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1 Introduction

One important lesson from the financial crisis of 2007/2008 is the need for a joint framework,

which overcomes the traditional separation of macroeconomic and finance. Over the last decade,

a large literature developing models at the intersection of macroeconomics and finance has

emerged (among others Rudebusch and Swanson 2012, Gürkaynak and Wright 2012). Most of

the papers, however, focus on the interaction of macro variables, fiscal and monetary policy,

and their implications for the term structure of interest rates. In a macro-finance framework,

the asset pricing kernel is consistent with the macroeconomic dynamics. So the open question

is to what extent financial data can be used to replace macroeconomic variables in structural

estimation.

In this paper we exploit asset pricing implications of a simple macro-finance model to cast

the relevant estimation equations partly (or completely) in terms of financial data. This allows

us to estimate the structural parameters using only financial data, only macroeconomic data,

or a combination of these. Our motivation for doing so is that macro data, in contrast to

financial data, are usually available at lower frequencies and subject to substantial revisions.

Given the relatively high volatility of financial data, we investigate the informational content

of various financial data including interest rates, bond and stock prices for the dynamics of

macroeconomic aggregates. Our aim is to provide new insights into the use of financial data in

a simple macro-finance model, and to derive implications for the estimation of more elaborated

models.

The structure of our approach is as follows. We start by describing the model, similar to

Christensen, Posch and van der Wel (2016), and derive the stochastic discount factor (SDF),

i.e., the asset pricing kernel which allows to price any financial asset in the economy. In

a second step we define various financial variables, compute their price dynamics, and cast

the model’s equilibrium dynamics in terms of financial data alone or combined with macro

data, and the structural parameters. In a third step, we estimate the structural parameters

of the model using the Generalized Method of Moments (GMM) and Martingale Estimation

Function (MEF), with different specifications and different types of financial data. We study

the identification of parameters both in a simulation study and empirically using interest rate,

macro, and S&P500 stock index data.

Our results obtained from both simulation study and empirical estimation indicate that

using a combined macro-finance framework not only improves the identification of structural

parameters but also the accuracy of the estimates. Another important feature of our macro-

finance estimation approach is that it drastically reduces the upward-bias typically encountered

in similar mean-reverting interest rate models in the literature.

The rest of the paper is structured as follows. Section 2 describes the used macro framework

and derives the general equilibrium price for the claim on future dividends. The following section
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is devoted to the derivation of the systems of equilibrium equations and the derivation of the

different estimators. Furthermore, the interdependencies between macro and finance dynamics

as suggested by the model are discussed. Before turning to the empirical estimation in section

5, we run various simulation studies in section 4 to evaluate small sample properties and to test

identification and different parameter restrictions.

2 The Macro Framework and Asset-Pricing

2.1 The Macro Framework

In this paper we use the framework of the continuous time stochastic AK-model by Christensen,

Posch & van der Wel (2016). We start from this simple framework because we want to keep it

as simply as possible while maintaining the capability of explaining both macroeconomic and

financial dynamics. Another important benefit of this approach is the availability of analytical

solutions that offer an intuitive and consistent way to replace macro with financial variables.

We will only summarize the main properties of the macro-model and refer to Christensen, Posch

& van der Wel (2016) for a more detailed overview.

At each instance in time, output Yt is generated by combining capital , factor productivity and

a constant amount of labor

Yt = AtF (Kt, L)

Here the aggregate capital stock is given by Kt, total factor productivity (TFP) is represented

by At while L is the constant population size. In this economy TFP is driven by Bt, a standard

Brownian motion, with µ(At) representing the generic drift- and η(At) the generic volatility

function.

dAt = µ(At)dt+ η(At)dBt

If gross investments, It, are higher than capital depreciation, Kt increases according to

dKt = (It − δKt)dt+ σKtdZt

with σ being the volatility of stochastic depreciation, δ representing the depreciation rate and

Zt being another standard Brownian motion.

The equilibrium conditions in this economy are standard: production factors are rewarded with

their marginal products rt = YK and wt = YL. The good market clearing condition is given

by Yt = Ct + It. Households in this economy are represented by a representative household.

This stand-in consumer exhibits additively separable utility and maximizes expected life time

utility. The Euler-equation is given by

dUC
UC

= (ρ− (rt − δ))dt− UCC(Ct, At)

UC(Ct, At)
CKσ

2Ktdt+
UCC(Ct, At)

UC(Ct, At)
CAη(At)dBt

+
UCA(Ct, At)

UC(Ct, At)
η(At)dBt +

UCC(Ct, At)

UC(Ct, At)
CKσKtdZt
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We are again following the model by Christensen, Posch & van der Wel (2016), and use the

mean-reversion Vasicek specification for the rental rate on physical capital, rt. We denote the

speed of mean-reversion by κ and the long-term mean of the interest rate by γ. Despite its

simplicity the Vasicek interest rate model still plays a crucial role in the finance literature and

hence offers a reasonable interest rate process. The equilibrium dynamics of the economy are

then given by

d lnCt = (rt − ρ− δ − 1
2
σ2)dt+ σdZt (1a)

d lnKt = (rt − ρ− δ − 1
2
σ2)dt+ σdZt (1b)

d lnYt = (µ(rt)/rt + rt − ρ− δ − 1
2
η(rt)

2/r2
t − 1

2
σ2)dt+ η(rt)/rtdBt + σdZt (1c)

drt = κ(γ − rt)dt+ ηdBt (1d)

The above system is completely cast in terms of macroeconomic variables. Our aim is the

estimation of the six structural parameters of the model that are given by the vector

φ = (κ, γ, η, ρ, δ, σ)T (2)

In our estimation we are using different combinations of financial and macro data to cast the

relevant estimation equations partly and completely in terms of financial data.

2.2 The Stochastic Discount Factor

In order to obtain the asset pricing implications of the model we now derive the stochastic

discount factor. Following Hansen and Scheinkman(2009),the SDF for s > t can be obtained

from the Euler equation as the process

Λs

Λt

= e−ρ(s−t)VK(Ks, As)

VK(Kt, At)
(3)

For U(Ct, At) = U(Ct) and by using the analytical solution Ct = ρKt

dUc
Uc

= (ρ− (rt − δ))dt− Ucc(Ct)

Uc(Ct)
CKσ

2Ktdt+
Ucc(Ct)

Uc(Ct)
CKσKtdZt

Hence, the SDF reads

dΛt = (−(rt − δ))Λtdt−
Ucc(Ct)

Uc(Ct)
CKσ

2KtΛtdt+
Ucc(Ct)

Uc(Ct)
CKσKtΛtdZt (4)

We can derive the certainty equivalent rate of return by

− 1

dt
Et

[
dΛt

Λt

]
= rt − δ +

Ucc(Ct)

Uc(Ct)
CKσ

2Kt ≡ rft (5)
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Applying the AK-specification U(Ct) = ln(Ct) and Ct = ρKt to the evolution of Λt we obtain

dΛt = (−(rt − δ) + σ2)Λtdt− σΛtdZt (6)

In the appendix we show how to apply Ito’s formula to obtain the stochastic discount factor as

the process:
Λs

Λt

= e−
∫ s
t (rv−δ− 1

2
σ2)dv−σ

∫ s
t dZv (7)

2.3 Asset Pricing

We define the stochastic discount factor and use it together with equations (8) and (9) to price

the below defined financial assets. Since we are interested in equilibrium prices the SDF allows

us to price any asset in this economy consistently with macro dynamics. Note that we assume

that there are markets for contingent claims that are all in zero-supply in equilibrium. To find

the equilibrium prices we compute (see e.g. Cochrane, 2005)

