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Abstract

We propose a new dynamic principal component CAW model (DPC-CAW) for time-series of

high-dimensional realized covariance matrices of asset returns. The model performs a spectral

decomposition of the scale matrix of a central Wishart distribution and assumes independent

dynamics for the principal components' variances and the eigenvector processes. A three-step

estimation procedure makes the model applicable to high-dimensional covariance matrices. We

analyze the �nite sample properties of the estimation approach and provide an empirical applica-

tion to realized covariance matrices for 100 assets. The DPC-CAW model has particularly good

forecasting properties and outperforms its competitors for realized covariance matrices.
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1 Introduction

The modeling and forecasting of covariance matrices of asset returns is central to �nancial decision

making since it provides a measurement of the risk involved in di�erent investment allocations. It is

speci�cally used in option pricing, risk management and portfolio allocation.

Traditionally multivariate GARCH (MGARCH) or multivariate stochastic volatility (MSV) mod-

els have been applied in order to estimate conditional covariance matrices from daily asset return

vectors (see e.g. Bauwens et al., 2006, and Asai et al., 2006, for surveys). Nowadays the increas-

ing availability of intraday asset return information enables the computation of consistent ex-post

measures of daily (co)variation of asset prices, so-called realized (co)variances (see e.g. Andersen et

al., 2003, and Barndor�-Nielsen and Shephard, 2004). These realized measures can then be modeled

directly in order to obtain forecasts of the covariance matrix of asset returns. The literature pro-

vides broad evidence that models for realized covariance matrices provide more precise forecasts then

MGARCH and MSV models (see e.g. Golosnoy et al., 2012, and the references therein). Pioneering

approaches are found in Gourieroux et al. (2009), Chiriac and Voev (2011), Bauer and Vorkink

(2011), Noureldin et al. (2012) and Golosnoy et al. (2012).

The existing models have in common that applications to high-dimensional covariance matrices

are complicated if not impossible and the empirical applications therefore do not exceed the 10-

dimensional case. Realistic portfolios however typically consist of hundreds of assets which makes

high-dimensional covariance matrix forecasting an important �eld of research. The development of

models for high-dimensional applications is challenging, since the dimension of the object of interest is

proportional to the square of the number of assets. This results in a huge number of model parameters

and renders one-step maximum likelihood (ML) estimation virtually impossible (the so-called curse

of dimensionality). An important task is therefore the development of multivariate volatility models

which allow for feasible estimation approaches for high-dimensional applications.

Contributions on high-dimensional realized covariance modeling are sparse. Recently Bauwens et

al. (2012) proposed the Realized DCC (Re-DCC) CAW model (see also Bauwens et al., 2014, and

Bauwens et al., 2016, for applications and extensions), which resembles the DCC GARCH idea of

Engle (2002) under the Conditional Autoregressive Wishart (CAW) setting of Golosnoy et al. (2012)
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for realized covariance matrices. The model is applicable in high-dimensional settings via employing

a three-step estimation procedure with correlation targeting, similar to the corresponding MGARCH

model. Bauwens et al. (2012) provide an empirical application for 50 assets.

While the DCC idea builds on decomposing the conditional covariance matrix in variances and

correlations, which are then estimated independently, an alternative strand of literature constructs

orthogonal components via a spectral decomposition (SD) of the covariance matrix. The most promi-

nent model here is the orthogonal GARCH (OGARCH) model of Alexander and Chibumba (1997)

and Alexander (2001), where the estimation output can be readily interpreted in terms of (condi-

tional) principal component analysis. Aielli and Caporin (2015) introduce additional �exibility via

allowing for dynamic loading matrices. The resulting model is then called Dynamic Principal Com-

ponent (DPC) GARCH model. Similar to the DCC approach, the framework assumes the presence

of an auxiliary process generating orthonormal dynamic eigenvectors and allows for three-step esti-

mation in order to be applicable in high-dimensional settings (the authors provide an application for

up to 30 assets). This �exibility does not come without a cost: similar to the three-step approach for

�tting DCC GARCH models, also the DPC three-step estimator su�ers from inconsistency problems

which are due to model misspeci�cation and inconsistent targeting within the estimation steps.

In this paper we adapt the DPC-GARCH model of Aielli and Caporin (2015) to the modeling of

high-dimensional realized covariance matrices. The model structure ist based on the CAW framework

of Golosnoy et al. (2012) assuming a conditional central Wishart distribution for the realized co-

variance matrix. This particular distributional assumption allows for a convenient Quasi Maximum

Likelihood (QML) interpretation implying consistency of one-step estimation even if the Wishart

assumption is violated. We focus on high-dimensional applications and present a scalar version of

the resulting DPC-CAW model and its estimation via a three-step approach similar to Aielli and

Caporin (2015). This focus builds on the common motivation of the DCC- and the DPC approaches:

the simpli�cation of parameter estimation in large-dimensional environments. The three-step ap-

proach su�ers from similar inconsistency problems as the DCC GARCH, the Re-DCC CAW and the

DPC-GARCH model. We therefore conduct an extensive simulation experiment which shows that bi-

ases are present but mainly concern the unconditional variances of lower order principal components
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which are of minor relevance for covariance forecasting. An out-of-sample forecasting experiment for

100-dimensional realized covariance matrices �nally shows that the DPC-CAW model has very good

forecasting properties and outperforms its competitors including the Re-DCC approach of Bauwens

et al. (2012). This �nding is explained by the fact that the DPC model assumes independent variance

dynamics for the component variances rather than the return variances. The results show that the

DPC modeling approach induces more �exible covariance and correlation dynamics compared to the

DCC model, which directly restricts the dynamics of the correlation process rather than the loading

process.

The rest of the paper is organized as follows. In section 2 we brie�y review the concept of realized

covariance measures. Section 3 introduces the scalar DPC-CAW model including one-step and three-

step ML estimation. Section 4 presents the results of a simulation experiment analyzing the bias and

consistency of estimates obtained via the three-step approach. The empirical application to realized

covariance matrices for 100 NYSE traded stocks including in-sample diagnostics and an extensive

out-of-sample forecasting experiment is presented in Section 5. Section 6 concludes.

2 Realized Covariance Measures

Consider an n-dimensional vector of log-prices y(τ), where τ ∈ R+ represents continuous time.

Assume that y(τ) is a Brownian stochastic semimartingale with (n × n) spot covariance matrix

Θ(τ). Without loss of generality restricting the trading day to the unit interval we obtain the 'true'

integrated covariance matrix at day t as Σt =
∫ t
t−1 Θ(τ) dτ .

