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Abstract

Vector autoregressions (VARs) are important statistical tools for empirical anal-
ysis. I develop a statistical framework where multiple economic shocks can affect the
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the location. To achieve this goal, the multiple dynamic time-series data-generating
process with the parameters being affine functions of random variables is introduced.
Furthermore, I introduce the novel vector quantile autoregression (VQAR) that re-
lates the vector of autoregressive quantile processes to its lagged values and propose
a procedure for identifying the structural quantile shocks, the type of shock that oc-
curs with a certain probability. I introduce the quantile impulse response functions
(QIRFs) as a main device for estimating the impact and transmission of the struc-
tural quantile shocks. Asymptotic properties are discussed and bootstrap procedures
are introduced for the inference purposes.
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1 Introduction

Vector autoregressions (VARs) are important tools for policy analysis in economics (Lütkepohl,

2005). While most economic time series displays systematic asymmetric dynamics over

time, appropriate VAR models are needed to explain and model such phenomena.1 Using

formal terminology, I treat asymmetries as an outcome of how a distribution of the vector

of outcome variables y is affected by its lagged values and structural shocks. This paper

shows that the goal can be achieved by modeling multiple dynamic conditional quantile

functions, whose autoregressive slope parameters vary with quantiles τ ∈ (0, 1). The main

goal of this paper is to provide statistical framework for estimation and inference proce-

dures to study the entire distribution of y and its functionals in a dynamic setting using

regression quantiles by Koenker and Bassett (1978).

This paper contributes to the literature on dynamic time-series models in several ways.

First, it provides statistical framework for modeling the location, scale and shape of the

conditional density of y. Building on Koenker and Xiao (2006), I develop a dynamic model

with an affine random coefficient specification as a tool for generating the τ -dependent

autoregressive coefficients as a result of monotonic transformation.2 This specification

represents a useful modification to Koenker and Xiao (2006) since it relates shocks of the

data-generating process to the vector of dynamic conditional quantile functions. There is a

long list of theoretical contributions to the linear quantile autoregression (see Koenker and

Xiao, 2005, and the references therein). However, Koenker and Xiao (2006) rigorously treat

the problem of having a valid data-generating process behind the quantile autoregressions

with the τ -dependent slope effects.

Second, starting from quantile and least squares parameter estimates, using Cholesky

scheme I propose an algorithm to obtain structural shocks of the outcome variable. Under

standard empirical identifying conditions, this procedure explores the linear interrelation

between the parameters of the data-generating and conditional quantile processes. This

procedure is general enough to accommodate many popular forms of identification.

1For classical references see Neftci (1984), Beaudry and Koop (1993), Enders and Granger (1998), among

others.
2This approach to random coefficient modeling is much in the spirit of Swamy (1970).
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Third, I introduce the vector quantile autoregression (VQAR), a companion form for

the vector of dynamic quantile functions with the parameters being products of the time-

varying and quantile specific coefficients. The VQAR is of independent economic interest

since it relates the lagged value of quantile functions to its future value. Therefore I

generalize classical VAR models and now the impact of shocks to the entire conditional

distribution can be traced dynamically over the certain horizon. Formally this goal is

achieved by deriving the quantile impulse response functions (QIRFs), recently introduced

by Chavleishvili and Manganelli (2017), and using identified structural shocks to construct

it.3

This paper contains two sets of theoretical results. First, under standard regularity

conditions I show that the limiting properties of the parameters and QIRFs are to be es-

tablished analytically. In particular, before the parameter estimates are discussed and then

asymptotic properties of their functionals can be established using the Delta method. Sec-

ond, for ease of inference, I propose asymptotically valid bootstrap procedure for inference

on the QIRFs and the parameters of interest.

Following notation is used throughout the paper. For some matrix Φ, the scalar (Φ)ij

corresponds to its ij-th element and a row vector (Φ)i· gives its i-th row. Vectors 0K and

ıK are K × 1 vectors of zeros and ones. I write ∼ to denote convergence in distribution.