Pt = Et

[
Λs

Λt

Xs

]
(8)

that is for s > t the pricing equation states that the equilibrium price P of an asset at time t

is given by the conditional expectation of the product of the stochastic discount factor and the

future payoff Xs. Furthermore we obtain equilibrium returns by using(e.g. Cochrane, 2005)

Rs =
Xs

Pt
(9)

2.3.1 Using Interest Rate Data

2.3.1.1 Short Rate

Since the Vasicek specification for the rental rate is an Ornstein-Uhlenbeck process, we show

in the appendix how this allows us to find a solution for s > t by using a standard technique

for differential equations.

rs = e−κ(s−t)rt + (1 − e−κ(s−t))γ + ηe−κ(s−t)
∫ s

t

eκ(u−t)dBu (10)

Since the capital stock is unobservable we remove its redundant equation from system (1a) and

obtain:

d lnCt = (rt − ρ− δ − 1
2
σ2)dt+ σdZt (11a)

d lnYt = (µ(rt)/rt + rt − ρ− δ − 1
2
η(rt)

2/r2
t − 1

2
σ2)dt+ η(rt)/rtdBt + σdZt (11b)

drt = κ(γ − rt)dt+ ηdBt (11c)
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Nevertheless, the rental rate on physical capital is not a directly observable variable. One

way to deal with the resulting difficulties in estimating system (11a) is using a latent variable

approach. Furthermore, we can use the model specification to derive an alternative expression

for the rental rate in terms of observable variables and model parameters. In the next section

we show how the return on a risk-free bond can be used as a substitute for the rental rate.

2.3.1.2 Risk-Free Bond

Starting from we equation (5) we can define the certainty equivalent rate of return, rft , us-

ing the stochastic discount factor as:

rft = rt − δ − σ2 (12)

Note the price of an asset which is paying continuously at the risk-free rate is given by:

Pf,t = Et

[
Λs

Λt

e
∫ s
t r

f
vdv

]
= Et

[
Λs

Λt

e
∫ s
t rv−δ−σ

2

dv

]
= Et

[
e−

∫ s
t (rv−δ− 1

2
σ2)dv−σ

∫ s
t dZv

∫ s
t (rv−δ−σ2)ds

]
ln(Pf,t) = 0

Pf,t = 1

And the return of this asset is given by:

Rf,s = e
∫ s
t r

f
vdv = e

∫ s
t rv−δ−σ

2dv

As shown in appendix (A.2) the instantaneous return on the risk-free asset is given by

d lnRf,t = (rt − δ − σ2)dt (13)

As expected, this is in line with the above defined risk-free rate. To obtain an expression for

the risk-free rate for period s > t we use the Vasicek specification.

drft = κ(γ − rft − δ − σ2)dt+ ηdBt

Again, this is an Ornstein Uhlenbeck process whose solution can be obtain in same manner as

before:

rfs = e−κ(s−t)rft + (1 − e−κ(s−t))(γ − δ − σ2) + ηe−κ(s−t)
∫ s

t

eκ(u−t)dBv (14)

Replacing the unobservable rental rate on physical capital by the risk-free rate, we can estimate

a macro-finance version of the model, by casting the model in terms of :

drt = κ(γ − rt)dt+ ηdBt, where rt = rft + δ + σ2 (15a)
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2.3.2 Using Stock Market Data

2.3.2.1 Claim on Future Dividends

Starting from (8) consider a claim on all future dividends (in an endowment economy this

is equivalent to a claim on the tree, not only on the next period’s fruit), that is we have the

price

Pd,t = Et

[∫ ∞
t

Λs

Λt

Ysds

]
(16)

To find the equilibrium price of this asset we have to compute an expression for Ys, the output

in period s. Note that in our model specification we have that Yt = AtKt, implying that

Ys = rsKs. Not that we have already defined rs in (7). In appendix (A.4) we show how to use

the model properties together with Ito’s formula to obtain an expression for the capital stock

in period s > t

Ks = Kte
∫ s
t (rv−ρ−δ− 1

2
σ2)dv+σ

∫ s
t dZv (17)

Note that we can cast Ys analogously to (15) in Christensen, Posch & van der Wel (2016) and

obtain (see appendix)

Ys = Yte
κγ

∫ s
t

1
rv
dv− η

2

2

∫ s
t

1

r2v
dv+

∫ s
t (rv−δ−ρ−κ− 1

2
σ2)dv+σ

∫ s
t dZv+

∫ s
t

η
rv
dBv

(18)

However, here we use a slightly different formulation using (7) together with (17). Hence,

multiplying the two equations we arrive at

Ys =

[
Ktrt +Ktγe

κ(s−t) −Ktγ +Ktη

∫ s

t

eκ(u−t)dBu

]
e
∫ s
t (rv−δ−ρ−κ− 1

2
σ2)dv+σ

∫ s
t dZv (19)

To find the price of the claim on future dividends we use (16) together with (7) and (19) and

obtain

Pd,t = Et

[∫ ∞
t

[
Ktrt +Ktγe

κ(s−t) −Ktγ +Ktη

∫ s

t

eκ(u−t)dBu

]
e−

∫ s
t (ρ+κ)dvds

]
= Et

[∫ ∞
t

[
Ktrt +Ktγe

κ(s−t) −Ktγ +Ktη

∫ s

t

eκ(u−t)dBu

]
e−(ρ+κ)(s−t)ds

]
=

∫ ∞
t

[Ktrt −Ktγ] e−(ρ+κ)(s−t)ds+

∫ ∞
t

Ktγe
−ρ(s−t)ds

Solving the integrals yields we arrive at

Pd,t = Kt

[
rt − γ

(ρ+ κ)
+
γ

ρ

]
(20)

This is an intuitive result. The price of the claim is based on the sum of two annuities. Recall

that in the AK-Vasicek model the parameter γ can be interpreted as the long-term mean of

the interest rate, or, since At = rt, the long-term mean of total factor productivity. Therefore,
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the price of the claim is based on the current capital stock times γ plus the current capital

stock times the current level of At minus γ. Since this term can be either positive, zero or

negative, the price of the claim raises when current total factor productivity At is higher than

its long-term level and decreases if the current level of technology lies below its equilibrium

level.

As shown in the appendix we can take the derivative of the equilibrium price equation (2.3.3)

and obtain

dPd,t = Pd,t[rt − ρ− δ]dt+ Pd,tσdZt + Pd,t
[ρκ(γ − rt)]

ρrt + κγ
dt+ Pd,t

ρη

ρrt + κγ
dBt (21)

or applying Ito’s formula to find an expression for the log price change of the claim

d lnPd,t =

[
rt − δ − ρ− 1

2
σ2 +

ρκ(γ − rt)

[ρrt + κγ]
− 1

2

(ρη)2

[ρrt + κγ]2

]
dt (22)

+
ρη

[ρrt + κγ]
dBt + σdZt

or

d lnPd,t = d lnCt +

[
ρκ(γ − rt)

[ρrt + κγ]
− 1

2

(ρη)2

[ρrt + κγ]2

]
dt+

ρη

[ρrt + κγ]
dBt (23)

2.3.2.2 Claim on Capital

A claim on capital can be defined as an asset whose payoff is the future capital stock Ks.

