
High-frequency volatility in a time deformed

framework, the role of volume, durations and jumps

through intraday data

Antonio A. F. Santos

Faculty of Economics, Centre for Business and Economic Research (CeBER),

Monetary and Financial Research Group (GEMF), University of Coimbra, Portugal

Abstract

The analysis of volatility is paramount for decision-making in financial mar-

kets. Here is developed a strategy for increasing information to be used in the build

of relevant volatility measures. With the increased information available through

the new technologies most of the data analyses in finance are “big data” problems.

The time deformed returns associated with the volume are used to estimate and

forecast intraday high-frequency volatility. This kind of return can give a new per-

spective on volatility evolution, because allow estimation, forecasts and decisions

to be considered at a varying speed when measured in calendar time, which is

compatible with the reality in financial markets, periods of high and low activity

are clearly identifiable. Through this strategy, other information elements can be

extracted from the data, and not only the traditional fixed time-interval prices

usually obtained. By extracting other information related to volatility evolution,

for example, volume of trade and durations, better volatility estimates can be

constructed. It allows the generalisation of models, namely the ones that include

the possibility of jumps in the volatility, which without such increase of sample

information present characteristics of underidentification, leading to inconsistent

estimates and creating biased forecasts.
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1 Introduction

The volatility in financial markets is an important element for countries, insti-

tutions (e.g. banks), and also for individuals. It is fully recognised by all, it is

accepted that influences decisions, can decrease or increase the wealth, and the

well being in general. However, it cannot be uniquely and unambiguously mea-

sured. The analysis of volatility has a long history in the academic world, but also

in most financial institutions that influence or are influenced by the evolution of

financial markets.

By now there is not a unique measure of volatility, but the main tendency

since the 90’s is to define “objective” measures of volatility obtained through

data, which nowadays is a “big data” problem. It is the task of statistical and

econometric models to extract the relevant information from such data. A sub-

stantial number of models and procedures have been proposed as able to define

meaningful measures of volatility.

Most financial econometric models use mainly prices or returns, and almost

all aim essentially to define a relevant volatility measure. The best known models

for modelling volatility are the ones from the (G)ARCH family (Engle, 1982;

Bollerslev, 1986) and the Stochastic Volatility (SV) (Taylor, 1986, 1994). Recently,

some developments have emerged using model-free volatility measures and the

most referenced is the Realised Volatility (RV) (Andersen et al., 1999, 2001, 2003,

2005; Andersen and Teräsvirta, 2009; Andersen et al., 2011; Barndorff-Nielsen

and Shephard, 2002, 2004), and for an excellent survey see McAleer and Medeiros

(2008).

Here we designated daily observations as high-frequency data, but with the de-

velopment of information technologies, with trade made essentially through and by

computers, and the dissemination of information available through those technolo-

gies, institutions and individuals can easily obtain ultra-high-frequency intraday

data, with a frequency that can reach the millisecond.

The aim is to explore the availability of ultra-high-frequency data, and develop

measures of volatility, and also relevant forecasts for intraday volatility. It is well

established that daily volatility varies, and there is further evidence that intraday
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volatility as well (Andersen and Bollerslev, 1997, 1998). One of the more flexible

models used to characterise the volatility evolution is the SV model.

The use of intraday returns was considered by Stroud and Johannes (2014)

aiming to model intraday volatility through SV models. As new characteristics are

found in intraday data, Stroud and Johannes (2014), following Eraker et al. (2003),

Todorov (2011), and Todorov and Tauchen (2011), considered the possibility of

jumps in the observation process associated with returns as well in the latent

process associated with the volatility. Another important characteristic to be

taken into account is the seasonal component that is found in intraday volatility

(Andersen and Bollerslev, 1997, 1998). These were two components that were

added to the model, even if jumps were already considered with daily returns

(Chib et al., 2002), they were not associated with the latent process that drives

the volatility. Another characteristic is the possibility of considering two states,

which intends to characterise different speeds of volatility evolution.

Our approach has many resemblances with Stroud and Johannes (2014), in the

sense that aims to characterise and model the intraday volatility, and considers

the same type of models to perform such analysis. We address the problem by

using a new type of return, in volume-domain instead of in time-domain. This

is a type of return that is not commonly used in the literature, and hopefully it

will incorporate a new perspective on volatility evolution. The use of such return

overcomes some of the difficulties related to the seasonal component presented in

intraday returns, and serves as a vehicle to incorporate information contained in

the volume.

The assumption that volume of transactions may have an important role in

the definition of prices or returns is not new (Clark, 1973; Epps, 1976; Epps

and Epps, 1976; Tauchen and Pitts, 1983; Tauchen et al., 1996; Andersen, 1996).

The dependence between trading volume and financial returns, mainly designed

to characterise the high kurtosis of returns distributions was first investigated

by Clark (1973), Epps (1976) and Epps and Epps (1976). Trading volume was

used as a mixing variable, allowing unconditional distributions to present a fat

tails characteristic. Clark (1973) and Lamoureux and Lastrapes (1990) used the

trading volume as an exogenous variable. When returns and volume-trade are
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jointly determined, a different approach is needed. Tauchen and Pitts (1983) and

Andersen (1996), both assume that the two processes, returns and volume, depend

on a latent process which characterises an unobserved flow of information.

Even that theoretically Clark (1973) and Tauchen and Pitts (1983) established

a link between volume and returns, where the volume drives return distributions,

the inclusion of this component in a models like GARCH and SV has been diffi-

cult to justify. Attempts have been made as in Lamoureux and Lastrapes (1990),

Watanabe (2000), Liesenfeld and Richard (2003), but essentially the volume pro-

cess overpowers the other components. An essential characteristic, the volatility

persistence on returns, is overshadowed by the mean dynamics associated with

volume. This is perhaps one of the reasons that it has received a small amount

of attention in the analysis of volatility evolution, and following Granger (2002),

“Given its ready availability, until recently volume has been the missing variable

in finance ... ”.