The rest of the paper is organized as follows. Section 2 presents theoretical setting for

the general form of the VARs with time-varying parameters, introduces related conditional

quantile functions and derives the VQAR representation for them. In Section 3 I explicitly

model parameters of the data-generating process and design a strategy for uncovering the

structural shocks. Section 4 contains the main analytical results in terms of the QIRFs. In

Section 5 I discuss limiting properties of QIRFs and propose bootstrap algorithm for the

ease of inference. Section 6 designs simulations to study validity of the framework. Section

6 presents empirical results. Some of the technical results are relegated to Appendix.

3Chavleishvili and Manganelli (2017) considers the QIRFs in the context of the multivariate financial

returns processes with the generalized autoregressive conditional heteroscedasticity (GARCH) dynamics

as its conditional variance process.
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2 The framework

I study a conditional distribution of the multiple time-series of observations. The goal

is achieved by introducing the dynamic conditional vector quantile functions with the

quantile-specific parameters. The vector quantile autoregression (VQAR) is introduced

to study the impact and propagation of shocks.

Suppose, for a finite lag order p ≥ 1, the objective is to explore the distribution of a

finitely dimensioned K×1 vector of real-valued random variables yt conditional on its past

realizations zt−1 ≡ (y′t−1,y
′
t−2, . . . ,y

′
t−p)

′ and subject to the serially uncorrelated K × 1

vector of innovations εt|zt−1 ∼ i.i.d.(0,Σ), where Σ is a K ×K positive definite matrix.

The goal is to develop a tool for structural analysis of the impact of zt−1 and the realizations

in εt on the entire conditional distribution of yt and therefore to analyze the values of yt

that occur with different regularities.4

The central concept of this paper is a quantile function Qyit(τ |zt−1), τ ∈ (0, 1), of a

random variable yit conditional on zt−1. For each i = 1, . . . , K, it is identified through the

following conditional quantile restriction

Pr[yit < Qyit(τ |zt−1)] = τ. (1)

Yet, the data-generating process for yt has to bear important characteristics. Namely, its

vector conditional quantile function has to allow for not only the quantile specific intercept

but also the slope effects. This way, the lagged information zt−1 and the shocks εt would

have the state-specific impact on outcomes.5 In what follows, for brevity in exposition I

use the following notation Qyt(τ) = [Qy1t(τ), . . . ,QyKt
(τ)]′.

The following definition introduces a data-generating process for the random variables

yt.
6

4The mainstream empirical literature mainly concentrated on the modeling of the conditional mean

function of yt (see Lütkepohl (2005)).
5For comparison note that the linear VAR model can only produce a quantile specific intercept.
6This general form of a data-generating process can be viewed as a multivariate generalization of the

model by Koenker and Xiao (2006). As it becomes evident later, additional modeling steps are to be taken

for the definition and identification of the structural shocks.
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Definition 1 (Random parameter VAR) Let the nonlinear vector time series process

yt be expressed as a random parameter function of past values

yt = Φ(0)t +

p∑
j=1

Φ(j)tyt−j, (2)

where for i.i.d. standard uniform random variables (uit, i = 1, . . . , K) and the unknown

real-valued function
(
Φ(j)

)
ik

(·) the elements of the parameter matrices are defined as(
Φ(j)t

)
ik

=
(
Φ(j)

)
ik

(uit). (3)

The time series process introduced in the definition 1 can incorporate various models with

parameter instabilities. For instance, for some t̃ ∈ (0, T ) and all i, k ∈ (1, . . . , K), let(
Φ(j)t

)
ik

=
(
Φ(j)

)
ik

(ui1) for t ≤ t̃ and
(
Φ(j)t

)
ik

=
(
Φ(j)

)
ik

(ui2) otherwise such that ui1 6=

ui2, the process (2) becomes a threshold VAR. Alternatively, assume uit is an exogenous

latent factor with a probabilistic transition dynamics governed by a first order Markov

chain. Then the model becomes a Markov switching VAR. In facts, the model displays

ability to accommodate vast variety of time-series dynamics. Importantly, compared to

the linear VAR models, developments in random component of the model would have

implication both on the intercept and the slope coefficients.

