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Abstract
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1 Introduction

The collective collapse of house prices in the U.S. and the ensuing wave of mortgage

defaults was at the center of the recent financial crisis. Securitized pools of subprime

mortgages originated all over the U.S. and derivatives written on them were instrumental

in the propagation of the crisis from a local to a global scale (see e.g. Brunnermeier 2009).

The payoffs of such mortgage backed securities (MBSs) depend not only on the level of

local house prices but also on their comovements. More specifically, house price returns

are the main determinant of the decision to default,1 and high levels of dependence in

house price returns increase the probability of collective defaults, which in turn makes

MBSs more risky. To limit risks, geographic diversification has been the fundamental

tool in the construction of real estate portfolios by commercial banks, mortgage insurers,

including the housing government sponsored enterprises (GSEs), and real estate invest-

ment trusts (REITs). This strategy has been followed also in the construction of pools of

mortgages for the purpose of securitization, both on the prime and subprime segments.

While such a strategy is based on the expectation that geographic dependence remains

low, we find that in the period of strong deleveraging leading up to the subprime crisis

it started increasing, causing the failure of geographic diversification. This gave rise to

what Thakor (2015) refers to as a “diversification fallacy”, whereby real estate investors

overestimated the extent to which their portfolios were diversified.

In this paper, we provide evidence of time-variation in the average dependence among

regional monthly house price returns, which measures the risk of a broadly held real es-

tate portfolio. We show that there are two variables that exacerbate this risk, increases

in mortgages rates, and especially decreases in leverage, whose effect on dependence is

quantitatively much more important than that of mortgage rates. To that effect, we

introduce a multivariate hidden Markov copula model, with a high and a low depen-

dence regimes, and we allow the Markov transition probabilities to vary with changes

1Kau, Keenan, Muller III & Epperson (1992) propose a structural approach to default, based on
option theory, where the house price plays the role of the underlying asset, whereas e.g. Schwartz &
Torous (1993), Deng, Quigley & Van Order (1996) and Deng, Quigley & Van Order (2000) advocate a
reduced form approach, and analyze the effect of house prices on the decision to default using hazard
models.

2



in mortgage rates and leverage, measured by the loan to value ratio (LTV). We rely on

equidependent Gaussian copulas to capture the average dependence within a large cross-

section of Metropolitan Statistical Areas (MSAs), which is representative of the universe

available to real estate investors. Our results provide evidence of a link between leverage

and the risk of real estate portfolios, as measured by the geographic dependence among

regional house price returns. We find that geographic dependence in regional house price

returns oscillates between a low dependence regime with a copula equicorrelation coef-

ficient of 11% and a 1% Value-at-Risk (VaR) of −1.7%, and a high dependence regime

with an equicorrelation of 38% and a 1% VaR of −2.4%. Moreover, this dependence is

particularly high during periods of deleveraging and increasing mortgage rates, which

was the case in the period leading up to the crisis, with increasing mortgage rates from

2002 to 2006, and strong deleveraging starting in 2007. This shows that for a real estate

investor, the benefits of geographic diversification disappear precisely in those times when

they are most needed, which renders the strategy of geographic diversification ineffective.

Our results about diversification are in line with those of Cotter, Gabriel & Roll (2015),

who show that the extent to which local house price returns depend on aggregate factors

varies over time.

Finally, we focus on a smaller set of four Southwestern MSAs in California and Nevada,

two states that were particularly hard hit during the last financial crisis, and we show

that decreases in leverage are associated not only with a high dependence regime, but

also with asymmetry and tail dependence.2 This asymmetric high dependence regime

with tail dependence is particularly harmful for investors. First, asymmetric dependence,

which refers to the fact that price decreases tend to be more dependent than price in-

creases, exacerbates the downside risk in the portfolios of real estate investors. Moreover,

tail dependence, which refers to the fact that this dependence is present for arbitrarily

extreme events far out in the tails of the returns distribution, implies that even large price

falls in different MSAs cannot be diversified away. Our findings are based on the multi-

variate Gaussian and canonical vine regime switching copula model of Chollete, Heinen

2Zimmer (2012) also finds evidence of asymmetry and tail dependence in an analysis of house price
returns with bivariate and static copulas.
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& Valdesogo (2009), where the canonical vine regime can accommodate asymmetric de-

pendence, as well as tail dependence, which are commonly found in asset returns (for an

application of canonical vines to house price returns, see Zimmer 2015a).

There is a large literature that discusses the link between our two main variables,

mortgage rates and leverage ratios, and house prices and their returns. In the traditional

user cost model of house prices of Poterba (1984), which assumes perfect capital markets,

house prices depend on credit market conditions only through interest rates, see e.g.

Himmelberg, Mayer & Sinai (2005), who find that house prices are particularly sensitive

to interest rates, when interest rates are low. As real estate property is often purchased on

credit, beyond the level of interest rates, house prices also vary with leverage or collateral

rates. For instance, Stein (1995) develops a theoretical model with down payments,

whose empirical prediction that house prices react more to economic shocks in highly

leveraged cities is confirmed by Lamont & Stein (1999) in a cross-section of house prices

and Benito (2006) in a time series of house price returns. Whereas Glaeser, Gottlieb &

Gyourko (2013) find little support for the effect of easy credit either in the form of low

interest rates or high leverage on house prices, Duca, Muellbauer & Murphy (2011) and

Duca, Muellbauer & Murphy (2013) find that changes in credit standards that affect the

loan to value (LTV) of first time home buyers are crucial determinants in explaining the

boom and bust of the U.S. housing market. In particular they find that house prices and

LTV form a stable long-term cointegrating relationship. Finally, Anundsen (2015) finds

that, when LTV is not taken into account, the U.S. housing market shifts from a stable

regime where prices are determined by fundamentals to a highly unstable regime. This

suggests that there are regime shifts in the housing market that are related to LTV.

Our finding of an effect of leverage on the dependence in house price returns is

consistent with the recent but fast-growing theoretical literature on the leverage cy-

cle (for a model where interest and collateral rates are determined jointly, see e.g.

Geanakoplos 1997, Fostel & Geanakoplos 2015). This literature emphasizes the impact of

leverage on asset prices. For instance, in Geanakoplos (2010a), leverage fuels house price

increases because it gives more optimistic buyers access to the market. In this model
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even a small bad news shock at the height of the leverage cycle can lead to a devastat-

ing deleveraging spiral, where optimistic investors either suffer losses or lose the ability

to borrow and eventually withdraw from the market. This decreases the proportion of

optimistic market participants with high expectations of future house prices and leads

to a vicious circle of decreasing leverage and prices (see also Geanakoplos 2010b, Fostel

& Geanakoplos 2013).3 Our results capture this sort of non-linear dynamic interplay

between leverage and regional house prices.

Our paper relates more generally to the literature about funding liquidity, which shows

how a reduction in funding liquidity can increase dependence between asset prices. Fund-

ing liquidity refers to the ease with which financial intermediaries obtain the capital they

need to purchase assets. When funding liquidity is abundant, capital can be borrowed

with a small margin or haircut, and thus leverage, or LTV in the real estate context, is

high. Brunnermeier & Pedersen (2009) provide a theoretical model of margin calls, in

which a decrease in funding liquidity leads to comovements across assets, since changes

in funding conditions affect speculators’ market liquidity provision of all assets. In the

same vein, Fostel & Geanakoplos (2008) build a pricing theory for emerging asset classes

and show how bad news causes price comovement through leverage cycle in equilibrium.

In a different context, Acharya, Schaefer & Zhang (2015) uses credit-default swap (CDS)

data during the period around the downgrade of GM and Ford to show that when fi-

nancial intermediaries with funding constraints are hit by an adverse liquidity shock on

a given asset, this can also affect other assets for which they are providers of liquidity.

Finally, Dudley & Nimalendran (2011) use dynamic copula models to analyze how the

dependence and the risk of contagion between pairs of hedge fund style indices increase

when funding liquidity dries up and futures margins increase.

Whereas there is little empirical evidence about time variation in the dependence be-

tween the returns of a large set of regional house price indices, there is a well-established

3Whereas, in this paper, we focus exclusively on borrower leverage, Fostel & Geanakoplos (2014)
note that there is a “double leverage cycle”, where the leverage of homeowners and that of the financial
institutions that lend to them feed off each other. Goel, Song & Thakor (2014) provide a model in which
more levered banks are less able to absorb a negative shock, leading them to restrict credit supply to
mortgage borrowers. In turn, this leads to less borrowing and another round of house price decreases.
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literature on time-varying dependence between returns of financial assets. Longin & Sol-

nik (1995) use the constant conditional correlation (CCC) model of Bollerslev (1990)

and provide evidence that correlations between stock markets are not constant, tend to

increase over time, and vary with dividends and interest rates. Engle (2002) introduces

the dynamic conditional correlations (DCC), which makes correlations among stock re-

turns time-varying (for an application of the DCC to pairs of MSA house price index

returns, see Zimmer 2015b). Since Hamilton (1989), Gaussian regime switching models

have been widely used in economics and finance (see e.g Ang & Bekaert 2002a, Ang

& Bekaert 2002b, Guidolin & Timmermann 2006a, Guidolin & Timmermann 2006b,

Guidolin & Timmermann 2008). They have also been used to model dependence; see

e.g. Pelletier (2006), who uses marginal GARCH models with regime switching correla-

tions in a Gaussian framework. Another strand of the literature uses copulas to model

time-variation in dependence (see e.g. Patton 2006a, Patton 2006b). Finally, there is a

literature combining copulas and regime switching (in the context of bivariate copulas,

see e.g. Rodriguez 2007, Okimoto 2008). Our econometric innovation in this paper is that

we introduce a regime switching multivariate equidependent Gaussian copula model, and

that we use time-varying transition probabilities in the Markov chain. Besides, we also

use the multivariate regime switching canonical vine copula of Chollete et al. (2009).

The remainder of this paper is organized as follows. Section 2 introduces the econo-

metric methodology, Section 3 describes the data and discusses the results, and Section

4 concludes.