Now assume that we observe m+ 1 uniformly spaced intraday log-prices. Then the j'th intraday

return vector on day t (t = 1, . . . , T ) is given by

rj,t = y
(
(t− 1) + j/m

)
− y
(
(t− 1) + (j − 1)/m

)
, j = 1, . . . ,m, t = 1, . . . , T. (1)

Let the (n × n) matrix Rt denote a realized measure, i.e. a nonparametric ex-post estimate of Σt

exploiting high-frequency asset return information. A well-known example for Rt is the realized
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covariance matrix, which is de�ned as

RCt =

m∑
j=1

rj,tr
′
j,t. (2)

In the absence of market microstructure noise and discontinuous price jumps it can be shown that

RCt is a consistent estimator of Σt as m → ∞ (see Barndor�-Nielsen and Shephard, 2004). If the

observed intraday price data contains microstructure noise, jumps or non-synchronous trading one

can employ one of several alternatives to the realized covariance matrix, such as the multivariate

realized kernel of Barndor�-Nielsen et al. (2011).

3 The DPC-CAW Model

We model the time-evolution of n-dimensional stochastic positive-de�nite realized covariance mea-

sures {Rt}Tt=1. Given the �ltration Ft−1 = {Rt−1, Rt−2, . . . }, Rt is assumed to follow a central

Wishart distribution

Rt|Ft−1 ∼ Wn(ν, St/ν), (3)

where ν > n is the scalar degree of freedom, and St/ν denotes the symmetric, positive de�nite n×n

scale matrix, such that

E[Rt|Ft−1] = St. (4)

We now adapt the covariance dynamics of the DPC-GARCH model of Aielli and Caporin (2015) to

the direct modeling of realized covariance measures. Let

St = LtDtL
′
t (5)

denote the SD of the conditional mean ofRt, where the diagonal elements ofDt = diag(d1,t, d2,t, . . . , dn,t)

are the eigenvalues of St and the columns of Lt are the associated orthonormal eigenvectors. We are

interested in building a forecasting model for Rt where both the eigenvalues and the eigenvectors

are allowed to vary persistently over time and which allows for convenient sequential estimation in
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high-dimensional applications.

3.1 Eigenvector Driving Process

In order to obtain time-varying orthonormal eigenvectors Lt, we introduce a matrix-variate auxiliary

process from which the loadings are obtained via computing the conditional SD. The auxiliary process

is de�ned as a scalar BEKK recursion for realized covariance measures. Let

Qt = (1− a− b)S + aRt−1 + bQt−1, (6)

Qt = LtGtL
′
t. (7)

The scalars a and b and the intercept matrix S are parameters to be estimated.

We consider model (6)-(7) as the true data generating process (DGP) for the loading matrices.

Note that we may generalize the scalar dynamics of Eq. (6) to full BEKK dynamics (see Aielli and

Caporin, 2015, and Noureldin et al., 2014, for details). However, estimation of such a 'complete model'

in high-dimensional settings is practically impossible since the number of autoregressive parameters

is of order O(n2). We therefore restrict the model to feasible scalar dynamics similar to the popular

DCC-GARCH approach.

The spectral decomposition in Eq. (7) is not uniquely identi�ed. Following Aielli and Caporin

(2015) we therefore impose on all spectral decompositions within the model except Eq. (5)

Assumption 1. The eigenvalues in a spectral decomposition are arranged in strictly decreasing order.

The sign of each eigenvector is still unidenti�ed. However within the model the eigenvector matrix

appears only in quadratic form. Hence there is no need for imposing a sign restriction. The implicit

assumption that the eigenvalues of Qt are distinct holds almost surely and is thus mild.

In order to ensure that Qt is always positive de�nite we furthermore impose

Assumption 2. 0 ≤ a, 0 ≤ b, a+ b < 1 ; S and Q0 are positive de�nite.

We require an additional constraint on S in order to ensure a unique sequence of loadings. To

see this intuitively, multiply Eq. (6) by some positive constant c. Given the data {Rt}Tt=1 and
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provided assumption 2 still holds, this would produce the same eigenvector matrix series {Lt}Tt=1.
1

Identi�cation can be ensured by restricting the magnitude of the intercept matrix S. This is done

implicitly in Assumption 3 of the eigenvalue driving process to be presented below.

3.2 Eigenvalue Driving Process

We employ n independent GARCH-type recursions in order to capture the dynamics of the diagonal

elements of Dt in Eq. (5). Let

di,t = (1− αi − βi)γi + αi gi,t−1 + βi di,t−1, (8)

where gi,t = e′iL
′
tRtLtei with ei being an n×1 vector of zeros with a 1 at the i'th position. That is, gi,t

is the i'th diagonal element of the random matrix L′tRtLt. Generalizations of model (8) obtained by

increasing the lag order or e.g. including HAR-type dynamics (see Corsi, 2009) are straightforward

to implement.

Note that

E[L′tRtLt|Ft−1] = L′tE[Rt|Ft−1]Lt = L′tLtDtL
′
tLt = Dt, (9)

such that

E[gi,t|Ft−1] = E[e′iL
′
tRtLtei|Ft−1] = e′iE[L′tRtLt|Ft−1] ei = e′iDtei = di,t. (10)

Under the usual stationarity condition we then obtain

E[di,t] = γi. (11)

We now employ the SD of the intercept matrix S = LDL′, where D = diag({di}ni=1), and set

γi = di, i = 1, . . . , n. (12)

1Note that cQt = cLtGtL
′
t = LtcGtL

′
t = LtG̃tL

′
t.
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That is {di}ni=1 are the eigenvalues of the intercept matrix in the eigenvector driving recursion (see

Eq. 6). The following assumption formalizes this idea and imposes stationarity conditions.

Assumption 3. γi = di, 0 ≤ αi, 0 ≤ βi, αi + βi < 1, 0 < di,0 ∀i.

Since all parameters are restricted to be positive this assumption also ensures that di,t is always

positive and consequently St is always positive de�nite.

The targeting-like constraint of setting γi = di solves the problem of identifying a unique Qt

sequence since it implicitly imposes

tr(E[Rt]) = tr(S), (13)

thus restricting the magnitude of the intercept matrix S. To see this consider

E[Rt] = E[E[Rt|Ft−1]] = E[St], (14)

such that together with the trace property tr(ABC) = tr(CAB) = tr(BCA) and orthonormality of

Lt and L it holds that

tr(E[Rt]) = E[tr(St)] = E[tr(LtDtL
′
t)] = E[tr(DtL

′
tLt)] = E[tr(Dt)]

= tr(D) = tr(DL′L) = tr(LDL′) = tr(S).