Instead of considering directly the volume as an explanatory variable as did

Lamoureux and Lastrapes (1990) and Watanabe (2000), we consider the influence

of volume in an indirect way. This is possible by using intraday data. This kind of

data is influenced by different characteristics associated with trading mechanisms

in financial markets, and such kind of data can incorporate substantial amount

of noise. With intraday data, it is not usual to use tick-by-tick data, but instead

less frequent data as s-min returns, with s = 1, 5, 10, 30. Our main reference

paper, Stroud and Johannes (2014), uses 5-min returns. Prices and returns are

considered in time-domain, and are calculated using the nearest neighbour s-min

price or return tag. For a fixed time period, the number of shares traded is random,

and also the amount of information arriving to markets. As it does happen evenly,

can be considered that the number of trades depend on relevant information that

has arrived. More information arrive in the beginning of trading hours and near

the closing, it is usual to find a seasonal pattern, where the volatility is higher at

opening and closing of the markets.

Despite the volume has not received much attention within the finance liter-

ature, there are some research that present some results common with the ones

addressed. An idea of a different referential from the one represented by the cal-
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endar time, and the consideration of information measures in different scales was

considered by Maillet and Michel (1997) and Le Fol and Ludovic (1998), where

a kind of time deformation is considered. This could be useful to analyse some

stylised facts associated with intraday returns, and in this way allowing a better

characterisation of such returns. Further research has been highlighting the role

played by the volume (Gourieroux and Le Fol, 1997; Darolles et al., 2000, 2015,

2017), but unfortunately we think has not been yet incorporated in mainstream

financial literature. If the former propose to deal with the characterisation of un-

conditional distribution for intraday returns, the latter, especially Darolles et al.

(2017), deals with the dynamic features through conditional distributions. Our

difference is that volume serves to define a new referential (time deformation),

and we address the estimation and forecasting issues without discard the non-

linear features, presenting workable algorithms to estimate models’ and forecast

volatility evolution.

The seasonal pattern is perceived when the time period is fixed and the amount

of information in each time interval is random. We can try to maintain fixed the

amount of information, and as it is not directly observable, volume is used as a

proxy. Instead of using a time-period, the volume is fixed (amount of information),

and returns are calculated in this new referential, which will lead to the definition

of volume-adapted return.

2 Deformed time observations

A natural referential to assume for a sequence of observations for a given variable

is the calendar time, variables can be observed monthly, weekly, and daily. Until

recently, for economic variables, daily observations were considered high-frequency

data. Economic variables associated with human behaviour have an intrinsic time-

tag from which is difficult to dissociate from, we assume that there is an annual

budget, the salary is paid monthly, etc. In financial markets, the frequency mainly

used is the daily one. Financial markets are opened during the day, and after they

close is not possible to rebalance the portfolios, which means that closing prices

are the benchmark.
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If we zoom to a specific day, during trading time, it is not so obvious the

use of calendar time as the main referential. During the day, markets move at

different speeds, relevant information arrive in a random manner, and rebalancing

the portfolio every 15 minutes in some situations can be too many and in others

too few. Time deformed settings associated with evolution of prices in financial

markets was already considered in Maillet and Michel (1997), Gourieroux and

Le Fol (1997), Le Fol and Ludovic (1998), and called time deformation in a way

that defines variables in a varying shrinking or stretching of the calendar time as

a form to reveal certain characteristics that are manifest themselves randomly in

time.

Following Gourieroux and Jasiak (2001), we consider two time scales, the cal-

endar time t, assuming continuous non-negative values, and a discrete counterpart

z, assuming non-negative values. The time changing process determines the map-

ping from calendar time to another referential,

Z : t ∈ R+ → Zt ∈ N

A variety of time scales can be considered, but in the case of financial markets,

we use the general denomination of volume. When important information arrive

to the market we can verify an increase in the activity, more people are selling and

buying stocks, there is an increase in the volume, represented by the number of

transactions, N , the total number of shares traded, V , or even the value associated

with the total of shares traded, C. In this cases, the driving processes can be,

N(t), number of transactions before t, V (t) total number of shares traded before

t, or, C(t), total market value traded before t.

3 Volume-adapted returns

For the definition of volume-adapted return, we use the notion of a subordinated

stochastic process, which in the context of pricing financial assets as been consid-

ered by Clark (1973). The main idea is that prices evolve at different rates during

identical intervals of time. To any transaction in financial markets is associated a

given volume. When more information arrive to the markets, it is expected that
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there is an increase in volume, and prices adjust more rapidly, which can induce

significant changes in volatility.

Consider a discrete stochastic process associated with the log-price of a given

stock at t, p(t), for t = 1, 2, 3, . . .. Instead of indexing by t = 0, 1, 2, . . . representing

a deterministic evolution of the time, the process can be indexed by another set of

numbers, t1, t2, . . ., that are themselves a realisation of a stochastic process, with

positive increments, t1 ≤ t2 ≤ t3 . . .. This process can be used to characterise the

observations for prices in an intraday framework. Considering tick-by-tick data,

where observed prices are p(ti), with 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tn = 1, intraday

returns are defined as y(ti) = p(ti)− p(ti−1). As the ti is a random variable from

T (t), a positive stochastic process, the observations for prices are unequally spaced

in time. Here, T (t) is called the directing process and p(T (t)) is the subordinated

process.

When tick-by-tick observations are considered for the prices, for these are

associated a given number of shares traded, which can be denoted by V (ti), where

V (ti) is directly connected to p(ti). Using intraday data, in most econometric

models, the time-period is fixed, for example, a 5-min period, and the prices

considered are given by p(ti), where ti corresponds to the value that is near to a

5-min tag. The novel approach consists in defining the volume-adapted returns

through a double subordinated process. The log-prices will be indexed by V (ti),

p(V (ti)).

Considering 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tn = 1 in the time-domain, the partition

0 = v0 ≤ v1 ≤ v2 ≤ . . . ≤ vn = V is defined in the volume-domain, where

vi = V (ti). The volume-adapted price and respective return are defined by p(vi)

and y(vi) = log(p(vi)/p(vi−1)), where vi is the volume index associated with a

given target. The price and respective returns are defined in the volume-domain.

Usually the analyses associated with the volatility study use daily data or

consider measures of daily volatility (through intraday data). The research on

modelling intraday volatility is scarce. In the time-domain a time-period associ-

ated with the returns must be defined, and an usual trade-off between precision

and measurement error must be considered.

One of the most used tag is the 5-min, as in Stroud and Johannes (2014).

7



However, different periods were considered from 1- to 30-min returns. A choice

must be made, but that is unambiguous in the sense that price is observable for

each time tag. The same happens with volume. Instead of time, volume of trade is

considered. As we observe the time passing, we get also the increasing of volume,

which indexes the volume-adapted prices and respective returns.