Using the stochastic discount factor we can find the price for a claim on the capital stock using

the basic pricing equation:

Pc,t = Et

[
Λs

Λt

Ks

]
Now using (17) and the SDF given by (7) together with the basic pricing equation (8) we obtain

for the price, (as shown in the appendix)

Pc,t = Kte
−ρ(s−t) (24)

If we are interested in the price movement of such assets, or to be more precisely in the price

movement of the asset class, the prices follow

dPc,t =
dKt

Kt

Pc,t

or

d lnPc,t = d lnKt = d lnCt

which states that the log price of the claim on capital behaves like the log capital stock. In

other words, the instantaneous return on the claim can be interpreted as percentage changes

in the capital stock, i.e., the controlled SDE driven by stochastic depreciation,

d lnPc,t = (rt − ρ− δ − 1
2
σ2)dt+ σdZt
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d lnPc,t =
(
rt − ρ− δ − 1

2
σ2
)
dt+ σdZt

d lnPd,t =

[
rt − ρ− δ − 1

2
σ2 +

ρκ(γ − rt)

[ρrt + κγ]
− 1

2

(ρη)2

[ρrt + κγ]2

]
dt

+
ρη

[ρrt + κγ]
dBt + σdZt

drt = κ(γ − rt)dt+ ηdBt, where rt = rft + δ + σ2

2.3.3 Combined Macro-Finance Framework

The formulation of the dividend claim gives some important insights into the behaviour of

macro and financial variables as suggest by our model. Equation 18 states that the price of the

dividend claim consists of a combination of macro and finance data as well as model parameters.

Pd,t = Kt

[
rt − γ

(ρ+ κ)
+
γ

ρ

]
Rearranging terms

Kt = Pd,t

[
ρ2 + ρκ

ρrt + κγ

]
That is, in our macro-finance model, macroeconomic variables can be expressed completely in

terms of financial data and parameters. Multiplying both sides of the above equation by ρ

we can deduce an expression for consumption or by multiplying by rt we obtain a financial

expression for output. In a similar manner we can also derive an expression for the rental rate

on physical capital, expressed in terms of macro-finance data and parameters.

rt =
Pd,t
Ct

(ρ+ κ) − γκ

ρ

While this formulation yields an expression for the rental rate of physical capital in terms of

both macro and financial variables, the availability of consumption data limits the frequency.

Thus, in our model setting, given financial data and parameter values we can derive time series

for macro economic variables at any desired frequency. Even though, this simple economic

model is probably misspecified it still shows how macro-finance linkages and especially how

macro and finance data can be evaluated in a joint and consistent framework.

Thus, the combined macro-finance system of estimation equations reads

d ln(Ct) =

(
(ρ+ κ)

Pd,v
Cv

− κγ

ρ
− ρ− δ − 1

2
σ2

)
dt+ σdZt (25a)

ln(Pd,t/Pd,t−∆) = (ρ+ κ)

∫ t

t−∆

Pd,v
Cv

dv −
(
κγ

ρ
+ κ+ ρ+ δ + 1

2
σ2

)
∆ (25b)

+
γ

ρ

∫ t

t−∆

Cv
Pd,v

dv − 1
2

η2

(ρ+ κ)2

∫ t

t−∆

(
Cv
Pd,v

)2

dv + εd,t

Pd,t
Ct

= e−κ∆

(
Pd,t−∆

Ct−∆

)
+ (1 − e−κ∆)

(
γ

ρ

)
+ εr,t (25c)
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3 Estimation and Simulation Study

3.1 Specifying the Estimation Equations

In order to obtain robust results we use alternative estimation methods and also compare the

resulting parameter estimates. As already pointed out in the introduction, the central proce-

dures used in this paper are GMM and MEF estimation techniques. We apply optimal GMM

as well as optimal MEF estimation and consider different numbers of conditional moment and

parameter restrictions. A complete specification of the estimation equations can be found in

the web appendix.

The equilibrium equations that we are using (in different combinations) to obtain the struc-

tural parameter estimates are

d lnCt =
(
rt − ρ− δ − 1

2
σ2
)
dt+ σdZt (26a)

d lnPc,t =
(
rt − ρ− δ − 1

2
σ2
)
dt+ σdZt (26b)

d lnPd,t =

(
rt − ρ− δ − 1

2
σ2 +

ρκ(γ − rt)

(ρrt + κγ)
− 1

2

(ρη)2

(ρrt + κγ)2

)
dt (26c)

+
ρη

(ρrt + κγ)
dBt + σdZt

d lnYt =

(
κγ

rt
− 1

2

η2

r2
t

+ rt − κ− ρ− δ − 1
2
σ2

)
dt (26d)

+
η

rt
dBt + σdZt (26e)

drt = κ(γ − rt)dt+ ηdBt, where rt = rft + δ + σ2 (26f)

3.2 Discrete-time Version of the Models

For the sake of clarity, the following sections will only show the derivations for the most central

system of estimation equation. For a complete overview of all used estimators and estimation

equations we refer the interest reader to our web appendix.

To account for the discrete-time character of the data we start from the systems of differential

in section 2, integrate over t ≥ (t−∆), use exact solution whenever possible and arrive at exact

discrete-time analogs based on observable variables.

The six structural parameters of the model are given by the vector

φ = (κ, γ, η, ρ, δ, σ)T

We begin with the system using consumption, the dividend claim and the short rate. The

complete derivations to the following results are shown in the appendix. The discrete version

of this system reads.
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ln(Ct/Ct−∆) =

∫ t

t−∆

rfvdv − (ρ− 1

2
σ2)∆ + εC,t (27a)

ln(Pd,t/Pd,t−∆) =

∫ t

t−∆

rfvdv − (ρ− 1

2
σ2)∆ (27b)

+ρκ

∫ t

t−∆

(
γ − δ − σ2

ρ(rfv + δ + σ2) + κγ

)
dv

−ρκ
∫ t

t−∆

(
rfv

ρ(rfv + δ + σ2) + κγ

)
dv

−1
2
(ρη)2

∫ t

t−∆

1[
ρ(rfv + δ + σ2) + κγ

]2dv + εPd,t

rft = e−κ∆rft−∆ + (1 − e−κ∆)(γ − δ − σ2) + εr,t (27c)

We define mt the (3x1) vector of martingale difference sequence as

mt =


ln(Ct/Ct−∆) −

∫ t
t−∆

rfvdv + (ρ− 1
2
σ2)∆

ln(Pd,t/Pd,t−∆) −
∫ t
t−∆

rfvdv + (ρ− 1
2
σ2)∆ − ρκ

∫ t
t−∆

(
γ−δ−σ2

ρ(rfv+δ+σ2)+κγ

)
dv

+ρκ
∫ t
t−∆

(
rfv

ρ(rfv+δ+σ2)+κγ

)
dv + 1

2
(ρη)2

∫ t
t−∆

1

[ρ(rfv+δ+σ2)+κγ]
2dv

rft − e−κ∆rft−∆ − (1 − e−κ∆)(γ − δ − σ2)

 (28)

Where the (3x1) vector of martingale increments, εt, is given by

εt =

 εC,t
εd,t
εr,t

 =

 σ(Zt − Zt−∆)

ρη
∫ t
t−∆

1

[ρ(rfv+δ+σ2)+κγ]
dBv + σ(Zt − Zt−∆)

ηe−κ∆
∫ t
t−∆

eκ(v−(t−∆))dBv

 (29)

As shown in the appendix, Ψt, the (3x3) conditional covariance matrix reads

Ψt =

 σ2∆ σ2∆ 0

σ2∆ (ρη)2∆/[ρ(rft−∆ + δ + σ2) + κγ]2 + σ2∆ ρη2e−κ∆∆/[ρ(rft−∆ + δ + σ2) + κγ]

0 ρη2e−κ∆∆/[ρ(rft−∆ + δ + σ2) + κγ] η2(1 − e−2κ∆)/2κ

(30)