Yet, for relating the process (3) to a conditional quantile function (1), I impose the

following assumption.

Assumption 1 For each i ∈ (1, . . . , K), the right hand side of yit in the model (2)-(3) is

monotone increasing in the i.i.d. standard uniform random variables uit.

Suppose, Assumption 1 holds and yt follows the data-generating process in Definition 1.

Then a K × 1 vector of τ -th conditional quantile functions can be given as following

Qyt(τ) = Φ(0)(τ) +

p∑
j=1

Φ(j)(τ)yt−j, τ ∈ (0, 1), (4)

where the result is a consequence of the standard monotonic transformation Qyit(uit)(τ) =

yit(Quit(τ)) for each i = 1, 2, . . . , K. In this model coefficients are τ -dependent and there-

fore can have location, scale and shape effects on the distribution of a vector yt. Hence,

the model implied by equations (2) and (4) is a multiple time-series version of the Koenker

and Xiao (2006) model.
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For analytic purposes it is convenient to rewrite equations (2) and (4) more concisely

as following

zt = φt +Φtzt−1,

Qzt(τ) = φ(τ) +Φ(τ)zt−1,
(5)

where zt = (y′t,y
′
t−1, . . . ,y

′
t−p+1)

′, Qzt(τ) = (Q′yt(τ),yt−1
′, . . . ,yt−p+1

′)′ and parameter

matrices are given as

Φt =



Φ(1)t Φ(2)t . . . Φ(p−1)t Φ(p)t

IK O . . . O O

O IK . . . O O
...

...
. . .

...
...

O O . . . IK O


, φt =



Φ(0)t

0

0
...

0


,

Φ(τ) =



Φ(1)(τ) Φ(2)(τ) . . . Φ(p−1)(τ) Φ(p)(τ)

IK O . . . O O

O IK . . . O O
...

...
. . .

...
...

O O . . . IK O


, φ(τ) =



Φ(0)(τ)

0

0
...

0


.

The representation (5) is also known as the companion form of a VAR model. It is useful

for relating Qzt with own past realizations. In particular manipulating (5) results in the

following proposition.

Proposition 1 (Vector quantile autoregression) Suppose a K × 1 vector of random

variables yt follows the model (3)-(2) with parameters satisfying Assumption 1. Then for

a quantile τ ∈ (0, 1), the vector quantile autoregression (VQAR) is defined as follows

Qzt(τ) = φt−1(τ) +Φt−1(τ)Qzt−1(τ), (6)

where the parameters are given as

φt−1(τ) = φ(τ) +Φ(τ)φt−1 −Φ(τ)Φt−1Φ(τ)−1φ(τ)

Φt−1(τ) = Φ(τ)Φt−1Φ(τ)−1.
(7)

Proof 1 See Appendix A.1.
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Proposition 1 is one of the building blocks of this paper, since it allows for tracing the

dynamics of the shock transmission. Complication arises due to the fact that the parameters

of the model now become functions of both the parameters of the data-generating process

(2) and the parameters of the conditional quantile process (4). Therefore, behavior of the

system (4) and its functionals at large depends on the specification of underlaying data-

generating process. The following section discusses a framework for structural analysis by

bridging a gap between shocks to the series yt and its conditional quantile functions Qyt(τ).

3 Structural framework

Observed asymmetries in the most economic series could reflect events with a rare occur-

rence probability. I use probabilistic framework to define the structural shock and to assess

its impact on the conditional distribution of outcomes.

3.1 Setup of the model

I assume that yt is defined by the model (2), so that the outcomes ensure randomness

through the parameter matrices Φ(j)t, j = 0, 1, . . . , p, t ∈ Z. I view these matrices as affine

transforms of a K × 1 vector of the structural shocks ξt and detail them in the following

definition.

Definition 2 (Parameter specification) Let the model be given by 2, with the parame-

ter matrices defined as

Φ(j)t = Φ(j) + diag(εt)Φ̄(j), j = 0, 1, . . . , p,

εt ∼ i.i.d.(0K ,ΣK),
(8)

where the parameters Φ(j), Φ̄(j), j = 0, 1, . . . , p, and a positive definite matrix ΣK are un-

known.