Different volumes can be considered to index returns calculations. More vol-

ume implies further information, but less observations per day. It makes sense to

consider the same time period when different assets are considered, the same does

not happen when the volume is considered. The number of shares in each transac-

tion usually depends on the stock prices. To define a possible benchmark value for

the volume, we established a link with returns observed in the time domain. We

consider only observations in the normal period of transactions, 6.5 hours, which

would give 78 observations associated with 5-min periods.

4 Modelling volatility

Giving the usual hypothesis related to evolution of prices in financial markets,

namely, the weak efficiency hypothesis that future prices cannot be predictable

from past evolution of the same, usually financial econometric models do not seek

mean but instead variance dynamic. When daily volatility forecasts are asked

for, if only daily data is available, the structure of a model is needed to produce

meaningful forecasts. However, if intraday data is available, a daily forecast can

be defined by aggregating the different information elements obtained intradaily.

The first utilization of such data to define measures of financial volatility was

associated with nonparametric measures like the Realized Volatility (RV), an es-

timator of the integrated volatility

IV =

∫ t+1

t
σ2(s)ds

defined assuming a standard diffusion process associated with the evolution of

log-prices, p(t).

A basic estimator to IV is given by the Realized Volatility. Assume for a given
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day n intraday returns yti are observed with 0 = t0 < t1 < . . . < tn = n,

RV =
n∑
i=1

y2ti (1)

with a pure diffusion process for log-prices, dp(t) = σ(t)W (t), andW (t) a standard

Winner process, RV
P→ IV .

The application of theory for calculation of a daily measure of volatility faces

some difficulties due to the violation of a pure diffusion process hypothesis, and

because the shrinking of time intervals is not possible without the introduction of

additional noise with consequences for the statistical properties of the estimator.

Using parametric models has been less frequent, but also encompasses modelling

difficulties. The main idea is to use the information contained in intraday data as

a way to ameliorate estimation and forecasting of financial volatility.

Recent research addresses the high-frequency volatility evolution, where the

aim is to consider that volatility is varying intradaily. A nonparametric approach

is not feasible, and a structure induced by a model is needed to obtain interpretable

results. As with the daily frequency, ARCH and SV models have been the most

used to perform the analyses. One recent reference and a benchmark for the

results presented here is Stroud and Johannes (2014).

Apparently the extension of ARCH and SV models used with daily data should

not be done to intraday data without considering new features presented in such

kind of data. The tendency is to consider several complex extensions as a way

of addressing new features. We take as example a model adopted in Stroud and

Johannes (2014), a SV model that accounts for the presence of two volatility

factors, a fast- and slow-moving, seasonal adjustments, news announcements, and

jumps in returns and volatility. These characteristics must be extracted through

a model and respective parameters with a unique series of 5-min returns.

A main question arises, is it possible through a unique series to distinguish

so many effects? This question is related to the problem of model identification,

which has been overlooked in the application of many econometric models. It has

different interpretations depending if a classical or Bayesian view of Statistics is

adopted, and it is easy to analyse and interpret within a linear regression model,

but hard in nonlinear models.
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State-space models have assumed a predominant role in the analysis of financial

volatility. It is a well established fact that at some frequencies the volatility is time-

varying whatever the reasonable measure we might use. The usual interpretation

is that the volatility evolution depends on the stream of information that arrive to

the market, which is not directly observable, and can be accommodated through

a state-space representation.

The state-space models adequate for modelling volatility evolution have to

assume nonlinear characteristics, which makes difficult estimation and forecast-

ing, no analytical formula is available as linear models. Many algorithms as-

sociated with numerical methods have been developed to estimate and forecast

through these models. Some algorithms are related to Markov chain Monte Carlo

(MCMC) simulations that approximate the parameters’ posterior distribution

within a Bayesian estimation framework.

In the SV model, yt represents the intraday volume-adapted for a given thresh-

old volume (V ), where here to alleviate the notation, t represents just the obser-

vation index. However, the return is defined trough y(vi) for a given threshold V .

The element αt represents the state that defines the variance of the process, for

t = 1, . . . , n. The model adopted has the usual nonlinear state-space form

yt = exp(αt/2)
√
λt εt (2)

αt+1 = µ+ φ (αt − µ) + ση ηt+1 (3)

where (εt, ηt+1) ∼ N(0,Σ), with Σ11 = 1, Σ12 = Σ21 = ρ ση, and Σ22 = σ2η. To

model the fat-tail characteristic, using the Stochastic Volatility with Student-t in-

novations (SVt), it is used the mixing variable that follows a gamma distribution,

λt ∼ G(ν/2, ν/2). The parameter vector is given by (µ, φ, ση, ρ, ν), where µ repre-

sents the mean level of the volatility, the parameter φ, with |φ| < 1, the volatility

persistence, ση the volatility of the volatility, ρ the parameter that characterises

the leverage effect, i.e., with corr(εt, ηt+1) = ρ < 0, a give shock associated with

an extreme negative return will increase the future expected volatility. Finally, ν

characterises the thickness of the tails of the unconditional distribution of returns.

Univariate time-series are considered and the previous formulation encom-

passes the four most used versions of the SV model, the standard, the asymmetric
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(ASV), the model with fat-tails (SVt), and the asymmetric with fat-tails (ASVt).

The standard SV model is obtained making ρ = 0 and ν =∞. By considering the

parameter vector θ = (µ, φ, ση, ρ, ν), it is assumed that the leverage effect and the

fat-tails characteristics are modelled simultaneously.

4.1 Model’s estimation

Due the nature of the returns characterised in the section 2, where the volatility

clustering characteristic is apparent, led us to think that when estimating the

parameters as with daily returns, we find parameters that can be as interpretable

as the ones obtained in that scenario. The key is the value of the persistence

parameter and the ability of obtain meaningful forecasts that approximate the

volatility measure. There is now a new feature that must be taken into account.

There is a substantial increase in the number of observations that are used to

estimate the parameters of the model.

Jacquier et al. (1994) began a series of important research on the best way

to estimate the model, and for the most cited, see Shephard and Pitt (1997),

Kim et al. (1998), Chib et al. (2002), Chib et al. (2006) and Omori et al. (2007).