Finally, the conditional mean of the parameter derivatives, using a first order deterministic

Taylor expansion reads

ψTt =


0 ψ12 ∆e−κ∆(rt−∆ − γ)
0 ψ22 −(1 − e−κ∆)
0 ψ32 0
∆ ψ42 0
0 ψ52 (1 − e−κ∆)

−σ∆ ψ62 2σ(1 − e−κ∆)


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where the conditional mean of the parameter derivatives for the price of the claim on future

dividends in the middle column is given by

ψ12 = −ρ(γ − δ − σ2) C1 + ρκγ(γ − δ − σ2) C2 − γ(ρη)2 C3

+ρ C4 − ρκγ C5

ψ22 = −ρκ C1 + ρκ2(γ − δ − σ2) C2 − κ(ρη)2 C3

−ρκ2 C5

ψ32 = ηρ2 C2

ψ42 = ∆ − κ(γ − δ − σ2) C1 + ρη2 C2 + κ C4

+ρκ(γ − δ − σ2) C6 − (ρη)2 C7 − ρκ C8

ψ52 = ρκ C1 + ρ2κ(γ − δ − σ2) C2 − ρ3η2 C3

−ρ2κ C5

ψ62 = −σ∆ + 2ρκσ C1 + 2ρ2κσ(γ − δ − σ2) C2 − 2ρ3η2σ C3

−2ρ2κσ C5

with the terms Ci above defined as in appendix A.4.

As shown in the appendix, when replacing consumption with output the discrete version of

the system reads

ln(Yt/Yt−∆) =

∫ t

t−∆

rfvdv + κγ

∫ t

t−∆

1/(rfv + δ + σ2)dv (31a)

−1
2
η2

∫ t

t−∆

1/(rfv + δ + σ2)2dv (31b)

−(κ+ ρ− 1
2
σ2)∆ + εY,t

ln(Pd,t/Pd,t−∆) =

∫ t

t−∆

rfvdv − (ρ− 1

2
σ2)∆

+ρκ

∫ t

t−∆

(
γ − δ − σ2

ρ(rfv + δ + σ2) + κγ

)
dv

−ρκ
∫ t

t−∆

(
rfv

ρ(rfv + δ + σ2) + κγ

)
dv

−1
2
(ρη)2

∫ t

t−∆

1[
ρ(rfv + δ + σ2) + κγ

]2dv + εPd,t

rft = e−κ∆rft−∆ + (1 − e−κ∆)(γ − δ − σ2) + εr,t (31c)
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We define mt the (3x1) vector of martingale difference sequence as

mt =



ln(Yt/Yt−∆) −
∫ t
t−∆

rfvdv − κγ
∫ t
t−∆

1/(rfv + δ + σ2)dv

+1
2
η2
∫ t
t−∆

1/(rfv + δ + σ2)2dv + (κ+ ρ− 1
2
σ2)∆

ln(Pd,t/Pd,t−∆) −
∫ t
t−∆

rfvdv + (ρ− 1
2
σ2)∆ − ρκ

∫ t
t−∆

(
γ−δ−σ2

ρ(rfv+δ+σ2)+κγ

)
dv

+ρκ
∫ t
t−∆

(
rfv

ρ(rfv+δ+σ2)+κγ

)
dv + 1

2
(ρη)2

∫ t
t−∆

1

[ρ(rfv+δ+σ2)+κγ]
2dv

rft − e−κ∆rft−∆ − (1 − e−κ∆)(γ − δ − σ2)


(32)

with the (3x3) conditional covariance matrix

Ψt =

 η2∆/(rft−∆ + δ + σ2)2 + σ2∆ Ψt,12 Ψt,13

Ψt,21 Ψt,22 Ψt,23

Ψt,31 Ψt,32 η2(1 − e−2κ∆)/2κ

 (33)

where

Ψt,12 = Ψt,21 = (ρη2∆)/[ρ(rft−∆ + δ + σ2)2 + κγ(rft−∆ + δ + σ2)] + σ2∆

Ψt,13 = Ψt,31 = η2e−κ∆∆/(rft−∆ + δ + σ2)

Ψt,22 = (ρη)2∆/[ρ(rft−∆ + δ + σ2) + κγ]2 + σ2∆

Ψt,23 = Ψt,32 = ρη2e−κ∆∆/[ρ(rft−∆ + δ + σ2) + κγ]

12



3.3 Estimation Method

Applying GMM estimation to our model is relatively straightforward. The vector of Instru-

ments, zt, used in the GMM estimation consists of lagged right-hand variables. We consider

both GMM using only first moments as well as second moments and additionally check our

results by considering different parameter restrictions.

3.4 Simulation Study

In order to examine the small sample properties of our estimation procedures we conduct simu-

lation studies for the different versions of the model. We simulate 25 years of data for the short

rate, consumption, output and the dividend claim from the model. The median estimates as

well as the interquartile range for 1000 replications are reported in the tables below. Addition-

ally, the parameter values used in the data generating process are given in the first columns.

These values are also highlighted by red bars in the histograms shown in this section. Above

each table a short description of the used system settings can be found. At the beginning of

each column the used building blocks of the model are specified. Here, the terms Int, Claim,

ClaimCap, Cons and Out denote the used estimation equations for the interest rate, the divi-

dend claim, the claim on capital, consumption and output respectively.We start our simulation

study from a purely financial perspective and then add or remove additional macro variables.

By doing so we are able to show how the parameter estimates behave when incorporating macro

economic dynamics into our financial systems of estimation equations.

The simulation study suggest that all parameters except for the depreciation rate, δ, can be

identified from financial data alone. Considering a macro-finance framework, however, allows

for the identification of all 6 structural parameters. For each system of estimation equations

table (1) shows which structural parameters can be identified when using the MEF estimation

approach. Here, identified parameters are marked with a cross. With respect to the identifica-

tion of parameters, the simulation study also highlights the benefits of using the MEF instead of

the GMM approach. In line with the findings of Christensen, Posch & van der Wel (2016), the

GMM approach is, at least in the practical implementation, unable to identify all 6 structural

parameters.

In all considered systems of estimation equations the GMM estimation approach is unable to

estimate all 6 structural parameters. Thus, we fix the stochastic depreciation rate, δ, at its

true parameter value throughout the GMM simulation study and estimate (if identifiable) the

remaining parameters. Furthermore, since the law of motion of the claim on capital,in our

model setting, concises with the one for consumption, we do not list the corresponding systems

separately in table (2).

13



Parameter Identification using Macro and Finance Data

Only Finance Model Combined Macro-Finance Model

Sytem1 System2 System3 System4 System5 System6 System7 System8 System9
Int Int Int Int Int Int Int Int Int

Claim ClaimCap Claim Claim Claim Cons Cons Cons
ClaimCap Cons Out Out Out

Claim

κ X X X X X X X X X

γ X X X X X X X X X

η X X X X X X X X X

ρ X X X X X X X X

δ X X X

σ X X X X X X X X

Table 1: Parameter Identification

Simulation Study: GMM Estimation
(Median Estimates, Interquartile Range given below estimates)

Only Finance Macro-Finance

Sytem1 System2 Systems4/5 System6* System7/3 System8 System9*
Int Int Int Int Int Int Int

Claim Claim Claim Cons/ClaimCap Cons Cons
ClaimCap/Cons Out Out Out

Claim

κ = 0.2 0.3563 0.3766 0.2121 0.3715 0.3554 0.3117 0.2934
(0.2859) (0.2700) (0.0641) (0.2809) (0.2927) (0.2790) (0.1935)