2 The Model

In this section, we first provide a brief account of copula theory. We then present the

marginal AR-GARCH model we fit to each regional house price return. We introduce

the equidependent copulas that we use to capture the dependence structure among house

price returns. We also discuss the canonical vine copula which delivers a flexible model

of the dependence structure among regional house price returns. Finally, we discuss fixed
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and time-varying transition probability (FTP and TVTP) versions of the Markov regime

switching copula model that we estimate.

2.1 Copulas

Copulas are a convenient tool to separate the dependence between variables from their

marginal distributions in non-Gaussian contexts. They have become a standard tool in fi-

nance, to capture the dependence among financial asset returns, as well as in the context of

credit risk analysis (see Embrechts, McNeil & Straumann 2001, Embrechts, Klüppelberg

& Mikosch 1997). The use of copulas relies on the Sklar (1959) theorem, which states

that a joint cumulative distribution function (CDF) F of n variables (Y1, · · · , Yn), where,

in our context, Yi denotes house price returns in MSA i, can be written in terms of a

copula function C with dependence parameter θ, whose arguments are the n marginal

distribution functions Fi of house price returns in MSAs i = 1, · · · , n:

F (y1, · · · , yn) = C(F1(y1), · · · , Fn(yn); θ). (1)

The joint probability density function (PDF), f obtains by differentiation, and can

be written as a product of the marginal house price return distributions and of a copula

density term, which captures all the dependence between them:

f(y1, · · · , yn) =
n∏
i=1

fi(yi)c(F1(y1), · · · , Fn(yn); θ), (2)

where c(F1(y1), · · · , Fn(yn); θ) = ∂C(F1(y1),··· ,Fn(yn);θ)
∂F1(y1)···∂Fn(yn)

. Equation (2) shows that when the

copula density is equal to one, the joint density collapses to the product of the marginals,

which is the case when all local house price returns are independent of each other.

The overall dependence captured by the copula can be quantified, regardless of the

marginal distributions, by coefficients of rank correlation, such as Kendall’s tau and

Spearman’s rho. These distribution-free measures of the association among variables

range from −1 to 1, for perfect negative to positive dependence; see Appendix A for

more details.
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2.2 Marginal model

Before analyzing the dependence between regional house price returns with copulas, we

need to correctly specify the marginal distributions of the house price return in each

MSA. Since time series of monthly house prices are typically non-stationary, we model

house price returns, defined as the difference in log house prices. To deal with the time

variation in the mean and volatility of the house price return of MSA i at time t, yi,t, we

follow Zimmer (2015b) and use an autoregressive model for the mean and a GARCH(1,1)

for the volatility.4 The conditional mean of the house price return of each MSA can be

expressed as follows:

yi,t = γi,0 +
3∑
j=1

γi,jyi,t−j + ηi,t, (3)

where γi,0 are the constants, γi,j, j = 1, · · · , 3, are autoregressive coefficients, and ηi,t is

the residual. We further account for the dynamics in the volatility, using the following

Student t GARCH model:

ηi,t =
√
hi,t · εi,t,

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1,

εi,t ∼ Student t(νi),

(4)

where ωi, αi and βi are the constant and the autoregressive coefficients of the GARCH, νi

is the degrees of freedom parameter of the Student t and hi,t is the conditional variance of

the house price return of MSA i at time t. The Student t distribution provides the best

fit, over the Gaussian and the Skew-t, according to information criteria. We then filter

out the effect of lagged house price returns and the dynamics of volatility to obtain the

standardized innovations, ε̂i,t =
η̂i,t√
ĥi,t

, and compute the probability integral transforms

(PITs), zit = Tνi(ε̂i,t), which are inputs of the geographic dependence model, where Tν

is the CDF of the Student t with degrees of freedom ν. Provided that the marginal

distributions (the combination of mean and volatility models along with a distribution)

are well specified, the PITs will be identically and independently uniformly distributed

4Since, according to the Bayesian information criterion (BIC), for most MSAs the optimal order of
the AR is between 2 and 4, and the differences are very small, we use an AR(3) for all MSAs.
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on [0, 1].

2.3 Equidependent Gaussian copula

Our first objective is to analyze the average geographic dependence within our set of

regional MSA house price returns. We focus on average geographic dependence, since

this is most representative of the dependence of portfolios of real estate investors who

seek a broad geographic diversification across the entire U.S. This dependence can be

captured by the parameter of an equidependent elliptical copula, which imposes the

same dependence between all pairs of MSAs. While equidependence is unlikely to strictly

hold in practice, it is nonetheless an interesting approximation in terms of the trade-off it

offers between bias and variance: while an equidependent copula delivers a slightly biased

estimate of the dependence between any given pair, this estimate enjoys a low variance,

since it pools information from all pairs into a single measure.

The assumption of equidependence is frequently made in the context of Gaussian

copula portfolio models in credit risk (see e.g. Li 2000, Schoenbucher 2000, Schoenbucher

2003). A similar assumption underlies the Dynamic Equicorrelation (DECO) model of

Engle & Kelly (2012), where the equicorrelation parameter is autoregressive. In our case,

the equicorrelation copula parameter does not change continuously over time, but instead

it switches discretely between a high and a low dependence regime. We consider either a

Gaussian or a Student t version of an n-variate equicorrelated copula, whose correlation

matrix R is restricted to have all of its off-diagonal elements equal to the equicorrelation

copula parameter ρ, which controls the dependence between all n(n− 1)/2 pairs of MSA

house price returns:

R = (1− ρ)In + ρJn, (5)

where In denotes the n-dimensional identity matrix and Jn is the n × n matrix of ones.

We further impose ρ ∈ ( −1
n−1

, 1) to guarantee that R is positive definite.5

5See Lemma 2.1 of Engle & Kelly (2012).
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2.4 Canonical vine copula

Whereas equidependent multivariate copulas restrict all pairwise dependence to be equal,

at the other end of the spectrum, canonical vine copulas allow for maximal flexibility,

but at the cost of a higher number of parameters (see e.g. Bedford & Cooke 2002, Berg &

Aas 2009, Aas, Czado, Frigessi & Bakken 2009). These multivariate copulas are built hi-

erarchically from bivariate copulas by iterative conditioning. When asymmetric copulas,

such as the Gumbel, rotated Gumbel and Clayton, are used as building blocks, canonical

vines can accommodate features frequently found in asset price returns, such as asym-

metric dependence and tail dependence. Asymmetric dependence refers to the fact that

negative returns tend to be more dependent than positive returns. Tail dependence, on

the other hand, is a copula concept which characterizes the dependence in the tails of

the distribution, i.e. during very large swings in house price returns. In particular, lower

tail dependence measures the probability that house price returns in one MSA are at

an extreme low, conditional on the observation of an extreme low return in the house

price in another MSA. The presence of tail dependence increases the downside risk in the

portfolios of real estate investors and can lead to very large losses. In contrast, the Gaus-

sian copula does not allow for tail dependence, whereas the Student t imposes symmetric

tail dependence. Note that the canonical vine nests the multivariate Gaussian, when all

building block are Gaussian, and it nests the equidependent Gaussian, if in addition all

pairwise copula correlation coefficients are equal. We refer to Appendix A for more de-

tails about the bivariate copulas we consider, as well as the concepts of upper and lower

tail dependence.

The density of an n-dimensional canonical vine copula can be written as follows:

c(u1, · · · , un) =
n−1∏
j=1

n−j∏
i=1

cj,j+i|1,··· ,j−1(F (uj|u1, · · · , uj−1), F (uj+i|u1, · · · , uj−1)), (6)

where cj,j+i|1,2,...j−1 denotes the conditional copula of uj and uj+i, given u1, . . . , uj−1 and

F (.|.) is a cumulative conditional distribution, which can be evaluated, following Joe

(1996), as:
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F (y|ν) =
∂Cy,νj |ν−j(F (y|ν−j), F (νj|ν−j))

∂F (νj|ν−j)
, (7)

where ν−j denotes the vector ν excluding the component νj. As can be seen in Equation

(6), the construction of canonical vine copulas proceeds hierarchically along a tree; see

Figure 5 for the tree structure we use to describe the dependence among four Southwestern

MSAs. u1 plays a pivotal role in the first level of the tree, which contains the bivariate

copulas of u1 with all other n − 1 variables uj, j = 2, . . . , n. The next level of the tree

consists of the bivariate conditional copulas c2,j|1 of u2|u1 with all remaining variables

uj|u1, for j = 3, . . . , n. At each level of the tree, one conditions on the pivotal variable in

the previous level. The n-dimensional canonical vine copula then obtains as the product

of n(n−1)/2 bivariate conditional copulas. The specification of a canonical vine requires

the choice of an ordering of variables, as well as the choice of all bivariate conditional

copulas. We follow the standard practice in the literature and order the variables in such

a way that the lowest levels of the tree capture most of the dependence; for more details

on the construction of canonical vines, see Appendix A.3.

2.5 Multivariate regime switching copula

We assume that the n-variate vector Yt = (y1,t, . . . , yn,t) of monthly house price returns

at time t depends on a latent binary variable st = 1, 2, which indicates the dependence

regime the housing market is in. The density of the data conditional on being in regime

st = j is:

f(Yt|Yt−1, st = j) = c(j)
(
F1(y1,t), . . . , Fn(yn,t); θ

(j)
c

) n∏
i=1

fi(yi,t; θm,i), (8)

where c(j)(.) is the copula density of the marginal distribution of yi with its parameter

θm,i, and Fi is the corresponding marginal distribution function. In order to describe time

variation in dependence between house price returns, we switch between the two density

functions conditionally on the underlying latent state st.

We entertain two assumptions about the evolution of the unobserved state of the
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economy st. The first is the classical homogeneous Markov chain assumption, where

the transition probabilities pjj = P (st = j|st−1 = j) are constant over time for regimes

j = 1, 2 (see e.g. Hamilton 1989). Next we relax this assumption and follow the time-

varying transition probability (TVTP) approach of Diebold, Lee & Weinbach (1994).