Different approaches have been proposed, which are associated with different al-

gorithms to obtain samples for the vector of states. Here, we develop a gaussian

approximation which gives high acceptance rates in the MCMC simulations used

in the estimation process. Essentially, as in Chib and Greenberg (1994) indepen-

dent samplers based on the gaussian approximations are used. The main aspect

is that in the context of simulating the states in for the SV models, those ap-

proximations are very robust, and allow easily to generalise from simpler to more

complex model. In the next section we only present the algorithm for the basic

SV model, but the extensions are straightforward, and more importantly are easy

to code.

4.2 Simulate the states

To estimate the model, the marginal posterior distribution of the parameters is ap-

proximated. This can be done by simulating from the distribution of α1:n, θ|y1:n,

11



where α1:n = (α1, . . . , αn) and y1:n = (y1, . . . , yn). Using Gibbs sampling the

parameters are sampled conditional on the states, θ|α1:n, y1:n, and the states con-

ditional on the parameters, α1:n|θ, y1:n.

The literature that addresses the problem of estimating the parameters of

the SV model is very vast. Very sophisticated algorithms were developed to ob-

tain efficient ways of estimating the parameters through the Bayesian estimation

paradigm using MCMC sampling. We have found some conflicting results, and the

development of very complex algorithms can be error prone in the implementation

of a digital computer.

We develop a single-move sampler to simulate from αt|α\t, θ, y1:n, where α\t =

(α1, . . . , αt−1, αt+1, αn). Based on a second order Taylor approximation to the

target density gives a gaussian density as the approximating density. Here we

present the results associated with the basic SV model, which allows the definition

of an analytical formula for the mean and variance of the gaussian approximation,

but it is straightforward if such components were obtained numerically, as they

need to be in extensions of the SV considered.

Assuming that at iteration k the sampled elements are θ(k) = (µ(k), φ(k), σ
(k)
η )

and α(k) = (α
(k)
1 , . . . , α

(k)
n ), at iteration k + 1 the algorithm proceeds as

1. Sample from αt|α(k+1)
t−1 , α

(k)
t+1, yt, θ

(k); t = 1, . . . , n.

2. Sample from µ, φ|σ(k)η , α(k+1), y1:n.

3. Sample from ση|µ(k+1), φ(k+1), α(k+1).

To obtain samples for the states in step 1, the algorithm proceeds as follows. The

logarithm of the density function assumes the form

`(αt) ∝ −
αt
2
− y2t

2eαt
− (αt+1 − µ− φ(αt − µ))2

2σ2η
− (αt − µ− φ(αt−1 − µ))2

2σ2η
, (4)

for which the maximizer is defined as

α∗t = W

(
y2t σ

2
η e
−ϕ

2(1 + φ2)

)
+ ϕ, with ϕ =

φ(αt+1 + αt−1)

1 + φ2
−

4φµ+ σ2η
2(1 + φ2)

+ µ , (5)

where W is the Lambert function. The second order Taylor approximation of

`(αt) around α∗t is the log-kernel of a Gaussian density with mean α∗t and variance

s2t = − 1

`′′(α∗t )
=

2eα
∗
t σ2η

y2t σ
2
η + 2(1 + φ2)eα

∗
t
. (6)
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This is the approximating density used to obtain samples for the vector of states.

The approximation is very good and the acceptance rates are very high. However,

even with chains that always move, sometimes they move slowly, and high levels

of autocorrelation are obtained. Due to the simplicity of the sampler, several

strategies may be considered to reduce the levels of autocorrelation and to define

more efficient estimation procedures. The main point to highlight is that, with

SV models, gaussian approximations are straightforward to implement.

4.3 Parameters’ estimation

To estimate the parameter vector using Bayesian estimation methods, obtained us-

ing the marginal posterior distributions of the parameters, as these do not present

an analytical tractable form, they are approximated through Markov chain Monte

Carlo (MCMC) simulation techniques. The main task is to approximate the poste-

rior distribution of θ|α1:n, y1:n, where α1:n = (α1, . . . , αn) and y1:n = (y1, . . . , yn).

The common approach is to simulate from the distribution of θ, α1:n|y1:n, and

through marginalisation approximate the posterior distribution of the parameter

vector. To simulate from the former, an iterative procedure of simulating from

the conditional distributions is devised, simulate from the parameter vector given

the vector of states, θ|α1:n, y1:n, and simulate from the vector of states given the

parameter vector, α1:n|θ, y1:n. This kind of approach to estimate the SV mod-

els has appeared first in Jacquier et al. (1994), and further developments can be

seen in Kim et al. (1998), Chib et al. (2002), Omori et al. (2007), Kastner and

Frühwirth-Schnatter (2014), Djegnéné and McCausland (2015).

4.3.1 Sampling the parameter vector

It is the marginal posterior distribution of the parameters that is used in a Bayesian

analysis to define a point estimate to the parameters. As the distribution does

not have an analytical tractable form, it is approximated by simulating from

θ|α1:n, y1:n, where θ = (µ, φ, σ2η) for the SV model and θ = (µ, φ, σ2η, ρ) for the

ASV model. The critical element to simulate in this kind of models is the vector

of states, mainly due to its dimension. Given the vector of states, it is rela-
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tively straightforward to simulate from the marginal posterior distribution of the

parameters.

To define the posterior, a prior distribution for the parameter vector needs to

be specified. It is common to assume the independence of the parameters within

the prior and for the ASV model, p(θ) = p(µ)p(φ)p(σ2η)p(ρ) (Kim et al., 1998;

Chib et al., 2002; Omori et al., 2007; Kastner and Frühwirth-Schnatter, 2014).

For µ, φ and σ2η taken individually, conditional on the observations, states, and

remaining parameters, conjugate prior distributions can be defined, gaussian for

µ and φ, and inverse-gamma to σ2η.

There is a well established set of results on the sensitivity of the marginal pos-

terior distribution to the different forms that the prior distributions may assume.

Naturally the influence of the priors depend on the information contained in the

likelihood. With the amount of information usually available for the estimation

of this kind of models, the sensitivity of the marginal posterior distribution to

different forms of the priors can be small.

For the ASV the same priors are used, and to distinguish ση and ρ, the results

presented in Jacquier et al. (2004) are considered. With ψ = ρση and Ω =

σ2η(1−ρ2), estimated through a linear model, the original parameters are obtained

as σ2η = Ω + ψ2 and ρ = ψ/ση.