γ = 0.1 0.0996 0.0999 0.1000 0.0994 0.1000 0.0997 0.0999
(0.0127) (0.0124) (0.0129) (0.0126) (0.0125) (0.0144) (0.0133)

η = 0.01 0.0100 0.0099 0.0099 0.0100 0.0100 0.0097 0.0100
(0.0006) (0.0006) (0.0006) (0.0006) (0.0005) (0.0006) (0.0006)

ρ = 0.03 0.0297 0.0297 0.0295 0.0300 0.0301 0.0299
(0.0058) (0.0059) (0.0058) (0.0055) (0.0056) (0.0057)

δ = 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

σ = 0.02 0.02 0.0222 0.0198 0.0225 0.0197 0.0194 0.0211
(0.0022) (0.0013) (0.0023) (0.0011) (0.0012) (0.0015)

Table 2: Simulation Study Results GMM Estimation
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When performing GMM estimation of the small-scale finance version, System1, the simulation

study suggest that we can identify 3 of the 5 model parameters contained in the estimation

equation for the interest rate. When fixing δ and σ at their true values we obtain the results

reported in the second column of the table above. While the estimates for γ and η are ex-

tremely close to their values used in the data generating process, the parameter capturing the

speed of mean-reversion, κ is heavily upward biased. Nevertheless, this bias, as extensively

discussed by Christensen, Posch & van der Wel (2016), is a common feature in the estimation

of mean-reverting models. When adding the claim on future dividends to System1, we obtain

System2. Now all 6 parameters are contained in the system. While the estimates for κ, γ and

η remain nearly unaltered compared to System1, we are now able to obtain estimates for the

time preference rate, ρ, as well as for the volatility of the stochastic depreciation rate, σ. While

the former median estimate lies at its true value, the latter tends to be slightly upward biased.

This is an important finding, as it highlights, that, given suitable real world data, nearly all

structural parameters of the model can be estimated from financial data alone.

We now turn the effects of adding macro variables to System2. When adding the differential

on consumption, the GMM approach is still unable to identify all 6 structural parameters.

However, the upward bias in both, κ and σ vanishes, while at the same time time leaving the

remaining 3 parameter estimates nearly unaltered at their true values. Hence, the GMM sim-

ulation study suggest, that considering a macro-finance framework improves the accuracy of

the parameter estimates. An important finding for the empirical implementation are numerical

problems encountered in the second stage of the optimal GMM estimation. When considering

systems containing both the dividend claim and output, the second stage estimates heavily

diverge from their first stage estimates in many instances. Nevertheless, this behaviour only

occurs in case of GMM estimation. The reason for this, is the highly involved computation of

the inverse covariance used in the second stage of the GMM estimation. Thus, columns 5 and

8 only show the first stage estimates.

The estimation study results for the MEF estimation approach in table (3) are in line with

those obtained for GMM. Most notably, however, is the ability of the macro-finance models

to identify all 6 structural parameters. Furthermore, there are no longer computational diffi-

culties when it comes to estimate systems containing both output and claim. To shed some

lights into the simulation study results, figure (1) plots the histograms for System2, Systems4/5

and System6. For the complete finance version, System1, and for the macro-finance version,

Systems4/5, the histograms capture our previous findings. In the histograms (1a) for System2,

the estimates of parameters κ and σ tend to be upward biased and we can identify 5 param-

eters. The histograms for Systems4/5 in (1b) highlight the reduction in the bias of the two

parameters when incorporating consumption. Finally, for System6, figure (1c) shows the case

where output is added to the finance formulation in System2. While the model is now able to
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Simulation Study: MEF Estimation
(Median Estimates, Interquartile Range given below estimates)

Only Finance Macro-Finance

Sytem1 System2 Systems4/5 System6 System7/3 System8 System9
Int Int Int Int Int Int Int

Claim Claim Claim Cons Cons Cons
ClaimCap/Cons Out Out Out

Claim

κ = 0.2 0.3507 0.2844 0.2018 0.2800 0.35354 0.2983 0.3506
(0.2725) (0.2401) (0.0462) (0.2104) (0.2685) (0.3768) (0.2722)

γ = 0.1 0.0995 0.0991 0.0994 0.0993 0.0992 0.0101 0.0993
(0.0127 (0.0129) (0.0134) (0.0132) (0.0127) (0.0148) (0.0128)

η = 0.01 0.0101 0.0100 0.0100 0.0101 0.0101 0.0101 0.010
(0.0005) (0.0006) (0.0005) (0.0006) (0.0006) (0.0006) (0.0005)

ρ = 0.03 0.0301 0.0301 0.0303 0.0299 0.0300 0.0300
(0.0056) (0.0054) (0.0054) (0.0054) (0.0055) (0.0055)

δ = 0.05 0.05 0.05 0.05 0.0500 0.05 0.0500 0.0500
(0.0015) (0.0019) (0.0016)

σ = 0.02 0.02 0.0216 0.0200 0.0215 0.0200 0.0200 0.0200
(0.0031) (0.0011) (0.0028) (0.0011) (0.0011) (0.0011)

Table 3: Simulation Study Results MEF Estimation

identify all 6 parameters, the previous upward bias in the estimates of κ and σ remains.
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Figure 1: Histograms Simulation Study MEF Estimation

(a) Simulation Study, MEF-Estimation, System 2

(b) Simulation Study, MEF-Estimation, Systems 4/5

(c) Simulation Study, MEF-Estimation, System 6
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4 Empirical Results and Data

4.1 Taking the Model to the Data

Our objective is the estimation of the structural parameters of our dynamic macroeconomic

model using higher-frequency financial data. In this section we describe how to take our model

to the data and offer economic intuition for using the price of the claim on future dividends. As

shown in the web appendix we considered various alternative asset prices and returns. Those

asset prices fully reflect the macro dynamics of our model but are unsuitable when it comes to

consistently taking the model to the data. In this context the central problem is to find asset

prices in the model that have a real world analogs. It is straight forward to incorporate output,

consumption and interest rate data in our model estimation. To get the intuition for a real

world analogue for the dividend claim, we will start with a simple example. Consider that an

investors buys a broad defined stock index (a market portfolio) at period t. If he sells the stock

index in the next period, his return is given by the sum of accumulated dividends up to this

period, plus the price change of this index. In this context, the index across stocks represents

the average production of firms in the economy and consists of stocks paying dividends. Like a

stock index, the above defined claim on capital does not have an expiration date and gives the

owner the right to all future dividends. Hence, to take our model to the data we turn to one of

the most important indices worldwide, the S&P500 index and use this rich financial data from

the stock market in our parameter estimation. As shown in the web appendix, we have to use

the price rather than the return of the claim on future dividends to match it with stock return

data.

In order to estimate the different systems of equilibrium equations of our model we need data

on consumption, the short-term interest rate and on the price of the claim on future dividends.

We consider the time period from January 1982 to December 2012. Data on consumption and

the short rate is obtained from the Federal Reserve Economic Dataset (FRED). The monthly

level of real Personal Consumption Expenditures (PCE) is used as a proxy for consumption.

Following Christensen, Posch & van der Wel (2016), we use the 3-month interest rate, derived

from US treasury bonds as proxy for the risk-free rate. For the claim on future dividends we

use monthly data on the S&P500 obtained from the Center for Research in Security Prices

(CRSP). This rich data set offers time series for differently computed returns and index lev-

els ranging from 1925 up to January 2016. For our purpose the value weighted return of the

S&P500 including dividends offers a suitable real world analogue for the price equation of the

dividend claim.
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In the empirical estimation we follow the same approach as in the simulation study. We start

by estimating our two complete finance versions and successively add and remove additional

macro and finance variables. The tables below are structured in the same manner as the once in

the simulation study and show the results for the GMM and the MEF estimation respectively.

