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Abstract

This paper proposes an empirical procedure to identify investors' subjective beliefs

from observed asset prices, i.e. deviations from rational expectations in the conditional

distribution of macroeconomic and �nancial variables. Our methodology relies on the

smoothed empirical likelihood technique, which is non-parametric, allowing us to be

agnostic on the nature of behavioral biases (if any). Conditional Euler equation re-

strictions for a chosen cross-section of assets and a parametric pricing kernel enable us

to infer the subjective conditional distributions, given the investors' conditioning set.

When using in�ation and consumption growth as conditioning variablea, we show that

deviations from the objective distribution can be quite large and that belief distortions

seem to a�ect both the conditional mean and higher order moments of consumption

growth. We show that the estimated beliefs distortion are remarkably similar for many

of the popular consumption-based asset pricing models.
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I Introduction

The rational expectations paradigm (Muth (1961)) postulates that economic agents use

available data objectively, or rationally, to make inferences about the true underlying model

and its parameters. Therefore, under rational expectations, while forecasts about future

economic conditions need not always be correct, but the forecast errors are unbiased and

uncorrelated with any current available information that was used in the construction of

the forecasts. The rational expectations paradigm is a simple yet powerful one, and has, to

date, constituted the predominant maintained hypothesis in economics. The e�cient mar-

kets hypothesis (Fama (1969)), for instance, is based on the underlying premise of rational

expectations. Most of the leading asset pricing models proposed in the literature � start-

ing with standard Consumption-CAPM (C-CAPM) of Rubinstein (1976) with time-additive

power utility as well as more recent models such as the habit formation model of Camp-

bell and Cochrane (1999) the long run risks model of Bansal and Yaron (2004), and the rare

disasters model of Rietz (1988) and Barro (2006) � also assume that agents are fully rational.

The rational expectations hypothesis, while intuitive and appealing, has di�culty ex-

plaining a number observed features of the aggregate stock market, the cross section of

returns, and individual trading behavior. Moreover, these shortcomings pertain not only to

the standard C-CAPM, but also the more recent models intended to overcome the limitations

of the C-CAPM. In fact, Ghosh, Julliard, and Taylor (2016), using an information-theoretic

approach to recover a multiplicative missing component of the stochastic discount factor

(SDF) for a broad class of consumption-based asset pricing models, show that the missing

component is remarkably similar across seemingly very di�erent models.

The shortcomings of rational models have led to the advent of behavioral models where

economic agents are assumed to not be fully rational (see Barberis and Thaler (2001) for

a survey of behavioral �nance). This class of models assumes certain behavioral biases in

agents in the processing of available information to form beliefs about the future. More re-

cently, researchers have shown that departures from rational expectations can occur even in

the absence of behavioral biases. For instance, if investors have robust control (uncertainty

aversion) preferences, then the di�culty in distinguishing between alternative data generat-

ing processes using the �nite available data leads investors to make consumption-investment

decisions from the perspective of the worst-case model (see, e.g., Hansen and Sargent (2001)

). Unlike rational expectations models that typically rely on implausibly high risk aversion

levels to explain stock market data, Barillas, Hansen, and Sargent (2009) argue that robust

control models replace the need for implausibly large risk aversion with plausible levels of

uncertainty aversion.

While behavioral and robust control models constitute attractive alternatives to the ra-
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tional expectations framework, limited empirical evidence exists for the presence of particular

behavioral biases, or the form of uncertainty aversion. Yet assumptions about the parametric

forms of these components are crucial to theoretical models that purport to explain observed

aspects of �nancial market data. In the behavioral �nance literature, common assumptions

about the form of the behavioral bias include prospect theory (e.g., Kahneman and Tversky

(1979)) or ambiguity aversion (e.g., Savage (1964)). In the robust control literature, typi-

cally assumed speci�cations include a quadratic speci�cation of the beliefs distortion, that

makes investors act as if the dynamics of macro variables are more persistent than what is

estimated from the historical data (e.g., Szoke (2017)).

This paper proposes an approach to measuring the subjective beliefs of investors using

observed data on asset prices, without relying on any speci�c functional form assumptions

about the nature of beliefs distortion relative to the rational expectations benchmark. For

a given choice of the SDF, a set of assets that the SDF is challenged to price, and the

speci�cation of the conditioning set, i.e. the vector of state variables, our approach enables

the recovery of the entire conditional distribution of possible future realizations of macro

and �nancial variables as perceived by the average investor.

Our approach to extracting beliefs from asset prices relies on the information-theoretic

(relative entropy minimization) estimation of conditional moment restriction models pro-

posed in Kitamura, Tripathi, and Ahn (2004). The approach is akin to estimating beliefs

so as to maximize the nonparametric log-likelihood of the data, subject to the constraint

that the estimated beliefs satisfy the conditional Euler equation restrictions for the chosen

set of assets. Therefore, the framework retains the desirable properties of a likelihood based

approach, while avoiding parametric assumptions on the form of beliefs.

If beliefs are rational, then the extracted subjective beliefs about the macroeconomic

variables of interest, e.g. consumption growth, should coincide with the corresponding ob-

jective beliefs estimated using historical macro data alone (without using asset price data).

Therefore, comparison of these subjective beliefs with objective beliefs (obtained from com-

monly used statistical models) can help shed light on the nature of beliefs distortion that is

most supported by the data and o�er guidelines for the construction of theoretical models

that build in such distortions.

Note that the econometric feasibility of the above estimation approach crucially relies on

the ability to summarize the investors' conditioning set with a small number of variables.

Our choice of the conditioning set draws on the insight in Ghosh and Constantinides (2017),

who contribute towards identifying the investors' information set. Speci�cally, Ghosh and

Constantinides (2017) show that just two variables, namely the rate of change in the Con-

sumer Price Index (CPI) and the growth in the average hourly earnings of production in
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private non farm payrolls, along with consumption growth, go a long way toward proxying

for investors' relevant information set. Guided by this �nding, we use the above two vari-

ables (one at a time as well as jointly), along with consumption growth, as constituting the

conditioning set.

Note that our methodology requires the speci�cation of the SDF, the conditioning set,

and the cross-section of assets that the SDF is asked to price. We present results for di�erent

choices of the above to demonstrate the robustness of our results. First, we show that the

estimated subjective beliefs are remarkably similar for several di�erent choices of the pricing

kernel. In particular, using the excess return on the market portfolio as the sole test asset and

the CPI growth and consumption growth as conditioning variables, we recover the subjective

beliefs for the pricing kernels implied by following speci�cations of the investors' preferences �

the standard C-CAPM with power utility, Epstein and Zin (1989) recursive preferences, and

the external habit formation preferences of Campbell and Cochrane (1999). The correlations

between the subjective beliefs estimated from these di�erent SDFs are higher than XX for

all values of the conditioning variables.

Second, the estimated beliefs suggest signi�cant beliefs distortion relative to the objective

speci�cations commonly assumed in the literature. Once again, to demonstrate the robust-

ness of our results, we consider a few di�erent objective speci�cations. In particular, we

consider a standard latent VAR model for the conditioning variables, namely CPI growth

and consumption growth. We estimate the model using data on CPI growth and consump-

tion growth alone, without using any asset price data. We also consider a regime-switching

model, where the means and volatilities of CPI growth and consumption growth vary across

latent regimes, and estimate the model using macro data alone. We show that the dimensions

of the deviations of the estimated subjective beliefs from the objective ones are quite similar

across the various objective speci�cations considered. Speci�cally, in line with the robust

control literature, we show that the subjective beliefs appear more pessimistic relative to the

corresponding rational ones, for each value of the conditioning variables. However, the esti-

mated beliefs also reveal signi�cant di�erences relative to commonly assumed speci�cations

of the beliefs distortion in the robust control literature. The important di�erences are: (i)

whereas the literature argues that beliefs distortion make macro variables appear to be more

persistent and, therefore, more volatile than what is observed in the data, our estimated be-

liefs suggest that the distortion a�ects primarily the skewness making the underlying macro

variables appear more negatively skewed than what can be estimated from the data alone,

and (ii) the deviation between the subjective and objective beliefs increase substantially in

bad states of the world, de�ned by particular realizations of the conditioning variables.

Our work extends Ghosh, Julliard, and Taylor (2016) who also use an information-
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theoretic approach to recover a multiplicative 'missing' component of the SDF for a broad

class of consumption-based asset pricing models, such as the standard Consumption-CAPM

of Rubinstein (1976), habit formation models of Campbell and Cochrane (1999) and Men-

zly, Santos, and Veronesi (2004), the long run risks model of Bansal and Yaron (2004), and

models with complementarities in consumption as in Piazzesi, Schneider, and Tuzel (2007).

Note that these models are all based on the maintained hypothesis of rational expectations.