More specifically, we allow for the effect of time-varying regressors such as changes in the

interest rate, ∆rt and in the loan to value (LTV), ∆LTVt on the transition probabilities:

pjj,t = P (st = j|st−1 = j) = logit−1(δ0,j + δ∆r,j∆rt + δ∆LTV,j∆LTVt), (9)

for j = 1, 2, where logit−1(x) = 1
1+exp(−x)

. This allows us to assess the effect of credit

market conditions on the geographic dependence in house price returns. The TVTP

model nests the homogeneous Markov chain approach, with pjj = logit−1(δ0,j), which

obtains whenever δ∆r,j = δ∆LTV,j = 0, for j = 1, 2.

As shown in Equation (8), since the marginal distributions are not dependent on the

regime, we can first estimate the parameters of the marginal AR(3)-Student t GARCH(1,1)

models. We then estimate the parameters of the multivariate regime switching copula

separately, taking as given the parameters of the marginals. This corresponds to the

inference for the margins (IFM) method of Joe (2005), which is standard in copula ap-

plications; see Appendix B.1 for more details.

Since the regime st, which determines the state of the economy at each time, is not

observable, the full copula likelihood cannot be evaluated directly. Instead, we rely on the

EM algorithm: we first take expectations of the complete log likelihood conditional on the

observable data (E-step). We then maximize the expected log likelihood with respect to

the parameters of the copula and transition probabilities (M-step). We iterate these two

steps until convergence. We rely on the Hamilton (1989) filter for the constant transition

probabilities and on the filter proposed by Diebold et al. (1994) for the time-varying

transition probability case; see Appendix B.2 for details.
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3 Data and results

3.1 Data and descriptive statistics

We use monthly MSA level Case-Shiller house price index returns, based on repeat sale

transactions, for 19 MSAs observed from May, 1991 to August, 2013, which corresponds to

279 monthly observations. For our main results we eliminate Boston, Chicago, Denver,

Detroit, Minneapolis and New York, since these returns appear to be non-stationary

according to an Augmented Dickey-fuller (ADF) test.6 As show in Figure 1, house prices

increased considerably from 2000 to 2006 and subsequently collapsed from the end of

2006 to 2008.

We let the transition probabilities of the regime switching copula be a function of

changes in the average loan to value (∆LTV) and mortgage interest rate (∆r) of a sample

of conventional and single-family mortgages, compiled by the Federal Housing Finance

Agency (FHFA). The FHFA computes average contract rates from the loans, reported by

a sample of mortgage lenders (savings and loans associations, savings banks, commercial

banks and mortgage companies), closed during the first 5 working days of the month up

to October 1991 and for the last 5 working days of the month since.7

In addition to local economic and housing market conditions, both short term and

long term mortgage rates depend also on credit markets and are significantly affected by

U.S. monetary policy shocks (see e.g. Hamilton 2008, Xu, Han & Yang 2012). As shown

in Figure 2a, over the 1991-2012 period mortgage rates decreased from about 10% to

3.5%, with rare episodes of stability or slight increases. Mortgage rates decreased after

2000, following a monetary expansion designed to attenuate the effects of the burst of

the dot-com bubble. As a result of the policy reversal in 2003, mortgage rates stabilized

until about 2005 and then started increasing until the crisis in 2007. Mortgage contract

6This leaves us with 13 MSAs covering Phoenix, Los Angeles, San Diego, San Francisco, Las Vegas,
Miami, Tampa, Charlotte, Portland, Seattle, Washington, Atlanta and Detroit. The results for the full
set of 19 MSAs are qualitatively similar. There is also data available for Dallas, but we exclude it, since
it starts only in 2000.

7Our LTV series differs from the one of Duca et al. (2013), who build a quarterly LTV ratio on
mortgages used by first time homebuyers, from biannual American Housing Survey (AHS) data. Unfor-
tunately, it is not possible to construct such a series for the monthly frequency we need to estimate our
regime switching model.
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rates then decreased from 2007 to 2011 as a result of the Fed’s attempt to rescue the U.S.

housing market by cutting interest rates.

The time series of LTV ratios is displayed in Figure 2b. As shown in Fostel & Geanako-

plos (2015), interest rates and average loan to value (LTV) are joint outcomes of an

equilibrium process on the credit market. The increase in LTV in the early to mid-1990s

followed the Federal Housing Enterprises Financial Safety and Soundness Act of 1992

(the GSE Act), which encouraged the GSEs to increase the credit supply by purchasing

more low income and minority loans and allowed them to buy subprime MBSs.

LTV ratios experienced another period of strong increase from 2002 to 2006 that

reflects both changes in the supply of credit induced by securitization and changes in the

demand for credit. For instance, Mian & Sufi (2009) show that increased securitization

into private-label MBSs is related to a relaxation of credit constraints and decreasing

mortgage denial rates.8 Over the same period, looser underwriting standards in the

form of lower downpayments, and a reduced emphasis on proper documentation allowed

previously constrained optimistic buyers, such as the ones in the model of Geanakoplos

(2010a), to obtain more leverage and purchase additional housing, see e.g. Haughwout,

Lee, Tracy & van der Klaauw (2011), who report an increase in the number of real

estate investors who misreport their intention to occupy the property in order to secure

a mortgage. Finally, Dell’Ariccia, Igan & Laeven (2012) argue that an increase in credit

demand, evidenced by the number of loan applications, also contributed to the relaxation

of lending standards.

This pattern began to reverse at the end of 2006. As subprime loans originated during

the preceding periods proved worse than expected, with worrisome delinquency rates and

decreases in the prices of MBSs, investment banks refrained from underwriting new MBSs,

8Gabriel & Rosenthal (2010) find that almost all of the capital used to finance conventional and
conforming mortgages came from the secondary market in 2004, and remained at that high level through
2008, and that private second market loan purchases boomed relatively to those of the GSEs in 2004,
peaking in 2006. Duca, Muellbauer & Murphy (2010) show that the behavior of house prices in 2003-
2007 is significantly linked to financial innovations such as collateralized debt obligations (CDOs) that
accelerated the financing of subprime mortgages, and in turn helped private subprime mortgages gain
high market share by allowing much higher LTV ratios than before. For the effect of securization, see also
Ashcraft, Goldsmith-Pinkham, Hull & Vickery (2011), Loutskina & Strahan (2009), Keys, Mukherjee,
Seru & Vig (2010), and Demyanyk & Van Hemert (2011).
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leading to higher required downpayments on new mortgages (see Geanakoplos 2010b).

Table 1 reports descriptive statistics for the residuals obtained from the mean model.

The last column shows p-values from Jarque-Bera test. The results show that house

price returns are not normally distributed at the 95% confidence level, except for San

Diego. The distributions of the residuals have fat tails with a kurtosis larger than 3,

which means that extreme movements in house prices are more likely than under the

normal distribution. Table 2 reports unconditional Pearson correlations between price

indices. The most strongly correlated pairs of MSA are San Diego-San Francisco (0.53),

followed by Los Angeles-San Diego (0.50) and Miami-Tampa (0.45).

3.2 Marginal models

Table 3 shows results of the univariate Student t GARCH models we fit to every local

house price return series. Most MSAs have fairly persistent volatility processes with

α+ β close to 1, with the exception of San Diego. Since misspecification of the marginal

distributions can lead to severely biased copula parameter estimates (see e.g. Fermanian

& Scaillet 2005), we apply several goodness of fit (GOF) tests to the probability integral

transform (PIT) of the marginals obtained from the univariate Student t GARCH model.

The tests include the Kolmogorov-Smirnov (KS) and Kuiper (KP), which check the cor-

rect specification of the marginal distribution by comparing the distribution of the PIT to

the standard uniform. We also apply the Berkowitz (BK) test, a joint test of uniformity

and lack of aucorrelation of the PIT, which is based on mapping the PIT to the normal

and testing an AR(1) model against the null of an uncorrelated standard normal. The

p-values of the tests, reported in Columns 5 to 7 of Table 3, show that all series pass the

tests, which means that the marginals are well specified. In Columns 8 to 12, we present

the p-values of the Ljung-Box test statistics which show that the squared residuals are

no longer autocorrelated, and that the conditional variances are well modeled with the

Student t-GARCH(1,1).
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3.3 Dependence models

In this section, we first discuss the average dependence within MSA house price returns

in the U.S. and then we analyze the dependence within a smaller subset of Southwestern

MSAs.

A. Country-wide equidependent regime switching copula

Table 4 reports results of a regime switching model with two equidependent Gaussian

copula regimes, using house price returns in 13 MSAs. The results show that in the fixed

transition probability (FTP) model, the average dependence of regional house price re-

turns varies across time between a high and a low dependence regime with equicorrelation

coefficients of the Gaussian copula of nearly 0.4 and 0.11, which correspond to Kendall’s

tau rank correlation coefficients of 0.25 and 0.07, respectively. Moreover, the regimes are

quite persistent, as shown by the transition probabilities. This means that the economy

oscillates between fairly persistent episodes of high and low dependence in regional house

price returns, which has strong implications for real estate investors seeking the benefits

of regional diversification.

The second panel of Table 4 shows almost identical regimes when we consider the

time-varying transition probability (TVTP) model instead. Since the TVTP and the

FTP model are nested, we perform a likelihood ratio test, which strongly favors the

TVTP model, with a p-value of 0.002.9 Figure 3 shows the smoothed probabilities of the

high dependence regime and the average dependence, measured as Spearman’s rho rank

correlation, under fixed transition probabilities (FTP) in Panels (a) and (c), and under

time varying transition probabilities (TVTP) in Panels (b) and (d). Panel (d) shows

that the TVTP model is able to capture strong dependence in house price returns during

the moderate increase in house prices from 1994 to 1996, during some episodes in 2001,

2004 and 2005, and also during the housing market bust from 2007 to 2010, whereas this

is not so clear with the FTP model in Panel (c), which is another reason to prefer the

TVTP over the FTP model. To further measure the quality of our regimes, we rely on

the regime classification measure put forward by Ang & Bekaert (2002b), which confirms

9In unreported results we also try equidependent Student t copulas, however the degrees of freedom
are in most cases well above 10, which makes them virtually indistinguishable from the Gaussian ones.
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the better performance of the TVTP model.10

The variables capturing credit market conditions, such as changes in mortgage rates,

∆r, and in loan to value, ∆LTV, are significantly related to the transition probabilities,

p11 and p22, of the Markov chain. More specifically, a one standard deviation increase in

mortgage rates leads on average to a 7% increase in the probability of staying in the high

dependence regime, while a one standard deviation decrease in loan to value increases

that probability on average by 40%.11 A similar increase in mortgage rates and decrease

in leverage would decrease the probability of staying in the low dependence regime by

9% and 7%, respectively.