Additionally, asymptotic t-statistics are given below the estimates.

Empirical Results: GMM-Estimation
(Data: Value Weighted Return S&P500)

(Asymptotic t-Statistics Given Below Estimates)

Only Finance Macro-Finance

Sytem1 System2 Systems4 System6 System7
Int Int Int Int Int

Claim Claim Cons Cons
Cons Out

κ 0.0432 0.2061 0.2034 0.1800 0.0517
(0.0282) (0.8199) (0.1569) (0.1289) (0.2086)

γ 0.0882 0.1227 0.1233 0.1226 0.1048
(0.0494) (1.1483) (1.0945) (0.8292) (0.5054)

η 0.0080 0.0090 0.0097 0.0092 0.0067
(0.9003) (0.9872) (1.2649) (1.0765) (0.8697)

ρ 0.0001 0.0076 0.0076 0.0083
(0.0595) (0.1955) (0.1807) (0.2349)

δ 0.1 0.1 0.1 0.1 0.1

σ 0.02 0.02 0.0140 0.0153 0.01387
(0.6786) (0.8982) (1.1144)
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One important observation that is present in all of the considered systems and estimation

methods are the relatively low values of the parameter of time preference, ρ. This finding

becomes especially clear when using stock market data in the estimation. The parameter esti-

mates for ρ seem to be unrealistically low, as it suggest a time preference rate well below one

percent.

As shown in the simulation study, the GMM estimation approach is able to identify κ, γ and

η when considering only the equilibrium equation for the interest rate. Hence, we have to

restrict the remaining 2 parameters of the model. As before, the parameter ρ is not contained

in this small-scale finance system. The standard errors are quite high in this setting, causing

the asymptotic t-statistics to be low.

Although the simulation study suggested otherwise, the empirical GMM estimation of System2

exhibit problems with the identification of σ. Thus, we restrict this parameter in the empirical

GMM approach and estimate the remaining 4 parameters. Again, the estimate of ρ is unreal-

istically low. Nevertheless, introducing the dividend claim to model yields plausible parameter

estimates for κ, γ and η that are in line with the once obtained in the macro-finance systems.

As can be seen in column 4, adding consumption data to System2, yields plausible estimates

for all parameters. However, we still have to rely on one parameter restriction. In line with the

findings of the simulation study, consumption increases the accuracy of the estimates, at least

in terms of asymptotic t-statistics.
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As already mentioned above, the MEF estimation also yields extremely low estimates for

the time preference rate, ρ. Furthermore, nearly all asymptotic t-statistics tend to be too low as

well. When comparing the MEF and GMM estimation results, and by considering that nearly

all systems of estimation equation yield similar parameter estimates, this finding is somewhat

odd. To improve inference, it is necessary to go beyond asymptotic statistics.

Empirical Results: MEF-Estimation
(Data: Value Weighted Return S&P500)

(Asymptotic t-Statistics Given Below Estimates)

Only Finance Macro-Finance

Sytem1 System2 Systems4 System5 System6 System7 System8
Int Int Int Int Int Int Int

Claim Claim Claim Cons Cons Cons
Cons Out Out Out

Claim

κ 0.1755 0.0009 0.01867 0.0726 0.1152 0.0987 0.0215
(37.799) (0.0034) (0.0204) (1.3738) (1.5372) (1.023) (0.0649)

γ 0.1222 0.1207 0.1384 0.0915 0.1137 0.1166 0.0945
(92.094) (0.0158) (0.1378) (0.5392) (0.4269) (0.9961) (0.0313)

η 0.0120 0.0103 0.0154 0.0107 0.0104 0.0054 0.0121
(3.3037) (0.0003) (0.0043) (0.1812) (0.0001) (0.0274) (0.0275)

ρ 0.00004 0.002 0.0063 0.0142 0.0136 0.0001
(0.0013) (0.0332) (0.2684) (0.1076) (0.1300) (0.0026)

δ 0.1 0.1 0.1 0.1312 0.1 0.0851 0.0536
(1.0047) (0.2723) (0.0304)

σ 0.02 0.0129 0.0146 0.01641 0.0250 0.0199 0.0121
(0.0016) (0.0033) (0.0090) (0.0104) (0.0037) (0.0017)

5 Conclusion

tbc
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A Appendix A

A.1 Properties and Derivations for the Stochastic Discount Factor

Starting from equation (6)we apply Ito’s formula to obtain the evolution of ln(Λt):

d ln(Λt) =
1

Λt

(dΛt) −
1

2

1

Λ2
t

(dΛt)
2

= −(rt − δ − 1
2
σ2)dt− σdZt

Integrating yields: ∫ s

t

d ln(Λv)dv = −
∫ s

t

(rv − δ − 1
2
σ2)dv − σ

∫ s

t

dZv

From which we obtain the stochastic discount factor as the process given by equation (7).

Now to compute the expected value of the SDF we start from equation (??). Since this is

an Ornstein-Uhlenbeck process we can find the solution by using a standard technique in

differential equations as shown below.

eκt(drt + κrt)dt = eκtκγdt+ eκtηdBt∫ s

t

(drte
κu) =

∫ s

t

(dγeκu) + η

∫ s

t

eκudBu

eκsrs − eκtrt = eκsγ − eκtγ + η

∫ s

t

eκudBu

rs = e−κ(s−t)rt + (1 − e−κ(s−t))γ + ηe−κ(s−t)
∫ s

t

eκ(u−t)dBu

Note that in order to obtain the expected value of the stochastic discount factor we employ

log-normality and compute

lnEt
[
eln(Λs)−ln(Λt)

]
= Et[ln(Λs) − ln(Λt)] + 1

2
V art[ln(Λs) − ln(Λt)] (34)

We can now plug our solution for rs into our log expression for the stochastic discount factor

and obtain

ln(Λs) − ln(Λt) = −
∫ s

t

rvdv +

∫ s

t

(δ + 1
2
σ2)dv − σ

∫ s

t

dZv

= −
∫ s

t

(e−κ(v−t)rt + (1 − e−κ(v−t))γ − δ − 1
2
σ2)dv

−η
∫ s

t

e−κ(v−t)
∫ v

t

eκ(u−t)dBudv − σ

∫ s

t

dZv

Reversing the order of integration and evaluating the ds integrals yield
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ln(Λs)− ln(Λt) = −rt − γ

κ
(1−e−κ(s−t))−(γ−δ− 1

2
σ2)(s−t)− η

κ

∫ s

t

(1−e−κ(s−u))dBu−σ
∫ s

t

dZv

Inspection of the last two integrals give rise to a normally distributed random variable with

mean zero and variance

V art[ln(Λs) − ln(Λt)] =

∫ s

t

(η
κ

(1 − e−κ(s−u))
)2

du+

∫ s

t

σ2du

=

((η
κ

)2

+ σ2

)
(s− t) − 2

η2

κ3
(1 − e−κ(s−t)) +

η2

2κ3
(1 − e−2κ(s−t))

And

Et[ln(Λs) − ln(Λt)] = −rt − γ

κ
(1 − e−κ(s−t)) − (γ − δ − 1

2
σ2)(s− t)

Thus by plugging in we conclude

lnEt
[
eln Λs−ln Λt

]
= −

(
rt − γ

κ
+
η2

κ3

)
(1−e−κ(s−t))−

(
γ − δ − σ2 − 1

2

η2

κ2

)
(s−t)+ η2

4κ3
(1−e−2κ(s−t))

From which we obtain (??).