(15)

While this is not the only way to achieve identi�cation of the eigenvector driving process it does entail

an appealing interpretation of the model. Speci�cally if a = b = 0, the eigenvector driving process

collapses to the constant matrix Qt = S, such that Lt = L. The resulting speci�cation resembles the

popular orthogonal GARCH model of Alexander and Chibumba (1997) and Alexander (2001), such

that the DPC-CAW is regarded as being a dynamic generalization of the OGARCH to the modeling

of realized covariance measures.

Recall that according to Assumption 1 the diagonal elements of D are arranged in decreasing

order, which implies that

E[d1,t] > E[d2,t] > . . . > E[dn,t]. (16)

This however does not imply that individual elements of dt themselves are arranged in decreasing
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order, since the random variables gi,t are not bounded above. A situation where di,t < di−1,t happens

particularly often in high dimensional applications where the elements of d are close to each other.

The conditional Wishart assumption for Rt in Eq. (3) results in a conditional Gamma distribution

for gi,t. Consider the following theorem of Rao (1965):

Theorem 1. If an n × n random matrix R has a central Wishart distribution with ν degrees of

freedom and scale matrix S, that is R ∼Wn(S, ν), and X is a q × n matrix of rank q, then:

XRX ′ ∼Wq(ν,XSX
′).

SetX = e′iL
′
t, where ei is de�ned as above, S = St/ν and R = Rt to obtainXRX

′ = e′iL
′
tRtLtei = gi,t

and XSX ′ =′ e′iL
′
t
St
ν Ltei = 1

ν e
′
iL
′
tLtDtL

′
tLtei = 1

ν e
′
iDtei =

di,t
ν such that

gi,t|Ft−1 ∼W1

(
ν,
di,t
ν

)
. (17)

Since the univariate Wishart resembles the Gamma density, gi,t follows a conditional gamma distri-

bution with shape parameter ν/2 and scale parameter 2di,t/ν:

gi,t|Ft−1 ∼Gamma(ν/2, 2di,t/ν). (18)

Equations (3) - (8) together with the Assumptions 1-3 constitute the scalar DPC-CAW model.

3.3 Maximum Likelihood Estimation

3.3.1 One-Step Estimation

Low-dimensional applications (for, say, up to ten assets) allow for one-step estimation of the model

parameters θ = (vech(S)′, a, b, {αi, βi}ni=1, ν)′ of the DPC-CAW model. Estimation can then be
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carried out by maximizing the log-likelihood function

L(θ) =

T∑
t=1

[
nν

2
ln
(ν

2

)
− n(n− 1)

4
ln(π)−

n∑
i=1

ln Γ

(
ν + 1− i

2

)
+

(
ν − n− 1

2

)
ln |Rt|

−ν
2

[
ln |St(ψ)|+ tr

(
St(ψ)−1Rt

) ]]
, (19)

where ψ summarizes the parameters for the Qt and di,t recursions, such that θ = (ψ, ν)′. The

parameter ν can be treated as a nuisance parameter due to its irrelevance for the matrix forecast

(see Eq. 4). In fact the �rst order conditions for the maximization of the log-likelihood with respect

to ψ are proportional to ν. Then

ψ̂ = argmax
ψ

L∗(ψ), (20)

with

L∗(ψ) =

T∑
t=1

−1

2

[
ln |St(ψ)|+ tr

(
St(ψ)−1Rt

)]
. (21)

The score vector of observation t obtains as2

st(ψ) =
1

2

{[
(vec(Rt))

′ − (vec(St))
′] (S−1t ⊗ S−1t ) ∂vec(St)∂ψ

}
. (22)

Assuming a correctly speci�ed mean E[Rt|Ft−1] = St, st(ψ) is a martingale di�erence sequence since

E[st(ψ)|Ft−1] = 0. (23)

Consequently, as noted by Bauwens et al. (2012) and Noureldin et al. (2012), under usual regularity

conditions (see e.g. Wooldridge, 1994) ψ̂ is consistent and asymptotically normal even if the Wishart

assumption is violated, provided that the conditional mean is correctly speci�ed. From the QL

2See Noureldin et al. (2012).
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function in Eq. (19) we obtain the period-t log-likelihood contribution

`∗t = −1

2

[
ln |St|+ tr

(
S−1t Rt

)]
= −1

2

[
ln
∣∣LtDtL

′
t

∣∣+ tr
(
(LtDtL

′
t)
−1Rt

)]
= −1

2

[
ln |Dt|+ tr

(
LtD

−1
t L′tRt

)]
= −1

2

[
n∑
i=1

ln (di,t) + tr
(
D−1t L′tRtLt

)]

= −1

2

n∑
i=1

[
ln (di,t) +

gi,t
di,t

]
. (24)

In contrast to other CAW speci�cations no matrix inversions are required for the calculation of the

QL function and therefore it is computed very quickly. Standard errors can be obtained by the

well known sandwich formula e.g. provided in Bollerslev and Wooldridge (1992). However, initial

investigation showed that the QL function is highly multi-modal, such that standard local gradient

based optimization algorithms fail if the realized covariance measure comprises more than a few

assets. We therefore recommend to use gradient-free methods, like MATLAB's patternsearch.

3.3.2 Three-Step Estimation

This paper focusses on high-dimensional forecasting of realized covariance measures due to its rele-

vance for practical applications. Here the curse of dimensionality precludes one-step estimation of

the DPC-CAW model. Aielli and Caporin (2015) propose a three-step estimation technique called

the DPC estimator, which can be easily adapted to the CAW framework. The procedure works as

follows:

1. Estimate S = LDL′ via Ŝ = T−1
∑T

t=1Rt;

2. Conditional on step 1. estimate (a, b)′ by �tting a scalar CAW model to the sequence of realized

covariance measures, essentially assuming Rt|Ft−1 ∼ Wn(ν,Qt/ν), where Qt is given by Eq.

(6) and S
!

= Ŝ. Recover {Q̂t}Tt=1 to calculate {ĝi,t}Tt=1 for i = 1, . . . , n;

3. Conditional on 1. and 2. estimate {αi, βi}ni=1 via univariate QML based on Eqs. (8) and (18)
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separately ∀i. The i'th log-likelihood is given by

Li(a, b) =

T∑
t=1

[
(ν/2− 1) ln(gi,t)− ln(Γ(ν/2))− (ν/2) ln(2di,t/ν)− 0.5νgi,t/di,t

]
. (25)

Analogous to theWishart, Li(a, b) features a QML interpretation given the previously estimated

{ĝi,t}Tt=1.