The marginal effects implied by our results indicate that the impact of changes in

mortgage rates and in leverage on the persistence of the low dependence regime, p22, are

similar in scale. In contrast, the effect of changes in leverage on the persistence of the high

dependence regime, p11, is much stronger than the effect of changes in mortgage rates.

This shows that, whereas both increases in mortgage rates and decreases in leverage are

associated with staying or moving to the high dependence regime, the effect of leverage

dominates that of changes in mortgage rates in the probability of staying in the high

dependence regime. Thus deleveraging is responsible for an increase in the duration of the

high dependence regime. More generally, our results are consistent with the importance of

leverage for house price returns, as documented also by Duca et al. (2013). Whereas they

model the effect of leverage on house price returns, we provide evidence of a dependence

channel through which leverage affects house price returns. More specifically, we show

the importance of leverage as a determinant of the dependence in regional house price

returns, which is an important dimension of the risk faced by real estate investors who

seek to attain geographic diversification.

Our results show that the effect of leverage is quantitatively much more important

10The regime classification measure of Ang & Bekaert (2002b) is RCM = 400 1
T

∑T
t=1 pt(1− pt), where

pt denotes the smoothed probability of being in regime 1. If regimes are clearly identified, then the
smoothed probability should either be 0 or 1 at all times, and the regime classification measure is zero,
whereas in the worst case, the smoothed probability is always 1/2 and the measure is 100. In the FTP
case, the regime classification measure is 59.44, whereas in the TVTP case, regimes are much clearer
with a value of 32.04

11We calculate these effects by combining the marginal effects from Table 4 with the standard deviations
of mortgage rates and LTV, which are, respectively equal to 0.8748%, and 0.4625%.
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than the effect of mortgage rates. This is consistent with the findings of Ashcraft,

Gârleanu & Pedersen (2011), that a reduction in the haircut on a financial asset has

a much stronger impact on its price than a reduction in interest rates. They are also

consistent with the simulations of Duca, Muellbauer & Murphy (2016), which show

that leverage has a stronger effect on house prices than interest rates. Our results

lend support to the idea that governments should not only monitor and adjust inter-

est rates, but also monitor leverage and make sure it remains within reasonable bounds

(see Geanakoplos 2010b, Lambertini, Mendicino & Punzi 2013).

We find that the average dependence within a wide set of regional house prices covering

the entire U.S. becomes much higher during episodes of increases in mortgages rates

and deleveraging. To illustrate the impact of such swings in dependence on a simple-

minded strategy of geographic diversification, we compare the risk of an equally weighted

portfolio of all MSAs in both regimes. As shown in Table 4, according to the TVTP

model, the monthly standard deviation of such a portfolio changes from 0.76% to 1.02%,

resulting in a 30% increase from the low to the high dependence regime. The results are

more dramatic with Value-at-Risk (VaR)12: the 1% (5%) VaR decreases from −1.66%

(−0.88%) to −2.44% (−1.37%), which corresponds to a 47% (56%) decrease. These

results show that in the high dependence regime, the likelihood of experiencing extreme

negative returns increases substantially, relative to the low dependence regime. However,

whereas VaR is one of the most commonly used measures of risk, it suffers from the fact

that it is not sub-additive (a risk measure is sub-additive, if the risk of a portfolio is

no larger than the sum of the risks of its constituents; see Artzner, Delbaen, Eber &

Heath 1999). In contrast, expected shortfall, which measures the average return in case

of a VaR violation, does not suffer from this drawback.13 The results show that expected

shortfall changes from −2.49% (−1.41%) in the low dependence to −3.27% (−2.04%)

in the high dependence regime for 1% (5%) expected shortfall. This implies that the

average losses incurred in case of an extreme adverse outcome are much larger in the high

12Value-at-Risk (VaR) is defined as the quantile of the distribution of portfolio returns at level α:
VaRα = inf {r ∈ R : Fr(r) ≥ α}, where Fr(.) is the cumulative density of the portfolio return r.

13Expected shortfall is the expected return, conditional on exceeding VaR: ESα=E[r|r < VaRα].
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dependence regime. Finally, like Cotter et al. (2015), we calculate the reduction in risk,

which compares the average standard deviation of all MSA returns to that of the equally

weighted portfolio. This measures the possible benefits of geographic diversification, and

it shows an erosion in these benefits, which decrease from 1.22% in the low dependence to

0.89% in the high dependence regime, consistent with Cotter et al. (2015), who finds that

they decrease during crisis periods. These results are qualitatively similar, yet slightly

stronger if we consider instead the FTP model. Overall our results suggest that the

benefits of diversification tend to disappear during periods of deleveraging, when they

are most needed. This is bad news for real estate investors who seek to reduce the risk of

their portfolios through geographic diversification across the U.S. A similar phenomenon

has been documented by Ang & Bekaert (2002a) who find that high correlations between

international equity market returns in highly volatile bear markets decrease the benefits

of international diversification.

To check the robustness of our results, we also estimate the same models with all

19 MSAs, which include the returns of 6 MSAs that are not stationary according to an

Augmented Dickey Fuller (ADF) test. The results in Table C.1 show that our main

result is consistent, since the effect of leverage on the persistence of the high dependent

regime is both qualitatively and quantitatively similar with an increase of 28.36% in

the probability of staying in the high dependence regime after a one standard deviation

increase in ∆LTV. The smoothed probabilities of the high dependence regime in Figure

C.1 and the evolution of the Spearman’s rho rank correlation are also very similar to

those with 13 MSAs.

B. Dependence within Southwestern MSAs

So far we studied the average dependence within a large set of regional house price

returns, representative of the whole U.S. We now focus attention on the dependence

within a smaller set of MSAs in the Southwest of the U.S., that were particularly affected

by the house price slump and the resulting wave of mortgage defaults. More specifically

we analyze the joint dependence between house price returns in Los Angeles (LA), San

Francisco (SF), San Diego (SD) and Las Vegas (LV). The dependence in such a more
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localized set of MSAs could be of interest to a regional bank, whose real estate portfolio

is likely to be made up of mortgages originated from a more local region. The smaller

dimension of this data set allows us also to offer a more sophisticated description of the

dependence structure.

We first estimate a regime switching equidependent Gaussian copula model. As shown

in Table 5, the dependence between house price returns varies across time and these vari-

ations can be described by a high and low dependence regime with Gaussian copula cor-

relations of 0.55 and 0.13, which correspond to Kendall’s tau rank correlation coefficients

of 0.37 and 0.08 under the assumption of time varying transition probabilities (TVTP).14

Compared to the results for the entire U.S., both the high and the low dependence regimes

exhibit more dependence with a clearer differentiation between regimes. This is reflected

also in the risk measures for an equally weighted portfolio in both regimes. As shown

in Table 5, the standard deviation varies from 1.20% to 1.58% from the low to the high

dependence regime, the 1% VaR varies from −2.84% to −3.88%, and the corresponding

expected shortfall from −4.38% to −5.77%. Finally, the reduction in risk from an equally

weighted portfolio decreases from 0.84% to 0.58% in the high dependence regime.

Although changes in mortgage rates, ∆r, are no longer significantly associated with

the probability of staying in the high dependence regime, a one standard deviation de-

crease in leverage, ∆LTV, leads to an 18% higher probability of moving to and a 17%

higher probability of staying in the high dependence regime. Panel (d) of Figure 4 shows

that on average, the house price returns of Southwestern MSAs are more dependent than

house price returns in the entire U.S., given that they are strongly dependent not only

during periods of housing bust but also during periods of housing boom. This might be

due to the fact that the timing of the housing boom was more homogeneous within a

local subset of Southwestern MSAs than it was for the whole of the U.S.

Next, we estimate a regime switching model with a canonical vine and a full multivari-

ate Gaussian copula, where we relax equidependence to allow for different correlations for

different pairs of MSAs. This richer but less parsimonious model allows us to see whether

14As in Section A, results with the equidependent Student t copula are virtually identical with degrees
of freedom well above 10.

20



the dependence in house price returns within a smaller subset of regions exhibits features

that could not be captured by an equidependent Gaussian copula, such as a different

intensity and shape for the dependence between each pair of MSAs, and the possibility of

tail dependence and asymmetric dependence. Asymmetric dependence refers to difference

in the behavior of the upper and lower tail of the joint distribution, while tail dependence

refers to dependence for extreme quantiles of the marginals. Figure 5 shows the structure

of the canonical vine we estimate, and its caption discusses the choice of the ordering of

the variables in the tree, as well as the selection of bivariate copulas. Los Angeles turns

out to be the pivot of the canonical vine, since it is the most strongly correlated with all

three other MSAs. While the dependence between Los Angeles and San Francisco are

described by a Gaussian copula, the dependence between Los Angeles and San Diego is

characterized by a Student t copula, which is symmetric like the Gaussian, but exhibits

both upper and lower tail dependence, which reflects stronger dependence when returns

are extreme (either positive or negative). In contrast, the Gumbel copula that describes

the dependence between Los Angeles and Las Vegas captures upper, but not lower tail

dependence, which means that there is more dependence when prices increase than when

they decrease.

