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Abstract

We describe an agent-based model where trades happen in event-based time called directional-
change intrinsic time. Events defined as the reversal price move of a certain threshold from the
local extreme. The price impact of traded volumes is modeled according to the empirically
observed squared root impact function typical for the Forex market. The generated time series
reproduces statistical properties of foreign exchange rates which are four traditional stylized
facts: low auto-correlation of returns, fat-tailed distribution of returns, aggregational normal-
ity, price jumps scaling law; and a new method: overshoot scaling law which is omnipresent
feature of all liquid markets and states that the expected length of overshoots is equal to the
length of the corresponding directional-change threshold.

1 Introduction

Due of the large trading volumes and enumerable list of participants, the Foreign Exchange (FX)
market is one of the biggest financial systems where agent-based models were extensively applied for
its analysis. According to the Bank for International Settlements, daily trading volume in the FX
market increased to an average of $5.3 trillion in 20131. This volume is generated by the enormous
number of transactions made by individual and institutional traders. A proper understanding of
mechanisms of such tremendous financial system is crucial for designing risk management tools and
to be able to foresee impacts of any political, environmental or technical changes on the health of
the system. Since according to the efficient-market hypothesis all relevant to the financial world
information is reflected in the prices of various assets the financial time series are mostly used as the
main object of a study. Groups of works have been done on the search for fundamental properties
of various financial markets embedded in the large amount of data available for researchers today.
Thus, Bollerslev and Melvin (1994) used more than 300,000 quotes in an empirical analysis of the
bid-ask spread and how it is related to the exchange rate uncertainty; Danielsson and de Vries
(1997) and Dacorogna et al. (2001) used high-frequency data to estimate fat tail of exchange rate
returns; Kozhan and Salmon (2012) used dataset of market and limit orders to analyze how the
information contained in order books could be exploited in simple trading schemes. In one way or
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another the mentioned in the given research works data represents aggregated behaviour of all agents
involved in the trading in the market. To find the exact relation between the behaviour of agents and
observed in reality market phenomenon a wide range of agent-based models was proposed. In general
the models try to replicate evolving behavior of real market participants (for example, Ehrentreich
(2007) analyze whether artificially intelligent agents would converge to the homogeneous rational
expectations equilibrium or not). Most of the models serve as complex systems, populated by a
large number of independent and heterogeneous agents competing with themselves (NACIRI and
TKIOUAT (2016)) and are mostly designed to reproduce and explain phenomenon of real markets,
such as bubbles, crashes and regime switches (Samanidou et al. (2007)). Although all models have
some specific features designed to imitate given phenomenon one element is always present in any
agent-based model: definition of time. In order to describe the interaction between agents and impact
of their trading activity on market prices scientists mostly rely on physical time where hours, days
or even seasons are used to measure time and periods between events. However, the real market is
a complex system with its own endogenous non-constant time flow which speed is dependent on the
inhomogeneous frequency of political, social or environmental activity (Guillaume et al. (1997)). This
feature leads to non-constant volatility which makes it impossible to equally consider price samples
using different equidistant time intervals and lengths of time periods could significantly affect results
of experiments. In order to overcome this limitation and to provide a more robust framework able to
deal with the price curve independently on the speed of time flow the concept of directional–change
intrinsic time was proposed by Guillaume et al. (1997). In this concept events defined as reversal
price moves of a certain threshold from local extremes. Only these events allow system’s clock
tick. Continuous price moves in the same direction of the latest observed directional-change event
are called overshoot sections and represent trend components of the price curve. In our work the
agent–based model uses the directional change intrinsic time to dissect a price curve into a collection
of directional–change and overshoot sections and to identify moments of potential trades. Agents,
operating in the directional–change intrinsic time use prices as the only source of information to
make decisions on all their trades.

The best way to check whether an agent–based model indeed conforms to the expectations is to
compare parameters of generated time series with ones typical for the real financial markets. In the
further sections we show that proposed model creates synthetic time series with statistical proper-
ties which coincide with ’stylized facts’ of real financial time series captured by empirical analysis
(Kaldor (1961), Pagan (1996), Gençay et al. (2001), Chakraborti et al. (2009), Kullmann et al.
(1999)). Among them: low autocorrelation of returns, fat–tailed distribution of returns, aggrega-
tional normality, the price jumps scaling law2 and overshoot scaling law. The last one is used in
addition to the previous four well-known statistical properties usually adopted as benchmarks for
agent-based models. It was recently found in a wide range of real high–frequency time series and
even in the arithmetic Brownian motion (Dubrulle (1997), Glattfelder et al. (2011)). The overshoot
scaling law establishes a relation between the average length of observed overshoots and the corre-
sponding threshold value. The absolute independence of the intrinsic time on the flow of the physical
time makes this scaling law very convenient for testing agent-based models. To the extent of our
knowledge, it is the first work where statistical properties of the directional–change intrinsic time are
used to evaluate an agent-based model.