4.4 Model extensions

The SV model is the main model considered here. This model has been exten-

sively applied using daily returns, and to intraday as been considered in Stroud

and Johannes (2014). Several extensions of the basic SV have been introduced,

but since Jacquier et al. (1994) the main focus has been in developing efficient

estimation algorithms, which have been the object of the research presented in

Shephard (1996) Shephard and Pitt (1997), Kim et al. (1998), Chib et al. (2002)

Omori et al. (2007) Omori and Watanabe (2008) Kastner and Frühwirth-Schnatter

(2014) and Djegnéné and McCausland (2015). However, it must be assumed that

the series used carry sufficient information to distinguish the effect produced by

all the parameters. There has been certain formulations that have implied some
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doubts on the ability of data and estimation methods being able to estimate in a

consistent way all parameters.

In Stroud and Johannes (2014), extensions to the basic SV model have been

taken to an extreme. The extensions include components associated with different

levels of persistence (two-factor model), seasonal effects, news announcements, fat

tails, asymmetric effects, and jumps in the observation and latent processes.

To our knowledge SV models were never applied to time deformed observations

as with the ones that are considered here. On the other hand, we can extract

from data other elements of information, variables that must be related with the

volatility evolution of returns, here in a time deformed setting, durations between

trades can be retrieved, and also the number of shares (or the mean) traded when

the directing process in the time deformation is constituted by the number of

trades.

We expect that the added sources of information allow some of the problems

that we report for the estimation of wide extensions associated with the SV model

as were considered in Stroud and Johannes (2014) can be avoided. Here we are

going to consider the role played by the durations that can contribute for obtaining

more consistent parameter estimates in complex models and in this manner be able

to improve forecasts obtained through them.

We consider two simplified versions of the model applied in Stroud and Jo-

hannes (2014) trying to individualise two features of the model that potentially

can cause estimation issues, the two-factor, and the presence of jumps in the

volatility process. Consider the simple extension of the basic SV model

yt = σy exp(αt/2 + γt/2) εt (7)

αt+1 = φ1αt + σ1 η1,t (8)

γt+1 = φ2γt + σ2 η2,t (9)

with (εt, η1,t, η2,t) ∼ N(0, I3), the parameter σy represents the level of volatility,

|φ1| < 1 and |φ2| < 1 represent the process persistence, and with φ1 > φ2, αt rep-

resents the slow-moving latent factor whereas γt the fast-moving one. Parameters

σ1 and σ2 represent the usual volatility of the volatility, here decomposed into two

components. This kind of model was already referred in Shephard (1996), esti-
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mated by Liesenfeld and Richard (2003), analysed in Durham (2006), and applied

to intraday data in Stroud and Johannes (2014). Even with strong priors and

restrictions on the parameters (φ1 > φ2), consistent estimation of all parameters

can be very tricky, essentially due to the non-identification of all parameters.

Another extension that has been considered is related to jumps, namely in the

volatility process. Let us consider the simple extension of the basic SV model with

yt = σy exp(αt/2) εt (10)

αt+1 = φαt + JtZt + σηηt (11)

the parameter σy represents the level of volatility, |φ| < 1 the volatility persistence,

with Jt ∼ B(p), Zt ∼ N(µz, σ
2
z), representing the existence of a jump, where

Jt = 0, 1, with P (Jt = 1) = p, and a jump size Zt that follows a normal distribution

with mean µz and variance σ2z .

The model is not identifiable, the level of volatility is influenced by the param-

eters σy, µz, σz, and even by p, and a unique series cannot disentangle all these

effects. Following the specification presented in Nakajima and Omori (2009), as-

suming Zt ∼ N(µz, µ
2
z), can in a certain way soften the problem, but we have to

recall that Nakajima and Omori (2009) considered the jumps only in the observa-

tion process. Finally, we have to note that the error term in the system equation

(JtZt + σηηt) is given by a mixture, and following Celeux et al. (2000) saying “...

we consider that almost the entirety of Markov chain Monte Carlo samplers im-

plemented for mixture models has failed to converge! Moreover, we wish to stress

that harm can result from the statistical interpretation of Markov chain Monte

Carlo samples produced by placing constraints on the parameters”, we are lead

to think that care must be taken when jumps are included.

Our main goal is to analyse the evolution of volatility, but before we can do

that, we must address the possible identification problems associated with the

models proposed. Even within a Bayesian framework, with prior distributions for

the parameters, and the so called identification restrictions, some doubts can be

cast about the meaningfulness of some estimates for the parameters in certain

models.

The idea of working with time deformed observations (prices and returns) is
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related to the fact that information do not arrive to the market in an evenly

manner. On the other hand, if the aim is to analyse the volatility, other sources of

information that not only the prices can be used to characterise the phenomenon,

for example, the volume. In periods of time that a lot of information is arriving

to the market, good or bad, these can trigger many adjustments on portfolios,

which in turn will increase volatility, and this can be related to the rise in volume

(number) of transactions. Using daily data, several attempts were considered,

but until now, there is not a full acceptance and appreciation of the analysis that

include the volume in volatility evolution characterisation.

Using intraday data we return to a kind of analysis that addresses the volatil-

ity evolution not in the calendar-time but in the trading-time. This setting ac-

commodates some of the issues difficult to address in calendar-time, namely the

seasonality, identification of all parameters in the models, and allow the introduc-

tion of other information sources as the volume and durations, that can help the

characterisation of high-frequency volatility evolution.

Because of the identification issue, if we want to generalise the models and

pick different characteristics of the returns distribution, the usual approach is

to consider a new set of parameters to characterise the new features of interest.

However, certainly there are limitations for which a given series can distinguish all

kind of parameters. In a time deformed setting, new variables can be associated

with the evolution of returns which allow the information disentanglement.