Table 6 first shows that the dependence between each pair of house price returns

varies across time in magnitude as well as in shape. Specifically, time variation in the

dependence can be described by a symmetric Gaussian regime with low dependence and

an asymmetric canonical vine regime with high dependence, under the assumption of

time-varying transition probabilities (TVTP). As shown in the left panel of Table 6,

the approximate unconditional Kendall’s tau rank correlation coefficients implied by the

canonical vine copula are higher for all pairs of MSAs than those of the multivariate

Gaussian copula. Note that one cannot directly compare the Kendall’s tau of the bivariate

building blocks of the canonical vine with those of the multivariate Gaussian or Student t

copulas. Instead, we use the same approximation as Chollete et al. (2009) to compute the

unconditional Kendall’s tau of the canonical vine from those of the conditional copulas.15

15We use the fact that Kendall’s tau is a known function of the copula, with closed-form solutions for
many families of copulas. Using this information, we first compute the Kendall’s tau of each bivariate
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The estimation results of Table 6 also confirm that these variations are significantly

associated with mortgages rates and loan to value (LTV). A one standard deviation

increase in the change in mortgage rates, ∆r, leads to a 5% increase in the probability of

staying in the asymmetric high dependence regime, p11, while a one standard deviation

decrease in loan to value, ∆LTV, increases that persistence by 12%. Thus, a tightening

credit market in the form of deleveraging and an increase in mortgage rates leads to a

higher probability of staying in and moving to the asymmetric high dependence regime.

The magnitude of the impact of credit market conditions on transition probabilities is

lower than in the equidependent copula case. This is likely due to the fact that the high

dependence canonical vine regime already captures more extreme dependence than the

equidependent Gaussian copula.

Figure 6 shows the smoothed probabilities implied by the results above. Panel (a)

shows that the housing market was in an asymmetric, high dependence regime from 1994

to 2000. During this period, house prices in the Southwest were recovering from the

plunge of 1990. The figure also shows that the housing market was in an asymmetric

dependence regime in the boom of 2005-2006, but also during the period of housing bust

between 2007 and 2009.

Overall, our results suggest that a multivariate canonical vine copula is appropriate

to capture the dependence of regional house price returns in a period with big swings

in house prices. For the sake of comparison, we also estimate a regime-switching model

with an unrestricted multivariate Gaussian copula in each regime. The results of Table

6 show that the canonical vine model fits observed dependence better and improves

the loglikelihood by about 6.3 compared to the Gaussian model. Since the two models

are not nested and the canonical vine model has one parameter more because one of

its components is a Student t copula with an extra degrees of freedom parameter, we

conditional copula implied by the estimated parameter. Then we presume the data came from a Gaussian
copula and we compute the conditional copula correlation that implies the same Kendall’s tau, via the
relation ρ = sin( τπ2 ). We then compute the unconditional correlation matrix of the Gaussian copula from
the conditional bivariate Gaussian copulas via the formula Rx|y = Rx −RxyR−1y Ryx, which delivers the
unconditional correlation matrix Rx from the unconditional correlations Ry, Rxy and the conditional
correlation Rx|y. Finally, we report the unconditional Kendall’s tau that corresponds to the unconditional

correlation with the relation τ = 2 arcsin(ρ)
π .
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cannot strictly speaking compare them according to the value of the likelihood. However,

according to both the Akaike and the Bayesian information criteria, the canonical vine

copula is the preferred model. Thus, the results highlight the importance of considering

asymmetry, fat-tailness and time variation when modeling the dependence between house

price returns.

4 Conclusion

Using a multivariate regime switching copula model with two equidependent regimes, we

analyze time variation in the average geographic dependence among regional house price

returns in the US. An equidependent copula allows us to capture the average dependence

between house price returns in a large cross-section of regions. We further let the Markov

transition probabilities vary with credit market conditions, such as mortgage contract

rates and loan to value ratios (LTV). More specifically we show that the average depen-

dence in regional house prices varies over time, and high dependence is related to changes

in mortgage rates, but even more strongly to changes in leverage. This has important

consequences for real estate investors, who seek to reduce their risk through geographic

diversification. We show that during periods of crisis, these gains from geographic di-

versification might be strongly reduced as dependence increases. As a result, real estate

portfolios might turn out to be much more risky than investors initially thought, giving

them a false sense of security.

Our results provide evidence of a new channel whereby leverage can affect the geo-

graphic dependence among regional house prices. We show that the effect of leverage

is quantitatively much more important than that of mortgage rates. More generally,

our results are consistent with the importance of leverage for house prices, as docu-

mented also by Duca et al. (2013) and Duca et al. (2016). Our results are consistent

also with the effect of leverage on dependence found in the context of financial markets

(see e.g. Ashcraft, Gârleanu & Pedersen 2011, Brunnermeier & Pedersen 2009, Dudley &

Nimalendran 2011). In addition, our results lend support to the idea that governments
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should not only monitor and adjust interest rates, but also monitor leverage and make

sure it remains within reasonable bounds (see Geanakoplos 2010b). Finally, we show in

a small set of Southwestern MSAs, that deleveraging and increases in mortgage rates are

associated with a high (low) probability of staying and moving to a high asymmetric (low

symmetric) dependence regime.
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Table 1: Summary Statistics

Mean Std. Dev. Skewness Kurtosis Min Max Jarque-Bera
(p-value)

Phoenix 0.0025 0.0142 -1.0139 6.9850 -0.0564 0.0477 0.0010
Los Angeles 0.0024 0.0126 -0.5216 4.0250 -0.0436 0.0351 0.0097
San Diego 0.0026 0.0121 -0.3875 3.9670 -0.0367 0.0362 0.1218
San Francisco 0.0028 0.0147 -0.5935 4.5511 -0.0517 0.0406 0.0010
Las Vegas 0.0009 0.0145 -0.2583 7.3972 -0.0524 0.0587 0.0010
Miami 0.0025 0.0123 -1.1273 5.1332 -0.0461 0.0274 0.0010
Tampa 0.0019 0.0109 -0.8240 5.1580 -0.0443 0.0285 0.0128
Charlotte 0.0017 0.0064 -0.6259 4.5328 -0.0261 0.0170 0.0010
Portland 0.0035 0.0090 -0.8123 4.8497 -0.0301 0.0274 0.0032
Seattle 0.0029 0.0092 -0.9636 5.3840 -0.0370 0.0260 0.0010
Washington 0.0028 0.0106 -0.1005 3.5785 -0.0276 0.0315 0.0010
Atlanta 0.0013 0.0075 -2.0676 11.7199 -0.0480 0.0189 0.0010
Detroit 0.0013 0.0129 -0.4005 7.9470 -0.0491 0.0558 0.0010
This table provides summary statistics of monthly regional house price returns, from May
1991 to August 2013, which correspond to a sample of 279 observations. The Jarque-Bera
tests the null hypothesis of normality of the residuals from the AR(3) mean model for
each MSA.
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Table 2: Unconditional correlations of regional house price returns

Phoenix Los Angeles SanDiego San Francisco Las Vegas Miami Tampa Charlotte Portland Seattle Washington Atlanta
Los Angeles 0.3438 1.0000
San Diego 0.3279 0.5019 1.0000
San Francisco 0.3777 0.4133 0.5305 1.0000
Las Vegas 0.1550 0.3088 0.1196 0.1352 1.0000
Miami 0.1663 0.2980 0.2054 0.2065 0.0353 1.0000
Tampa 0.2606 0.3072 0.2120 0.2579 0.1601 0.4528 1.0000
Charlotte 0.2770 0.3049 0.1857 0.2085 0.0778 0.0305 0.0514 1.0000
Portland 0.2883 0.2413 0.1910 0.3905 0.2019 0.1364 0.3376 0.1938 1.0000
Seattle 0.4089 0.3581 0.3200 0.4176 0.2250 0.1651 0.2617 0.1972 0.3213 1.0000
Washington 0.3275 0.4264 0.2820 0.2607 0.1674 0.2542 0.3066 0.3406 0.2186 0.3626 1.0000
Atlanta 0.1925 0.2144 0.1019 0.0764 0.0836 0.0729 0.1971 0.1282 0.0753 0.0963 0.1993 1.0000
Detroit 0.0464 0.1598 0.0550 -0.0375 0.2271 0.2375 0.2058 0.1785 0.1731 -0.0269 0.2821 0.2521

This table provides unconditional Pearson correlations between the monthly house price index returns of the 13 MSAs.
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Table 3: Univariate Student-t GARCH(1,1) estimates, goodness of fit statistics and Ljung-Box statistic

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
ω α β ν KS BK KP Ljung-Box

1 2 3 4 5
Phoenix 0.0000 0.1609∗∗∗ 0.8201∗∗∗ 11.2659∗ 0.9639 0.6504 0.8544 0.9022 0.9851 0.9857 0.9466 0.9807
Los Angeles 0.0000 0.0697 0.8260∗∗∗ 9.8368∗ 0.9671 0.9945 0.8857 0.9027 0.6970 0.8376 0.8680 0.9266
San Diego 0.0000 0.0740 0.6606∗∗∗ 24.6998 0.3018 0.9712 0.1525 0.7879 0.8726 0.8187 0.8226 0.8828
San Francisco 0.0000 0.0930∗∗ 0.8965∗∗∗ 5.9023∗∗∗ 0.4937 0.9326 0.2433 0.9832 0.6224 0.8032 0.3101 0.4033
Las Vegas 0.0000 0.1865∗ 0.7673∗∗∗ 4.9642∗∗∗ 0.8038 0.9405 0.4932 0.6921 0.8985 0.1005 0.1171 0.1932
Miami 0.0000 0.1571∗∗ 0.8199∗∗∗ 6.8495∗∗∗ 0.9089 0.5849 0.8568 0.6765 0.5186 0.2532 0.3904 0.3892
Tampa 0.0000 0.0913∗∗∗ 0.8638∗∗∗ 24.8978 0.9649 0.9986 0.9295 0.8773 0.1292 0.2407 0.2700 0.1428
Charlotte 0.0000 0.0488∗∗ 0.9510∗∗∗ 7.7613∗∗ 0.9430 0.8713 0.8210 0.8654 0.8779 0.9017 0.9655 0.9845
Portland 0.0000 0.0692∗∗∗ 0.9296∗∗∗ 7.2298∗∗ 0.5592 0.9398 0.6262 0.8631 0.9602 0.9721 0.9389 0.7440
Seattle 0.0000 0.1091 0.8398∗∗∗ 12.1797 0.9825 0.4760 0.9997 0.1747 0.3314 0.5289 0.3066 0.2718
Washington 0.0000 0.1011∗∗∗ 0.8613∗∗∗ 6.4190∗∗∗ 0.4630 0.8785 0.1103 0.4996 0.5598 0.6611 0.6977 0.7881
Atlanta 0.0000 0.1163∗∗∗ 0.8810∗∗∗ 5.1488∗∗∗ 0.5120 0.0020 0.7884 0.1724 0.3579 0.4497 0.3816 0.5087
Detroit 0.0000 0.2255 0.7743∗∗∗ 4.1196∗∗∗ 0.0778 0.4211 0.2262 0.4548 0.7563 0.6356 0.5713 0.2503