The standard VAR is a model (8) with restrictions Φ̄(j) = OK for j = 1, 2, . . . , p. Therefore,

the slope effect of shocks is ignored without a clear reason. For instance, there is no reason

to expect that the relationship among fundamentals remain the same irrespective of the

shocks and their size. Now, estimation of the entire parameter specification (8) becomes
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necessary for constructing the impulse response functions. It cannot be done using the

ordinary least squares regression, because matrices Φ̄(j), j = 1, . . . , p do not appear in the

conditional mean specification. It cannot be directly done neither using the QR due to

inseparability of the quantiles of εt and parameters Φ̄(j)s. To overcome this challenge, later

in this section I develop the QR based iterative algorithm.

Yet an important question remains to be addressed. Namely, how the reduced-form

shocks εt relate to each other. Here I propose the common identification strategy using the

Cholesky recursive ordering.

Definition 3 (Structural shocks) Let P be a K × K non-stochastic lower triangular

matrix, ξt be a K × 1 vector of cross- and -serially independent standardized random vari-

ables with unknown distribution functions Fξi(·), i = 1, . . . , K and ut = (u1t, . . . , uKt)
′ be a

K × 1 vector of cross- and -serially independent standard uniform random variables. Then

a K × 1 vector of the reduced form shocks εt is defined as

εt = Pξt,

= PF−1(ut),
(9)

where the latter follows due to the inverse transform sampling.

The model summarized by equations (2), (8) and (9) defines the structural model, such

that every nonzero realization of a shock contained in ξt will have the location, scale and

shape effects on the conditional distribution of the outcomes yt.

As mentioned earlier, the parameters Φ̄(j), j = 1, . . . , p can be directly estimated neither

using the least squares nor the regression quantiles. However, it is still possible to calculate

them using the QR estimates. To facilitate further discussions first note that the data-

generating process (2) and (8) can be rewritten as

yt = Φ(0) +

p∑
j=1

Φ(j)yt−j + diag

(
Φ̄(0) +

p∑
j=1

Φ̄(j)yt−j

)
εt. (10)

The conditional mean (median) estimates of the outcomes yt will recover the parameters

Φj, j = 0, 1, . . . , p, whereas the conditional quantile estimates of the parameters for τ 6= 0.5

will give

Φ(j)(τ) = Φ(j) + diag(ıKF−1(τ))Φ̄(j), j = 0, 1, . . . , p, (11)
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where F(·) is an unknown distribution function. Then,

Φ̄(j) =
[
diag(ıKF−1(τ))

]−1 (
Φ(j)(τ)−Φ(j)

)
, j = 0, 1, . . . , p, (12)

and

εt =

[
diag

(
Φ̄(0) +

p∑
j=1

Φ̄(j)yt−j

)]−1(
yt −Φ(0) −

p∑
j=1

Φ(j)yt−j

)
. (13)

The following algorithm summarizes the iterative QR procedure:

(i) Estimate parameters of a conditional mean (median) and conditional quantile func-

tions of observations yt.

(ii) Assume some parametric distribution function F(·). For a quantile, τ ∈ (0, 1), τ 6=

0.5, and the estimated parameters from the step (i), recover the remaining parameters

and residuals using equations (12) and (13).

(iii) Construct the fitted values ŷt of yt using equation (10) and evaluate the criteria

1
T

∑T
t=1 ψ (ŷt − yt), where ψ (u) = |u|δ for either δ = 1 or δ = 2.

(iv) Iterate over steps (ii) and (iii) for the finite grid of quantile values τ and select one

with the lowest criteria.

Several alternative functions F(·) could be considered based on their fitting performance.7

Standard impulse response analysis quantifies the extend and duration of an impact

once fundamentals are drifted apart from the corresponding average path. In linear VARs

the impulse responses at the shocks with different magnitudes differ only with a scale factor.

Instead, in practice we observe that the probability at which a particular event happens

matters. For example, the real economic activity decline due to a rarely observed stock

market crush is important to analyze because these type of events have the long-lasting

and devastating economy-wide effects.