The rest of this paper is organized as follows; Section 2 illustrates the intrinsic event framework
and provides an example of a real price curve dissected into a set of intrinsic events. In Section
3 we describe two main components of our algorithm: the set of artificial agents and the market

2Mathematical relationship between two variables that holds true over multiple orders of magnitude.
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response function. A collection of benchmarks used to validate the quality of the generated time
series is discussed in Section 4. All obtained results and statistical properties can be found in
Section 5. Additionally, in Appendix A we derive the average length of price overshoots for the
case of Brownian motion with a constant trend and in Appendix B we propose a pseudo-code of the
directional change intrinsic time approach.

2 Intrinsic Time

The volatility of financial time series changes randomly over time (Blattberg and Gonedes (1974),
Christie (1982), Scott (1987)) and the number of transactions during holidays or weekends is much
lower than during working days or after some unexpected but significant news. Because of this non-
homogeneous nature of markets, one can find different time periods with upward or downward price
jumps within seconds or very long standstills when there almost no trades. Nevertheless, despite
this well–known fact financial market are usually analyzed using equidistant time steps. Mandelbrot
and Taylor (1967) and Clark (1973) were one of the first researchers to use the event–based time
for modeling and analyzing financial time series. Later Guillaume et al. (1997) defined so–called
directional–change intrinsic time where ticks happen as results of the evolution of rising and falling
price moves of a certain size (threshold). The breakthrough of this discovery is in the fact that such
type of time measure does not relate to exogenous time evolution and only endogenous price moves
define the flow of the intrinsic time. The author also presented a scaling-law discovered with help of
the new event–based concept and which establishes relation of the chosen intrinsic time thresholds δ
with the number of corresponding trend changes N(δ):

N(δ) =

(
δ

C

)E
(1)

This scaling law demonstrates how the directional–change intrinsic time is able to get rid of the
scalability issue(what is that?) pronounced in the case of physical time.

The main element of directional–change intrinsic time is the changes of a trend of the given size
measured in relative values and the length of price moves observed between two consecutive intrinsic
events. The concept operates with two states of the trend: upward and downward. A real example
of a price curve dissected with intrinsic time is shown on the Figure 1. If the current direction of the
trend is upward, then the next directional–change intrinsic event will be registered as soon as
there is a price reversal of the size equal or greater than the chosen directional change threshold δ
measured from the highest observed price since the last directional–change event. Once a new event
is observed, an overshoot ω(δ) begins and it continues until the next directional–change event. The
length of an overshoot defined ex-ante as the distance between the price level of a directional change
and the extreme point prior to the next directional–change event.

We initialize the dissection procedure by choosing a starting point called extreme price Sext (for
example, current price from the market Stick), the relative size of the directional–change price move δ
and arbitrary direction of the alternating price move (either modeup for upward or modedown for the
downward trend). Each new received price should be compared with the latest registered extreme. If
the current mode is modeup (modedown) and the newest price Stick is higher (lower) than the extreme
price Sext then the Sext takes the value of Stick. Alternatively, the distance the distance between the
latest price Stick and the current local extreme Sext should be compared to the size of the threshold
δ. If the distance is bigger or equal to δ than the current price is a new directional–change point. At
this moment one should change mode to the opposite one and reset the local extreme (Sext = Stick).
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If after this moment the price continues to move in the same direction, overshoot intrinsic events
will be registered every time when the size of the overshoot is multiple of the threshold size. There
is no limits on the number of overshoot intrinsic events between two consequent directional–changes.
As the reader can see from the Figure 1, the minimum size of the overshoot is equal to zero and it
happens when the price makes a reversal right after a new directional–change point. A pseudo–code
of the algorithm is located in the Appendix B.

From the Figure 1 it is easy to notice that due to the non-homogeneous nature of financial time
series intrinsic time ticks more often at periods of high activity and ticks less when the market is
relatively quiet. Two latest directional change events are registered only after a weekend (right part
of the plot where the exchange rate does not move) simply because during the weekend there were no
ticks and no big enough price moves to exceed the directional change threshold δ. Thus, the algorithm
dissects a price curve into a set of intrinsic events and does not considers ticks between them. Such
behaviour decreases the signal to noise ratio by providing information only about extreme points of
trends at different resolutions defined by the size of the given threshold.

There are various advantages of this event–based paradigm of the high–frequency data analysis.
Several examples could be found in the following research works:

1. The algorithm was used to show that in markets characterized by various volatility and trends
a lot of scaling laws perform in surprisingly similar way (Glattfelder et al., 2011);

2. Several directional–change thresholds, implemented at the same time, were used to describe
the price evolution and to compute multi–scale liquidity of given market (Golub et al., 2014);

3. At the moments of high volatility the number of directional–change events growth fast. The
number keeps small when the volatility is close to zero. Thus, the approach could be used to
estimate the volatility of given time series (Petrov et al., paper in progress).