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. This table reports results of the univariate Student-t GARCH(1,1) models, as well as the outcomes of several goodness of fit tests and a Ljung-Box test.
Columns 1 to 4 provide estimates of the parameters ω, α, β and the degree of freedom ν of the univariate Student t GARCH(1,1) given by:

η̂i,t =
√
hi,t · εt,

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1,

εi,t ∼ Student-t(νi),

(4)

where for MSA i, the η̂its are the residuals from the AR(3) model. Columns 5 to 7 contain p-values of the Goodness of Fit (GoF) statistics of the marginal distributions. The Kolmogorov-
Smirnov (KS) evaluates departures from the null hypothesis that the cumulative density function (cdf) of the marginal models follow a Uniform [0,1]. BK is the Berkowitz test, which
evaluates the null hypothesis of an uncorrelated and well-specified distribution of the marginal distributions. It is based on mapping the PIT of the data into a normal variate with the
inverse cdf of the normal, Φ−1, and to test uniformity and and lack of correlation, which corresponds to zero mean, variance one and zero correlation, against the alternative of an AR(1)
model with unrestricted mean and variance. KP is Kuiper’s test for uniformity, which puts more weight on the tails of the distribution. Columns 8 to 12 report the p-values of the Ljung-Box
statistics for lack of autocorrelation in the squared standardized residuals of the Student t GARCH(1,1) models at orders 1, 2, 3, 4 and 5.
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Figure 1: Regional house price indices
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This figure shows the time series evolution of MSA level house price indices. The house
prices are Case Shiller indices for 13 MSAs: Phoenix, Los Angeles, San Diego, San
Francisco, Las Vegas, Miami, Tampa, Charlotte, Portland, Seattle, Washington, Atlanta
and Detroit, observed from May, 1991 to August, 2013, which corresponds to 279 monthly
observations.

Figure 2: Mortgage contract rate and loan to value ratio
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(a) Mortgage contract rate (r)
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(b) Loan to value ratio (LTV)

This figure shows the average mortgage contract rate in Panel (a) and the loan to value
(LTV) ratio in Panel (b), from May, 1991 to August, 2013, which corresponds to 279
monthly observations. Average contract rate and loan to value ratio are from FHFA.
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Table 4: Estimates of the regime switching equidependent Gaussian copula model, 13
MSAs

(1) (2)

Fixed Time-Varying
Transition Probability (FTP) Transition Probability (TVTP)

Regime 1: High dependence

Equidependence ρ 0.3939∗∗∗ 0.3840∗∗∗

P-value (<0.0001) (<0.0001)
Kendall’s tau 0.2577∗∗∗ 0.2509∗∗∗

Standard Dev 0.0103 0.0102
VaR (1%) -0.0244 -0.0238
VaR (5%) -0.0137 -0.0137
Expected Shortfall (1%) -0.0331 -0.0327
Expected Shortfall (5%) -0.0206 -0.0204
Reduction in Risk 0.0089 0.0091

Regime 2: Low dependence

Equidependence ρ 0.1058∗∗∗ 0.1143∗∗∗

P-value (<0.0001) (<0.0001)
Kendall’s tau 0.0675∗∗∗ 0.0729∗∗∗

Standard Dev 0.0072 0.0076
VaR (1%) -0.0151 -0.0166
VaR (5%) -0.0082 -0.0088
Expected Shortfall (1%) -0.0226 -0.0249
Expected Shortfall (5%) -0.0130 -0.0141
Reduction in Risk 0.0122 0.0122

Transition Probabilities Transition Probabilities

p11 δ0 δ∆r δ∆LTV

Coefficient 0.7067∗∗∗ 9.6430∗∗∗ 3.2390∗∗∗ -30.3790∗∗∗

Marginal Effect 0.2784 0.0935 -0.8770
P-value (<0.0001) (<0.0001) (<0.0001) (<0.0001)

p22 δ0 δ∆r δ∆LTV

Coefficient 0.8532∗∗∗ 2.7258∗∗∗ -1.6124∗∗∗ 2.0339∗∗∗

Marginal Effect 0.1828 -0.1082 0.1364
P-value (<0.0001) (<0.0001) (<0.0001) (<0.0001)

LogL 189.0692 197.5774

This table provides parameter estimates of the dependence structure in a Gaussian equidependent copula regime switching
(RS) model for the 13 MSAs. The left panel shows the results of the Fixed Transition Probability (FTP) model, under
the assumption that the transition probabilities p11 and p22 of the Markov chain are constant. The right panel shows the
results of the Time-Varying Transition Probability (TVTP) model, where the probabilities pjj,t, j = 1, 2, are functions of
changes in mortgage rates, ∆rt and loan to value, ∆LTVt, as follows:

pjj,t = P (st = j|st−1 = j) = logit−1(δ0,j + δ∆r,j∆rt + δ∆LTV,j∆LTVt), (9)

where logit−1(x) = 1
1+exp(−x)

. We report p-values for all parameters and use house price returns of Phoenix, Los Angeles,

San Francisco, San Diego, Las Vegas, Miami, Tampa, Charlotte, Portland, Seattle, Washington, Atlanta, Detroit from May
1991 to August 2013, which corresponds to a sample of 279 observations. The values of the log likelihood are reported in
the last row. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
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Figure 3: Smoothed probability of the high dependence regime and Spearman’s rho:
Equidependent Gaussian copula model with 13 MSAs
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This figure is based on the equidependent Gaussian copula regime switching model esti-
mated with 13 MSAs, whose results are shown in Table 4. Panels (a) and (c) respectively
show smoothed probabilities of the high dependence regime and Spearman’s rho for the
fixed transition probability (FTP) case, whereas Panels (b) and (d) contains results for
the time varying transition probability (TVTP) case.
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Table 5: Estimates of the regime switching equidependent Gaussian copula model, four
Southwestern MSAs

(1) (2)

Fixed Time-varying
Transition Probability Transition Probability

(FTP) (TVTP)

Regime 1: High dependence

Equidependence ρ 0.5139∗∗∗ 0.5543∗∗∗

P-value (<0.0001) (<0.0001)
Kendall’s tau 0.3436∗∗∗ 0.3740∗∗∗

Standard Dev 0.0149 0.0158
VaR (1%) -0.0355 -0.0388
VaR (5%) -0.0194 -0.0202
Expected Shortfall (1%) -0.0529 -0.0577
Expected Shortfall (5%) -0.0306 -0.0329
Reduction in Risk 0.0055 0.0058

Regime 2: Low dependence

Equidependence ρ 0.1287∗∗∗ 0.1312∗∗∗

P-value (<0.0001) (<0.0001)
Kendall’s tau 0.0822∗∗∗ 0.0838∗∗∗

Standard Dev 0.0132 0.0120
VaR (1%) -0.0299 -0.0284
VaR (5%) -0.0148 -0.0148
Expected Shortfall (1%) -0.0498 -0.0438
Expected Shortfall (5%) -0.0258 -0.0243
Reduction in Risk 0.0090 0.0084

Transition Probabilities Transition Probabilities

p11 δ0 δ∆r δ∆LTV

Coefficient 0.9448∗∗∗ 2.9481∗∗ 0.2446 -4.6666∗∗∗

Marginal Effect 0.2252 0.0187 -0.3564
P-value (0.0042) (0.0369) (0.8684) (0.0100)

p22 δ0 δ∆r δ∆LTV

Coefficient 0.9344∗∗∗ 2.4813∗∗ -1.4948∗∗ 3.7933∗∗∗

Marginal Effect 0.2066 -0.1245 0.3159
P-value (0.0057) (0.0206) (0.0285) (<0.0001)

LogL 80.4318 84.5903

This table provides parameter estimates of the dependence structure in a Gaussian equidependent copula regime switching
(RS) model for the 4 MSAs. The left panel shows the results of the Fixed Transition Probability (FTP) model, under
the assumption that the transition probabilities p11 and p22 of the Markov chain are constant. The right panel shows the
results of the Time-Varying Transition Probability (TVTP) model, where the probabilities pjj,t, j = 1, 2, are functions of
changes in mortgage rates, ∆rt and loan to value, ∆LTVt, as follows:

pjj,t = P (st = j|st−1 = j) = logit−1(δ0,j + δ∆r,j∆rt + δ∆LTV,j∆LTVt), (9)

where logit−1(x) = 1
1+exp(−x)

. We report p values for all parameters and use house price returns of Los Angeles, San

Francisco, San Diego, Las Vegas from May, 1991 to August, 2013, which correspond to a sample of 279 observations. The
value of log likelihood is reported in the last row.
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Figure 4: Smoothed probability of the high dependence regime and Spearman’s rho:
Equidependent Gaussian copula model with four Southwestern MSAs
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This figure is based on the equidependent Gaussian copula regime switching model esti-
mated with four Southwestern MSAs, whose results are shown in Table 5. Panels (a) and
(c) respectively show smoothed probabilities of the high dependence regime and Spear-
man’s rho for the fixed transition probability (FTP) case, whereas Panels (b) and (d)
contains results for the time varying transition probability (TVTP) case.
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Figure 5: Dependence structure of the canonical vine copula for the Southwestern MSAs
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This figure shows the structure of the canonical vine copula we use for the four Southwestern MSAs. We
use the R function RVineStructureSelect to select the order of variables on the dependence tree. This
is done by placing the variables that are most dependent in the lower levels of the trees. The optimal
order of MSA returns places Los Angeles (LA) first, followed by San Francisco (SF), San Diego (SD) and
Las Vegas (LV). Given the tree, we use R function VineCopula to select the bivariate copula for each
pair. The pairs (LA,SF), (LA,SD) and (LA,LV) are modeled using a bivariate Gaussian, Student t and
Gumbel copula, respectively. The dependence structures of (SF,SD) and (SF,LV), conditional on LA is
captured by a Gaussian copula and a Franck copula, respectively. Finally, for (SD,LV) conditional on LA
and SF, we use a rotated Gumbel copula. Thus, our canonical vine copula for the group of Southwestern
MSAs is

c(FLA, FSF , FSD, FLV ) = cGa(FLA, FSF )cGu(FLA, FSD)ct(FLA, FLV )
cGa(FSF |LA, FSD|LA)cF (FSF |LA, FLV |LA)
cRGu(FSD|LA,SF , FLV |LA,SF ),

where cGa, cGu, cRGu, ct, cF stand, respectively for the bivariate Gaussian, Gumbel, rotated Gumbel,
Student t and Frank copula densities, FA and FA|B denote the cumulative density function of A, and of
A conditional on B, respectively.