To illustrate the modeling philosophy consider a following scenario. Suppose at time t,

one of the variables yit reaches its historically low level indexed by the probability τ , i.e

7Note that one could also impose the cross-quantile restriction (11) and evaluate simultaneously over

the grid set of quantiles. However, this approach is computationally cumbersome and inflexible compared

to one considered in this paper.

9



yit = Qyit(τ) such that Pr (yit < Qyit(τ)) = τ. Then, due to the dependence (9) remaining

fundamentals yj\i,t will arrive at their new values implied by the tail event. This generates

a hypothetical environment which is different from the one expected if none of such events

would have happened. This difference constitutes our main interest, since it is fundamental

for understanding implications of a variable yit across its different states.

The following definition formalizes the foregone discussion.

Definition 4 (Quantile shock) Let yt be defined by equations (2), (8) and (9) and Fξi(·)

be an empirical distribution function of ξt. The quantile shock is defined as

ξit = F−1ξi (τ), τ ∈ (0, 1). (14)

The value of yt following the quantile shock yt is referred to as the structural conditional

quantile function

SQyt(τ) =

p∑
j=0

(
Φ(j) + diag

(
P ı̃KF−1(τ)

)
Φ̄(j)

)
yt−j (15)

where ı̃K is a K × 1 vector with one as i-th element and zeros elsewhere and P is given

the definition 3.

The quantile shock to ξit sets the value of yit to its conditional quantile function Qyit(τ),

whereas other elements in SQyt(τ) will be implied by the dependence structure P .

4 Impulse response functions

I introduce the quantile impulse response functions (QIRFs) based on the notion of the

quantile shocks as introduced in the definition 4. The following definition formalizes the

concept of the QIRFs for the conditional vector quantile process in the equation (4).

Definition 5 (QIRFs) Let the results of Proposition 1 hold. Then, for the information set

It−1 ≡ (yt−1,yt−1, . . . ) and the definitions 3 and 4, the quantile impulse response functions

are given as

∆Qzt+h
(τ) = E

[
Qzt+h

(τ)|ξit = F−1ξi (τ), It−1
]
− E

[
Qzt+h

(τ)|It−1
]
, (16)

where h ≥ 1 is the horizon of an impact and Fξi(·) is an empirical distribution function.
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There are several important properties of the QIRFs to be highlighted. The QIRFs can

be interpreted as the difference between the expected conditional quantile function and its

counterfactual under the quantile shock scenario. Since, using the methodology developed

in this paper the counterfactual distribution can be easily constructed for any other scenario

such are the simultaneous or sequential multiple quantile shocks for various stress testing

exercises.

I impose the standard stability condition.

Assumption 2 Eigenvalues of the matrix Φ̃(τ) = EΦt(τ) are less than one in absolute

value.

The following theorem establishes the main results of the paper.

Theorem 1 (Functional form of QIRFs) Suppose Assumptions 1 and 2 hold. Then,

for the model implied by Proposition 1, the QIRFs introduced in Definition 5 can be ex-

pressed as

∆Qzt+h
(τ) = Φ̄(τ)h−1

([
φ̃(τ)− φ̄(τ)

]
+
[
Φ̃(τ)− Φ̄(τ)

]
Qzt(τ)

)
, h = 1, 2, . . . ,

(17)

where φ̃(τ) ≡ E[φt(τ)|ξit = F−1ξi
(τ), It−1], Φ̃(τ) ≡ E[Φt(τ)|ξit = F−1ξi

(τ), It−1], Φ̄(τ) ≡

E[Φt(τ)|It−1] and φ̄(τ) ≡ E[φt(τ)|It−1].

Proof 2 See Appendix A.2.