At any moment of time liquid markets could experience various trends at different scales. In case
of a stable trend and a constant threshold δ the approach will return more intrinsic events when
the mode coincides with the trend and less events otherwise. However, it is possible to modify the
original algorithm in such a way that the trend will have no impact on the number of intrinsic events
upward and downward. Two different thresholds could be used to measure the distance between
the local extreme and the current price: δup to register directional–change events upward and δdown
for any events which happen within a trend down. We include some theoretical analysis in the
Appendix A where we demonstrate how the trend effects the expected size of overshoot sections and,
therefore, the number of intrinsic events per period of time in case of different mode regimes. As it
can be seen from equations 15 and 16, the expected size of overshoot sections is not constant and
depends on the trend of the market as well as on its volatility: for example, if the trend is negative,
upward overshoots ω(δup) are equal to the overshoots down ω(δdown) only if the threshold δup < δdown.
Because trends depend on the chosen scale it is impossible to say which pair of thresholds (δup, δdown)
would compensate the given trend specific to the current period. As a possible solution Golub et al.
(2017) used an abstraction based on the inventory as the proxy of the trend. In our work we are
creating a trivial model where the artificial agents do not keep track of their inventory but have a
wide variety of chosen thresholds which are active all the time. The whole set of used agents and
their parameters will be described in the following section.
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Figure 1: Example of an exchange rate price curve dissected into a set of directional–changes using a symmetric
threshold δ. Two types of sections are typical for each consecutive pair of intrinsic events: directional–change (marked
by a solid line) and overshot (dashed line). Arbitrary chosen fixed directional–change threshold δ is used for the
splitting purposes. The direction of the initial (mode) is chosen to be downward. The first (left) grey square marks
the first directional-change event which occurs when the price moves downward by δ from the local extreme which
for the given mode coincides with the highest observed price (the first grey circle). The mode alternates (upward)
as soon as a new directional–change point becomes registered. At this step, the local extreme indicates the smallest
observed price since the latest directional –change. The next upward event is registered when a positive return of the
size δ happens measured from the local extreme point (minimum price). After this, the mode alternates again and
the dissection process continues.
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3 Structure of the model

Any liquid market could be considered as a combination of only two components: a component
representing a group of traders with diverse range of strategies and scales and a component describing
impact of their aggregated behavior on the state of the market. In our trivial model we have
artificial agents buying and selling fixed volume only at moments of their own intrinsic events and
price response function which is a special algorithm generating the next price move (return) as the
reaction to the consolidated activity of the agents at the previous price.

The mechanic of the agents is the following: they flip their opened positions with probability
Pflip at intrinsic events observed in their own intrinsic time determined by the assigned directional
change thresholds δup and δdown. No matter when there are always Nlong agents who decided to flip
their position from sell to buy at the latest observed price and Nshort agents who decided to be net
sell. The trading unit size is fixed and the same for all traders. The difference between the number
of long and short agents ∆N = Nlong −Nshort indicates current excess demand or supply and is used
to determine the following price change using the volume impact function.

When it is clear that the lack of demand motivates the supply side to reduce the prices and
the lack of supply affects the price rise the exact shape of the volume impact function depends
on various other factors and is difficult to determine. Several research works have been done on
this topic and different models were proposed. A stable and linear impact function was described
in the work Kyle (1985) and later Huberman and Stanzl (2004) provided a proof that permanent
price impact must indeed be linear while the temporary one can be of a more general form. More
sophisticated non-linear price-update function was outlined in several research articles: Hasbrouck
(1991), Hausman et al. (1992), Kempf and Korn (1999). For our experiments, we decided to choose
the impact function proposed in the relatively recent work Bouchaud (2010). According to Bouchaud,
the impact of the trading volume is non-linear and one of the best approximations is the square–root
function. Therefore, we endow the market response to the agents’ aggregated behaviour with the
next net volume impact function:

rn(∆Nn) = bα · sgn(∆Nn)
√
|∆Nn|

⌋
(2)

where rn(∆Nn) is one–period return at the step n dependent on the current difference between the
total number of buyers and sellers at this step (∆Nn), α is the parameter which limits the minimum
price shift, sgn(.) is the sign function and b.c is the floor function. Here we choose the parameter α
in such a way that the smallest disbalance between the total number of buyers and sellers will trigger
a price return equal to 1: α is equal to

√
2/2.

