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Abstract

A large dimensional vector autoregressive (VAR) model can generate long memory in its com-
ponents under conditions, stated by Chevillon, Hecq and Laurent (2018, CHL), which restrict
the VAR parameters. In this context, we compare the forecasting performance of univariate
ARFIMA and HAR models, a VAR estimated by ML under the CHL constraints, and a VAR
estimated by MCMC. The latter is based on a Gaussian prior density that incorporates the CHL
restrictions through the prior mean of the VAR parameters, while the prior variances control
the tightness of the restrictions. The forecast comparisons are done on simulated and real data.

Keyword: Long memory, Vector Autoregressive Model, ARFIMA, HAR, MCMC, Forecasting,
Volatility.
JEL: C10, C32, C58.

1



1 Introduction

Long memory is a feature of several types of economic and financial time series, see e.g. ADD
REFERENCES. CHL (2015) show that long memory can result from the marginalization of a
large dimensional system. More specifically, they provide a parametric framework under which the
variables of an n-dimensional VAR(1) can be individually modelled as fractional white noises as n
tends to infinity. Long memory may therefore be a feature of univariate or low dimensional models
that vanishes when considering larger systems. This source of long memory differs from other
sources mentioned in the literature, in particular the aggregation mechanism of Granger (1980).

Our objective is to compare the forecasting performance of several models suitable for series
exhibiting long memory. In particular, we consider two univariate models: the autoregressive
fractionally integrated moving average (ARFIMA ) model, and the heterogeneous autoregressive
(HAR) model of Corsi (20??). We also consider a VAR model in large dimension. When its
parameters are unrestricted, the VAR model can be estimated by ordinary east squares (OLS)
applied to each equation of the system, which is equivalent to Gaussian maximum likelihood.
We also use ML estimation of the VAR as a system under different ways of imposing the CHL
restrictions, which are parametric restrictions that generate the long memory behaviour of the
variables of an n-dimensional VAR.1 Moroever, we implement Bayesian estimations of the VAR as
a system, under a prior density that incorporates the CHL restrictions through the prior mean of the
parameters of the autoregressive terms, while the prior variances are chosen to control the tightness
of the restrictions. If the prior variances are very large, the prior tightness is null, the VAR model is
not parsimonious, and its Bayesian estimation is equivalent to the OLS estimation mentioned above.
If the prior variances are set to zero, the restrictions are imposed a priori with probability one,
hence the VAR parameterization satisfies fully the CHL restrictions (hence its Bayesian estimation
is very close to its ML estimation under constraints)2 and is very parsimonious, even compared to
univariate models. We emphasize that the Bayesian approach is used in this research as a tool to
generate a point estimator of the VAR parameters, namely we use the posterior mean as a point
estimator.

The motivation for these choices is that the estimation of a univariate ARFIMA model requires
a large number of observations to obtain a decent estimate of the long memory parameter. The
estimation of an unrestricted VAR model, and a fortiori of restricted versions of it, can be performed
with much less observations, even in large dimension. For example, for a VAR(1) in dimension 100,
500 observations is acceptable, while for an ARFIMA on any of the series, this number is too low.

Thus there is a trade-off between the type of model used (from univariate ARFIMA to large
VAR, the latter with a increasing number of constraints) and the sample size required for estimation
(from large to low). This is the trade-off that we study in this paper. The univariate HAR model
is also considered as it captures long memory and does not require as many observations as an
ARFIMA model, and is thus more closer to a VAR model with a low lag order, than to an ARFIMA
model, in terms of the number of observations required for estimation.

Given that we compare models based on different information sets, and that these models are
of reduced form type aimed at forecasting, it makes sense to use comparison criteria based on

1In a n-dimensional VAR(1) written as xt = Anxt−1 + εt, these restrictions are satisfied if An is a Toeplitz matrix
(see, e.g., Gray, 2006) with diagonal elements converging to 1/2 as n → ∞, with off-diagonal elements tending to 0
as 1/n, and the sum of each row is equal to 1.

2Close but not necessarily identical because the posterior mean may not coincide with the MLE, the latter being
equal to the posterior mode when the prior is flat.
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forecasts. Thus we compare forecasts produced by different models using the root mean squared
error (RMSE) criterion as well as the MCS. In addition, we compare the different VAR parameter
estimators that we use, in terms of bias and RMSE.

The rest of this paper is organized as follows. Section 2 briefly provides the theoretical frame-
work needed to understand how a VAR can generate long memory, and in particular the parametric
restrictions that we use for ML and Bayesian estimation.. Section 3 presents a simulation study
designed to quantify the impact of the trade-off between the type of model used and the sample size
on estimators and forecasts. In Section ??, this is illustrated on real data that consist of realized
volatilities of forty-nine US stocks. Conclusion are offered in the last section. Technical details are
contained in the appendix.