Suppose the parameters
{
Φ̂(j),

ˆ̄Φ(j), Φ̂(j)(τ)
}p
j=0

, P̂ and the vector of quantile functions

Q̂zt(τ) are available. Then, estimates of the QIRFs can be given as the upper K × 1 block

of the following vector

∆̂Qzt+h
(τ) = ˆ̄Φ(τ)h−1

([
ˆ̃φ(τ)− ˆ̄φ(τ)

]
+
[

ˆ̃Φ(τ)− ˆ̄Φ(τ)
]
Q̂zt(τ)

)
, h = 1, 2, . . . ,

(18)

with the parameter matrices defined as

ˆ̄Φ(τ) = Φ̂(τ)Φ̂Φ̂(τ)−1

ˆ̃Φ(τ) = Φ̂(τ) ˆ̃ΦΦ̂(τ)−1

ˆ̄φ(τ) = φ̂(τ) + Φ̂(τ)φ̂− Φ̂(τ)Φ̂Φ̂(τ)−1φ̂(τ)

ˆ̃φ(τ) = φ̂(τ) + Φ̂(τ) ˆ̃φ− Φ̂(τ) ˆ̃ΦΦ̂(τ)−1φ̂(τ),

(19)
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where

Φ̂ =



Φ̂(1) Φ̂(2) . . . Φ̂(p−1) Φ̂(p)

IK O . . . O O

O IK . . . O O
...

...
. . .

...
...

O O . . . IK O


, φ̂ =



Φ̂(0)

0

0
...

0


,

Φ̂(τ) =



Φ̂(1)(τ) Φ̂(2)(τ) . . . Φ̂(p−1)(τ) Φ̂(p)(τ)

IK O . . . O O

O IK . . . O O
...

...
. . .

...
...

O O . . . IK O


, φ̂(τ) =



Φ̂(0)(τ)

0

0
...

0


.

Furthermore, let ı̃K be K × 1 vector with one as ith element and with zeros elsewhere and

let the expected values of the time-varying parameters conditional on shock be defined as

ˆ̃Φ(j) = Φ̂(j) + diag(P̂ ı̃KF−1(τ)) ˆ̄Φ(j), j = 0, 1, . . . , p. (20)

Then the remaining components of the QIRFs can be given as

ˆ̃Φ =



ˆ̃Φ(1)
ˆ̃Φ(2) . . . ˆ̃Φ(p−1)

ˆ̃Φ(p)

IK O . . . O O

O IK . . . O O
...

...
. . .

...
...

O O . . . IK O


, ˆ̃φ =



ˆ̃Φ(0)

0

0
...

0


.

Due to its popularity, the VAR model with constant parameters is of particular interest. I

establish the following corollary to give QIRFs for those type of models.

Corollary 1 (VAR with constant parameters) Consider the following linear param-

eter model with Gaussian innovations

yt = Φ(0)t +
∑p

j=1Φ(j)yt−j, (21)

where Φ(0)t = Φ(0) + εt, εt ∼ i.i.d.(0,Σ) and suppose the relationship (9) holds. Then

the QIRFs can be given as

∆Qzt+h
(τ) = Φh−1

(
φ̃(τ)− φ̄(τ)

)
, h = 1, 2, . . . .

12



where ı̃K is a vector with one as i-th element and zeros elsewhere, φ̃(τ) ≡ E[φt(τ)|ξit =

F−1ξi
(τ), It−1] and φ̄(τ) ≡ E[φt(τ)|It−1].

There are several findings worth to mention. First, note that this model does not make

quantile regression operational, since the parameter matrices Φ and P can be estimated

using least squares regression. Now let for some F−1ξi (τ) = 1 for some τ ∈ (0, 1), then

the impulse responses will take familiar form from the linear regression literature. Second,

if the data-generating process (2) is not supported by the data then these two impulse

response functions must not be statistically different from each other. I use this fact for

evaluating the specification of the underlying data.

5 Estimation and inference

This section contains estimation and theoretical results of the paper, necessary for the

QIRF analysis. In particular, for ease of inference, I discuss the bootstrap algorithm for

construction of confidence bands.