3.1 Behaviour of the Agents

In real financial markets, market participants have a diverse set of trading strategies: trading in
working days or weekends, technical or fundamental analysis, high-frequency trading or holding
long-term positions (a survey of US market is provided by Cheung and Chinn (2001)) thus a good
agent–based model aiming to mimic the real market should be oriented on the reproducing of similar
behavior. Keeping this in mind, we created intrinsic event agents with a unique set of parameters.
Since different thresholds lead to the different perception of intrinsic time and various trading be-
havior our agents have a wide set of unique thresholds which guaranties inhomogeneous patterns
of their actions. This was used to resemble various trading activities: with the smallest thresholds,
traders register intrinsic events almost at each new price tick (like the real high–frequency traders)
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where with bigger thresholds traders’ intrinsic time ticks significantly less often making their behav-
ior similar to the behavior of long–term investors. Each intrinsic event agent makes a decision about
his next trading position at moments of intrinsic events location and frequency of which depend on
upward and downward directional change thresholds δup and δdown. In order to diversify the style
of their actions, there is no a pair of agents with completely equal parameters. On top of this, the
probability Pflip determines whether or not an intrinsic agent flips his position at the next intrinsic
event which also adds some randomness to the performance of the model. An agent flips his position
from long to short by shorting one unit to close his long position and shorting an additional unit to
open a short position, in total selling two units. A similar procedure is in place for flipping from a
short to a long position, whereas the agent buys two units. An example of intrinsic events registered
by a trader with parameters δup = 2, δdown = 3 is shown on the Figure 2.
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Figure 2: An example of a price curve dissected by a set of points at which an agent with parameters δup = 3
and δdown = 2 opens a position and makes decisions. The initial price is equal to 10 and the agent’s initial mode
is down. Red arrows assign distance measured between local extremes and the following directional change points.
Green arrows label price moves which lead to the next overshoot intrinsic event. Letters A, B, C and D are put
here to mark four intervals of alternating mode states. The agent registers his first directional change intrinsic event
as soon as the price goes down from the local extreme (labeled by a circle) by at least 2 points. By definition, the
agent opens his first position at this point (step number 2). Then he is waiting for the next event which happens at
step 3 after a big price move by four points up from the latest local extreme (coincides with the previous directional
change intrinsic event, a grey square). Independently on his previous trading decision, the agent keeps analyzing the
price curve. At step 5 the price has made an overshoot move measured from the preceding directional change point
and which is equal to δup (a grey triangle) and means the first overshoot intrinsic event. After this point, the price
continues its overshoot move up, but the next event is a directional change at step 8. The next two overshoot intrinsic
events happen at steps 9 and 11. The example is concluded by the last directional change intrinsic event point at step
13.

The whole set of used thresholds could be represented by a square grid where on one axis we put
values of δup and on another δdown. On the Figure 3 we demonstrate a part of the grid containing
parameters of the intrinsic event agents (traders). Each node there represents a unique trader. The
extent to which the agents cover the diversity of various trading patterns is defined by the geometrical
size of the grid: L points horizontally and vertically.

The grid can be visually divided into three separate sections. The traders from the region I have
upward directional change thresholds larger than the downward one (δup > δdown). For these agents,
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Figure 3: A part of the grid of trading agents. Each point represents an agent defines by a set of unique parameters
{δup, δdown}, where δup and δdown are the size of upward and downward directional–change thresholds. By numbers I,
II and III we mark regions with specific properties: in the region I there are only traders with the upward directional
change threshold larger than the downward one (δup > δdown), the region II contains ”symmetric” agents (δup = δdown)
and the region III labels all agents with the downward thresholds larger than the upward ones (δup < δdown).

two equivalent trends upward and downward are characterized by non–equal number of events. It
leads to the fact that in case of zero average trend agents from this region are more eager to buy
or sell at moments of downward trends rather than within upward trends (descend supporters).
The agents from the region II have equal upward and downward thresholds and are called diagonal
agents. The region III marks all agents with upward directional change thresholds smaller than
the downward one (δup < δdown), so their behavior is the opposite to the traders from the region
I (ascent supporters). For each trader from the region I there is a corresponding opposite agent
from the region III so the complete set of agents as fully symmetric and thus reflects the balance of
different traders in the real financial world. Later in the paper, we will show that the general trend
of the generated time series could be directed towards the certain value by activating specific parts
of the grid.

The net volume represents the difference between the total supply and demand and is used to
compute corresponding price moves aimed to balance the market. In our model, all agents trade with
a volume equal to one lot. As a result, the maximum possible price move ∆Smax can be observed
only when all agents decide to either buy or sell. Thus, the largest price change is determined by the
number of agents on the grid and connected to its length L:

∆Smax = αL
√

2 = L (3)

In the real world, such big returns are usually interpreted as the market crashes. They do not
happen on the daily bases and usually are aftermaths of big numbers of actions accidentally coincided
in one critical instant. In our model the probability to observe the maximum price move of size L
is minuscule because in order to make it all agents should observe intrinsic events simultaneously,
happen to be with the same type of the opened position, and should all decide to flip it. Even just
one latest condition has probability PL2

which very rapidly tends to zero with increasing the size of
the grid L.

