguments, assuming that d j,i,t = 0, we have:

EQ
t (Λt,t+kd j,i,t+k) = EQ

t

(
Λt,t+k

N j,t+k−N j,t

I j−N j,t

)
=

1
I j−N j,t

(
EQ

t (Λt,t+kN j,t+k)−N j,tEQ
t (Λt,t+k)

)
.

where N j,t = min(N j,t , I j). While exact formulae are available to compute these quantities, we will
proceed under the assumption that the probability of having N j,t > I j is so small that we have, in

33While the model is extensible to the case of stochastic recovery rates, we restrict our attention here to that of
deterministic recovery rates as is common practice in pricing exotic credit derivatives.

34In what follows, we augment the filtration Ωt with dt .
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particular, EQ
t (Λt,t+kN j,t+k)≈ EQ

t (Λt,t+kN j,t+k). In this context, we obtain:

EQ
t (Λt,t+kd j,i,t+k)≈

1
I j−N j,t

(
EQ

t (Λt,t+kN j,t+k)−N j,tEQ
t (Λt,t+k)

)
. (a.25)

Similarly, we obtain:

EQ
t (Λt,t+kd j,i,t+k−1)≈

1
I j−N j,t

(
EQ

t (Λt,t+kN j,t+k−1)−N j,tEQ
t (Λt,t+k)

)
. (a.26)

Using eqs. (a.25) and (a.26) in eq. (a.24), we get:

SCDS
j,t,h ≈ q(1−RR)

EQ
t

{
∑

qh
k=1 Λt,t+k[N j,t+k−N j,t+k−1]

}
EQ

t

{
∑

qh
k=1 Λt,t+k(I j−N j,t+k)

} .

It can be seen that this expression is the same as that for spreads of credit indices (eq. 11).

O.6 Maximum Sharpe ratio between dates t and t +h

The maximum Sharpe ratio of an investment realized between dates t to t + h is given by [see
Hansen and Jagannathan (1991)]:

Mt,t+h =

√
Vart(Mt,t+h)

EQ
t (Λt,t+h)

.

We have:

Mt,t+h = exp
(
hµ0,m +µ

′
2,mXt

)
×

exp
(
[µ1,m +µ2,m]

′Xt+1 + · · ·+[µ1,m +µ2,m]
′Xt+h−1 +µ

′
1,mXt+h

)
Therefore:

Mt,t+h =

√
Θt,h(2[µ1,m +µ2,m],2µ1,m)−Θt,h(µ1,m +µ2,m,µ1,m)2

Θt,h(µ1,m +µ2,m,µ1,m)
,

where
Θt,h(u,v) = Et(exp(u′Xt+1 + · · ·+u′Xt+h−1 + v′Xt+h)).

When Xt is an affine process, Θt,h(u,v) can be computed in closed-form by using recursive formu-
lae as in Prop. 4 (with δ ≡ η ≡ 0).
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