2 Theoretical background

This section summarizes the argument of Chevillon et al. (2018) in the context of the model
studied here. We consider a multivariate VAR(p) process, p ≥ 1, specified as follows. Define
Fn (L), a matrix lag polynomial of dimension n and degree p−1, such that the roots of det (Fn (z))
all have modulus strictly greater than unity. The observable vector yt of dimension n satisfies, for
t ≥ 1,

(In −AnL)Fn (L)yt = εt,

where εt ∼ IID (0,Σn) denotes a process that is identically and independently distributed with
zero expectation and variance-covariance matrix Σn. Throughout, we assume Σn is diagonal with
diagonal denoted by σ2n =

(
σ2n,1, ..., σ

2
n,n

)
such that σn,k > 0 for k = 1, ..., n. Notice that Fn (0) is

not necessarily In: this is a parametric representation which corresponds to a non-diagonal error
covariance matrix in a standard VAR(p) setting.

In the case consider by Chevillon et al., the matrix An= Tn + ηnDn, where Tn is the Toeplitz
matrix
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where g (·, ·) is defined for δ ∈ (0, 1) and ω ≥ 0 as

g
(
δ, eiω

)
= 1{0≤u<πδ} + 1{π( 3

2
−δ)<u≤ 3π

2 }, ω = u mod 2π, (2)

and where ω → g
(
δ, eiω

)
is even; the sequence δn satisfies δn = 1

2 + o
(
n−2

)
, with δn <

1
2 ; ηn is a

real scalar sequence that satisfies ηn = o
(
n−2

)
, Dn is a real antisymmetric Toeplitz matrix with

absolutely summable rows.
Chevillon et al. show that as n→∞, (n− 1) /4 ∈ N, for all k ∈ N,

Fn (L)yt ⇒ ∆−1/2εt. (3)
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In this example, all elements of xt = Fn (L)yt within an n-dimensional system present the
exact same fractional degree of integration as n→∞. Since the entries of An− 1

2In tend to zero as
n→∞, the cross section dependence between the elements of xt vanishes asymptotically. Yet, as∑n−1

k=1 t
∗
k (n) remains nonzero, the dependence across individual series is sufficient to generate long

memory in each of the marginal processes.

3 Simulation and empirical evidence

In this section, we evaluate our key theoretical results via a Monte Carlo simulation. We also show
that our theoretical framework is able to replicate some stylized facts observed in the variance of
US stock returns.

3.1 Monte Carlo

We provide here simulations that examine the validity of our theoretical asymptotic results when
the dimensions of the cross-section and the sample are finite.

An n-dimensional VAR(1), as defined in Equations (??)-(??), is used to generate data for
different choices of T and n. To save space, we only report the results for n = 201 series and
T = 4, 000 observations.

As a benchmark, we consider in our first experiment the case of a diagonal matrix, An = dIn,
where the parameter d is set to 0.499. The first panel of Figure 1 shows the value of the elements of

the first row of An, denoted a
(n)
k (for k = 0, . . . , n− 1), i.e., a

(n)
k = 0.499 for k = 0 and 0 otherwise.

In this simple setting, the derived univariate processes have short memory and follow a stationary
AR(1) model with an autoregressive parameter of 0.499 for each series.

Panel 2 of Figure 1 plots the empirical distribution (over 1,000 replications) of the long memory
parameter of series x1t estimated using three popular estimation methods, i.e., the log periodogram
regression (GPH) of Geweke and Porter-Hudak (1983), the Local Whittle Likelihood Estimator
(LWLE) of Robinson (1995), both with bandwidth T/2 and the MLE of an ARFIMA(1, d, 0) (see
Sowell, 1992 and Doornik and Ooms, 2004).3 We deliberately choose a large bandwidth, as im-
plemented by default in Doornik and Ooms (2004) to reduce the variability of the estimators. As
expected the estimated long memory parameters are concentrated around 0 suggesting that there
is no evidence of long memory in the individual series. This is confirmed by the third panel of
Figure 1 which reports the ACF of x1t for the first replication.