If there is lack of information in a series to distinguish the effect of all param-

eters, one possible solution is searching for other variables that may be included

and are related to the main variable of interest. In the time deformed environ-

ment we can observe returns but also durations, and smaller ones imply increased

activity with greater volatility and higher probability of jumps to happen. A first

attempt is to model jointly returns and durations in a bivariate SV model, also

including jumps,

yt = σy exp(αt/2) εt; εt ∼ N(0, 1)

dt = exp(−αt/2) ζt; ζt ∼ G(λ, 1)

αt+1 = φαt + Jt Zt + σηηt; ηt ∼ N(0, 1)
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Table 1: Summary of the estimation using MCMC to approximate the pos-

terior distribution of the parameters. Point estimate (Mean) and respective

standard deviation (SD). The INEF is given by N/ESS, number of observations

in the chain divided by the effective sample size

With durations Without durations

Par. Mean SD INEF. Mean SD INEF

σy 0.100 0.002 24.69 0.125 0.018 226.01

φ 0.965 0.004 9.72 0.963 0.005 22.78

ση 0.186 0.008 24.47 0.188 0.018 125.15

δ 0.214 0.097 6.18 -0.126 0.186 45.52

p 0.039 0.020 2.39 0.040 0.028 83.76

λ 9.870 0.222 26.84

where a new variable dt is introduced representing the durations, and λ represents

the durations level, Jt ∼ B(p), Zt ∼ N(δ, δ2), representing the existence of a jump,

where Jt = 0, 1, with P (Jt = 1) = p, and a jump size Zt that follows a normal

distribution with mean δ and variance δ2. In this model the parameter vector is

given by θ = (σy, λ, φ, ση, δ, p). Here the durations are included, which embodies

information on the volatility evolution, but more importantly, it adds information

into the model, which allow a more consistent parameters estimation, namely, the

ones jump associated.

Two illustrate the differences we build a simulation example, simulating from

the model with σy = 0.1, λ = 10, φ = 0.97, ση = 0.2, δ = 0.25, and p = 0.02. This

values are in line with the ones found for real data, and even it gives a negative

correlation around −0.3 between absolute returns and durations, smaller durations

imply an increase in volatility. The model was estimated through MCMC using the

STAN package (Stan Development Team. 2017. Stan Modeling Language Users

Guide and Reference Manual, Version 2.17.0. http://mc-stan.org). The estimates

are presented in Table 1, and we depict in Figure 1, the chains associated with

the more problematic parameters, δ and p.
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Figure 1: Trace and respective density associated with the chains used to

approximate the parameters δ and p, with (d) and without (wd) durations in

the respective model
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As it can be established by the results presented with the introduction of

durations allow an improvement of the estimation process, the estimated values

are near the true ones and the mixing of in chains increase dramatically as it can

be seen by the values of INEF. Without the increased information induced by

durations the jump size is erroneously estimated.

5 Forecasting and particle filter

The SV model is a state space model where the evolution of the states defines the

evolution of the volatility. Forecasts for the evolution of the states in this setting

require the development of simulation techniques known as Sequential Monte Carlo

(SMC), also referred as particle filter methods Andrieu et al. (2010); Carpenter

et al. (1999); Del Moral et al. (2006); Doucet et al. (2000); Fearnhead et al. (2010);

Godsill and Clapp (2001); Pitt and Shephard (1999). The aim is to update the

filter distribution for the states when new information arrive.

Using a model that depends on a set of parameters, all forecasts are conditioned

by the parameters. It is not realistic to assume that the parameters are know,

and the parameters are estimated through Bayesian estimation methods. This

constitutes an approximation, because even if model’s uncertainty is not taken

into account, it can be assumed that the parameters can vary over time.

The quantities of interest are the values of the states governing the evolution

of the volatility, which are propagated to define the predictive density of the

returns, defined here as f(yt+1|y1:t). However, essential to the definition of this

distribution is the filter density associated with the states, f(αt|y1:t). Bayes’s

rule allows us to assert that the posterior density f(αt|y1:t) of states is related

to the density f(αt|y1:t−1) prior to yt, and the density f(yt|αt) of yt given αt

by f(αt|y1:t) ∝ f(yt|αt)f(αt|y1:t−1). The predictive density of yt+1 given y1:t is

defined by f(yt+1|y1:t) =
∫
f(yt+1|αt+1)f(αt+1|y1:t) dαt+1.

Particle filters approximate the posterior density of interest, f(αt|y1:t), through

a set of m “particles” {αt,1, . . . , αt,m} and their respective weights {πt,1, . . . , πt,m},

where πt,j ≥ 0 and
∑m

j=1 πt,j = 1. This procedure must be implemented sequen-

tially with the states evolving over time to accommodate new information that
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arrive. It is difficult to obtain samples from the target density, and an approxi-

mating density is used instead, afterwards the particles are resampled to better

approximate the target density. This is known as the sample importance resam-

pling (SIR) algorithm. A possible approximating density is given by f(αt|αt−1),

however, Pitt and Shephard (1999, 2001) pointed out that as a density to approx-

imate f(αt|y1:t) is not generally efficient, because it constitutes a blind proposal

that does not take into account the information contained in yt.

5.1 Particle filter for the SV model

Through SMC with SIR the aim is to update sequentially the filter density for

the states. The optimal importance density is given by f(yt|αt)f(αt|αt−1, yt),

which induces importance weights with zero variance. Usually it is not possible to

obtain samples from this density, and an importance density g(αt), different from

the optimal density, is used to approximate the target density.

To approximate the filter densities associated with the SV model, Pitt and

Shephard (1999) considered the same kind of approximations used to sample the

states in a static MCMC setting. However, the approximations were based on a

first order Taylor approximation, and it was demonstrated by Smith and Santos

(2006) that they are not robust when information contained in more extreme

observations need to be updated (also called very informative observations). In

Smith and Santos (2006), a second order Taylor approximation for the likelihood

combined with the predictive density for the states leads to improvements in the

particle filter algorithm. As the auxiliary particle filter in Pitt and Shephard

(1999), avoids blind proposals like the ones proposed in Gordon et al. (1993),

takes into account the information in yt, and defines a robust approximation for

the target density, which also avoids the degeneracy of the weights.

Here we develop the aforementioned results using a robuster approximation for

the importance density. The logarithm of the density f(yt|αt)f(αt|αt−1), `(αt), is

concave on αt, and to maximize the function in order to αt, let us consider the
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first derivative equal to zero, `′(αt) = 0. Solving in order to αt the solution is

α∗t = W

(
y2t σ

2
η e
−γ

2

)
+ γ, with γ = µ(1− φ) + φαt−1 −

σ2η
2
. (12)

The second derivative is given by `′′(αt) = −(2eαt + σ2η y
2
t )/(2σ

2
η e

αt), which is

strictly negative for all αt, so α∗t maximizes the function `(αt) defining a global

maximum. The second order Taylor expansion of `(αt) around α∗t defines the

log-kernel of a gaussian density with mean mt = α∗t and variance

s2t =
2σ2η e

mt

2emt + σ2η y
2
t

. (13)

This gaussian density will be used as the importance density in the SIR algorithm.