A.2 Properties and Derivations for the Claim on Future Dividends

To obtain the expression for period k’s capital stock given by (17) we use the SDF given by

(7) together with the basic pricing equation (8). We start with the equation for the evolution

of capital, where we substitute It to express dKt in terms of Ct and rt

dKt = (It − δKt) + σKtdZt,

= (rtKt − Ct − δKt)dt+ σKtdZt

where It = YtKt − Ct = rtKt − Ct.

Now we use Ito’s formula to derive an expression for d ln(Kt)

d ln(Kt) =
1

Kt

dKt − 1
2

1

K2
t

(dKt)
2

=
1

Kt

(rtKt − Ct − δKt) +
1

Kt

σKtdZt − 1
2

1

K2
t

σ2K2
t dt

= (rt −
Ct
Kt

− δ − 1
2
σ2)dt+ σdZt

= (rt − ρ− δ − 1
2
σ2)dt+ σdZt
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Where we used the closed-form solution ρ = Ct/Kt.

Now, to obtain an expression for Ks integrate over t to s:∫ s

t

d ln(Kt)dt =

∫ s

t

(rv − ρ− δ − 1
2
σ2)dv + σ

∫ s

t

dZv

ln(Ks) − ln(Kt) =

∫ s

t

[rv − ρ− δ − 1
2
σ2]dv + σ

∫ s

t

dZv

Ks = Kte
∫ s
t (rv−ρ−δ− 1

2
σ2)dv+σ

∫ s
t dZv

which is the same as (17).

Now to obtain an expression for the capital stock in period s recall that in the AK-Vasicek model

At is equal to rt. Thus, the evolution of TFP is captured by the evolution of rt. Furthermore,

due to the AK-specification we have Yt = AtKt. The evolution of Yt, can be described in terms

of drt and dKt

dKt = (rtKt − Ct − δKt)dt+ σKtdZt

drt = κ(γ − rt)dt+ ηdBt

together with the Euler equation, or using the analytical solution Ct = ρKt.

Now, using Ito’s formula to derive an expression for d ln(Ktrt) we arrive at (18) by computing

d ln(Ktrt) =
1

Kt

(dKt) − 1
2

1

K2
t

(dKt)
2 +

1

rt
(drt) − 1

2

1

r2
t

(drt)
2

d ln(Yt) = (rt − δ − ρ− 1
2
σ2 +

κγ

rt
− κ− 1

2

η2

r2
t

)dt+ σdZt +
η

rt
dBt

Ys = Yte
κγ

∫ s
t

1
rv
dv− η

2

2

∫ s
t

1

r2v
dv+

∫ s
t (rv−δ−ρ−κ− 1

2
σ2)dv+σ

∫ s
t dZv+

∫ s
t

η
rv
dBv

The last equation is analogues to (15) in Christensen, Posch & van der Wel (2016).

In the derivation of (19), however, we will exploit the Ornstein Uhlenbeck specification. Con-

sidering the Vasicek specification of the interest rate we know that:

As = rs = e−κ(s−t)
(
rt + (eκ(s−t) − 1)γ + η

∫ s

t

eκ(u−t)dBu

)
While period’s s capital stock is given by:

Ks = Kte
∫ s
t (rv−ρ−δ− 1

2
σ2)dv+σ

∫ s
t dZv

Hence, Ys is given by

AsKs =

[
Ktrt +Ktγe

κ(s−t) −Ktγ +Ktη

∫ s

t

eκ(u−t)dBu

]
e
∫ s
t (rv−δ−ρ−κ− 1

2
σ2)dv+σ

∫ s
t dZv
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Starting from equation (2.3.3) note that

Pd,t = Kt

[
rt − γ

(ρ+ κ)
+
γ

ρ

]
= dKt

[
rt − γ

(ρ+ κ)
+
γ

ρ

]
+

Kt

(ρ+ κ)
drt

= Pd,t
dKt

Kt

+
Kt

(ρ+ κ)
drt

= Pd,t[rt − ρ− δ]dt+ Pd,tσdZt +
Kt

(ρ+ κ)
[κ(γ − rt)]dt+

Kt

(ρ+ κ)
ηdBt

To obtain an expression for the last term in terms of Pd,t note that:

Kt

ρ+ κ
=

ρPd,t
ρrt + κγ

or
Kt

ρ+ κ
= Pd,t

[
1

rt + κγ
ρ

]
Plugging in yields:

dPd,t = Pd,t[rt − ρ− δ]dt+ Pd,tσdZt + Pd,t
[ρκ(γ − rt)]

ρrt + κγ
dt+ Pd,t

ρη

ρrt + κγ
dBt

or in logs:

d lnPd,t = d lnKt +

[
ρκ(γ − rt)

[ρrt + κγ]
− 1

2

(ρη)2

[ρrt + κγ]2

]
dt+

ρη

[ρrt + κγ]
dBt

A.3 Derivations of the Discrete time formulations

In this section we will derive the discrete time formulations for the system of equilibrium

equations given by (26). We start from the baseline model and substitute the equation for log

output by the equation for the log price of the claim on future dividends

Hence we have for the claim on future dividends

d lnPd,t = d lnKt +

[
ρκ(γ − rt)

[ρrt + κγ]
− 1

2

(ρη)2

[ρrt + κγ]2

]
dt+

ρη

[ρrt + κγ]
dBt

=

 ρκ(γ − rft − δ − σ2)[
ρ(rft + δ + σ2) + κγ

] − 1
2

(ρη)2[
ρ(rft + δ + σ2) + κγ

]2

 dt
+(rft − ρ+ 1

2
σ2)dt+

ρη[
ρ(rft + δ + σ2) + κγ

]dBt + σdZt
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now integrating over (t− ∆) to t we obtain

ln(Pd,t/Pd,t−∆) =

∫ t

t−∆

rfvdv − (ρ− 1

2
σ2)∆ + ρκ

∫ t

t−∆

γ − rfv − δ − σ2

ρ(rfv + δ + σ2) + κγ
dv

−1
2
(ρη)2

∫ t

t−∆

1[
ρ(rfv + δ + σ2) + κγ

]2dv

+ρη

∫ t

t−∆

1[
ρ(rfv + δ + σ2) + κγ

]dBv + σ

∫ t

t−∆

dZv

Since we just want to substitute this equation in the baseline model we obtain the discrete

version of (26)as

ln(Ct/Ct−∆) =

∫ t

t−∆

rfvdv − (ρ− 1

2
σ2)∆ + εC,t

ln(Pd,t/Pd,t−∆) =

∫ t

t−∆

rfvdv − (ρ− 1

2
σ2)∆ + ρκ

∫ t

t−∆

(
γ − rfv − δ − σ2

ρ(rfv + δ + σ2) + κγ

)
dv

−1
2
(ρη)2

∫ t

t−∆

1[
ρ(rfv + δ + σ2) + κγ

]2dv + εPd,t

rft = e−κ∆rft−∆ + (1 − e−κ∆)(γ − δ − σ2) + εr,t

where the martingale increments are defined by

εC,t ≡ σ(Zt − Zt−∆)