Much more ordinary situation typical for all markets is when general moods of all involved in
the trading parties compensate each other thus forming the economic equilibrium. Such states could
not last very long and very small market fluctuations enliven further trading activity. Like in the
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real world in the proposed agent-based model one can observe zero difference between the number
of all buyers and sellers which entails zero net volume and does not cause any price move. Since the
agents react only to new price changes we added a trivial random price shift upward or downward
with equal probability. The size of such basic price move was chosen to be enough to trigger a new
intrinsic event for agents with the smallest thresholds: δ = 1.

In the simulations we use the following parameters: initial price level S0 = 0, the minimum price
step ∆Smin = 1, α =

√
2/2, the smallest threshold δmin = 1, maximum δmax = 50, step between two

consecutive thresholds is 1, total number of trading agents is 2500 and the probability to flip position
Pflip = 0.63. The smallest threshold δ = 1 guaranties that any elementary price move will trigger
a new intrinsic event of agents operating in this scale. The size of the probability to flip position
coincides with the empirically and theoretically found probability to register a new directional change
event prior to an overshoot one. Overall, tick size of generated time series is equal to 1.

The goal of each simulation of the agent-based model is to generate a set of returns which then
can be converted to a price curve characterized by the same statistical properties found in the Forex
market. In our work, each return generated by the price impact function is defined in logarithmic
terms which makes it possible to compare distances between prices in absolute values with the
chosen thresholds. In other words, here returns between two given steps m and n (m > n) defined
as r(n,m) ≈ log(xm)− log(xn) = Sm − Sn. Thus, a new intrinsic event happens when the return is
bigger or equal than the size of the threshold δ:

δ ≥ |r(n,m)(m)| (4)

This trivial simplification significantly facilitates all computations in this paper and will be used
in the rest of the article.

4 Benchmarks

The main goal of this research work is to check whether an agent-based model build on top of
the directional change intrinsic time is capable to generate synthetic time series with statistical
properties coherent with ones typical for high-frequency time series from foreign exchange market.
Several benchmarks have been chosen to verify the accuracy of the model.

4.1 Traditional methods

One of the well–known evidence about the market microstructures is that price returns at any liquid
market do not exhibit significant linear autocorrelation (Arneodo et al., 1996) and in a few minutes,
it can be safely assumed to be equal to zero (Cont et al., 1997). This phenomenon is formulated
in the ”efficient market hypothesis”: at such markets prices instantly and fully reflect all available
information (Basu (1977)) making it impossible to build a simple trading strategy based on the
”statistical arbitrage”. Only in very short time intervals when a market is still absorbing a new
piece of external information, prices could be characterized by slightly correlated returns. Since this
statistical property is one of the most popular stylized facts of all liquid markets we selected it to be
one of our benchmarks. Used in the work definition of the autocorrelation function of a time series
X with mean µ and variance σ at the given lag τ is

R(τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2
(5)
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The second stylized fact used in the analysis is the fat-tailed distribution of returns at a relatively
high frequency (more pronounced for intraday values). This fact, also known as excess kurtosis, was
pointed out by Benoit Mandelbrot and importance of which was explained in his book Mandelbrot
and Hudson (2010) where he points out that despite the wide range of theories build on top of the
assumption that the returns could be assumed to be normally distributed the real financial markets
have always been much more sophisticated and this discrepancy is a serious flaw of any related
financial model. Authors of this work this support his point of view and pay specific attention to
this statistical property used as the second benchmark of the agent-based model.

The following simple formula was used to measure the excess kurtosis of the return distribution:

k =
〈(r(t, T )− 〈r(t, T )〉)4〉

σ(T )4
− 3 (6)

where σ(T )2 is the variance of the log returns r(t, T ) = x(t + T ) − x(t). The equation is built
in such way that k = 0 means an absolutely normal distribution of returns. Brown and Warner
(1985) demonstrated that in the stock market kurtosis is usually below 7 and in Cont (2001) it was
mentioned that when for SP 500 futures the value is around 16, for Dollar/Swiss Franc futures is
approximately 60 and for USD FX rates it is roughly 30 when the time interval is 10 minutes Gençay
et al. (2001). It is important to say that though the excess kurtosis is far bigger than zero when
time lag is relatively small, it tends to zero as the time lag increases. This fact is usually called
the aggregational normality or aggregational Gaussianity and can be accounted for the ”mixture of
normals” explanation of leptokurtosis (Antypas et al. (2013)). We test generated by the model time
series on several time horizons.

The forth traditionally used benchmark is the scaling law which has been constantly reported in
several research works: scale-invariance of the absolute price change (return) to the period of time
when it occurs (see, for example, Müller et al. (1990), Mantegna and Stanley (1995), Dacorogna
et al. (2001)). Even though there is no agreement on the origin of the scaling law (Bouchaud (2001),
Farmer et al. (2004), Joulin et al. (2008)) its omnipresence has incentivised scientists to apply it for
real financial problems: risk management and volatility modelling (Ghashghaie et al. (1996), Gabaix
et al. (2003), Di Matteo (2007)). In our work we check whether the generated by the agent-based
model time series can be characterised by this power law and it is our forth benchmark3.