In the procedures implemented, the estimates of interest were approximated

using particles with equal weights, which means that a resampling step is per-

formed. Assuming at t − 1 a set of m particles αmt−1 = {αt−1,1, . . . , αt−1,m} with

associated weights 1/m, which approximate the density f(αt−1|y1:t−1), the algo-

rithm proceeds as follows

1. For each element of the set, αt,i, i = 1, . . . ,m, sample a value from a gaussian

distribution with mean and variance defined by (12) and (13), respectively,

obtaining the set {α∗t,1, . . . , α∗t,m}.

2. Calculate the weights,

wi =
f(yt|α∗t,i)f(α∗t,i|αt−1,i)

g(α∗t,i|mt, s2t )
, πi =

wi∑m
i=1wi

. (14)

3. Resample from the set {α∗t,1, . . . , α∗t,m} using the set of weights {π1, . . . , πm}

obtaining a sample {αt|1:t,1, . . . , αt|1:t,m}, where to each particle a weight of

1/m is associated.

For the one step-ahead volatility forecast, having the approximation to the density

f(αt|y1:t), and due to the structure of the system equation in the SV model, AR(1)

with gaussian noise, it is easy to sample from f(αt+1|y1:t), the predictive density

for the states.
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6 Application results

The results in this article are associated with the analysis performed for three

stocks traded in US markets, Apple (AAPL), General Electric (GE), and Exxon

Mobile (XOM), using intraday data from March 2, 2017 to February 22, 2018,

collected from the public available information on the site of BATS Exchange,

now CBOE.

Table 2: Summary statistics of the intraday return distributions on three

stocks, AAPL, GE and XOM. In the first column, in brackets following the

designation of the stock is indicated the number of trades used to define the

volume-adapted returns. It is given the variance (Var.), the kurtosis (Kurt.),

and the autocorrelations associated with the absolute returns for lag i = 1, 2, 3

(ρ|yt−i|). The column MD represents the mean duration (in minutes) between

each recorded observation, and the last column (ρ|y|,d) represents the correla-

tion between absolute returns and durations

Stocks Var. Kurt. ρ|yt−1| ρ|yt−2| ρ|yt−3| MD ρ|y|,d

AAPL (400) 0.012 7.529 0.252 0.240 0.245 4.935 -0.290

AAPL (1200) 0.033 7.452 0.198 0.206 0.180 15.110 -0.310

GE (250) 0.017 7.613 0.203 0.191 0.182 4.985 -0.205

GE (750) 0.047 7.672 0.196 0.177 0.136 15.199 -0.213

XOM (150) 0.007 11.932 0.265 0.214 0.216 4.751 -0.157

XOM (450) 0.018 6.472 0.210 0.192 0.167 14.466 -0.198

The data was collected from the four order books available, and the frequency

available is the millisecond. In the process of recording the data some observations

might be lost, but the recorded data is constituted by the price that the stock was

traded, the number of shares traded, and the time (to the millisecond) of the
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Figure 2: Evolution of volume-adapted returns for three stocks, AAPL, GE

and XOM. The volume-returns were defined through the time deformation

associated with a given target for the number of trades. The values were

chosen to mimic the calendar time most used 1-min, 5-min, 15-min and 30-

min. The referential presented in the figure correspond to 1200 for AAPL,

750 for GE and 450 for XOM, which correspond of an average of 15 minutes

between recorded values. The autocorrelation for the absolute return is also

given, indicating the persistence of volatility

24



Table 3: Summary of estimation results associated with the simulation used

to approximate the posterior distribution of the parameters for four models,

SV, SVt, ASV and ASVt, for the AAPL stock. The first column represents

the mean of the posterior distribution (Mean), which represents the point

estimate, the second column an estimate of the standard deviation (SD) of the

estimator, the third is the inefficiency factor (INEF) calculated as the number

of observations in the sample (N) and the effective sample size (ESS). The last

two columns are related to the Geweke’s statistics to assess the convergence

of the chains

Par. Mean SD INEF Geweke-z p-value

µ -3.717 0.067 1.931 -1.228 0.220

φ 0.952 0.009 40.851 -0.074 0.941

ση 0.226 0.023 58.998 0.128 0.898

µ -3.793 0.084 14.593 2.433 0.015

φ 0.970 0.008 89.401 -0.744 0.457

ση 0.170 0.023 120.670 0.844 0.399

ν 21.110 7.817 131.666 1.690 0.091

µ -3.716 0.063 2.240 0.645 0.519

φ 0.949 0.009 32.969 0.903 0.366

ση 0.235 0.022 44.423 -0.550 0.582

ρ -0.259 0.046 6.860 -1.618 0.106

µ -3.774 0.074 8.647 0.382 0.702

φ 0.962 0.009 67.533 0.846 0.398

ση 0.196 0.025 99.102 -0.778 0.436

ρ -0.298 0.054 14.283 -0.284 0.777

ν 28.251 10.403 55.686 -0.535 0.593
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Table 4: Summary of estimation results associated with the simulation used to

approximate the posterior distribution of the parameters for four models, SV,

SVt, ASV and ASVt, for the GE stock. The first column represents the mean

of the posterior distribution (Mean), which represents the point estimate, the

second column an estimate of the standard deviation (SD) of the estimator, the

third is the inefficiency factor (INEF) calculated as the number of observations

in the sample (N) and the effective sample size (ESS). The last two columns

are related to the Geweke’s statistics to assess the convergence of the chains

Par. Mean SD INEF Geweke-z p-value

µ -3.375 0.060 3.260 -0.464 0.643

φ 0.931 0.013 42.860 -0.167 0.867

ση 0.283 0.030 52.476 0.050 0.960

µ -3.506 0.095 11.633 -0.146 0.884

φ 0.977 0.007 116.961 -1.006 0.314

ση 0.142 0.023 171.839 0.897 0.370

ν 10.417 1.911 78.801 0.274 0.784

µ -3.380 0.058 2.077 0.802 0.422

φ 0.926 0.013 30.393 0.006 0.995

ση 0.295 0.029 41.848 -0.189 0.850

ρ -0.016 0.042 4.410 -0.671 0.502

µ -3.490 0.083 9.877 -0.177 0.860

φ 0.967 0.009 98.020 0.485 0.628

ση 0.178 0.027 138.167 -0.480 0.631

ρ -0.030 0.056 10.208 1.068 0.286

ν 12.846 3.175 75.655 -0.080 0.936
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trade. For three stocks analysed, and for the sample period aforementioned the

number of observations were 7 409 509, 4 585 078 and 2 888 670, respectively.