εd,t ≡ ρη

∫ t

t−∆

1[
ρ(rfv + δ + σ2) + κγ

]dBv + σ

∫ t

t−∆

dZv

εr,t ≡ ηe−κ∆

∫ t

t−∆

eκ(v−(t−∆))dBv

Using the above calculations together with the expression for log output of the discrete
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version of system (??) we obtain the discrete version of system (??) as

ln(Yt/Yt−∆) =

∫ t

t−∆

rfvdv + κγ

∫ t

t−∆

1/(rfv + δ + σ2)dv

−1
2
η2

∫ t

t−∆

1/(rfv + δ + σ2)2dv

−(κ+ ρ− 1
2
σ2)∆ + εY,t

ln(Pd,t/Pd,t−∆) =

∫ t

t−∆

rfvdv − (ρ− 1

2
σ2)∆

+ρκ

∫ t

t−∆

(
γ − δ − σ2

ρ(rfv + δ + σ2) + κγ

)
dv

−ρκ
∫ t

t−∆

(
rfv

ρ(rfv + δ + σ2) + κγ

)
dv

−1
2
(ρη)2

∫ t

t−∆

1[
ρ(rfv + δ + σ2) + κγ

]2dv + εPd,t

rft = e−κ∆rft−∆ + (1 − e−κ∆)(γ − δ − σ2) + εr,t

and define the vector of martingale increments as

εt =

 εY,t
εd,t
εr,t

 =


∫ t
t−∆

η

[rfv+δ+σ2]
dBv + σ

∫ t
t−∆

dZv

ρη
∫ t
t−∆

1

[ρ(rfv+δ+σ2)+κγ]
dBv + σ

∫ t
t−∆

dZv

ηe−κ(s−t) ∫ t
t−∆

eκ(v−(t−∆))dBv


A.4 MEF

The matrix of parameter derivatives reads

Φt =


0 Φ12 ∆e−κ∆(rt−∆ − γ)
0 Φ22 −(1 − e−κ∆)
0 Φ32 0
∆ Φ42 0
0 Φ52 (1 − e−κ∆)

−σ∆ Φ62 2σ(1 − e−κ∆)


where

Φ12 =
∂m2

∂κ
= −ρ(γ − δ − σ2)

∫ t

t−∆

(
1

ρ(rfv + δ + σ2) + κγ

)
dv − γ(ρη)2

∫ t

t−∆

1

[ρ(rfv + δ + σ2) + κγ]3
dv

+ρκγ(γ − δ − σ2)

∫ t

t−∆

(
1

(ρ(rfv + δ + σ2) + κγ)2

)
dv

+ρ

∫ t

t−∆

(
rfv

ρ(rfv + δ + σ2) + κγ

)
dv − ρκγ

∫ t

t−∆

 rfv(
ρ(rfv + δ + σ2) + κγ

)2

 dv
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Φ22 =
∂m2

∂γ
= −ρκ

∫ t

t−∆

(
1

ρ(rfv + δ + σ2) + κγ

)
dv + ρκ2(γ − δ − σ2)

∫ t

t−∆

(
1

(ρ(rfv + δ + σ2) + κγ)2

)
dv

−ρκ2

∫ t

t−∆

 rfv(
ρ(rfv + δ + σ2) + κγ

)2

 dv − κ(ρη)2

∫ t

t−∆

1

[ρ(rfv + δ + σ2) + κγ]3
dv

Φ32 =
∂m2

∂η
= ηρ2

∫ t

t−∆

1

[ρ(rfv + δ + σ2) + κγ]2
dv

Φ42 =
∂m2

∂ρ
= −κ(γ − δ − σ2)

∫ t

t−∆

(
1

ρ(rfv + δ + σ2) + κγ

)
dv

+ρκ(γ − δ − σ2)

∫ t

t−∆

(
rfv + δ + σ2

(ρ(rfv + δ + σ2) + κγ)2

)
dv

+κ

∫ t

t−∆

rfv

[ρ(rfv + δ + σ2) + κγ]
dv − ρκ

∫ t

t−∆

rfv (rfv + δ + σ2)

[ρ(rfv + δ + σ2) + κγ]2
dv + ∆

+ρη2

∫ t

t−∆

1

[ρ(rfv + δ + σ2) + κγ]2
dv − (ρη)2

∫ t

t−∆

rfv + δ + σ2

[ρ(rfv + δ + σ2) + κγ]3
dv

Φ52 =
∂m2

∂δ
= ρκ

∫ t

t−∆

(
1

ρ(rfv + δ + σ2) + κγ

)
dv + ρ2κ(γ − δ − σ2)

∫ t

t−∆

 1(
ρ(rfv + δ + σ2) + κγ

)2

 dv

−ρ2κ

∫ t

t−∆

rfv

[ρ(rfv + δ + σ2) + κγ]2
dv − ρ3η2

∫ t

t−∆

1

[ρ(rfv + δ + σ2) + κγ]3
dv

Φ62 =
∂m2

∂σ
= 2ρκσ

∫ t

t−∆

(
1

ρ(rfv + δ + σ2) + κγ

)
dv + 2ρ2κσ(γ − δ − σ2)

∫ t

t−∆

 1(
ρ(rfv + δ + σ2) + κγ

)2

 dv

−2ρ2κσ

∫ t

t−∆

rfv

[ρ(rfv + δ + σ2) + κγ]2
dv − 2ρ3η2σ

∫ t

t−∆

1

[ρ(rfv + δ + σ2) + κγ]3
dv − σ∆

C1 =

(
∆

ρrt−∆ + κγ
−
(
κ(γ − rt−∆)ρ

(ρrt−∆ + κγ)2
− η2 ρ2

(ρrt−∆ + κγ)3

)
1
2
∆2

)
C2 =

(
∆

(ρrt−∆ + κγ)2
−
(
κ(γ − rt−∆)2ρ

(ρrt−∆ + κγ)3
− η2 3ρ2

(ρrt−∆ + κγ)4

)
1
2
∆2

)
C3 =

(
∆

(ρrt−∆ + κγ)3
−
(
κ(γ − rt−∆)3ρ

(ρrt−∆ + κγ)4
− η2 6ρ2

(ρrt−∆ + κγ)5

)
1
2
∆2

)
C4 =

(
(rt−∆ − δ − σ2)∆

(ρrt−∆ + κγ)
+

(
κ(γ − rt−∆)(κγ + ρδ + ρσ2)

(ρrt−∆ + κγ)2
− η2(ρκγ + ρ2δ + ρ2σ2)

(ρrt−∆ + κγ)3

)
1
2
∆2

)
C5 =

(
(rt−∆ − δ − σ2)∆

(ρrt−∆ + κγ)2
+

(
κ(γ − rt−∆)(κγ − ρrt−∆ + 2ρδ + 2ρσ2)

(ρrt−∆ + κγ)3
+
η2(ρ2rt−∆ − 2ρκγ − 3ρ2δ − 3ρ2σ2

(ρrt−∆ + κγ)4

)
1
2
∆2

)
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C6 =

(
rt−∆∆

(ρrt−∆ + κγ)2
+

(
κ(γ − rt−∆)(κγ − ρrt−∆)

(ρrt−∆ + κγ)3
+
η2(ρ2rt−∆ − 2ρκγ)

(ρrt−∆ + κγ)4

)
1
2
∆2

)
C7 =

(
rt−∆∆

(ρrt−∆ + κγ)3
+

(
κ(γ − rt−∆)(κγ − 2ρrt−∆)

(ρrt−∆ + κγ)4
+

3η2(ρ2rt−∆ − ρκγ)

(ρrt−∆ + κγ)5

)
1
2
∆2

)

C8 =
(r2
t−∆ − rt−∆δ − rt−∆σ

2)∆

(ρrt−∆ + κγ)2

+

(
κ(γ − rt−∆)(rt−∆(ρδ + σ2ρ+ 2κγ) − δκγ − σ2κγ))

(ρrt−∆ + κγ)3
+
η2(κγ(κγ + 2ρδ + 2σ2ρ) − ρrt−∆(ρδ + σ2ρ+ 2κγ))

(ρrt−∆ + κγ)4

)
1
2
∆2
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