Therefore, if the true underlying belief formation process di�ers from that under rational

expectations, then this belief distortion would be captured as a multiplicative missing com-

ponent of the SDF. Consistent with such an interpretation of the missing component of

the SDF, Ghosh, Julliard, and Taylor (2016) �nd that the missing components of the SDFs

extracted from the above seemingly very di�erent asset pricing models are remarkable simi-

lar. The present study extends Ghosh, Julliard, and Taylor (2016) in that, whereas Ghosh,

Julliard, and Taylor (2016) focus on unconditional Euler equation restrictions, this paper

considers conditional Euler equations. While this complicates the analysis in that it requires

speci�cation of the conditioning set, it also enables us to estimate the conditional distri-

bution of investors' (subjective) beliefs. In other words, it enables us to estimate the time

series of conditional moments of variables of interest, such as returns, consumption growth,

and other macroeconomic variables. These forecasts can then be compared to survey-based

forecasts of these variables. The forecasts can also be used to shed light on the strengths

and weaknesses of beliefs processes commonly assumed in the literature, along with insights

for future theoretical modeling.

Our paper contributes to a growing literature that emphasizes the importance of dis-

criminating between investors' subjective beliefs and the objective beliefs obtained from

commonly used statistical models, in explaining various aspects of asset market data. Pi-

azzesi, Salomao, and Schneider (2015) show that the subjective bond risk premia are less

volatile and less cyclical compared to the premia estimated using standard statistical models.

Wang (2017) shows that investors' subjective beliefs has signi�cant explanatory power for

a broad cross section of stock portfolios. These studies all use professional survey forecasts

data to form estimates of the subjective beliefs. The survey forecasts provide the median

(across a group of professional forecasters) forecasts of a variety of future macroeconomic or

�nancial variables. Our approach to recovering investors' subjective beliefs di�ers markedly

from these studies in that, rather than using survey forecasts data, we extract the beliefs

from observed asset prices via the conditional consumption Euler equations. Our approach

enables the recovery of the entire conditional distribution of beliefs, rather than only the dis-

tribution of the conditional means of the variables of interest as is possible with the survey

based forecasts data. Therefore, our approach can be used to shed light on which charac-
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teristics of the distribution are distorted the most under the subjective beliefs, relative to

commonly assumed objective speci�cations.

The remainder of this paper is organized as follows. Section II describes our method

of estimating investors' subjective beliefs from observed asset prices. The data used in the

empirical analysis are described in Section III. The empirical results are presented in Section

V. Section VI concludes with suggestions for future research.

II Non-Parametric Estimation of Beliefs

In this section, we describe the details of our methodology to extract investors' subjective

beliefs from observed asset prices. Section II.1 describes the framework wherein there may

be a divergence between investors' subjective beliefs and the true underlying objective distri-

bution of the data. The econometric approach to recovery of the investors' subjective beliefs,

without making parametric assumptions about the latter, is discussed in Section II.2. An

alternative information-theoretic interpretation of the extracted beliefs is provided in Section

II.3. Section III.1 describes the choice(s) of the conditioning set, and Section II.4 discusses

the various SDFs considered. Throughout, uppercase letters denote random variables, while

the corresponding lowercase letters denote particular realizations of these random variables.

II.1 General framework

We assume absence of arbitrage opportunities, such that a strictly positive pricing kernel

(hereafter referred to as the SDF), denoted by Mt+1, exists. The equilibrium returns Re
t+1 ∈

Rk of any set of k traded assets in excess of the risk-free rate satisfy the Euler equation,

EPt
[
Mt+1R

e
t+1|Ft

]
= 0, (1)

where Ft = {Ft,Ft−1, . . .} denotes the investors' information set at time t, and EPt
[
·|Ft
]
is

the expectation operator conditional on Ft.1 If investors are fully rational, then Pt denotes
the objective conditional probability measure given the optimal �ltration Ft. Therefore, for
any random process Yτ taking values on supp(Yτ ), where τ > t,

E
[
Yτ |Ft

]
=

∫
supp(Yτ )

Yτ dPt(Yτ ) (2)

Macro models usually identify the SDF as a parametric function of consumption growth

between t and t + 1 denoted by Ct+1/Ct, and a set of other possible risk factors that we

1Note that both the SDF and the excess returns are expressed in real terms and not in nominal.
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denote by Yt+1:

Mt+1 = M

(
Ct+1

Ct
, Yt+1; θ0

)
, (3)

where θ0 is the vector of parameters driving the SDF.

For Equation (1) to hold with respect to the objective conditional probability measure

Pt, we need to assume rational expectations. However, investors may have certain behavioral

biases or robust control preferences that distort their beliefs relative to rational expectations

and beliefs need not be rational. For the sake of generality, we assume deviations from the

rational expectations framework can exist but we do not take a stand on the sources of belief

distortions. When for any reason beliefs deviate from rational expectations, Equation (1)

needs to be taken with respect to the representative agent's subjective probability measure

that we denote by P̃t. We thus have:

EP̃t
[
M

(
Ct+1

Ct
, Yt+1; θ0

)
Re
t+1

∣∣Ft] = 0 . (4)

Assuming the measures Pt and P̃t are absolutely continuous, we can write:

d P̃t
dPt

= Zt , (5)

where Zt is the family of Radon-Nikodym derivatives of P̃t with respect to Pt. Note that,

in the absence of any beliefs distortion relative to the objective measure, we have P̃t = Pt
at each point in time, and Zt = 1 almost surely. In this paper, our objective is to identify

the manifestations of distortions from Pt to P̃t in the mostly agnostic possible way. The

following sub-sections detail how our econometric methodology allow us to ful�ll this goal.

II.2 The smoothed empirical likelihood estimator

Our identi�cation scheme relies on the non-parametric smoothed empirical likelihood estima-

tion approach (SEL henceforth) developed by Kitamura, Tripathi, and Ahn (2004). This is

akin to the notion of a non-parametric maximum likelihood family of estimators. We detail

below the general procedure and how it �ts into our framework.

To give intuition and �x ideas, let us �rst consider a multinomial model with as many

possible outcomes as observation dates, that we denote by T . It is easy to show that, in the

absence of any constraints other than requiring the probabilities to be positive and sum to

unity, a standard maximum likelihood estimator will yield that every probability estimate

p̂t = 1
T
, for t ∈ {1, . . . , T}. Of course, this is barely a model since pooling together the

6



probabilities in bins will produce a standard histogram representation and the multinomial

assumption provides us with nothing more than standard descriptive statistics. Now assume

we perform the same likelihood maximization enforcing that the moments restrictions given

by Equation (4) hold true given the SDF, M
(
Ct+1

Ct
, Yt+1; θ0

)
. The method will now distort

the probability estimates p̂t to satisfy the conditional moment restrictions.

In the following, we assume that the information set of the investors can be represented by

a �nite vector of random variables that we denote byXt ∈ Rn. The choice ofXt will be crucial

for our analysis, but we delay this discussion to the next section and consider for now that it

can be anything relevant to explain the joint behavior of macro variables and asset returns.

Suppose that the historical realizations of consumption growth, other variables in the SDF,

excess returns, and the conditioning variables are given by
(
gt+1 = ct+1

ct
, yt+1, r

e
t+1, xt

)T−1

t=0
.

Let pi,j be the probability of observing the joint outcome (gj, yj, r
e
j), given the conditioning

variables value xi. Without any moment restrictions, we have that the only non-zero pi,j's are

for i = t− 1 and j = t, such that pt−1,t = 1. In general, conditional moment conditions will

imply deviations from this simple case. The SEL estimator for the conditional probabilities

(pi,j) for i = {0, . . . , T − 1} and j = {1, . . . , T} are such that they belong to the simplex:

∆ := ∪T−1
i=0 ∆i = ∪T−1

i=0

{
(pi,1, ..., pi,T ) :

T∑
t=1

pi,t = 1, pi,t ≥ 0

}
and that: ∀i ∈ {0, . . . , T − 1}, ∀θ ∈ Θ,

(
p̂SELi,· (θ)

)
= arg max

(pi,·)∈∆i

T∑
t=1

ωi,t log(pi,t) s.t.
T−1∑
t=0

pi,t+1 ×M (gt+1, yt+1; θ) ret+1 = 0, (6)

where pi,· is a shortcut for the T−dimensional vector of probabilities (pi,1, ..., pi,T ), Θ is the

set of all admissible parameters θ, and ωi,t are non-negative weights used to smooth the

objective function. In the spirit of non-parametric estimators:

ωi,t =

K
(
xi − xt
bT

)
T−1∑
j=0

K
(
xi − xj
bT

) , (7)

where K is a kernel function belonging to the class of second order product kernels,2 and

2K should satisfy Assumption 3.3 in Kitamura, Tripathi, and Ahn (2004), that is restated here for
convenience. For X = (X(1), X(2), ..., X(n)), let K =

∏n
i=1 k(X

(i)). Here k : R → R is a continuously
di�erentiable p.d.f. with support [−1, 1]. k is symmetric about the origin, and for some α ∈ (0, 1) is
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the bandwidth bT is a smoothing parameter.3 Equation (6) is simply a transformation of

a multinomial log-likelihood, using a di�erent set of weights than the observed values, and

enforcing the conditional moment conditions for a given speci�cation of the SDF. It is easy

to show that the solution to Equation (6) is analytical and given by:

∀i ∈ {0, . . . , T − 1}, ∀t ∈ {1, . . . , T},

p̂SELi,t (θ) =
ωi,t

1 +M(gt, yt; θ) · λ̂i(θ)′ ret
, (8)

where λ̂i(θ) ∈ Rk : i = {0, . . . , T − 1} are the Lagrange multipliers associated with the Euler

equation constraints, and solve the following unconstrained maximization problem:

λ̂i(θ) = argmax
λi∈Rk

T∑
t=1

ωi,t log [1 +M(gt, yt; θ) · λ′i ret ] . (9)

Equations (8) and (9) show that, although the SEL procedure delivers a (T × T ) matrix

of probabilities (p̂i,t(θ)) for each value of the parameter vector θ, the number of parameters

that it needs to estimate in order to generate the probability matrix is only T × k. Indeed,
for each date, the SEL procedure requires estimation of the vector of Lagrange multipliers

associated with the conditional Euler equation restrictions and the number of parameters

equals the number of test assets that the SDF is asked to price. For instance, if the market

return is the only asset used in the estimation, the overall number of Lagrange multipliers �

and, therefore, the total number of parameters � that need to be estimated is T .4

In practice, it can happen that the argument of the log function becomes negative at

certain dates. This creates numerical instability in estimation and makes λi a corner solu-

tion to the optimization problem (9). In order to prevent this case, we use Owen (2001)

normalization:

λ̂
(o)
i (θ) = argmax

λi∈Rk

T∑
t=1

ωi,t ·Ψν [1 +M(gt, yt; θ) · λ′i ret ] (10)

where Ψν(x) =

 log(x) if x > ν

log(ν)− 3

2
+ 2

x

ν
+

1

2

(x
ν

)2

if x 6 ν
(11)

bounded away from zero on [−a, a].
3In theory, bT is a null sequence of positive numbers such that TbT → ∞. See Assumption 3.7 in

Kitamura, Tripathi, and Ahn (2004) for additional restrictions on the choice of bT .
4This dramatic reduction in the dimensionality of the optimization problem is achieved because the SEL

estimator is the solution to a convex optimization problem, and, therefore, the Fenchel duality applies (see,
e.g., Borwein and Lewis (1991)).
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Equation (11) de�nes a continuously di�erentiable function which is easier to manipulate

when the argument is close to zero. Owen (2001) recommends using ν = 1/T , which we

follow in our empirical approach. Using the previous transformation of the objective function

can make the sum of the estimated probabilities with λ̂
(o)
i (see Equation (8)) deviate from

one. Again, Owen (2001) suggests to normalize the probabilities ex-post so that they add

up to one:

p̂SEL
(o)

i,t (θ) =
ωi,t

1 +M(gt, yt; θ) · λ̂(o)
i (θ)′ ret

×

(
T∑
t=1

ωi,t

1 +M(gt, yt; θ) · λ̂(o)
i (θ)′ ret

)−1

, (12)

The notation
(
p̂SELi,t (θ)

)
emphasizes that the estimated probabilities are functions of the

chosen value of θ. Since the true θ0 is unknown to the econometrician, the SEL method also

allows to estimate it. Let us denote by `i,T (θ) each of the conditional log-likelihood functions

to maximize given by Equation (6). The non-parametric log-likelihood function is

`T (θ) =
T−1∑
i=0

`i,T (θ) (13)

Using Equation (8), the smoothed empirical log-likelihood (SEL) at θ is de�ned as:

`T (θ) =
T−1∑
i=0

T∑
t=1

Ti,t · ωi,t · log
(
p̂
SEL(o)
i,t (θ)

)
,

where Ti,t is a sequence of trimming functions, incorporated in the log-likelihood to deal

with the well-known denominator problem associated with kernel estimators. The maximum

SEL estimator of θ is then de�ned as:

θ̂SEL = argmax
θ∈Θ

`T (θ) . (14)

Kitamura, Tripathi, and Ahn (2004) show that the SEL approach delivers an e�cient esti-

mator of θ, i.e. the estimator achieves the semi-parametric e�ciency bound for conditional

moment restriction models.

II.3 An Alternative Interpretation of the SEL estimator

The SEL estimator also has an important information-theoretic interpretation (see, e.g.,

Kitamura and Stutzer (1997)). To see this, let Pt be the set of all conditional probability

measures de�ned on Rq × Rk, where q denotes the dimension of the variables entering the
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SDF and k denotes the dimension of the set of assets used in the estimation. For any set

of admissible SDF parameters θ ∈ Θ, we de�ne the set of probability measures absolutely

continuous with respect to the objective measure Pt that satisfy the consumption Euler

equations:

Pt(θ) :=

{
π ∈ Pt : Eπ

[
M

(
Ct+1

Ct
, Yt+1; θ

)
Re
t+1

∣∣Xt

]
= 0

}
(15)

Therefore, ∪θ∈ΘPt(θ) is the set of all the conditional probability measures that are consistent

with the model characterized by the moment conditions in Equation (17). The EL estimation

can then be shown to select a probability measure π and the estimator of the parameter vector

θ so as to:

inf
θ∈Θ

inf
π∈Pt(θ)

K(Pt, π) ≡ inf
θ∈Θ

inf
π∈Pt(θ)

∫
log

(
dPt
d π

)
dPt

s.t. Eπ
[
M

(
Ct+1

Ct
, Yt+1; θ

)
Re
t+1

∣∣Xt

]
= 0, (16)

where K(P, π) is the Kullback-Leibler information criterion (KLIC) divergence from π to Pt
(White (1982)). Our representation of beliefs distortion equalizes the π identi�ed from the

SEL estimator with the conditional subjective beliefs of investors, P̃t. Note that, K(Pt, P̃t) >
0 and it will hold with equality if and only if P̃t = Pt, that is if investors are rational. On

the other hand, if beliefs are not rational, Pt is not an element of Pt(Θ) and for each θ there

is a positive minimum KLIC distance attained by the solution of the inner minimization

in Equation (16). Thus, the SEL approach searches for an estimate of P̃t that makes the

estimated subjective beliefs as close as possible � in the information-theoretic sense � to the

objective one.

II.4 Parametric speci�cation of the SDF

Di�erent modeling assumptions leading to di�erent reformulations of Equation (3), our

benchmark case in the following will consider the standard C-CAPM of Breeden (1979),

Lucas (1978) and Rubinstein (1976), where the utility function is time and state separable

with a constant coe�cient of relative risk aversion. For this speci�cation of preferences, the

SDF takes the form:

M

(
Ct+1

Ct
, Yt+1; θ0

)
=

(
Ct+1

Ct

)−θ0
and EP̃t

[(
Ct+1

Ct

)−θ0
Re
t+1 |Xt

]
= 0, (17)
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where Yt+1 = ∅ and θ0 ∈ R+ is the representative agent's coe�cient of relative risk aversion

(CRRA), and Ct+1/Ct denotes the real per capita aggregate consumption growth (gross).5

We are well-aware that the above pricing kernel fails empirically to explain i) the his-

torically observed levels of returns, giving rise to the Equity Premium and Risk Free Rate

Puzzles (e.g. Mehra and Prescott (1985), Weil (1989)), and ii) the cross-sectional disper-

sion of returns between di�erent classes of �nancial assets (e.g. Mankiw and Shapiro (1986),

Breeden, Gibbons, and Litzenberger (1989), Campbell (1996), Cochrane (1996)). As a result,

we also consider two alternative speci�cations of the SDF that were designed to overcome

some of the limitations of the C-CAPM and have substantially superior empirical perfor-

mance compared to the latter. Our two alternatives are the external habit formation model

of Campbell and Cochrane (1999), andthe long-run risk model of Bansal and Yaron (2004)

with Epstein and Zin (1991) preferences. Since they are standard in this literature, we refer

the reader to Appendix A.1 for more detail.

III Data Description

We present empirical results at the quarterly and annual frequencies. At the annual fre-

quency, because of the di�erent starting periods of available total and nondurable consump-

tion series, we focus on two data samples: a baseline data sample starting at the onset of the

Great Depression (1929�2016) and a longer data set (1890�2009) obtained from Campbell

(2003) and Robert Shiller's Web site. We use the shorter sample as our baseline because

only over this period total consumption can be disaggregated into its nondurable and durable

components, but we also report results for the longer sample as a robustness check.

For the 1929�2016 data sample, our proxy for the market return is the Center for Research

in Security Prices (CRSP) value-weighted index of all stocks on the NYSE, AMEX, and

NASDAQ. The proxy for the risk-free rate is the one-month Treasury-bill rate. Annual

returns for the above assets are computed by compounding monthly returns within each year

and are converted to real returns using the personal consumption de�ator. For consumption,

we use per capita real personal consumption expenditures on nondurable goods and services

from the National Income and Product Accounts (NIPA).