The aim is to show how such a rich dataset can be used to characterise the

high-frequency volatility associated with the asset returns. In other contexts static

environments were considered where the aim was to understand the fat tail char-

acteristic of the financial returns, and the volume would be used as the scaling

factor, giving rise to normal distributed returns when conveniently scaled. Here

we assume that agents might need to take decision within very short periods of

time, and that measures of volatility adapted to such periods are needed. We find

that intraday returns also present fat tails, and as with other frequencies they also

cluster, indicating volatility dynamics.

The pattern of volatility clustering can be perceived by the analysis of Figure

2, where returns and autocorrelations for the absolute values are depicted. The

evolution of autocorrelation are in line with what is observed for daily returns

where these procedures have been most applied. The correlations are small but

highly persistent, indication a relationship, but naturally a nonlinear one.

As can be checked by the analysis of autocorrelations associated with the abso-

lute returns, no seasonal component can be perceived. The adjustments is made

through the durations. In time deformed setting the seasonal components are

adjusted automatically, and in Figure 3, is depicted the evolution of durations.

Through an autocorrelation analysis a seasonal pattern can be perceived, indicat-

ing that durations are smaller at opening and near closing of markets. A simple

filter was applied to durations for obtaining a seasonal adjusted series, depicted

in Figure 4.

As it is shown in Table 2, through the correlation between absolute returns and

durations, in the same order of values as the ones of autocorrelations associated

with absolute returns, with the definition and usage of time deformed returns,

new information can be retrieved from intraday data, namely the durations, which

coupled with the evolution of returns can give us a clearer approximation for the

volatility evolution.

The aim is to estimate and forecast the volatility. If a used measure is the

variance of returns, that is time-varying, dynamic models must be used and they
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Figure 3: Durations and respective autocorrelations for the recorded obser-

vations associated with the returns depicted in Figure 2. To the evolution of

the autocorrelations is clear the seasonal pattern that exists for the series
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Figure 4: Durations and respective autocorrelations as in Figure 3 after pass-

ing a filter to remove part of the seasonality
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assume nonlinear features. Forecasts based on a model usually need a set of

parameters that link variables with the element that a forecast is built to. Param-

eters must be estimated through data and the quality of forecasts are inevitably

linked with the one from parameters’ estimates.

In nonlinear models used to characterise volatility evolution as are ARCH

and SV, implies that large samples are needed to obtain reliable results. Less

than 1 000 observations in the sample can result in estimates subjected to a high

variability. In this context, using daily data, and to apply estimation procedures

to these models, samples that correspond to 30 years of data have been used

(around 8 000 observations). We can discuss the validity of such estimates, not

in terms of sample variability, but instead asking if a unique structure associated

with the model can accommodate the characterisation of a given market for such

long period of time.

Intraday data is an element that can address problems associated with pos-

sible changes of structures, because we can obtain substantial amounts of data,

necessary to estimate conveniently the parameters of high-dimensional nonlinear

models, and that data being associated with a relatively short period of time,

where no significant structural changes are expected.

Results associated with the estimation of different versions, SV, SVt, ASV

and ASVt, are presented in Table 3 and 4. The characteristics most relevant when

daily returns are used, can be found with intraday returns, especially the volatility

clustering, indicated by a value for the persistence parameter higher than 0.9. In

some cases the Student-t distribution is important for the observations equation,

more with GE, and the leverage effect parameter is also important to model the

AAPL returns.

To reinforce the argument present here that returns in a time deformed setting

using trade and volume information can be important to model volatility evolution,

apart from analysis and decisions at varying speeds when measured in calendar

time, it allows other kind of information related to volatility that can be retrieve

from the data, as are duration and volume of trade. For a series associated with

AAPL returns (1200 trades - 15-min) the models as in the simulation above were

estimated. The parameter λ had to be fixed, and the value λ = 15 was used.
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Table 5: Summary of the estimation using MCMC to approximate the pos-

terior distribution of the parameters for SV-Dur with jumps for AAPL stock.

Point estimate (Mean) and respective standard deviation (SD). The INEF is

given by N/ESS, number of observations in the chain divided by the effective

sample size

With durations Without durations

Par. Mean SD INEF. Mean SD INEF

σy 0.146 0.001 0.72 0.145 0.014 230.93

φ 0.933 0.005 1.77 0.951 0.009 132.22

ση 0.282 0.007 6.89 0.212 0.002 249.91

δ 0.396 0.067 3.02 0.221 0.250 111.25

p 0.041 0.011 1.04 0.034 0.020 26.28
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Figure 5: Trace and respective density associated with the chains used to

approximate the parameters δ and p, with (d) and without (wd) durations in

the models applied to AAPL returns
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The results presented in Table 5, and depicted in Figure 5, show that it is

problematic to estimate the parameters of a SV models with jumps related to the

latent process, the chains have difficulties to converge, with posterior distributions

presenting some degree of bimodality, which is critical to Bayesian estimation. On

the other hand, by generalising the model including durations, mixing of chains

increase dramatically, with reduction of standard deviations, which represent a

most trustworthy scenario of estimation.

7 Concluding remarks

The results presented demonstrate that similar procedures used to estimate and

forecast through SV models using daily observations can also be applied to in-

traday data. Assuming that the volatility is time-varying within a given day, the

intraday volatility evolution is modelled. A major issue is how to define the ap-

propriate frequency for the intraday returns. In this article is adopted a different

approach by defining the returns in volume-domain, which can offer a different

perspective for the volatility evolution. It incorporates the volume, which can

turn the modelling of volatility evolution more flexible, taking into account the

differences of activity on different days of negotiation, depending on the amount

of relevant information that arrive to the market.
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