Steps 1 and 2 estimate the parameters of the eigenvector driving process by �tting a scalar CAW

model to the sequence of realized covariance measures directly and employing covariance targeting

in order to alleviate the curse of dimensionality. The motivation for these two estimation steps

stems from the �nding that estimated {Qt} sequences tend to show a particularly good �t to the

conditional means of the realized covariance measures. This result is illustrated in Figure 1, which

shows estimates of the individual Qt elements obtained via one-step QML estimation of the DPC-

CAW model to a 3-dimensional realized covariance subset of the data discussed in Section 4. The

Qt-dynamics closely follow the pattern of the realized (co)variance data.

Note that steps 1 and 2 result in biased and possibly inconsistent estimates of the parameters

a, b and S since the scalar CAW likelihood in step 2 is not correctly speci�ed (the matrix Qt is

not the conditional mean of Rt). Subsequently, conditional on Steps 1 and 2 the parameters of the

eigenvalue driving processes are estimated. This last estimation step does not add to the possible

inconsistency due to the QML interpretation of the according likelihoods given in Eq. (25). Notice

that the intercept parameters γi were �xed in step 1, such that step 3 essentially corresponds to

univariate GARCH estimation with variance targeting.

The quasi-likelihood functions in step 2 and 3 are smooth, hence standard gradient based opti-

mization procedures can be applied. However, estimation of standard errors becomes complicated

due to the aforementioned misspeci�cation error (see also Aielli and Caporin, 2015).

The three-step approach is simple and intuitive but comes with the disadvantage of introducing

bias and inconsistency in parameter estimation. Section 4 analyzes the properties of obtained esti-

mates in an extensive simulation experiment. The results suggest that bias is present but acceptably

small or of reduced impact, especially given the huge dimension of the estimation problem. In ad-
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dition, the forecasting application of Section 5 shows that these issues do not negatively a�ect the

out-of-sample performance, which stays in the focus of empirical applications.

The DPC estimator enables quick estimation of high-dimensional speci�cations. 3-step estimation

of a 100-dimensional DPC-CAW speci�cation with T = 2500 takes at most 100 seconds using an

Intel Core i7 2.60 GHz processor.

4 Simulation Experiment

We conduct an extensive simulation experiment in order to assess the �nite sample properties of the

DPC estimator. Since our focus lies on high-dimensional applications the cross-sectional size is set

to n = 100.

The following parameter set up is used: The intercept matrix S = LDL′ of the Qt process is set

equal to the average realized covariance matrix of the data employed in the empirical application

of Section 5.1. We consider 9 distinct eigenvector recursion parameter set-ups, where the ARCH

parameter a is set equal to 0.025, 0.05 or 0.1 and the GARCH parameter is chosen such that the

persistence (a+ b) equals 0.9, 0.95 or 0.99.

In order to achieve some variability in the eigenvalue recursion parameters they are drawn from

uniform distributions according to

αi ∼ U(0.22, 0.3), βi|αi ∼ U(0.94− αi, 0.99− αi). (26)

Consequently the persistence parameters (αi +βi) ∈ [0.94, 0.99]. The degree of freedom parameter ν

is set to ν = 100. This parameter set up is inspired by parameter estimates obtained in the empirical

application of Section 5.1. The whole experiment covers 500 independent simulations for each of the

four time series lengths T = 1000, T = 2500, T = 5000, T = 10000 and each of the 9 parameter

constellations.

We focus on estimation steps 1 and 2 since the likelihood in estimation step 3 is correctly speci�ed

and QML-optimal conditional on steps 1 and 2.
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Estimation Step 1 Note that the symmetric 100×100 parameter matrix S comprises 5050 distinct

model parameters. We therefore restrict the analysis to the 100 eigenvalues di. These parameters

are of particular importance since they determine the level of the eigenvalue recursions in estimation

step 3. We only report results for T = 2500 since the overall �ndings are similar over the di�erent

sample sizes, though showing slightly increasing biases and decreasing dispersion of estimation errors

with increasing T indicating inconsistency.3 Figure 2 shows the mean, maximum and minimum of

percentage relative estimation errors for d̂i, 100 · (d̂i − di)/di for i = 1, . . . , 100, where the di's are

sorted in descending order. Each subplot corresponds to one of the 9 parameter settings for (a, b),

where the setting (a = 0.025, a+ b = 0.99) comes closest to our empirical �ndings of Section 5. We

observe a considerable increase in relative biases with increasing persistence (a+ b). For a+ b = 0.99

and a = 0.1 we obtain a relative bias of almost 100% for the smallest di. For a + b = 0.9 instead,

biases do not exceed 5% in absolute value. Overall, biases increase with the magnitude of the ARCH

parameter a. For a = 0.05 the largest bias is around 20% while for a = 0.1 it almost reaches 100%.

In general biases appear larger, the smaller the di. This trend is particularly obvious for the high

ARCH, high persistence parameter set (a = 0.1, (a + b) = 0.99) which, however, does not appear

to be relevant in practice (see the empirical results of Section 5). Note that the analysis is based

on relative estimation errors and the total variation of 100 assets is mainly driven by the �rst one

to three principal components, where biases are always less than 10% in absolute value. The di

estimates are given in Table 1. We observe a sharp drop from the �rst to the second eigenvalue, as

expected. The last twenty eigenvalues amount to less then 1% of the largest eigenvalue. The impact

of the observed biases therefore appears minor.

Estimation Step 2 Figure 3 reports Boxplots of relative estimation errors for a. Obtained biases

range from 2.5% to 12% in absolute value and appear minor. We observe decreasing dispersion of

estimation errors and increasing biases with increasing sample size for various parameter constella-

tions. â is upward biased for a = 0.025 and downward biased for a = 0.05 and a = 0.1. The largest

biases are obtained for (a = 0.025, (a+ b) = 0.9) and (a = 0.025, (a+ b) = 0.95), ranging from 9.8%

to 12%. The smallest biases arise for a = 0.05, ranging from -2.6% to -5%. This medium ARCH

3Results are available upon request.
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environment is close to our empirical results of Section 4.

Figure 4 depicts the distribution of relative estimation errors for b. Biases appear small with a

maximum of 4.8% in absolute value for b = 0.875 and (a + b) = 0.9. We again observe diverging

biases for increasing sample sizes.