In the next two experiments, we consider a symmetric Toeplitz matrix An = T∗n, under the
assumptions of Section ?? (i.e., Equation (??) with ηn = 0), where T∗n has symbol gd. We denote
by d the value taken by δn : we choose two values of d close to 1/2, i.e., respectively d = 0.499 in
Figure 2, and d = 0.45 in Figure 3. The structure of these figures is similar to that of Figure 1
except that now, since d is close to 1/2, i.e., to the nonstationary region of an I (d) process, we follow
the approach of Abadir, Distaso and Giraitis (2007) and apply the three long memory estimators
to (1−L)dx1t (for the values we report, we have added d ex-post to the estimate). The first panel
of these figures emphasizes that the diagonal elements are near d while the off-diagonal elements
are small for d = 0.45 and very small for d = 0.499. Recall from Equation (??) that the sum of
each row of T∗n is unity by construction and therefore although the off-diagonal elements of An can
be very small when d is close to 1/2, they are nonzero. Unlike in Figure 1, long memory is detected

3All estimations are performed in OxMetrics 7.0 (see Doornik, 2013).
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in x1t, with a Monte Carlo mean (over the 1,000 replications) of 0.444, 0.484 and 0.488 respectively
for the GPH, LWLE and ARFIMA(0, d, 0) methods for d = 0.499 and 0.417, 0.451 and 0.465 for
d = 0.45. The ACF of x1t in the first replication also suggests the presence of long memory. These
figures show that although An is near diagonal, the very small off-diagonal elements play a crucial
role in the apparition of long memory.

Next, we evaluate the robustness of the previous result by using the asymmetric Toeplitz matrix
given in Equation (??), i.e., An = T∗n+ηnDn, with d = 0.499, ηn = 1

n2 log(n)
, and where the elements

of Dn in the upper triangle are drawn independently from a standard normal distribution. Figure
4 suggests that results are qualitatively the same as in the case of the symmetric Toeplitz matrix
in the sense that long memory is detected in x1t with a parameter estimate close to d.

Theorem ?? states that, under Assumption P, not only x1t but all variables belonging to xt
should be fractional white noises when n → ∞ and d → 1/2. Our last experiment illustrates this
finding for the case of a symmetric Toeplitz matrix with d = 0.499, as investigated in Figure 2.
Figure 5 plots the empirical distribution of the long memory parameter estimated on all series, i.e.,
on x1t, . . . , x201t, for the three estimation methods. We only report the results for four replications,
each row in the figure corresponding to a replication. Results suggest that the estimated long
memory parameters do not vary much across series and are all concentrated in a region close to
1/2, especially for the LWLE and MLE of the ARFIMA(0, d, 0).

3.2 Empirical illustration

The presence of long memory in the volatility is now considered as a stylized fact of the log-returns
of financial assets (see Baillie, Bollerslev, and Mikkelsen, 1996, Breidt, Crato, and de Lima, 1998,
and Comte and Renault, 1998, among others). As reported in Lieberman and Phillips (2008)
“There is an emerging consensus in empirical finance that realized volatility series typically display
long range dependence with a memory parameter d around 0.4 (Andersen et al., 2001; Martens et
al., 2004[now 2009]).”

To illustrate this claim and also to provide a first assessment of the plausibility of our explanation
for the origin of long memory, we consider a dataset (provided by TickData) consisting of transaction
prices at the 5-minute sampling frequency for 49 large capitalization stocks from the NYSE, AMEX
and NASDAQ, covering the period from January 4, 1999 to December 31, 2008 (2,489 trading
days).4 The trading session runs from 9:30 EST until 16:00 EST. Using 5-minute returns, we
computed the MedRV estimator of Andersen, Dobrev, and Schaumburg (2012), a non-parametric
robust to jumps estimator of the integrated variance.5

Figure 6 plots the long memory parameter estimated using an ARFIMA model on log(MedRVit)
for i = 1, . . . , 49.6 The estimated long memory parameters fluctuate around 0.45, with a minimum
of about 0.40 and a maximum of about 0.53.

VAR models for the logarithm of realized variances have been used for instance by Anderson

4To save space, we do not report company names but only the ticker symbols. There are AAPL, ABT, AXP, BA,
BAC, BMY, BP, C, CAT, CL, CSCO, CVX, DELL, DIS, EK, EXC, F, FDX, GE, GM, HD, HNZ, HON, IBM, INTC,
JNJ, KO, LLY, MCD, MMM, MOT, MRK, MS, MSFT, ORCL, PEP, PFE, PG, QCOM, SLB, T, TWX, UN, VZ,
WFC, WMT, WYE, XOM, XRX.

5If rt,i is the ith 5-minutes return of a day t containing M of such returns, the MedRV of day t is computed as
MedRVt = π

6−4
√

3+π

M
M−2

∑M
i=3med(|rt,i|, |rt,i−1|, |rt,i−2|)2, where med (·) denotes the median.