For the longer data set, the return on the S&P composite index is used as a proxy for the

market return. Because of data availability issues, we use the prime commercial paper rate

as a proxy for the risk-free rate, therefore partially underestimating the magnitude of the

EPP. Consumption refers to the real per capita total personal consumption expenditures.

See Campbell (1999) for a detailed data description.

5Note that θ0 is usually assumed unknown to the econometrician but is known to the economic agents.

11



Similarly, at the quarterly frequency, we use the longest available data sample covering

the period 1947:Q1�2016:Q4. The measure of consumption and the proxies for the market

return and risk free rate are identical to those for the baseline annual sample.

We make the standard �end-of-period� timing assumption that consumption during year

(quarter) t takes place at the end of the year (quarter).

As discussed in Section V, we estimate investors' (subjective) beliefs for a few di�erent

choices of the conditioning set. The conditioning variables used include the growth rate in

the CPI-U and the growth in the average hourly earnings of production on private nonfarm

payrolls. The availability of this data dictates the starting periods of our estimation using

each of these conditioning variables. Historical data on the CPI-U and average hourly earn-

ings, available from 1890 and 1940 onwards, respectively, are obtained from the Bureau of

Economic Analysis.

III.1 Conditioning Set

The econometric feasibility of the beliefs extraction procedure described in Section II.2 relies

crucially on being able to characterize the conditioning set, Xt, underlying the consumption

Euler equations with a small number of variables. Our choice of the conditioning set draws

on the insight in Ghosh and Constantinides (2017), who contribute towards identifying the

investors' information set.

Ghosh and Constantinides (2017) present evidence that the market-wide price-dividend

ratio is strongly correlated with two groups of macro variables � in�ation and labor market �

both in level as well as in �rst di�erence. Moreover, this high correlation is observed not just

in the US, but also in all the other G7 countries. They show that a standard learning model,

where investors' information sets are expanded to allow learning about the latent economic

regime (and, therefore, about the average future growth rates of the economy) not only from

the consumption history alone as is common in the existing literature, but also from in�ation

and labor market variables, can go a long way toward explaining many observed features of

the macroeconomy and �nancial markets. In particular, their results suggest that just two

macroeconomic variables � the rate of change in the CPI and the growth in average hourly

earnings of production on private non farm payrolls � along with consumption growth go a

long way towards proxying for investors' relevant information sets.

Drawing on the �ndings in Ghosh and Constantinides (2017), we present results for a few

di�erent choices of the conditioning set, Xt. Speci�cally, we consider the following choices

for Xt: (a) the rate of growth in the Consumer Price Index for all Urban Consumers (CPI-

U) and consumption growth, (b) the growth in the average hourly earnings of production

on private nonfarm payrolls in the manufacturing sector and consumption growth, and (c)
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CPI-U growth, the growth in the average hourly earnings, and consumption growth.

IV Estimated conditional distributions with moment re-

strictions

We present results when investors' have power utility preferences with a constant coe�cient

of relative risk aversion, the conditioning set includes lagged consumption growth and in-

�ation, and the excess return on the market portfolio is the sole test asset. All our results

are computed with Epanechnikov kernel function, and the bandwidth parameter bv,T = 2σ̂v

where σ̂v is the empirical standard deviation of the conditioning variable v.6 In our bench-

mark case, we use Owen's renormalization as presented in Section II.2 and we set the SDF

risk aversion coe�cient θ0 equal to 10 (the upper limit of what is considered to be an ac-

ceptable range).

In this Section, we do not assume a particular true data generating process for the

di�erent variables in our model. As such, we are only able to identify deviations of the

conditional distributions estimated through SEL with respect to the marginal distribution.

Even if we do not take a stance in this Section on whether the estimated probabilities are

consistent with rational expectations, one can view this �rst set of results as guidance for

modeling assumptions in consumption-based asset pricing models.

IV.1 Estimated conditional probabilities

For each possible value of the vector of conditioning variables, our approach delivers the

conditional probabilities attached to possible states of the world in the next period. To

facilitate interpretation and characterization of the results, we present these probabilities for

a few di�erent values of the conditioning state vector. In particular, we divide the realizations

of consumption growth into three groups � low consumption growth (LG, gt < 0%), medium

consumption growth (MG, gt ∈ [0%, 1.5%]), and high consumption growth (HG, gt > 1.5%).

Using a similar procedure, we divide the realizations of in�ation into low in�ation (LI,

πt < 1%), medium in�ation (MI, πt ∈ [1%, 4%]), and high in�ation (HI, πt > 4%). We then

sort the joint realizations of consumption growth and in�ation into nine groups formed from

the intersection of the two sets. For instance, if the consumption growth at time t falls in

the LG group and the in�ation at time t falls in the LI group, then the joint realization of

6The results are robust to alternative choices of the kernel function and smoothing parameters within
three standard deviations of the respective conditioning variables. These results are omitted for brevity and
are available from the authors upon request.
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consumption growth and in�ation at time t is assigned to the group (LG, LI). Our sorting

procedure implies that each group typically has one or more observation.

[Insert Figure 1 about here.]

Figure 1 plots the conditional probabilities for the above nine consumption growth-

in�ation groups and compares them to what would be obtained without any moment restric-

tion, that is 1/T (red solid line). In essence, this tells us for each values of the conditioning

variables and when the method needs to signi�cantly depart from the i.i.d. assumption to be

consistent with the conditional moment condition as given by the Euler equation (17). We

can thus identify the periods where the conditional distributions di�er from the marginal.

At least three key features emerge from the picture.

First, most of the spikes of the estimated conditional probabilities are observed during re-

cessions, whatever the value of the conditioning set. This con�rms that the method is clearly

able to identify crises as unconventional states of the world, that is states where the condi-

tional distributions depart greatly from the stationary state. Second, for medium growth or

medium in�ation (panels 2 or panel b's), the conditional probabilities are overweight with

respect to 1/T during normal times. This shows that the estimation method is able to cap-

ture the persistence observed in stable macroeconomic periods. Last, the extreme states of

the world show probabilities spikes during di�erent crises periods. The most informative are

the (LO, LI) and (LO, HI) conditioning states (panels a.1 and c.1 respectively). For the low

growth - low in�ation state, we observe conditional probabilities jumping up to [10%-18%]

during the great depression, the second world war and right after the 2008 �nancial crisis.

In comparison, the low growth - high in�ation state has peaks of 8% to 18% during the

aftermath of the second world war, and the two oil crashes. This is particularly consistent

with the nature of the shocks leading to the depressions, with de�ationary pressures for the

former and stag�ation for the latter. Thus, by only incorporating one asset pricing moment

condition, the estimation method is already able to identify economically signi�cant condi-

tional macroeconomic densities. Interestingly, for the 2008 �nancial crisis, the conditional

probabilities are all higher than 1/T regardless of the value of the conditioning variables.

This can be a re�ection of the systemic nature of the crisis, where the causes are to be found

outside of the set of conditioning variables we are including in the estimation. Another

possible explanation is that agents tend to be pessimistic and overestimate the probability

of the last crisis because of distorted beliefs. We explore the possibility of the latter in the

next Section.
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IV.2 Conditional distributions of consumption growth and in�ation

To complement the previous approach, we explore deviations from marginal to conditional

distributions estimated with the SEL procedure by representing histograms for each condi-

tioning set. Because of the generality of the estimation method, we are able to derive the

conditional distribution of both consumption growth and in�ation. The results are presented

on Figures 2 and 3 respectively.

[Insert Figures 2 and 3 about here.]

Looking at the distribution of consumption growth �rst, we observe a distinct pattern

of over-weighting medium and moderately low growth states whatever the values of past

consumption and past in�ation. For negative past growth and medium past in�ation for

instance (panel b.1 of �gure 2) we see that the conditional probabilities for falling in any

bin of consumption growth below 2% is either virtually equal or higher than the marginal

ones. Although for medium and high growth (panels 2. and 3.) the estimated conditional

probabilities resemble qualitatively the marginal distribution of consumption, the highest

deviations are observed for low growth states. For negative past growth and low past in�a-

tion, the probabilities of observing negative growth can be nearly 10 times higher than the

marginal counterparts (see panel a.1). In the same fashion, for negative past growth and high

past in�ation, probabilities of observing medium growth next period are at least twice as

big as their marginal counterparts. These �ndings emphasize that conditional distributions

do not only vary in mean and variance but their entire shape is a�ected by the values of the

conditioning macro variables.

For conditional distributions of in�ation, the same sort of pattern can be detected. For

nearly all conditioning variables values, the conditional probabilities of observing medium

in�ation are higher than their marginal counterpart. However, deviations happening for

extreme states of the world are even more blatant than for consumption growth. When

past in�ation is high (panel c.) the conditional probabilities of observing high in�ation are

largely overweighted, especially when past consumption growth is negative (see panel c.1

of Figure 3). When both past consumption growth and in�ation are low, the conditional

probabilities of observing low in�ation can be as much as 10 times higher than their marginal

counterparts.