Summarizing the results, we �nd low to moderate biases in low ARCH / low persistence envi-

ronments. In high ARCH / high persistence environments distortions occur which mainly a�ect the

eigenvalues di for i > 3. These eigenvalues are rather low in absolute value. Hence biases are not

expected to signi�cantly a�ect the forecasting performance of the DPC-CAW model.

5 Empirical Application

5.1 Data

We apply the scalar DPC-CAWmodel introduced in Section 3 in order to capture the dynamics of 100-

dimensional realized covariance measures. The data has been computed from one-minute intraday

asset returns by the microstructure-noise and jump robust multivariate realized kernel method of

Barndor�-Nielsen at al. (2011). The corresponding ticker symbols are shown in Table 2. Note that

the choice of the particular type of realized measure is not an important issue here since the model

can actually be �tted to any series of positive-de�nite realized covariance measures. The sample

period starts at January 1, 2002, and ends on December 31, 2014, covering 3271 trading days.

Figure 5 depicts exemplary time-series plots of variance and covariance series and according sample

autocorrelation functions for 4 stocks included in the data set. Descriptive statistics are provided in

Table 3. The (co)variance processes are highly persistent, skewed to the right, leptokurtic and tend

to move parallel to each other.

5.2 In-Sample Estimation Results

We start with analyzing the in-sample �t of the DPC-CAW model for various model-order settings

using the BIC information criterion. The models are estimated with the 3-step estimation approach.

We consider both, order selection for the eigenvector- and for the eigenvalue processes given in Eqs.
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(6) and (8), jointly. For the eigenvalues we restrict the chosen order to be identical across the 100

assets. The BIC is computed at the value of the true (one-step) likelihood of Eq. (19), given the 3-step

estimates. Table 4 shows the results. We �nd a clear indication for the standard (1,1) speci�cation

of the eigenvector recursion, which corresponds to the typically chosen DCC-GARCH speci�cation

for correlations. The distribution of BIC values over the various eigenvalue order-constellations is

much more even and overall results in the preferred (3,4) model. For comparison we also report the

BIC obtained for a standard HAR speci�cation of the eigenvalue dynamics (see Corsi, 2009). The

model boils down to a restricted autoregressive speci�cation of order 20. The HAR model, although

very popular in empirical applications, is not preferred in any case.

Table 5 reports a summary of the obtained estimates for the BIC-preferred (3,4)-(1,1) DPC-CAW

speci�cation. The estimated persistence for the eigenvector- and eigenvalue recursions is very high

with (a+ b) = 0.997 and a median of
∑p

`=1 αi,`+
∑q

`=1 βi,` of 0.978. This corresponds to the �ndings

in Aielli and Caporin (2015) and resembles analogous results for scalar DCC-GARCH applications

with intercept targeting.

The right panel of Figure 5 shows sample autocorrelation functions of standardized Pearson resid-

uals from the DPC-CAW(3,4)-(1,1) model for exemplary variance and covariance series of four stocks

included in the 100-dimensional data set. The results presented in the Figure are representative for

the complete set of stocks. The residuals are obtained as standardized Martingale di�erences

e∗t =
(
Cov[vech(Rt)|Ft−1]

)−1/2
vech

(
Rt − E[Rt|Ft−1]

)
=

[1

ν
Ln
(
In2 +Knn

)(
St ⊗ St

)
L′n

]−1/2
vech

(
Rt − St

)
,

where Knn denotes the commutation matrix (see e.g. Lütkepohl, 2005) and Ln denotes the elimi-

nation matrix de�ned by vech(X) = Lnvec(X). Under the null of correct model speci�cation these

residuals should be serially uncorrelated. The ACFs are depicted together with 95% Bartlett con-

�dence bands for variance and covariance series separately and illustrate the overall good �t of the

DPC-CAW approach. The model successfully reduces the serial dependence to a minimum. We

however observe some remaining predictability in the residual series: 441 of the 5050 series do not
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pass the Ljung-Box test for zero autocorrelation at the 1% level and 100 lags. The literature reports

much worse fractions for applications of much lower dimension (see e.g. the model diagnostic results

for the �exible CAW speci�cations in Golosnoy et al., 2012, for a 5-dimensional application). The di-

agnostics therefore imply a good �t to the complex dynamics of 5050 distinct variance and covariance

series. Also note that we may interpret some remaining residual predictability as 'a price to pay' for

the 3-step estimation approach which is however unavoidable for high-dimensional applications. The

residual ACFs in Figure 5 show that remaining predictability is typically found in variance residuals.

This may be related to the direct modeling of principal component variances rather than return

variances.

5.3 Out-of-Sample Forecasting

We now compare the out-of-sample 1-period ahead forecasting performance of the DPC-CAW speci-

�cation to alternative forecasting models proposed in the literature on realized covariance modeling.

We consider two out-of-sample windows: The �rst window starts at January 1, 2008, and ends on

December 31, 2011, covering the subprime crisis period. The window exhibits a particularly high

volatility level and pronounced volatility peaks. The second window covers a period of low to mod-

erate volatility from January 1, 2012, until December 31, 2014, representing normal stock market

�uctuations (see the left panel in Figure 5 for exemplary time series plots). The models are re-

estimated daily using a rolling window of the previous 1750 covariance measures, i.e. roughly 7 years

of data. New forecasts are generated based on the updated parameter estimates.4

5.3.1 Competing Models and Forecast Evaluation

The scalar Re-DCC model of Bauwens et al. (2012) represents the 'natural' competitor for the DPC-

CAW approach. The Re-DCC model decouples correlations and variances which facilitates three-step

estimation similar to the DPC estimator (see Bauwens et al., 2012, for details). The model assumes

a conditional central Wishart distribution for the realized covariance measure and decomposes the

4Due to the computational complexity the computations were parallelized and performed using CHEOPS, a scienti�c
High Performance Computer at the Regional Computing Center of the University of Cologne (RRZK) funded by the
DFG.
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scale matrix St into

St = VtρtVt, (27)

where Vt = diag(
√
s11,t,

√
s22,t, . . . ,

√
snn,t) and ρt is the correlation matrix implied by St. We consider

GARCH(p, q) recursions for the conditional variances:

sii,t = γi +

p∑
k=1

αk,irii,t−k +

q∑
l=1

βk,isii,t−l. (28)

The correlation matrix ρt is parameterized as follows:

ρt = (1− a− b)ρ̄+ aPt−1 + bρt−1, (29)

where Pt is the realized correlation matrix

Pt = {diag(Rt)}−1/2Rt{diag(Rt)}−1/2. (30)

ρ̄ is estimated by the sample mean of realized correlation measures (�correlation targeting�).