First note that, for i = 1, . . . , K, estimates of the parameters satisfy the following

equations{(
Φ̂(j)

)
i·

}p
j=0

= arg min
{(Φ(j))i·}

p

j=0
∈RKp+1

T∑
t=1

∣∣∣∣∣yit − (Φ(0)

)
i· +

p∑
j=1

(
Φ(j)

)
i· yt−j

∣∣∣∣∣ , (22)

and{(
Φ̂(j)(τ)

)
i·

}p
j=0

= arg min
{(Φ(j)(τ))i·}

p

j=0
∈RK(p+1)

T∑
t=1

ρτ

(
yit −

(
Φ(0)(τ)

)
i· +

p∑
j=1

(
Φ(j)(τ)

)
i· yt−j

)
,

(23)

where ρτ (u) = u (τ − I(u < 0)) is the asymmetric loss function by Koenker and Bassett

(1978).8

Algorithm in the section 3 can be applied to estimate the sequence of parameter matrices{
ˆ̄Φ(j)

}p
j=0

, the vector of residuals ε̂t and its empirical covariance function Σ̂ with P̂ as the

8Note that the sequence of parameter vectors
{(
Φ̂(j)

)
i·

}p

j=0
for i = 1, . . . ,K can also be estimated using

ordinary least squares regession. However, the median regression outcome (22) has various advantages over

the least squares approach including robustness to outlines.

13



lower Cholesky factor. Then, the QIRFs can be constructed by following the discussion in

Section (4).

Now let θ̂ = vec
[
Φ̂(0), . . . , Φ̂(p),

ˆ̄Φ(0), . . . ,
ˆ̄Φ(p), Φ̂(0)(τ), . . . , Φ̂(p)(τ), Σ̂

]
be the vector of

parameter estimates. Following arguments of Koenker and Xiao (2006) and Section 6 in

Newey and McFadden (1994) it is straightforward to conclude that as T →∞ the vector of

parameters satisfy
√
T
(
θ̂ − θ

)
∼ N (0,Ωθ) , whereΩθ is an asymptotic covariance matrix.

Then, using results by Serfling (1980, p.122) the QIRFs satisfy
√
T
(
∆̂Qzt+h

(τ)−∆Qzt+h
(τ)
)
∼

N
(
0,∇θ′∆Qzt+h

(τ)Ωθ∇θ∆Qzt+h
(τ)′
)
. The limiting result can be characterized either an-

alytically or approximated numerically. However, this turns out to be a challenging task.

Therefore, for ease of inference as well as for reliable small sample performance I propose

the following standard bootstrap algorithm.

Algorithm 1 (Bootstrap for QIRFs) (i) First, obtain estimates of the model parame-

ters and residuals (ε̂t)
T
t=1 using equations (22) and (23) and the algorithm in the section

3, then construct ∆̂Qzt+h
(τ) for some τ ∈ (0, 1) and h ≥ 1 as discussed in Section 4. (ii)

Generate bootstrap sample
(
ε̂
(b)
t

)T
t=1

by randomly drawing without replacement from (ε̂t)
T
t=1

and conditionally on (y′p,y
′
p−1, . . . ,y

′
1)
′ recursively construct time series

(
y
(b)
t

)T
t=1

using

equation (10). (iii) Reestimate the model and calculate bootstrap estimates of the QIRFs

∆̂
(b)
Qzt+h

(τ). (iv) Repeat steps (ii) - (iii) for a sufficiently large number of times and con-

struct bootstrap estimates of the asymptotic covariance matrix using empirical covariance

of the bootstrap sample ∆̂
(1)
Qzt+h

(τ), . . . , ∆̂
(B)
Qzt+h

(τ).9

Algorithm (1) can be used to construct functional hypothesis test on the QIRFs.

6 Finite Sample Assessments

Although the estimation approach considered in the previous section is fairly intuitive, I

run the series of Monte Carlo specifications to asses validity of the estimation approach.

9Bootstrap technique has been widely applied in quantile regression framework previously, e.g., Hahn

(1995, 1997).
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6.1 Simulation Design

For brevity in demonstration I consider a bivariate setting. Throughout this exercise the

following coefficient matrices are considered:

Φ(0) =

 0.2

0.2

 ,Φ(1) =

 0.7 0.2

0.1 0.55

 ,
Φ̄(0) =

 0.2

0.2

 , Φ̄(1) =

 0.2 0.1

0.05 0.3

 ,Σ =

 1 ρ

ρ 1

 ,
where ρ = 0.9. Data is generated recursively using the process (10) where the vector εt is

assumed to follow standardized Student’s t and Chi-squared distributions with 3 degress

of freedom. I set T = (250, 550, 1050) while discarding first 50 observations and carry 1000

replications, computing the empirical mean and variance of the QIRFs as well as its true

values.