These results show that conditional probabilities of macoreconomic variables shape in

non-trivial ways with respect to their past values. These results question the traditional

assumptions of DGP of any traditional rational expectation consumption-based asset pric-

ing model. Before turning to a comparison with potential DGPs, we provide more precise

information about these conditional distributions by looking at their conditional moments.

15



IV.3 Conditional moments

Since the SEL estimates provide the conditional probabilities of the di�erent observables, it

is easy to compute conditional moments given the di�erent values of the conditioning set.

Let us consider (net) consumption growth log(gt+1) for instance. The conditional mean as

of date t is given by:

ÊP̃t [log(gt+1)|Xt] =
T∑
i=1

p̂SEL
(o)

i,t (θ) · log(gi) . (18)

Note that this conditional expectation can be computed for any date t, but also for any

nonlinear transformation of the observable variables, and for the moments of any order. We

perform this computation for both consumption growth and in�ation for the �rst 4 moments,

and group the resulting moments in the same conditioning sets as in the previous Sections.

Results are presented in Tables 1 and 2 for consumption growth and in�ation respectively.

[Insert Tables 1 and 2 about here.]

For consumption growth, the conditional mean increases with the past consumption growth

emphasizing some persistence in the consumption process. the impact of past in�ation is

however either hump-shaped or decreasing with in�ation values. When past consumption is

between 0% and 1.5% (MG), the highest conditional mean values are obtained for low to

medium in�ation (LI and MI) and correspond to the marginal consumption growth mean, and

high in�ation has a negative impact on future consumption on average. For the conditional

mean of in�ation, the same sort of persistence and the conditional mean of in�ation goes up

with values of past in�ation (see top-left panel of Table 2). The conditional mean of in�ation

tends to increase with values of past consumption growth except for high past in�ation (HI)

where it decreases. Again, past consumption growth has a nonlinear e�ect on the conditional

mean of in�ation, and can have a steepening e�ect on the conditional means with respect to

past in�ation: the high minus low in�ation (HI-LI) when consumption growth is low (LG) is

at 7.1pp for a 1.3pp when consumption growth is high (HG). These non-linearities represent

a �rst source of discrepancy with respect to commonly assumed DGPs for these two variables

(VARMA-type unobservable component models for instance).

Besides conditional means, recent consumption-based asset pricing models focus greatly

on second-order conditional moments of endogenous variables (long-run risk models for in-

stance). However, values of consumption growth conditional standard deviation are ex-

tremely similar at about 1.5pp for medium and high past growth (MG and HG), whatever

the past value of in�ation (see top-right panel of Table 1). When past growth is negative and

in�ation is low however (LG and LI), the conditional standard deviation increases to 3.5pp
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emphasizing how bad this state of the world is. For in�ation, conditional standard deviations

tend to vary more with respect to the conditioning values: higher past consumption growth

tends to decrease in�ation conditional standard deviations, while higher past in�ation tends

to make conditional standard deviations increase. Again, most of the action comes from the

low growth state (LG), where conditional standard deviations can go as high as 4.4% (LG,

LI state) against a 2.4% in a medium state (MG, MI). This shows that non-linearities are

also present for second order conditional moments, and those can actually be very close to

time-invariant in some periods.

Last, we can see that the discrepancies between the conditioning bins are the biggest for

third and fourth conditional moments of both consumption growth and in�ation. Looking

at their marginal moments, they are both negatively skewed (-1.48 and -0.35 rep.) and both

have fat tails (5.76 and 2.93 excess kurtosis resp.). However, the picture changes once we

look at the conditional moments. For both variables the negative skewness is observed only

when past consumption growth was negative (LG). For virtually all the remaining states,

the conditional distributions are positively skewed. For most cases, conditional skewness

increases with past values of consumption growth, and decreases with past values of in�ation.

The deviations can be substantial from one conditioning value to the other: for medium past

in�ation, the di�erence in conditional skewness between high and low past consumption

growth (HG-LG) is of 2.73, and these two conditioning sets have nearly opposite skew of

-1.50 and 1.23. For conditional kurtosis, again, the low past growth low past in�ation state

(LG, LI) seems to be much more di�erent than the other states, implying negative excess

kurtosis of both future growth and in�ation. For consumption growth, kurtosis grows with

past growth whereas in�ation kurtosis tends to decrease with past in�ation.

All in all, these results suggest three key messages. First, the linearity assumption used

in most asset pricing models DGPs is not adequate to represent the conditional means and

variances of endogenous variables. Second, third and fourth order conditional moments are

where most of the deviations from time-invariance can be expected. Third, these third and

fourth order conditional moments change the identi�cation of good and bad states of the

world for the representative investor. For instance, higher growth is usually considered a

good state of the world, but is usually accompanied with high growth kurtosis and high

positive in�ation skew which are less desirable features.

V Identifying subjective beliefs

In the previous Section, we identi�ed conditional distributions of macroeconomic variables

from asset pricing restrictions using the SEL method. So far, we have remained silent on
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whether these probabilities de�ned objective distributions or represent subjective beliefs since

we did not specify a true DGP. In this Section, we consider standard modeling assumptions

from the most popular consumption-based asset pricing models and assume they represent

the true DGPs. We identify how our SEL estimates deviate from these models' and explore

where the belief distortions are the highest.

V.1 Models for the objective distribution

We follow the long run risk literature, that hypothesizes the presence of a small predictable

component in expected consumption growth. The level of persistence of consumption growth

is usually calibrated to a high value, with the argument that asset prices support the pres-

ence of a highly persistent component although this is di�cult to identify using consumption

data alone.7 More recently, researchers have argued that even if the true underlying con-

sumption dynamics are as postulated by the long run risks model, the statistical di�culty

in distinguishing between alternative models with a �nite available data history leads eco-

nomic agents with robust control preferences to act from the perspective of the worst case

model. Thus, agents act as if macro variables such as consumption growth and in�ation are

more persistent than what is observed in the data (see, e.g., Szoke (2017) and Bidder and

Dew-Becker (2016).

Our �rst speci�cation of the objective data generating process follows Szoke (2017) and

assumes the following underlying model for the joint dynamics of consumption growth and

in�ation: (
∆ct+1

πt+1

)
= β0 +Xt + α · εt+1

Xt+1 = κ ·Xt + σ · εt+1

where εt+1 N(0, I) is i.i.d., and Xt is latent to the econometrician. It is easy to show that

this model is exactly a VARMA(1,1) where:(
∆ct+1

πt+1

)
= (I − κ)β0 + κ

(
∆ct

πt

)
+ (σ + α)εt+1 − καεt , (19)

and the model is easily estimated through (quasi) maximum likelihood. Results from the

model are presented in Table 3. We also report R-squared giving the in-sample �t of the

7When estimated using consumption data alone, i.e. without using any asset price data in the estimation,
the estimate of the persistence of expected consumption growth is much smaller than what is needed for the
model to explain the historically observed level of the equity premium (Constantinides and Ghosh (2011)).
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conditional mean. Looking at the estimates, the VARMA model does a reasonable job ex-

plaining both consumption growth and in�ation, explaining around one and two thirds of

the variance of the system. Szoke (2017) shows that if investors act from the point of view

of the worst-case scenario, the parameter estimates are distorted and involves a pessimistic

adjustment to the �rst and second moments of these variables. Under the subjective belief,

expected in�ation is more persistent and more strongly correlated with consumption growth

than what the baseline model suggests.

Our second speci�cation of the objective data generating process is the widely used

regime-switching model, where the means of consumption growth and in�ation di�er across

latent regimes: (
∆ct+1

πt+1

)
=

(
µc,st+1

µπ,st+1

)
+

(
σc ρ

ρ σπ

)(
εc,t+1

επ,t+1

)

st is the scalar state variable that denotes the latent economic regime. Regime switching

models of the type in Equation (20) have been extensively used in the macroeconomics and

asset pricing literature (see, e.g., David and Veronesi (2013), Johannes, Lochstoer, and Mou

(2016), Ghosh and Constantinides (2017)) and o�er a �exible approach to modeling the

underlying dynamics of macro and �nancial variables. Moreover, researchers have argued

that this modeling choice o�ers a good empirical �t for the observed dynamics of the par-

ticular macro variables such as consumption growth and in�ation that we include in our

conditioning set. Therefore, it constitutes a good choice for the objective distribution of the

data.

We present results when the number of regimes is set to �ve. We estimate the model

with maximum likelihood, using historical data on consumption growth and in�ation. This

provides the objective beliefs, i.e. the conditional distribution of future consumption growth

and in�ation estimated from macro data alone without using any asset price data.