We also consider a constant conditional correlation CAW (CCC-CAW) model since it represents

a restricted Re-DCC speci�cation where a = b = 0. In a similar fashion we restrict the DPC-CAW

model to a = b = 0 in order to obtain the CAW-analogue to the OGARCH model (O-CAW). The set

of competing models is completed by the DPC −CAW0f model which is obtained by restricting the

eigenvalue dynamics of the DPC-CAW model to αi = α and βi = β ∀i = 1, . . . , n. This particular

model restriction turned out to be favorable in forecasting applications.

We furthermore analyze an exponentially weighted moving average (EWMA) speci�cation, called

RiskMetrics (see J.P. Morgan, 1996), which boils down to exponential smoothing of realized covari-

ance matrices using a preset smoothing parameter λ. The forecast of the realized covariance matrix

is then given by

E[Rt|Ft−1] = (1− λ)Rt−1 + λE[Rt−1|Ft−2], (31)

where λ is set to its typical value for daily data, i.e. λ = 0.94.
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The �rst two columns of Table 6 provide an overview of all considered model speci�cations. The

(p, q) column describes the number of GARCH lags in the conditional variance speci�cation (Re-DCC

and CCC-CAW) or in the eigenvalue recursion (DPC-CAW and O-CAW), respectively.

We now turn to the evaluation of the forecasting performance. Let L(X̂,X) denote the Euclidean

distance of the half-vectorization of the forecast error matrix given by

L(X̂,X) = vech(X̂ −X)′ vech(X̂ −X), (32)

where X̂ represents a particular matrix forecast and X the according realization. We apply �ve

di�erent loss functions in order to evaluate the forecasting performance of the considered models:

(i) MSE of predicted covariance matrix: L(R̂t, Rt);

(ii) MSE of predicted variances:
(
diag(R̂t −Rt)

)′ (
diag(R̂t −Rt)

)
;

(iii) MSE of predicted correlation matrix: L(ρ̂t, ρt);

(iv) Variance of predicted global minimum variance portfolio (GMVP): VGMPV,t;

(v) QLIKE: QLIKEt = ln |R̂t|+ vec
(
R̂−1t Rt

)′
ι.

The model-speci�c forecast of the covariance matrix Rt is given by R̂t = E[Rt|Ft−1] and accordingly

ρ̂t = {diag(R̂t)}−1/2R̂t{diag(R̂t)}−1/2. We use the realized kernel estimate Rt as unbiased proxy for

the true covariance matrix at period t.

Loss function (i) considers whole covariance matrix forecasts, while (ii) and (iii) focus on variances

and correlations instead. These quantities are of particular interest since DCC frameworks model

variance and correlation dynamics separately. Loss function (iv) considers economic losses via com-

puting the forecast of the variance of the GMVP given by VGMPV,t = ŵ′Rtŵ, with ŵ = R̂tι/(ι
′R̂−1t ι),

where ι is an n-dimensional vector of ones. See e.g Patton (2011) for a discussion of the properties

of the QLIKE loss function (v), which is known to be robust to noisy volatility proxies.

We compute sample averages of the obtained losses over the respective forecasting windows and

asses the signi�cance of di�erences in losses via the model con�dence set (MCS) approach of Hansen
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et al. (2011). At a given con�dence level (1 − α) the MCS contains the single model or the set

of models with the best forecasting performance. We select α = 0.1 as suggested by Hansen et

al. (2011) and compute the con�dence sets using the block bootstrap method with window lengths

determined by the maximum number of signi�cant parameters obtained by �tting an AR(p) process

on the loss di�erences and 5, 000 bootstrap replications.5

5.3.2 Forecasting Results

We start with discussing the forecasting results for the volatile market phase presented in Table 6.

The DPC-CAW speci�cations generate the lowest losses for all considered loss functions. Except

for the O-CAW model (QLIKE loss) and the CCC-CAW (variance loss) the 90% model con�dence

sets only include DPC- and Re-DCC CAW speci�cations. For the correlation loss and the economic

GMVP loss function the MCS only includes the DPC approach. The most accurate variance forecasts

are obtained for the Re-DCC model and the CCC-CAW approach with the DPC-CAW being still

part of the MCS. The results con�rm the presumption that the independent modeling of principal

component variances with time-varying loadings o�ers a more precise description of the covariance

and correlation dynamics, while the DCC- and CCC-CAW frameworks perform best in capturing pure

variance dynamics by modeling them explicitly. The economic GMVP loss results then illustrate the

importance of capturing correlation dynamics in the portfolio context. The DPC approach performs

best in forecasting the global minimum portfolio variance.

The forecasting results for the calm market phase are given in Table 7. The �ndings are rather

striking: the DPC-CAW model outperforms its competitors by a large margin and represents the

only constituent of the 90% MCS across all considered loss functions.

We conclude that the DPC-CAW approach has particularly good forecasting properties and no-

tably outperforms its Re-DCC competitors in forecasting asset return correlation and global minimum

variance portfolio weights. This �nding is of particular importance for portfolio management and is

explained by the modeling of orthogonal component variances with time-varying loadings instead of

pure scalar correlation dynamics in the DCC approach. The DPC model thereby o�ers more �exible

5We use the R package MCS of Bernardi and Catania (2015) to compute the model con�dence sets.
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correlation dynamics.

6 Conclusion

In this paper we propose a Dynamic Principal Component (DPC) CAW model for time-series of high-

dimensional realized covariance measures of asset returns. The model represents an adaption of the

DPC-GARCH model of Aielli and Caporin (2015) to the dynamics of realized covariance measures.

A three-step estimation procedure similar to the DCC framework for asset returns makes the model

applicable to high-dimensional covariance matrices.