33



Table 6: Estimates of the regime switching model with a canonical vine and a multivariate
Gaussian copula, four Southwestern MSAs

(1) (2)

Time-varying Time-varying
Transition Probability Transition Probability

(TVTP) (TVTP)

Regime 1

Canonical vine Gaussian

Coef P-value τ Coef P-value τ

(LA, SF) Gaussian 0.5905 <0.0001 0.4021 0.4524 0.05709 0.2989
(LA, SD) Student t 0.5520 <0.0001 0.3723 0.7799 <0.0001 0.5694

DoF 8.3724 0.0974
(LA, LV) Gumbel 1.2408 <0.0001 0.1941 0.7526 <0.0001 0.5424
(SF, SD) Gaussian 0.3719 0.0114 0.3909 0.4282 <0.0001 0.2817
(SF, LV) Frank 1.4203 0.0017 0.2361 0.4956 0.08646 0.3301
(SD, LV) RGumbel 1.0996 <0.0001 0.2400 0.8699 0.0078 0.6717

Regime 2

Gaussian Gaussian

Coef P-value τ Coef P-value τ

(LA, SF) 0.0058 0.4920 0.0037 0.4084 0.0038 0.2678
(LA, SD) 0.3256 0.0891 0.2112 0.3840 0.03235 0.2509
(LA, LV) 0.2667 0.0923 0.1719 0.1531 0.1845 0.0978
(SF, SD) 0.3281 0.1026 0.2128 0.5146 0.0016 0.3441
(SF, LV) -0.2251 0.1215 -0.1446 0.0457 0.7797 0.0291
(SD, LV) -0.1586 0.2361 -0.1014 -0.0661 0.6530 -0.0421

Transition Probabilities Transition Probabilities

δ0 δ∆r δ∆LTV δ0 δ∆r δ∆LTV

Coefficient 5.2534∗∗∗ 1.4319∗∗∗ -6.9968∗∗∗ -0.2485 -1.2665 -10.6414∗∗∗

Marginal Effect 0.1867 0.0509 -0.2487 -0.0200 -0.1020 -0.8566
P-value (<0.0001) (0.0358) (<0.0001) (0.7761) (0.2842) (<0.0001)

δ0 δ∆r δ∆LTV δ0 δ∆r δ∆LTV

Coefficient 3.8454∗∗∗ -3.8421∗∗∗ 11.5419∗∗∗ 1.7386∗∗ -0.4346 -0.9708
Marginal Effect 0.2183 -0.2181 0.6553 0.2183 -0.0546 -0.1219
P-value (<0.0001) (<0.0001) (<0.0001) (0.0248) (0.4757) (0.3231)

LogL 115.2467 108.9665

This table provides parameter estimates of the dependence structures in a regime switching (RS) models with a canonical
vine copula (Regime 1) and a multivariate Gaussian copula (Regime 2) in the left panel and with multivariate Gaussian
copulas (Regime 1 and Regime 2) in the right panel for the four Southwestern MSAs. The structure of the canonical
vine copula is the following: Los Angeles-San Francisco, Los Angeles-San Diego and Los Angeles-Las Vegas are modeled
using a bivariate Gaussian copula, Student t copula and Gumbel copula respectively. The dependence structures of San
Francisco-San Diego and San Francisco-Las Vegas, conditional on Los Angeles is captured by a Gaussian copula and Franck
copula, respectively. Finally, San Diego-Las Vegas conditional on Los Angeles and San Francisco is captured by a rotated
Gumbel copula. The transition probabilities of the Markov chain are functions of changes in mortgage rates, ∆rt and loan
to value, ∆LTVt, as follows:

pjj,t = P (st = j|st−1 = j) = logit−1(δ0,j + δ∆r,j∆rt + δ∆LTV,j∆LTVt), (9)

for j = 1, 2, where logit−1(x) = 1
1+exp(−x)

. We report p values for all parameters. In order to compute the unconditional

Kendall’s tau, we transform each Kendall’s tau into the parameter of the bivariate Gaussian copula with the same rank
correlation. We then apply the rules of conditional variance-covariance to compute the corresponding unconditional corre-
lations. Finally, we report the unconditional Kendall’s tau corresponding to the unconditional Gaussian copula parameters,
computed as τ = 2arcsin(θ)/π. We use house price returns of Los Angeles, San Francisco, San Diego, Las Vegas from May
1991 to August 2013, which corresponds to a sample of 279 observations. The values of the log likelihood are reported in
the last row. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
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Figure 6: Smoothed probability of the high dependence regime from the time-varying
transition probability (TVTP) canonical vine and Gaussian copula model, four South-
western MSAs
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This figure shows smoothed probabilities of the high dependence regime for the time
varying transition probability (TVTP) models, shown in Table 6, based on the canonical
vine-Gaussian copula model in Panel (a), and the Gaussian-Gaussian copula model in
Panel (b).
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On-line Appendix

A Copulas

In this Appendix, we first define copula-based measures of dependence, and then we

introduce the copulas we work with. In the sequel, we denote the probability integral

(PIT) of the i-th marginal yi as ui = Fi(yi), where Fi is the cumulative distribution of

the marginal. When the marginal model is correctly specified the PIT follows a uniform

distribution: ui ∼ U[0,1].

The dependence captured by a copula can be quantified by rank correlation coefficients

such as Kendall’s tau and Spearman’s rho, which take values in the [−1, 1] range and do

not depend on the distributions, Fi, of the marginals. Kendall’s tau can be expressed as

a function of the copula, as follows:

τ = 4

∫
[0,1]2

C(u1, u2)dC(u1, u2)− 1 , (A.1)

and the expression for Spearman’s rho is:

ρ = 12

∫
[0,1]2

C(u1, u2)du1du2 − 3 . (A.2)

While the Kendall’s tau is the most commonly used measure, Spearman’s rho is useful to

examine smoothed dependence in the context of regime switching models, since, due to

the linearity of Equation (A.2), the Spearman’s rho of a linear combination of copulas,

C1 and C2, with probability 0 ≤ p ≤ 1 is just the linear combination of the Spearman’s

rhos:

ρ (pC1(u1, u2) + (1− p)C2(u1, u2)) = pρ (C1(u1, u2)) + (1− p)ρ (C2(u1, u2)) .

Copulas also determine the dependence between two variables in the tails of the joint

distribution, i.e. the dependence between extreme events. Mathematically, lower tail
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dependence can be defined as

λL = lim
α→0

P (F1(y1) < α|F2(y2) < α). (A.3)

If yi is house price return in MSA i with cumulative distribution function Fi(.), then y1

and y2 are lower tail dependent whenever the limit exists and is different from zero. Tail

dependence is a copula concept, which means that it depends only on the copula C and

not on the marginals Fi(.). In the context of returns, the concern is usually about lower

tail dependence, whose implications are particularly painful for investors:

λL = lim
α→0

C(α, α)/α. (A.4)

Symmetrically, one can define upper tail dependence as λU = limα→1− C̄(α, α)/(1 − α),

where C̄(u1, u2) = 1− u1− u2 +C(1− u1, 1− u2) denotes the survivor function of copula

C.

A.1 Bivariate copulas

For the following bivariate copulas, we show the cumulative distribution since they have

nice functional forms. In estimation, we use their densities, which can be obtained by

differentiation.

a. Gumbel The Gumbel copula has the form

CGu(ui, uj; θ) = exp−((− log ui)
θ + (− log uj)

θ)
1
θ ).

The Gumbel does not allow for negative dependence and it goes from independence

to the Fréchet upper bound of perfect positive dependence, as its parameter θ moves

in the range [1,∞). The Gumbel copula is asymmetric with upper tail dependence

λU = 2 − 2
1
θ , but no lower tail dependence. The Gumbel is often used in its rotated

form, which obtains by interverting upper and lower tails, as follows: CRGu(ui, uj; θ) =

ui + uj − 1 +CGu(1− ui, 1− uj; θ). The rotated Gumbel has only lower tail dependence,
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equal to the upper tail dependence, λU of the Gumbel. The Kendall’s tau of the Gumbel

or rotated Gumbel copula is θ−1
θ

.

b. Frank The Frank copula has the form

CF (ui, uj; θ) = −1

θ
log

(
1 +

(exp (−θui)− 1)(exp (−θuj)− 1)

exp (−θ)− 1

)
,

where θ ∈ (−∞,∞) \ {0}, and the dependence covers the full possible range, including

both the Fréchet upper and lower bound, λU = λL = 0, except when θ→∞. Its Kendall’s

tau is 1− 4(D1(α)−1)
α

, where D1(α) = 1
α

∫ α
0

t
exp t−1

dt is the Debye function.

c. Clayton The Clayton copula has the form

CCl(ui, uj; θ) = (ui
−θ + uj

−θ − 1)−1/θ,

where θ ∈ (0,∞), and the dependence covers only postive dependence, including the

Fréchet upper bound. The Clayton copula is asymmetric since the dependence is concen-

trated in the lower tail. The Clayton copula has only lower tail dependence λL = 2
−1
θ .