V.2 The distribution of subjective beliefs

For comparison with the results obtained through SEL, we need to form conditional dis-

tributions using our possible objective models. A slight di�culty lies in the fact that the

conditioning sets used for the SEL method and the objective models are not the same. In-

deed, it is well-known that a VARMA model is non-Markovian and that one should either

include the entire history of the past realized values of the dependent variables to obtain

conditional distributions. To overcome this issue, we simulate the models using the esti-
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mated parameters for 1,000,000 periods and group the simulated values with respect to the

conditioning past in�ation and consumption growth bins. For simplicity, we use a multi-

variate Gaussian distribution although sampling from the historical distribution leads to no

economically signi�cant di�erence. Using this particular procedure aligns the conditioning

sets and allows use to compare similar quantities as produced by di�erent estimation meth-

ods. Results for consumption growth and in�ation are presented respectively on Figures 4

and 5.8

[Insert Figures 4 and 5 about here.]

For most cases, the di�erences between SEL estimates and the VARMA-based condi-

tional distributions are more pronounced than for the marginal histograms. Because of its

autoregressive structure, the VARMA is able to produce a distribution that moves with the

values of the conditioning set. For the conditional distributions of consumption growth, the

in�ation conditioning plays little role in the VARMA while past growth has a positive im-

pact on future consumption growth emphasizing its positive persistence, and its conditional

distributions shift to the right from panels 1 to 3 (see Figure 4). However, the SEL method

tends to put higher probabilities to the right side of the distribution than the VARMA for

low and medium past growth, and lower probabilities to the right side of the distribution

than the VARMA for high past growth. This means that the representative investor tends

to be optimistic in bad and normal times, but rather pessimistic in good times. Second, con-

trary to the literature assumptions, the consumption growth persistence is perceived lower

by the representative investor than estimated by the VARMA. Indeed, the probabilities of

falling close to 2% (the marginal mean of consumption growth) is nearly always higher for

the SEL than for the VARMA (see Figure 4).

Since in�ation is more persistent that consumption growth, the VARMA-based condi-

tional distributions tend to move more with respect to past in�ation values (see Figure 5).

When past in�ation is low (LI), the SEL method underweights probabilities in the left side of

the distribution which indicates that investors believe that in�ation will come back to normal

rapidly. The underweighting can represent nearly half of the entire distribution probability

mass for (LI, MG) (see panel a2 of Figure 5). For medium past in�ation (MI), we still observe

a huge peak in medium in�ation values given by the SEL, but the distortions now depends

on the past growth value: for low and medium past growth, investors tend to overweight the

right side of the distribution while they underweight the right side for high past growth (MI,

8One key feature to note is that although the VARMA model is conditionally i.i.d. Gaussian when the
conditioning set includes both the previous period's endogenous variables and the shocks, it is not the case
when the conditioning set contains only the previous period's endogenous variables and not the shocks. The
same reasoning applies for the regime switching model.

20



HG). This feature is even more blatant for high past in�ation (HI) where investors believe

harder in long-lasting hyperin�ation when the economy is in a low growth environment, but

they believe in convergence to medium in�ation values for medium and high growth. Overall,

this also implies that investors tend to attribute less persistence to in�ation than the one

implied by historical data and are con�dent in the convergence to medium in�ation except

in extreme states of the world, such as de�ationary and hyperin�ationary recessions.

To better observe the sources of distortion in the distributions, we plot the change of

measure from objective to subjective beliefs by dividing the values obtained with the SEL

by the values obtained for the VARMA (Values of 0 are replaced by missing values). The

results are presented on Figures 6 and 7.

[Insert Figures 6 and 7 about here.]

The obtained deviations from rational expectations are more diverse than those postu-

lated in empirical asset pricing models. For instance, the U-shaped change of measure as

assumed by Szoke (2017) is valid only for the past low growth and in�ation state and past

low growth and high in�ation state for future growth and in�ation respectively. In most

cases, the change of measure is hump-shaped and has a peak for high values. This means be-

liefs are more highly distorted for medium values than for extreme values. A few exceptions

appear: a decreasing change of measure is observed for consumption in the (MI, LG) state

and for in�ation in the (LI, LG) state. This would correspond to a standard pessimistic view

when the states of the world are bad. The same pessimistic views are observed for in�ation

distributions in high past in�ation states. Panels c.2 and c.3 of Figure 7 show an increasing

pattern implying an overweighting of high in�ation probabilities.

In sum, extreme cases seem to push investors to be pessimistic while more normal times

push them towards optimism. We thus observe a persistence in beliefs distortions.

V.3 Distorted conditional moments

As in the previous Section, we further explore the distortions from objective to subjective

beliefs by computing the conditional moments implied by the VARMA model. The results

of these computations are presented in Tables 4 and 5.

[Insert Tables 4 and 5 about here.]

Having a look to conditional means of both consumption growth and in�ation con�rm

the identi�ed deviations from the distributions in the previous Section. The most interesting

supplementary information is now given by the higher order conditional moments. For con-

sumption growth variance, we see that investors usually believe in lower conditional standard
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deviations than what the VARMA implies. For skewness and kurtosis however, it is quite

the opposite: for nearly all values of the conditioning variables, investors beliefs attribute

higher skewness but higher excess kurtosis than the VARMA. Looking at Table 5, the same

sort of conclusions can roughly be drawn except for the LG state: when past consumption

growth is medium or high, investors believe in lower in�ation standard deviation, higher

skewness and higher kurtosis. However, for low past growth, the results on standard devi-

ations and skewness are completely reversed and investors believe in high in�ation variance

and low negative skew. Beliefs distortions therefore a�ect third and fourth order moments

to a signi�cant order.

VI Conclusion and Extensions

The rational expectations hypothesis endows investors with the ability to rationally process

available information to form beliefs about the true underlying data generating process and,

therefore, about the future. Most prominent asset pricing models are based on the premise

of rational expectations. While the assumption of rational expectations is intuitive and

appealing and has, to date, constituted the dominant maintained hypothesis in �nancial

economics, the above models have had considerable di�culty in explaining several observed

aspects of asset markets. The shortcomings of rational models have led to the advent of

behavioral models that assume that investors' have certain behavioral biases that in�uence

their decision-making in the face of uncertainty. These biases distort the investors' beliefs

relative to those that would be formed under rational expectations. Behavioral models

typically assume certain speci�c forms of biases, about which there is limited empirical

evidence. Moreover, speci�c biases often help explain certain aspects of the data better

relative to rational models, while performing worse with other aspects of the data.

If behavioral biases are pervasive, then they should be re�ected in observed asset prices.

Relying on this insight, this paper proposes an information-theoretic (relative entropy min-

imization) approach to extracting investors' beliefs from asset prices, without making any

speci�c functional form assumptions about the belief formation process. If investors have

rational expectations, the extracted beliefs about future macroeconomic outcomes should

coincide with objective beliefs estimated from historical macro data alone (without reference

to asset market data). On the other hand, if investors are not rational and su�er from cer-

tain behavioral biases, then the beliefs extracted from asset prices would appear distorted

relative to the rational benchmark.

Our methodology relies on the smooth empirical likelihood estimation approach proposed

in Kitamura, Tripathi, and Ahn (2004). The procedure delivers a nonparametric maximum
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likelihood estimate of the investors' subjective beliefs and, therefore, the most likely beliefs

given the data. Implementation of this approach requires the speci�cation of the underlying

stochastic discount factor (SDF), the investors' conditioning set underlying the conditional

Euler equation restrictions, and the set of assets that the SDF is asked to price. We present

our results for several choices of the above to demonstrate robustness.

We show that our estimated subjective beliefs di�er substantially from both, widely used

objective speci�cations of the data generating process as well as commonly assumed forms

of beliefs distortion. Speci�cally, the conditional distributions of macro variables such as

future consumption growth and in�ation exhibit strongly countercyclical negative skewness,

while the variances of the conditional distributions remain relatively �at. This strongly

contrasts with the conditional log-normal speci�cations widely assumed in the literature.

Also, whereas the literature argues that beliefs distortion make macro variables appear to be

more persistent and, therefore, more volatile (under the commonly assumed autoregressive

dynamics) than what is observed in the data, our estimated beliefs suggest that the distortion

a�ects primarily the skewness making the underlying macro variables appear more negatively

skewed than what can be estimated from the data alone. Also, the deviation between the

subjective and objective beliefs increase substantially in bad states of the world, de�ned by

particular realizations of the conditioning variables.

The analysis in the present paper assumed the existence of a representative investor. Im-

portant extensions of the work include allowing for heterogeneous investors with potentially

asymmetric information and, therefore, heterogeneous beliefs. These are outside the scope

of the current paper but present interesting directions for future research.
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A Appendix

A.1 Di�erent Stochastic Discount Factors

Note that, while the C-CAPM implies that the SDF depends on contemporaneous con-

sumption growth alone, more recent asset pricing models identify the SDF as a function of

consumption growth and certain additional variables. The external habit formation model

of Campbell and Cochrane (1999), for example, models the SDF as a function of contem-

poraneous consumption growth and the growth in the so-called surplus consumption ratio,

that re�ects the deviation of current consumption from a slow-moving habit level. In mod-

els with Epstein and Zin (1989) recursive preferences, such as the long run risks model of

Bansal and Yaron (2004), the SDF is a function of consumption growth and the return on

the total wealth portfolio. Therefore, in order to accommodate a variety of SDFs in our

framework, we allow the SDF to be a parametric function of consumption growth
(
Ct+1

Ct

)
,

certain additional variables summarized by the vector Yt+1, and a set of parameters θ0:

Mt+1 = M(Ct+1

Ct
, Yt+1; θ0). The Euler equation rewrites:

EPt
[
M(

Ct+1

Ct
, Yt+1; θ0)Re

t+1

∣∣Ft] = 0, (20)

We present our results for several di�erent choices of the SDF, to demonstrate robustness.