We analyze the �nite sample properties of the 3-step estimation approach in an extensive sim-

ulation experiment and provide an empirical application to realized covariance measures for 100

assets traded at the NYSE. The DPC-CAW model has particularly good forecasting properties and

outperforms its competitors including DCC-CAW speci�cations for realized covariance measures.
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125.16 16.39 10.98 9.26 7.99 6.47 6.42 5.57 5.31 5.31
5.22 4.84 4.80 3.97 3.83 3.79 3.69 3.43 3.35 3.22
3.10 3.00 2.95 2.83 2.74 2.71 2.66 2.61 2.55 2.48
2.37 2.28 2.27 2.19 2.17 2.13 2.11 2.07 2.01 1.94
1.93 1.87 1.85 1.82 1.79 1.77 1.72 1.69 1.64 1.62
1.59 1.57 1.54 1.49 1.47 1.47 1.42 1.41 1.37 1.34
1.32 1.29 1.29 1.28 1.25 1.25 1.24 1.23 1.23 1.20
1.19 1.18 1.12 1.12 1.06 1.05 1.05 1.03 1.02 1.00
0.99 0.98 0.97 0.93 0.91 0.88 0.85 0.83 0.83 0.82
0.81 0.81 0.79 0.72 0.68 0.65 0.54 0.51 0.47 0.45

Table 1: Sorted eigenvalues obtained from Ŝ = T−1
∑T

t=1Rt for the data-set described in Section 5.
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Symbol Company Symbol Company

a Agilent Technologies Inc. gild Gilead Sciences Inc.
aa Alcoa Inc. glw Corning Incorporated
aapl Apple Inc. gps Gap, Inc.
abt Abbott Laboratories gs Goldman Sachs Group, Inc.
abx Barrick Gold Corporation hal Halliburton Company
adbe Adobe Systems Incorporated hd Home Depot, Inc.
adi Analog Devices Inc. hig Hartford Financial Services Group, Inc.
adp Automatic Data Processing hon Honeywell International Inc.
aig American International Group Inc. hpq Hewlett-Packard Company
all Allstate Corporation ibm International Business Machines Corporation
altr Altera Corporation intc Intel Corporation
amat Applied Materials Inc. intu Intuit Inc.
amd Advanced Micro Devices Inc. ip Internation Paper Company
amgn Amgen Inc. jcp J.C. Penney Company, Inc. Holding Company
amzn Amazon.com, Inc. jnj Johnson & Johnson
apc Anadarko Petroleum Corporation jnpr Juniper Networks, Inc.
axp American Express Company jpm J P Morgan Chase & Co
ba Boeing Company klac KLA-Tencor Corporation
bac Bank of America Corporation ko Cocoa-Cola Company
bax Baxter International Inc. kr Kroger Company
bbby Bed Bath & Beyond Inc. kss Kohl's Corporation
bby Best Buy Co., Inc. lb La Barge Inc.
bhi Baker Hughes Incorporated lltc Linear Technology Corporation
bmy Bristol-Myers Squibb Company lly Eli Lilly and Company
brcm Broadcom Corporation lmt Lockheed Martin Corporation
c Citigroup Inc. low Lowe's Companies, Inc.
cag ConAgra, Inc. luv Southwest Airlines Company
cah Cardinal Health Inc. mas Masco Corporation
cat Caterpillar, Inc. mcd McDonald's Corporation
cbs CBS Corporation new mdt Medtronic Inc.
cien Ciena Corporation met MetLife, Inc.
cl Colgate-Palmolive Company mmc Marsh & McLennan Companies, Inc.
cop ConocoPhillips mmm 3M Company
cost Costco Wholesale Corporation new mo Altria Group
csco Cisco Systems, Inc. mrk Merck & Company, Inc. New
ctxs Citrix Systems, Inc. ms Morgan Stanley Dean Witter & Co
cvs CVS Caremark Corp. msft Microsoft Corporation
cvx Chevron Corporation new msi Motorola Solutions, Inc.
dd E.I. du Pont de Nemours and Company mu Micron Technology, Inc.
de Deere & Company nem Newmont Mining Corporation
dis Walt Disney Company nke Nike, Inc.
dow Dow Chemical Company ntap NetApp, Inc.
duk Duke Energy Corporation new nvda NVIDIA Corporation
ea Electronic Arts Inc. orcl Oracle Corporation
ebay Ebay Inc. oxy Occidental Petroleum Corporation
emc EMC Corporation MA payx Paychex, Inc.
emr Emerson Electric Company pep Pepsico, Inc.
f Ford Motor Company DEL pfe P�zer, Inc.
�tb Fifth Third Bancorp pg Procter & Gamble Company
ge General Electric Company qcom QUALCOMM Incorporated

Table 2: Data set of 100 stocks selected by liquidity from the S&P 500.
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Mean Min. Max. Range Std. dev. Skewness Kurtosis

Realized variances (100 time series)

Min. 1.01 0.02 48.39 48.35 1.89 3.75 24.30
Median 3.29 0.10 117.00 116.88 5.04 8.90 146.03
Max. 12.51 0.35 7727.54 7727.50 151.31 43.58 2126.80

Realized covariances (4950 time series)

Min. 0.20 −126.77 14.07 14.97 0.87 −1.09 33.86
Median 1.05 −3.32 63.42 68.12 2.61 10.08 169.49
Max. 3.90 −0.02 1262.30 1282.60 25.51 38.93 1851.31

Table 3: Descriptive statistics for the 5050 realized variance and covariance time series of the 100-dimensional
data-set described in Section 5.
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Order of eigenvector process
(1,0) (1,1) (2,1) (1,2) (2,2) (3,2) (2,3) (3,3)

(1,0) -2.5515 -2.7671 -2.0818 -2.4645 -2.0505 -2.0298 -2.0460 -2.0998
(1,1) -2.6289 -2.8342 -2.1779 -2.5363 -2.1531 -2.1402 -2.1502 -2.1892
(2,1) -2.6287 -2.8340 -2.1778 -2.5361 -2.1531 -2.1404 -2.1503 -2.1890

O
rd
er

o
f
ei
ge
n
va
lu
e
p
ro
ce
ss (1,2) -2.6304 -2.8361 -2.1793 -2.5377 -2.1546 -2.1418 -2.1517 -2.1905

(2,2) -2.6303 -2.8360 -2.1793 -2.5376 -2.1546 -2.1420 -2.1518 -2.1904
(3,2) -2.6301 -2.8358 -2.1791 -2.5374 -2.1544 -2.1418 -2.1516 -2.1902
(2,3) -2.6311 -2.8371 -2.1801 -2.5384 -2.1553 -2.1428 -2.1525 -2.1911
(3,3) -2.6309 -2.8370 -2.1799 -2.5382 -2.1552 -2.1426 -2.1524 -2.1909
(4,3) -2.6308 -2.8368 -2.1798 -2.5380 -2.1550 -2.1425 -2.1522 -2.1908
(3,4) -2.6314 -2.8374 -2.1801 -2.5384 -2.1554 -2.1428 -2.1526 -2.1911
(4,4) -2.6313 -2.8372 -2.1800 -2.5383 -2.1553 -2.1427 -2.1524 -2.1910
(5,4) -2.6312 -2.8371 -2.1798 -2.5381 -2.1551 -2.1426 -2.1523 -2.1908
(4,5) -2.6313 -2.8373 -2.1800 -2.5382 -2.1553 -2.1428 -2.1525 -2.1910
(5,5) -2.6312 -2.8372 -2.1799 -2.5381 -2.1552 -2.1426 -2.1524 -2.1908
HAR -2.6280 -2.8341 -2.1773 -2.5357 -2.1525 -2.1397 -2.1497 -2.1883