6Similar to the previous section, the ARFIMA model is estimated on (1 − L)1/2 log(MedRVit) and 1/2 is added
ex-post to the estimated value to ensure the estimated d to lie in the covariance stationarity region.
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Figure 1: Simulation results for a n-dimensional diagonal VAR(1) xt = Anxt−1+εt, with An = dIn,

where d = 0.499, εt
iid∼ N(0, In), n = 201 and t = 1, . . . , 4000. The panels report respectively, (a)

the value of the elements of the first row of An, denoted a
(n)
k (for k = 0, . . . , n−1); (b) the empirical

distribution, over 1000 replications, of the estimated long memory parameter of x1t obtained by the
GPH, LWLE and ARFIMA(1, d, 0) methods; (c) the empirical ACF of x1t for the first replication.
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Figure 2: Simulation results for a n-dimensional diagonal VAR(1) xt = Anxt−1+εt, with An = T∗n,

where T∗n ≡ Re (Tn), Tn has symbol defined by (??), d = 0.499, εt
iid∼ N(0, In), n = 201 and

t = 1, . . . , 4000. The panels report respectively, (a) the value of the elements of the first row of

An, denoted a
(n)
k (for k = 0, . . . , n − 1); (b) the empirical distribution, over 1000 replications, of

the estimated long memory parameter of x1t obtained by the GPH, LWLE and ARFIMA(0, d, 0)
methods; (c) the empirical ACF of x1t for the first replication.
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Figure 3: Simulation results for a n-dimensional diagonal VAR(1) xt = Anxt−1+εt, with An = T∗n,

where T∗n ≡ Re (Tn), Tn has symbol defined by (??), d = 0.45, εt
iid∼ N(0, In), n = 201 and

t = 1, . . . , 4000. The panels report respectively, (a) the value of the elements of the first row of

An, denoted a
(n)
k (for k = 0, . . . , n − 1); (b) the empirical distribution, over 1000 replications, of

the estimated long memory parameter of x1t obtained by the GPH, LWLE and ARFIMA(0, d, 0)
methods; (c) the empirical ACF of x1t for the first replication.
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Figure 4: Simulation results for a n-dimensional diagonal VAR(1) xt = Anxt−1 + εt, with An =
T∗n + ηnDn, where T∗n ≡ Re (Tn), Tn has symbol defined by (??), ηn = 1/(n2 log(n)), Dn is
an antisymmetric Toeplitz matrix with above diagonal elements drawn from a standard normal

distribution, d = 0.499, εt
iid∼ N(0, In), n = 201 and t = 1, . . . , 4000. The panels report respectively,

(a) the value of the elements of the first row of An, denoted a
(n)
k (for k = 0, . . . , n − 1); (b)

the empirical distribution, over 1000 replications, of the estimated long memory parameter of x1t
obtained by the GPH, LWLE and ARFIMA(0, d, 0) methods; (c) the empirical ACF of x1t for the
first replication.
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Figure 5: Simulation results for a n-dimensional diagonal VAR(1) xt = Anxt−1+εt, with An = T∗n,

where T∗n ≡ Re (Tn), Tn has symbol defined by (??), d = 0.499, εt
iid∼ N(0, In), n = 201 and

t = 1, . . . , 4000. The figure plots the empirical distribution of the long memory parameter estimated
on all series, i.e., on x1t, . . . , x201t, using GPH, LWLE and ARFIMA(0, d, 0). Each row corresponds
to a separate replication.
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Figure 7: Average of the diagonal elements (upper panel) and average of the absolute value of the
off-diagonal elements (lower panels) of a VAR(1) estimated on log(MedRVit) while progressively
increasing the dimension of the VAR)

and Vahid (2007). Figure 7 plots some summary statistics on the estimated parameters of a VAR(1)
model estimated on log(MedRVit), by progressively increasing the dimension of the VAR (i.e., by
adding one variable at a time to the system, following the alphabetical order of the tickers).

The solid lines correspond to the average of the diagonal elements (upper panel) and the average
of the absolute value of the off-diagonal elements (lower panel). For instance, the average of the
diagonal elements is about 0.63 for the VAR(1) of dimension 2 (i.e., series AAPL and ABT) and
the absolute value of the off-diagonal element is about 0.2. Figure 7 suggests that the average of
the diagonal elements converges to about 0.4 when the dimension of the system increases while
the off-diagonal elements converge to a very small value. This is in agreement with our theoretical
model for which the diagonal elements correspond roughly to δ and the off-diagonal elements are
small.

Figure 7 (dotted lines) also reports similar quantities but for simulated data following a VAR(1)
with a symmetric Toeplitz matrix An = T∗n, where T∗n has symbol gd given in (??), n = 201 and
d = 0.4. While the true dimension of the system is n = 201, the VAR is estimated on a smaller
system whose dimension progressively increases up to 49 series. A similar pattern is observed
both for real and simulated data. Indeed, the average of the diagonal of the VAR(1) estimated on
simulated data decreases with the size of the system and converges to 0.4 while the average of the
off-diagonal elements converges to a very small value.
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