The same notation proposed in the work Glattfelder et al. (2011) was used to validate this scaling
law:

y =
( x
C

)E
, (7)

where y = expY , x = expX, E = B and C = exp(−A/B) since we assume a linear relationship
between the response variable Y (for example, average size of a price return) and the fixed variables

3It is very important to pay attention to the fact that most of scaling laws have been found in financial markets
considering not only the inner nature of the price curve expressed in intrinsic events but also using properties of the
physical time. It is a very complicated question how one could go back from the intrinsic time used as the main
engine of the agent-based model in real seconds, days and years. For example, since volatility in the directional change
intrinsic time is just a scaling factor of the frequency of events one cannot directly validate such phenomenon like the
volatility clustering of a time series generated by an agent-based model without tiding their behavior to fixed discrete
points in the physical time. Nevertheless, the most popular approach used to bridge the gap between physical and
intrinsic time in agent-based modeling is the assumption that the agents make decisions at equidistant moments of
time, for example, every second. In this case, 20 000 000 steps in the intrinsic time would correspond to 231.5 trading
days which is very close to a full trading year (252 days). It is important to remember that this is only an assumption
which could be done in this work considering the wide variety of the used thresholds.
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X (period of time) in double logarithmic scale, or Y = A + BX, where A and B are the unknown
parameters to be estimated. Thus B defines the slope of the log-log plot and A is the intersection of
the y axis.

4.2 The ultimate benchmark

Despite big popularity of the aforementioned benchmarks they all suffer the same drawback: all of
them use physical time as the main indicator of scaling. Artificial agents have no real ”feeling” of
time and have only ”signal-reply” logic. In our work we introduce a new benchmark which can be
ultimately used to verify any agent-based model independently on the time measure chosen for the
model. In the work of Glattfelder et al. (2011) one of all 12 described scaling laws is totally agnostic
to real physical time. The law is called the ”overshoot scaling law”. It is fully based on the concept
of the directional change intrinsic time where only relative price moves dictate sequences of events
without taking into account time intervals between them. As it was shown in the work Golub et al.
(2014) the probability of overshoot ω(δ;σ) reaching the length l equals exp

(
− l
δ

)
, i.e.

P(ω(δ;σ) ≥ l) = exp

(
− l
δ

)
(8)

which reveals the relation between the length of a directional change threshold δ and the average
size of corresponding overshoot ω(δ): the average overshoot move 〈ω(δ)〉 is approximately equal to
the size of the directional change threshold δ independently on the size of δ:

〈ω(δ)〉 ≈ δ (9)

Glattfelder et al. (2011) has shown that for the overshoot scaling law the average coefficients E
and C across all exchange rates from the Forex market are E = 1.04 and C = 1.06. We use these
finding as the main benchmark of our model.

As a short remark for this section: scaling laws seem to be kind of ubiquitous properties of our
world and present at any domain of natural and social phenomena such like physics, biology and
social sciences (Andriani and McKelvey (2007)). Thus it is straightforward to take these omnipresent
multi–scale properties into account when validating results of time series generated by artificial sets
of interacting agents.

5 Results

In this chapter we highlight the main findings of the research work and demonstrate which compo-
nents of the agent-based model contributes to the stylized typical for real liquid markets. Two types
of experiments have been performed: analysis of time series generated by all agents from the grid
and the trend divergence from the zero level in case of asymmetric regions activated for the trading.

5.1 Whole grid

An example of 10 price curves generated by the intrinsic event agents with help of the squared root
impact function is presented on the Figure 4. The red line represents the average price based on
1000 independent simulations. As a reader can see this line is perfectly horizontal throughout all
steps which means the absence of any trend. At the same time, every chosen price curve does not
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demonstrate any prevail direction and consist of various intervals with plateaus and sudden jumps
thus mimicking features of real Forex market.
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Figure 4: Example of 10 time series generated by the agents from the whole grid 50 by 50 equally distributed
points. The presented on this plot price curves were obtained by computing an exponential function of the logarithmic
returns generated by the model. For demonstration purposes the generated be the model returns were assumed to be
log–returns and the following formula was applied to convert them into the presented curves: Price = exp(Slog/1000)

All introduced benchmarks were implemented to validate the artificially generated data sets.
Autocorrelation function (ACF) of a long (10 000 000 points) surrogate time series is shown on the
Figure 5a. The maximum negative correlation (−0.32) is observed for the lag size equal to 1 step
while the rest of the values is significantly less. As expected, the autocorrelation function rapidly
decays and becomes indistinguishable from zero already after 10 steps.

The next stylized fact exhibits a long-range slowly decaying autocorrelation function an case of
absolute returns. The Figure 5b demonstrates that the bigger lag step, the lower decline of the ACF.