Table 4: BIC information criteria for various lag-order constellations. BIC values: ×10e7. Models are
estimated using the 3-step estimation approach. The BIC is evaluated at the full (one-step) likelihood, see
Eq. (19).
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Eigenvalue Process
αi,1 αi,2 αi,3 βi,1 βi,2 βi,3 βi,4

∑p
`=1 αi,` +

∑q
`=1 βi,`

Median 0.311 0.074 0.000 0.132 0.068 0.135 0.135 0.978
Min. 0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.947
Max. 0.492 0.180 0.116 0.519 0.348 0.373 0.378 0.987

Eigenvector Process
a b a+ b

0.035 0.962 0.997

Table 5: Summary of parameter estimates obtained by the DPC estimator for the 100-dimensional data-set
described in Section 5 and the BIC selected model order (3,4)-(1,1).
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Volatile Market: 01.01.2009− 31.12.2011

Model (p,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 32289 8322 195.9 37.86 150.8
(2,2) 32036 8296 195.5 37.74 150.4
(3,3) 31943 8316 195.1 37.7 149.8

DPC-CAW0f (1,1) 32596 8511 193.5 37.76 147.0
(2,2) 32262 8466 193.2 37.67 146.7
(3,3) 32063 8450 192.9 37.65 146.2

Re-DCC-CAW (1,1) 32346 8222 229.1 39.72 201.5
(2,2) 32196 8155 228.8 39.59 200.4
(3,3) 32335 8239 228.6 39.53 199.3

O-CAW (1,1) 38834 10116 211.6 49.99 148.3
(2,2) 38626 10112 211.2 49.97 148
(3,3) 38528 10140 211 49.99 147.5

CCC-CAW (1,1) 34359 8222 273.2 41.62 225.2
(2,2) 34223 8155 273.2 41.54 224.7
(3,3) 34371 8239 273.2 41.51 223.9

EWMA 37178 9823 204.9 38.9 162.9

Table 6: Mean daily forecasting losses for the period 01.01.2009− 31.12.2011. The loss functions are de�ned
in Section 5.3.1. The smallest value is shown in bold. Grey shaded values indicate that the 90% model
con�dence set includes the respective model.
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Calm Market: 01.01.2012− 31.12.2014

Model (p,q) Cov Var Corr GMVP QLIKE
matrix ×102

DPC-CAW (1,1) 1586 540.4 226.2 15.48 73.96
(2,2) 1580 539.7 226.3 15.49 74.09
(3,3) 1578 540.1 226.4 15.48 74.32

DPC-CAW0f (1,1) 1600 542.4 225.4 15.48 66.76

(2,2) 1590 540.7 225.5 15.49 66.99
(3,3) 1585 540.2 225.4 15.48 67.05

Re-DCC-CAW (1,1) 1742 597.8 242.8 16.6 94.67
(2,2) 1732 593.3 242.7 16.59 94.37
(3,3) 1729 592.8 242.6 16.59 94.10

O-CAW (1,1) 1756 609.4 243.9 20.08 110.16
(2,2) 1750 608.2 244.2 20.08 110.43
(3,3) 1749 607.6 244.5 20.08 110.59

CCC-CAW (1,1) 1840 597.8 265.3 18.11 96.27
(2,2) 1828 593.3 265.3 18.12 96.18
(3,3) 1824 592.8 265.3 18.16 96.23

EWMA 1715 556.3 239.8 15.74 82.57

Table 7: Mean daily forecasting losses for the period 01.01.2012− 31.12.2014. The loss functions are de�ned
in Section 5.3.1. The smallest value is shown in bold. Grey shaded values indicate that the 90% model
con�dence set includes the respective model.
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Figure 1: Black line: realized variances and covariances ri,j of A (i = 1), AA (i = 2) and AAPL (i = 3); Gray
line: estimates of the individual Qt elements obtained via one-step QML estimation of the DPC-CAW model
as speci�ed in Section 3 to the according set of 3-dimensional realized covariance matrices.
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Figure 2: Black line: average relative estimation errors for di; Gray line: maximum and minimum relative
estimation errors for di. The results are obtained from the DPC estimator for the simulation experiment of
Section 3 with T = 2500. The DGP parameter values are reported at the top of the panel for a and on the
right side of the panel for (a+b). Each line comprises 100 data points, one for each di in descending order with
d1 being displayed on the left. Each data point is computed from the relative estimation errors in percent,
100 · (d̂i − di)/di.
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Figure 3: Boxplots of relative estimation errors 100 · (â − a)/a obtained from the DPC estimator for the simulation
experiment of Section 3. The DGP parameter values are reported at the top of the panel for a and on the right side
of the panel for (a+ b). The �rst boxplot in each subplot comprises results for T = 1000, the second for T = 2500, the
third for T = 5000 and the fourth for T = 10000. The black dot denotes the mean.
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Figure 4: Boxplots of relative estimation errors 100 · (b̂ − b)/b obtained from the DPC estimator for the
simulation experiment of Section 3. The DGP parameter values are reported at the top of each subplot for b
and on the right side of the panel for (a+b). The �rst boxplot in each subplot comprises results for T = 1000,
the second for T = 2500, the third for T = 5000 and the fourth for T = 10000. The black dot denotes the
mean.
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Figure 5: Realized (co)variance plots and sample autocorrelation functions (ACFs). Left panel: Sample of
realized variances and covariances ri,j of A (i = 1), AA (i = 2), AAPL (i = 3) and ABT (i = 4). Gray
shaded areas indicate the periods covered by the forecasting experiment of Section 5.3. Middle panel: Sample
ACFs of realized (co)variances together with 95% con�dence bounds under the null of zero serial correlation.
Right panel: Sample ACFs and according 95% con�dence bounds of standardized Pearson residuals obtained
from the BIC selected DPC-CAW(3,4)-(1,1) model estimated by the DPC estimator for the 100-dim. data-set
illustrated in Section 5.
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