[Include Figures 1 and 2 around here.]

6.2 Results

As a first experiment, I generate time series of yt characterized by asymmetries in the tail

behavior as shown in Figures 1 and 2. Several results require comments. Asymmetries

depicted in the data relative to the symmetric normal distribution are mirrored in the

QIRFs. In particular the quantile shocks at τ = 0.9 has higher impact on the right tail

whereas its left tail counterpart at τ = 0.1. As we move closer to the median the data gets

closer to the normal distribution and the QIRFs become more symmetric as show in Figure

2. This supports the thesis that asymmetries in some macroeconomic data could be well

explained by shocks that occur with different probabilities.

[Include Figures 3 to 10 around here.]

The finite sample property of estimates are reported in Figures 3-6 for Student’s t dis-

tributed data and Figures 7-10 for Chi-Squared distributed data. The true QIRFs are

taken as an average over the number of simulated samples. For the estimation Algorithm

1, I use standard normal distribution function as a true one. The estimation results are

15



represented as an empirical mean as well as two standard deviation confidence bands ap-

proximated by the ratio of the empirical to the standard normal interquartile ranges. There

are several remarks in order. First, irrespective of the data distribution as well as sample

size estimates of the QIRFs fall close to the true counterparts. Second, the empirical two

standard deviation bands get narrower with the sample size.

7 Conclusions

Gaining a uniform view on covariate effects is in the heart of empirical analysis. In this

paper, I have proposed a method that allows understanding impact and a transmission of

a shock that occur with a certain regularity. Furthermore, as I argue in this paper, this

tool might be an effective design in explaining asymmetric behavior of many time-series

fundamentals and can be used as an effective tool in economic stress testing exercises.
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Appendices

A Proofs

This section contains extended discussions on the main statistical results of the paper.

A.1 Proof of Proposition 1

First note that the companion form of the model in Equation (5) can be written as

zt−1 = Φ−1t (zt − φt) ,

zt−1 = Φ(τ)−1 [Qzt(τ)− φ(τ)] ,

which results in the following equation

zt = φt +ΦtΦ(τ)−1 [Qzt(τ)− φ(τ)] . (24)

Then the result follows by plugging (24) into (5)

Qzt(τ) = φ(τ) +Φ(τ)(φt−1 +Φt−1Φ(τ)−1[Qzt−1(τ)− φ(τ)])

= [φ(τ) +Φ(τ)φt−1 −Φ(τ)Φt−1Φ(τ)−1φ(τ)] +Φ(τ)Φt−1Φ(τ)−1Qzt−1(τ)

= φt−1(τ) +Φt−1(τ)Qzt−1(τ).

A.2 Proof of the Theorem 1

Note that

Qzt+h
(τ) = φt+h−1(τ) +

h−1∑
l=2

l−1∏
j=1

Φt+h−j(τ)φt+h−l(τ) +
h−1∏
j=1

Φt+h−j(τ) [φt(τ) +Φt(τ)Qzt(τ)] .

Since the vector of random variables εt is i.i.d. the result immediately follows as

∆Qzt+h
(τ) = E

[
Qzt+h

(τ)|ξit = F−1(τ), It−1
]
− E

[
Qzt+h

|It−1
]

= Φ̄(τ)h−1
([
φ̃(τ)− φ̄(τ)

]
+
[
Φ̃(τ)− Φ̄(τ)

]
Qzt(τ)

)
, h = 1, 2, . . . ,

(25)

where φ̃(τ) ≡ E[φt(τ)|ξit = F−1(τ), It−1], Φ̃(τ) ≡ E[Φt(τ)|ξit = F−1(τ), It−1], Φ̄(τ) ≡

E[Φt(τ)|It−1] and E [φt(τ)|It−1].
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