We also consider a couple of alternative speci�cations of the SDF that were designed

to overcome some of the limitations of the C-CAPM and that have substantially superior

empirical performance compared to the latter. The �rst corresponds to the external habit

formation paradigm (see, e.g., Campbell and Cochrane (1999)), where identical agents maxi-

mize power utility de�ned over the di�erence between consumption and a slow-moving habit

or time-varying subsistence level. The SDF is given by

Mm
t = δ(Ct/Ct−1)−γ (St/St−1)−γ , (21)

where δ is the subjective time discount factor, γ is the curvature parameter that provides a

lower bound on the time varying coe�cient of relative risk aversion, St = Ct−Xt
Ct

denotes the

surplus consumption ratio, and Xt is the habit level.

Note that the SDF depends on the surplus consumption ratio, S, that is not directly

observed. We extract the time series of the surplus consumption ratio from observed con-

sumption data as follows.

In the Campbell and Cochrane (1999) model, the aggregate consumption growth is as-
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sumed to follow an i.i.d. process:

∆ log(Ct) = g + υt, υt ∼ i.i.d.N
(
0, σ2

)
.

The log surplus consumption ratio evolves as a heteroskedastic AR(1) process:

log(St) = (1− φ) log(S) + φ log(St−1) + λ (log(St−1)) υt, (22)

where log(S) is the steady state log surplus consumption ratio and

λ (log(St)) =

 1
S

√
1− 2

(
log(St)− log(S)

)
− 1, if log(St) ≤ smax

0, if log(St) > smax

,

smax = log(S) +
1

2

(
1− S2

)
, S = σ

√
γ

1− φ
.

For each value of γ, we use the calibrated values of the model's preference parameters

(δ, φ), the sample mean (g) and volatility (σ) of the consumption growth process, and the

innovations in real consumption growth, υ̂t = ∆ct − g, to extract the implied time series of

the surplus consumption ratio using equation (22).9

Our �nal speci�cation of the SDF is that implied by the long run risks model of Bansal

and Yaron (2004). This model assumes that the representative consumer has the version of

Kreps and Porteus (1978) preferences adopted by Epstein and Zin (1989) and Weil (1989),

for which the SDF is given by

Mm
t+1 = δθ

(
Ct+1

Ct

)− θ
ρ

Rθ−1
c,t+1,

9Note that the above approach to obtaining historical realizations of the surplus consumption ratio relies
on the speci�c functional form assumptions about the dynamics of consumption growth and the surplus
consumption ratio made in Campbell and Cochrane (1999), which are arguably restrictive. Therefore, we
also adopt a second, more agnostic approach to measuring the surplus consumption ratio. We assume that
the log habit level is a weighted average of past log consumption levels:

log(Xt) =

∞∑
j=0

aj log(Ct−1−j). (23)

The above dynamics of log habit would emerge as a log-linear approximation around the non-stochastic
steady-state for a variety of parametric assumptions about the consumption growth and the surplus con-
sumption ratio. We assume an exponential speci�cation for the coe�cients, aj = ρj and lag length of �ve
years (or sixty quarters) to impute the historical time series of the external habit level. The estimated
subjective beliefs with this more model-free speci�cation of the habit level are qualitatively similar to those
obtained with the parametric speci�cations in Campbell and Cochrane (1999) and are omitted for brevity.
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where Rc,t+1 is the unobservable gross return on an asset that delivers aggregate consumption

as its dividend each period, δ is the subjective time discount factor, ρ is the elasticity of

intertemporal substitution, θ := 1−γ
1−1/ρ

, and γ is the relative risk aversion coe�cient.

The aggregate consumption and dividend growth rates, ∆ct+1 and ∆dt+1, respectively, are

modeled as containing a small persistent expected growth rate component, xt, that follows an

AR(1) process with stochastic volatility, and �uctuating variance, σ2
t , that evolves according

to a homoscedastic linear mean reverting process.

Constantinides and Ghosh (2011) show that, for the log-linearized model, the log of the

SDF is given by

lnMm
t+1 = c1 + c2∆ct+1 + c3xt+1 + c4σ

2
t+1 + c5xt + c6σ

2
t (24)

where the parameters (c1, c2, c3, c4, c5, c6) are known functions of the underlying time series

and preference parameters of the model.

Note that the conditional mean of consumption growth, xt, and its stochastic volatility,

σt, are not directly observable. Using the calibrated parameter values from Bansal and Yaron

(2004), we extract the state variables, xt and σ
2
t , from observed consumption data, using a

Bayesian smoother. The details of the method are described in Section C.1.

B Tables
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Table 1 � Consumption growth conditional moments

Mean (0.01923) Standard Deviation (0.02051)
Lg Mg Hg Hg−Lg Lg Mg Hg Hg−Lg

Li 0.00829 0.01933 0.02215 0.01386 0.03544 0.01539 0.01537 -0.02006
Mi 0.01441 0.01928 0.02184 0.00743 0.01712 0.01531 0.01557 -0.00155
Hi 0.01155 0.01682 0.01965 0.0081 0.0138 0.01511 0.01579 0.00199

Hi−Li 0.00326 -0.00251 -0.0025 -0.02164 -0.00028 0.00041

Skewness (−1.47902) Excess Kurtosis (5.75789)
Lg Mg Hg Hg−Lg Lg Mg Hg Hg−Lg

Li -0.5583 0.0935 0.1591 0.7173 -0.3229 0.5168 0.7828 1.1057
Mi -0.6689 0.0712 0.0698 0.7388 0.3645 0.5452 0.8175 0.453
Hi 0.3201 0.0712 -0.0239 -0.3439 0.3046 -0.0173 0.4766 0.1721

Hi−Li 0.8784 -0.0223 -0.1829 0.6274 -0.534 -0.3062

Notes: This table contains the conditional moments of consumption growth as estimated by the SEL

method. (Li, Mi, Hi) correspond to low (<1%), medium (∈ [1%, 4%]) and high in�ation (>4%). (Lg, Mg,

Hg) correspond to low (<0%), medium (∈ [0%, 1.5%]) and high consumption growth (>1.5%). The numbers

in italic are the marginal moments computed from the plug-in estimator T−1
∑T
i=1

(
xi−x̄
σ̂(x)

)k
.

Table 2 � In�ation conditional moments

Mean (0.03175) Standard Deviation (0.03766)
Lg Mg Hg Hg−Lg Lg Mg Hg Hg−Lg

Li -0.00893 0.02806 0.03222 0.04115 0.04414 0.0201 0.02278 -0.02136
Mi 0.02222 0.03205 0.03605 0.01383 0.03529 0.02353 0.02635 -0.00893
Hi 0.06226 0.04383 0.04527 -0.01699 0.04051 0.03101 0.03218 -0.00833

Hi−Li 0.07119 0.01577 0.01305 -0.00363 0.01091 0.0094

Skewness (-0.34945) Excess Kurtosis (2.93326)
Lg Mg Hg Hg−Lg Lg Mg Hg Hg−Lg

Li -0.8547 1.021 1.1963 2.051 -0.5186 3.0475 2.299 2.8176
Mi -1.4954 1.1917 1.2361 2.7314 4.6633 2.4246 1.8603 -2.803
Hi -0.9776 0.7879 0.895 1.8726 1.5751 0.2091 0.2913 -1.2838

Hi−Li -0.1229 -0.2331 -0.3012 2.0937 -2.8384 -2.0077

Notes: This table contains the conditional moments of in�ation as estimated by the SEL method. (Li, Mi,

Hi) correspond to low (<1%), medium (∈ [1%, 4%]) and high in�ation (>4%). (Lg, Mg, Hg) correspond

to low (<0%), medium (∈ [0%, 1.5%]) and high consumption growth (>1.5%). The numbers in italic are

the marginal moments computed from the plug-in estimator T−1
∑T
i=1

(
xi−x̄
σ̂(x)

)k
.
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Table 3 � VARMA coe�cient estimates

(I − κ)β0 κ −κα R2

log gt+1 0.01200 0.281 0.0663 0.2509 -0.1732
0.338

t-stat 2.6246 1.0922 0.7316 0.936 -1.1646

πt+1 0.0092 0.5186 0.4346 -0.1152 0.6559
0.684

t-stat 1.2800 1.5961 4.0677 -0.4349 4.7039

Notes: This table contains the QML estimates of a bivariate VARMA(1,1) model estimated on real con-

sumption growth log gt+1 and in�ation πt+1 on annual data from 1930 to 2015. (I − κ)β0 is the intercept, κ

is the autoregressive matrix, and κα is the moving average matrix. The R2 column measures the �t of the

conditional mean with respect to the realized values.