Revealed from a synthetic time series absolute price move scaling law (∆S as a function of the
number of steps) is shown on the Figure 6a. Here C and E are the described in the section 4
characteristics of the scaling law and R is the Pearson product-moment correlation coefficient. The
fact that the computed correlation is represented by a straight line on the log-log plot is the most
meaningful part of the experiment.

On Figure 7 four plots containing distribution of returns at various lag scales (10, 50, 100 and
1000 steps) are shown. It can be clearly seen that there are persistent fat tails up to lags measured
by hundreds of ticks and that they disappear around the level of 1000 steps which is in line with
the empirical results (see, for example, Kullmann et al. (1999)). The excess kurtosis value is equal
to 2.97 in case of 10 steps lag and just 0.06 when the lag rises to 1000 steps4. In addition, on the
Figure 8 we present two probability plots which once again confirm the statement.

Finally, we checked whether the overshoot scaling law is also present in the generated time series.
The results shown on the Figure 6b are very close to the ones observed at the real foreign exchange
market. Moreover, here we also checked two additional versions of the overshoot scaling law: the first

4Even though the excess kurtosis decreases together with the growing lag size in the empirical analysis the value
corresponding to small lags is usually much higher (10 and more). However, we found that the size of the grid directly
contributes to the excess kurtosis: 50 by 50 points −→ k = 2.73, 100 by 100 points −→ k = 3.46, 200 by 200 points
−→ k = 6.01
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Figure 5: (a) Autocorrelation function of generated time series. Lags are measured in steps. 10 000 000 steps in
total. (b) Autocorrelation function of absolute returns.
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Figure 6: (a) Average absolute price move as a function of number of steps. (b) Overshoot scaling law for the agents
from the entire grid. Parameters on the plot correspond to the average line. Approximation was done for δ > 0.3%.
The same equation presented under the Figure 4 was used to transform thresholds from absolute values to relative
ones (percentage). Coefficients of the Up line: C = 1.04, E = 1.05, R = 1.0; of the Down: C = 1.03, E = 1.03, R = 1.0.
The plot is based on 20 000 000 steps.

one is built using only overshoots computed after upward directional changes (red dashed line) and
the second is only after the downward ones (green dashed line). As it can be seen on the Figure 6b
there is no noticeable difference between all these three lines which once again confirms theoretical
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(a) 10 steps lag.
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(b) 50 steps lag.
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(c) 100 steps lag.
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(d) 1000 steps lag.

Figure 7: Distribution of returns for generated time series at four different steps lags and their Gaussian approxima-
tion (red line). Included sub-plots are the same distributions but in the logarithmic scale.

(a) (b)

Figure 8: Probability plots created using returns generated by the agent-based model. The total number of steps is
10 000 000. The left-hand side (a) is created for returns computed with the lag equal to 10 steps. The right-hand side
(b) contains a probability plot built for returns computed at each 1000 steps.

computations expressed in equations 15 and 16 in the Appendix A.

It is worth mentioning that apart of the square-root volume impact function linear and logarithmic
functions have also been tested but they did not manage to replicate the same quality of the stylized
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facts. With linear dependence the generated price rapidly fluctuates around the initial level and none
of the statistical properties were observed in the data. Statistical properties of time series generated
using the logarithmic function reproduces fat-tailed distribution of returns but the overshoot scaling
law is still much better reproduced by the originally chosen squared-root function5.

5.2 Asymmetric regions

A remarkable feature of the presented agent-based model operating in the directional change intrinsic
time is that one can easily direct the average price curve upward or downward by tuning set of used
intrinsic event agents. Here we put a couple of trivial examples where only agents from the region
I or the region III have been selected to trade and as result deviated the average price from the
horizontal level. Results of these two experiments are shown on Figure 9.

The permanent trend observed in both experiments could be used to generate realistic time series
with predefined characteristics. Several factors affect the slope of the average price curve: total
number of agents in the initial grid, fraction of the grid used to generate a time series, selected time
interval between two consecutive steps. The precise shape and direction of the trend is a topic for
an independent analysis which is out of the scope of this research work.

6 Conclusion

The agent-based model presented in this paper successfully mimics behaviour of real participants of
liquid market generating time series with ’stylized facts’ observed in the real financial world. The
main contribution of the work is in the analysis of a new event–based mechanics underlying the
agent–based model: all agents perform in the so–called directional–change intrinsic time where only
price moves make time ticks, that is, the intrinsic time is endogenously defined. All five chosen
benchmarks have been passed by the agent-based model which let us conclude that real market par-
ticipants intentionally or unintentionally make trades in a very similar way using their own intrinsic
time to reverse their positions. It was also found that non–linear square root impact function empir-
ically observed in real markets is indeed crucial for successful reproducing time series with desired
properties.
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5In the case of the linear or logarithmic impact functions the parameters of the overshoot scaling law are noticeably
worse than those based on the square root function (C = 0.86, E = 0.95, R = 0.16 and C = 1.38, E = 0.99, R = 1.0
correspondingly versus C = 1.04, E = 1.04, R = 1.0)
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Figure 9: (a) Time series generated by the agents from the region I of the initial grid and (b) by the agents from
the region III only. Red lines represent average price based on 1000 independent simulations. The initial grid size is
50 by 50 points.