Its Kendall’s tau is θ
θ+2

.

d. Student t The density of the bivariate Student t copula is:

ct(u1, u2; ρ, ν) =

(
1 +

x2
1+x2

2−2ρx1x2

ν(1−ρ2)

)−ν+2
2

2π
√

1− ρ2
∏2

i=1 tν(xi)
,

where tν(.) and Tν(.) denote respectively the density and the cumulative density of the

Student t distribution with ν > 2 degrees of freedom, xi = T−1
ν (ui), and ρ is the copula

correlation parameter. The Student t copula has the same lower and upper tail depen-

dence for every pair of variables: λU = λL = 2tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
. Its Kendall’s tau is

2arcsin(θ)
π

.

A.2 Multivariate equidependent copulas

A.2.1 Equidependent Gaussian copula

The density of the n-dimensional equidependent Gaussian copula is:
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cGa(u1, . . . , un;R) = |R|−1/2 exp

[
−1

2

(
x′R−1x− x′x

)]
,

where x = (x1 . . . , xn), xi = Φ−1(ui) and Φ(.) denotes the cumulative density of the

standard normal. The correlation matrix is R = (1 − ρ)In + ρJn, with ρ, the copula

equicorrelation parameter, In the n-dimensional identity matrix and Jn the n×n matrix

of ones. R is positive definite if and only if ρ ∈ ( −1
n−1

, 1). The bivariate version that we

use as building block in the canonical vine copulas is:

cGa(u1, u2; ρ) =
1√

1− ρ2
exp

[
−x

2
1 + x2

2 − 2ρx1x2

2(1− ρ2)
+
x2

1 + x2
2

2

]
,

where ρ is a correlation coefficient that lies between −1 and 1. The Gaussian copula

has zero upper and lower tail dependence, λU = λL = 0, except in the case of perfect

correlation, ρ = 1. Its Kendall’s tau is 2arcsin(θ)
π

.

A.3 Construction of canonical vine copulas

The idea underlying canonical vine copulas is the fact that a joint probability density

function can be decomposed by iteratively conditioning as follows:

f(u1, · · · , un) = f(u1) · f(u2|u1) · f(u3|u1, u2) · · · f(un|u1, · · · , un−1). (A.5)

Each conditional density function can be represented as follows, where we use the fact

that fi(ui) = 1, since ui ∼ U[0,1]:

f(u2|u1) = f(u1, u2) = c12(F1(u1), F2(u2)) (A.6)

In the same way, a second conditional density can be represented as follows:
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f(u3|u1, u2) = f(u3,u2|u1)
f(u2|u1)

= c23|1(F2|1(u2|u1), F3|1(u3|u1))f(u3|u1)

= c23|1(F2|1(u2|u1), F3|1(u3|u1))c13(F1(u1), F3(u3)),

(A.7)

where c23|1 is the conditional density copula of u2 and u3, given u1. Now, by plugging

Equations (A.6) and (A.7) into Equation (A.5), we obtain the joint density of the first

three variables in the system as a function of bivariate conditional copulas, and further

using the fact that f(u1, u2, u3) = c(u1, u2, u3), we get:

c(u1, u2, u3) = c23|1(F2|1(u2|u1), F3|1(u3|u1))c12(F1(u1), F2(u2))c13(F1(u1), F3(u3)). (A.8)

By continuing the same logic and iterating further, one obtains the expression for the

n-dimensional canonical vine copula density function in Equation (6).

B Estimation

B.1 Two-step estimation

The log likelihood is composed of two parts, Lm that represents the marginal densities,

and Lc that represents the dependence structure. For Y = (Y ′1 , . . . , Y
′
T ), the total log-

likelihood is as follows (see Chollete et al. 2009).

L(Y; θ, α) = Lm(Y ; θm) + Lc(Y; θm, θc)

Lm(Y; θm) =
T∑
t=1

n∑
i=1

log fi(yi,t|ut−1
i ; θm,i)

Lc(Y; θm, θc) =
T∑
t=1

log c(F1(y1,t|yt−1
1 ; θm,1), . . . , Fn(yn,t|yt−1

n ; θm,n); θc),

(B.9)

where yt−1
i = (yi,1, . . . , yi,t−1) is the history of the variable i, and the vector θm =

(θm,1, . . . , θm,n) represents the parameters of each one of the n marginal densities fi.

The copula densities depend on θc = (θ
(1)
c , θ

(2)
c , δ, α) which is composed of copula param-

eters for each regime, transition probability parameters (δ) and initial probabilities (α)

of being in each regime at t = 1.
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B.2 EM Algorithm

We estimate the parameters of the regime switching copula using the filter of Diebold

et al. (1994), who adapt the EM algorithm to the TVTP case. Given starting values of the

copula parameters in each regime, θ
(j)
c , j = 1, 2, we can define a vector of regime-specific

copula densities at time t

ηt =

 c(1)
(
F1(y1,t|yt−1

1 ), . . . , Fn(yn,t|yt−1
n ); θ

(1)
c

)
c(2)
(
F1(y1,t|yt−1

1 ), . . . , Fn(yn,t|yt−1
n ); θ

(2)
c

)
 . (B.10)

Given ηt, as well as starting values of the initial state probabilities α and of the transition

probability parameters δ, and defining the transition matrix of the Markov Chain, which

depends on regressors Xt−1 as

Pt−1 =

 p11,t−1 1− p11,t−1

1− p22,t−1 p22,t−1

 , (B.11)

where pjj,t−1 = logit(Xt−1δj), j = 1, 2, the E-step provides estimates of the filtered state

probabilities at each time t, as follows:

St|t =
St|t−1 � ηt

1′(St|t−1 � ηt)
, (B.12)

St|t−1 = P ′t−1St−1|t−1, (B.13)

where St|t is a vector whose elements denote the probabilities of being in each regime at

time t, conditional on the observations up to time t, � denotes the entry-wise product, 1

is a 2 × 1 vector whose components are 1s, and St|t−1 denotes a vector of the probabilities

of being in the regimes at time t conditional on the observations up to time t−1. Equation

(B.12) is an application of Bayes theorem, and Equation (B.13) represents one forward

iteration of the Markov chain. Having worked out St|t−1 for every period t, we obtain the

log likelihood:
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Lc(Y; θm, θc) =
T∑
t=1

log(1′(St|t−1 � ηt)). (B.14)

The M-step consists in maximizing this likelihood with respect to the copula param-

eters θ
(j)
c , and to the parameters δ

(i)
j , of the effect of regressors on the probability of

staying in state j, in each regime j = 1, 2. The copula parameters need to be estimated

numerically, whereas a first order Taylor approximation is available for δ
(i)
j s in the ith

iteration, which yields the following closed form:

δ
(i)
j =

(
T∑
t=2

P (st−1 = j)X ′t−1
∂pjj,t−1

∂Xt−1

)−1

×
T∑
t=2

X ′t−1

[
pjj,t−1 − P (st−1 = j)

(
pjj,t−1 − ∂pjj,t−1

∂Xt−1
δ

(i−1)
j

)]
,

(B.15)

where pjj,t−1 denotes the probability of staying in regime j from t − 1 to t, Using these

parameter values as new starting values, one starts again with the E-step and iterates

until the algorithm converges.

In the simpler homogeneous Markov chain case, the transition probabilities pjj′ can be

computed as sample averages of observed transitions from regime j to regime j′. Moreover

in the E-step, in Equation (B.13), Pt−1 is replaced by the constant P .

C Results with 19 MSAs
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Figure C.1: Smoothed probability of the high dependence regime and Spearman’s rho:
Equidependent Gaussian copula model with 19 MSAs
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This figure is based on the equidependent Gaussian copula regime-switching model es-
timated with 19 MSAs, whose results are shown in Table C.1. Panels (a) and (c) re-
spectively show smoothed probabilities of the high dependence regime and Spearman’s
rho for the fixed transition probability (FTP) case, whereas Panels (b) and (d) contains
results for the time varying transition probability (TVTP) case.
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Table C.1: Estimates of the regime-switching equidependent Gaussian copula model, 19
MSAs

Fixed Time-varying
Transition Probability (FTP) Transition Probability (TVTP)

Regime 1

Gaussian Gaussian

ρ τ ρ τ

Coefficient 0.5083∗∗∗ 0.3395∗∗∗ 0.5033∗∗∗ 0.3358∗∗∗

P-value (<0.0001) (<0.0001)

Regime 2

Gaussian Gaussian

ρ τ ρ τ

Coefficient 0.1376∗∗∗ 0.0879∗∗∗ 0.1384∗∗∗ 0.0884∗∗∗

P-value (<0.0001) (<0.0001)

Transition Probabilities Transition Probabilities

p11 δ0 δ∆r δ∆LTV

Coefficient 0.6765∗∗∗ 0.3147∗∗∗ -2.9432∗∗∗ -6.8499∗∗∗

Marginal Effect 0.0282 -0.2635 -0.6133
P-value (<0.0001) (<0.0001) (<0.0001) (<0.0001)

p22 δ0 δ∆r δ∆LTV

Coefficient 0.9029∗∗∗ 2.2070∗∗∗ -0.4751∗∗∗ -0.4545∗∗∗

Marginal Effect 0.1947 -0.0419 -0.0401
P-value (<0.0001) (<0.0001) (<0.0001) (<0.0001)

LogL 331.8590 335.3151
This table provides parameter estimates of the dependence structure in a Gaussian equidependent copula regime-switching
(RS) model for 19 MSAs. The left panel shows the results of the Fixed Transition Probability (FTP) model, under the
assumption that the transition probabilities p11 and p22 of the Markov chain are constant. The right panel shows the
results of the Time-Varying Transition Probability (TVTP) model, where the probabilities pjj,t, j = 1, 2, are functions of
changes in mortgage rates, ∆rt and loan to value, ∆LTVt, as follows:

pjj,t = P (st = j|st−1 = j) = logit−1(δ0,j + δ∆r,j∆rt + δ∆LTV,j∆LTVt), (9)

where logit−1(x) = 1
1+exp(−x)

.We report p values for all parameters and use house price returns of Phoenix, Los Angeles,

San Francisco, San Diego, Las Vegas, Miami, Tampa, Charlotte, Cleveland, Portland, Seattle, Washington, Atlanta, Boston,
Chicage, Denver, Detroit, Minneapolis and New York from May 1991 to August 2013, which corresponds to a sample of
279 observations. The values of the log likelihood are reported in the last row. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.
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