Table 4 � Consumption growth VARMA conditional moments

Mean Standard Deviation
Lg Mg Hg Hg−Lg Lg Mg Hg Hg−Lg

Li 0.00561 0.01443 0.02481 0.01919 0.01846 0.018 0.01858 0.00011
Mi 0.00564 0.01457 0.02561 0.01997 0.01827 0.01779 0.01879 0.00052
Hi 0.00588 0.01444 0.02657 0.02069 0.01834 0.01794 0.01878 0.00044

Hi−Li 0.00027 10−5 0.00177 -0.00012 -6· 10−5 2· 10−4

Skewness Excess Kurtosis
Lg Mg Hg Hg−Lg Lg Mg Hg Hg−Lg

Li 0.0025 -0.0673 0.0202 0.0177 0.0662 0.0406 -0.0082 -0.0744
Mi 0.005 0.0133 0.0185 0.0135 -0.082 -0.0392 -0.0451 0.0369
Hi -0.0475 -0.0268 0.0246 0.0721 -0.0228 -0.0673 -0.0789 -0.0561

Hi−Li -0.05 0.0406 0.0044 -0.089 -0.1079 -0.0707

Notes: This table contains the conditional moments of consumption growth as estimated by a simple

VARMA on consumption growth and in�ation. (Li, Mi, Hi) correspond to low (<1%), medium (∈ [1%,

4%]) and high in�ation (>4%). (Lg, Mg, Hg) correspond to low (<0%), medium (∈ [0%, 1.5%]) and high

consumption growth (>1.5%). Numbers in italic are lower than those observed in Table 1.
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Table 5 � In�ation VARMA conditional moments

Mean Standard Deviation
Lg Mg Hg Hg−Lg Lg Mg Hg Hg−Lg

Li -0.0126 -0.00176 0.01008 0.02267 0.02786 0.02682 0.02743 -0.00044
Mi 0.01446 0.02292 0.03422 0.01975 0.02489 0.02479 0.02529 4·10−4

Hi 0.03918 0.04887 0.06389 0.02471 0.02729 0.0274 0.02892 0.00164
Hi−Li 0.05177 0.05064 0.05381 -0.00058 0.00058 0.00149

Skewness Excess Kurtosis
Lg Mg Hg Hg−Lg Lg Mg Hg Hg−Lg

Li -0.12 -0.0967 -0.0835 0.0365 0.0372 -0.0944 0.0711 0.034
Mi -0.011 -0.0288 0.0307 0.0417 0.0087 -0.0034 -0.0035 -0.0123
Hi 0.1214 0.1246 0.154 0.0325 0.0049 0.062 0.0984 0.0935

Hi−Li 0.2414 0.2214 0.2375 -0.0322 0.1564 0.0273

Notes: This table contains the conditional moments of in�ation as estimated by a simple VARMA on

consumption growth and in�ation. (Li, Mi, Hi) correspond to low (<1%), medium (∈ [1%, 4%]) and high

in�ation (>4%). (Lg, Mg, Hg) correspond to low (<0%), medium (∈ [0%, 1.5%]) and high consumption

growth (>1.5%). Numbers in italic are lower than those observed in Table 2.
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C.1 Additional Figures

In order to extract the state variables, xt and σt, from consumption data, we assume the

same time series speci�cation for the aggregate consumption growth process as in Bansal

and Yaron (2004), with the only exception that we introduce a square-root process for the

variance (as in Hansen, Heaton, Lee, and Roussanov, HB of Econometrics, 2007):

∆ct+1 = µ+ xt + σtηt+1 (25)

xt+1 = ρxt + φeσtet+1 (26)

σ2
t+1 = σ2(1− ν1) + ν1σ

2
t + σwσtwt+1. (27)

Note that the model is calibrated at the monthly frequency with the monthly parameter

values being: µ = .0015, ρ = .979, φe = .044, σ = .0078, ν1 = .987, σw = .00029487. We

need to extract the quarterly state variables, xt,q and σ
2
t,q. As a �rst step, we simulate a long

sample (�ve million observations) from the above system, treating the given parameter values

as the truth and retaining the simulated state variables. As a second step, we aggregate the

simulated data into quarterly non-overlapping observations:

∆ct,q = ∆ct + ∆ct−1 + ∆ct−2, for t = 3, 6, 9, . . .

xt,q = xt + xt−1 + xt−2

σ2
t,q = σ2

t + σ2
t−1 + σ2

t−2

As a third step, we estimate the model parameters in equations (25)-(27) using these quar-

terly observations and treating the state variables as observed. This step produces the

following quarterly estimates of the parameters:

ρq = ρ3
m = .9383137

v1,q = v3
1,m = .9615048

µq = 3× µm = .0045

σ2
q = Mean

(
σ2
t,q

)
= .0001822490

φe,q =

√
V ar (xt+1,q − ρqxt,q)

σ2
q

= .1084845

σw,q =

√
V ar

(
σ2
t+1,q − σ2

q (1− v1,q)− v1,qσ2
t,q

)
σ2
q

= 0.0007328592,

where the variables with subscript m are the monthly calibrated values, and the means and

variances are the ones obtained in the simulated sample. As a fourth step, we run a Bayesian
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smoother through the historical quarterly consumption growth treating the quarterly param-

eters as being known with certainty. The smoother produces estimates of the quarterly state

variables x̂t,q and σ̂
2
t,q.

The same steps can be applied to obtain the parameter estimates and, therefore, the time

series of the state variables at the annual frequency. In this case, we have: ρa = .7751617;

v1,a = .8546845; µa = .018; σ2
a = .0007299038; φe,a = .3853643; σw,a = .00270020.

C.2 Additional Figures

Figure 8 � Time series of conditional beliefs, estimated γ
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Notes: The �gure plots the conditional distribution of future consumption growth for several values of the

conditioning variable, namely the rate of in�ation. The dashed, solid and dotted line present the time series

for in�ation equal to its in-sample �rst decile, median, and 9th decile respectively. The subjective beliefs,

extracted using the relative entropy minimization approach, are used to obtain the conditional distribution.

Investors are assumed to have power utility preferences, in�ation is the sole conditioning variable, and the

excess return on the market portfolio is the single asset used in the estimation.
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Figure 9 � Time series of conditional beliefs, estimated γ
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Notes: The �gure plots the conditional distribution of future consumption growth for several values of the

conditioning variable, namely the rate of in�ation. The dashed, solid and dotted line present the time series

for in�ation equal to its in-sample �rst decile, median, and 9th decile respectively. The subjective beliefs,

extracted using the relative entropy minimization approach, are used to obtain the conditional distribution.

Investors are assumed to have power utility preferences, in�ation is the sole conditioning variable, and the

excess return on the market portfolio is the single asset used in the estimation.
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Figure 10 � Time series of conditional beliefs, estimated γ
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Notes: The �gure plots the conditional distribution of future consumption growth for several values of the

conditioning variable, namely the rate of in�ation. The dashed, solid and dotted line present the time series

for in�ation equal to its in-sample �rst decile, median, and 9th decile respectively. The subjective beliefs,

extracted using the relative entropy minimization approach, are used to obtain the conditional distribution.

Investors are assumed to have power utility preferences, in�ation is the sole conditioning variable, and the

excess return on the market portfolio is the single asset used in the estimation.
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Figure 11 � Conditional histogram of consumption growth, estimated γ
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The �gure plots the conditional histogram of future consumption growth for each value of the conditioning

variable, namely the rate of in�ation. The subjective beliefs, extracted using the relative entropy minimiza-

tion approach, are used to obtain the conditional distribution. Investors are assumed to have power utility

preferences, in�ation is the sole conditioning variable, and the excess return on the market portfolio is the

single asset used in the estimation.
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Figure 12 � Conditional histogram of consumption growth, estimated γ
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The �gure plots the conditional histogram of future consumption growth for each value of the conditioning

variable, namely the rate of in�ation. The subjective beliefs, extracted using the relative entropy minimiza-

tion approach, are used to obtain the conditional distribution. Investors are assumed to have power utility

preferences, in�ation is the sole conditioning variable, and the excess return on the market portfolio is the

single asset used in the estimation.
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Figure 13 � Conditional histogram of consumption growth, estimated γ
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The �gure plots the conditional histogram of future consumption growth for each value of the conditioning

variable, namely the rate of in�ation. The subjective beliefs, extracted using the relative entropy minimiza-

tion approach, are used to obtain the conditional distribution. Investors are assumed to have power utility

preferences, in�ation is the sole conditioning variable, and the excess return on the market portfolio is the

single asset used in the estimation.
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