A Overshoot as function of trend

As it was shown in the work of Glattfelder et al. (2011), the average length of an overshoot is
approximately equal to the length of the corresponding directional change threshold:

〈ω(δ)〉 ≈ δ (10)

This dependence was found not only in the real historical tick data but also for arithmetic Brow-
nian motion without trend. Nevertheless, analysis of Geometrical Brownian Motions with constant
trend revealed that the average length of overshoots at not anymore equal to the corresponding size
of the threshold and varies together with the size of the trend.
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Simple Brownian Motion with trend µ, volatility σ and a price move dSt was chosen as the
benchmark for the analysis:

dSt = St − St−1 = µdt+ σdWt (11)

Golub et al. (2014) derived the probability of overshoot to reach some fixed value x in case of
observing upward overshoot ω(δup) and downward overshoot ω(δdown):

P(ω(δup) ≥ x) = exp

− x

σ2
·

(|µ| − µ) + (|µ|+ µ) exp
{
−2|µ|δup

σ2

}
1− exp

{
−2|µ|δup

σ2

}
 (12)

P(ω(δdown) ≥ x) = exp

− x

σ2
·

(|µ|+ µ) + (|µ| − µ) exp
{
−2|µ|δdown

σ2

}
1− exp

{
−2|µ|δdown

σ2

}
 (13)

The expected value of the shown probability equation F(x) = P(X ≥ x) is equal to

E [X] =

∫ ∞
0

F(x)dx (14)

from which the following expected value can be found:

E [ω(δup)] =
σ2
(

1− exp
{
−2|µ|δup

σ2

})
(|µ| − µ) + (|µ|+ µ) exp

{
−2|µ|δup

σ2

} , (15)

E [ω(δdown)] =
σ2
(

1− exp
{
−2|µ|δdown

σ2

})
(|µ|+ µ) + (|µ| − µ) exp

{
−2|µ|δdown

σ2

} . (16)

The expected length of the overshoot is just the average of upward and downward expected
overshoot, which equals

E [ω(δup, δdown)] =
σ2

2

 1− exp
{
−2|µ|δup

σ2

}
(|µ| − µ) + (|µ|+ µ) exp

{
−2|µ|δup

σ2

} +
1− exp

{
−2|µ|δdown

σ2

}
(|µ|+ µ) + (|µ| − µ) exp

{
−2|µ|δdown

σ2

}


(17)
The value depends on four parameters: thresholds δup and δdown, volatility σ and trend µ. On

Figure 10 we demonstrate the dependence of the overshoot length on various trends when volatility
is fixed and equal to 1, δ = 1.

It is easy to notice that only in case of zero trend the lengths of upward and downward overshoots
coincide with each other, while for any other value of trend when it is not equal to 0 one could
observe significant divergence of the curves. The obtained result is quite intuitive: for example, in
case of ascending trend price curve more probably will go to the same direction of registered upward
directional-change event, therefore the upward overshoot is appreciably longer than the downward
one. This observation give the intuition that for each constant trend and volatility at the market
there are such thresholds δup and δdown that the total number directional change events in a given
time series will be constant. This property was directly used in our agent-based model when we
designed a set of trading agents with different parameters which define their behaviour (Section 3.1).
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Figure 10: Expected length of overshoots as function of trend computed using equations 15 and 16. The variance σ
and threshold values δ are fixed to be equal to 1.

B Dissection Algorithm

Here by Stick we mark the latest observed price, by Sext the local extreme, mode is the current mode
of the alternating trend which could be equal either up or down, δup and δdown are upward and
downward thresholds respectively, SIE is the price at which the latest intrinsic event was observed.
The algorithm returns 1 and −1 when the price curve hits the level of an upward and a downward
directional change events. 2 and −2 will be returned in case of overshot intrinsic events.
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Algorithm 1 Intrinsic Event

1: if first tick then
2: Sext ← Stick
3: SIE ← Stick
4: return 0
5: else if mode is up then
6: if Stick − Sext ≥ δup then
7: mode← down
8: Sext ← Stick
9: SIE ← Stick

10: return 1
11: else if Stick < Sext then
12: Sext ← Stick
13: if SIE − Sext ≥ δdown then
14: SIE ← Stick
15: return −2
16: else
17: return 0
18: else if mode is down then
19: if Sext − Stick ≥ δdown then
20: mode← up
21: Sext ← Stick
22: SIE ← Stick
23: return −1
24: else if Stick > Sext then
25: Sext ← Stick
26: if Sext − SIE ≥ δup then
27: SIE ← Stick
28: return 2
29: else
30: return 0
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