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Abstract

In this paper, I analyze in more detail credit risk premia embedded in sovereign CDS spreads.
In particular, I explicitly take into account “default event risk premia”, which are risk premia
related to the timing of default events. These premia have been investigated in the corporate
credit risk literature, but did not receive much attention in the sovereign credit risk literature.

I propose a novel model for the term-structure of sovereign credit risk in which sovereign de-
faults can be triggered by shocks in either a common or country-specific factor. Both factors
are modeled as self-exciting processes, allowing the model to capture apparent features in
the data such as the high degree of commonality of sovereign credit risk and the clustering
of credit shocks over time and across countries.

The model allows for a natural decomposition of CDS spreads in two dimensions: First,
I can decompose CDS spreads in country-specific and systemic risk components. I find a
similar decomposition across rating classes in which approximately 65% of CDS spreads can
be attributed to country-specific risk and 35% of CDS spreads can be attributed to systemic
risk. Second, I can decompose CDS spreads into risk premia and a default risk component.
I find that the default event risk premium is heavily priced in CDS spreads and is more
important for lower credit ratings. For example, the default event risk premium accounts
on average for 22% of (5-year) CDS spreads of A-rated countries and up to 52% for B-rated
countries. In the term-structure dimension, I find that default event risk is more important
for shorter maturities.
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1. Introduction

It has been well documented that there is a high degree of commonality and contagion in

sovereign credit risk. As argued by Jarrow et al. (2005), this systemic nature of sovereign

credit risk makes it plausible that investors do not only demand a risk premium for the risk of

unexpected variations in credit spreads (hereafter referred to as the “distress risk premium”),

but also for the risk of the credit events itself (hereafter referred to as the “default event

risk premium”). Evidence for such default event risk premia has, for example, been found

in corporate bond and CDS contexts (see, e.g., Driessen, 2005, Saita, 2006, and Berndt

et al., 2008). In the sovereign credit literature, however, a detailed empirical analysis of

both distress and default event risk premia is still lacking.

The main aim of this paper is, therefore, to investigate in more detail the distress and

default event risk premia embedded in sovereign CDS data. I contribute to the literature by

introducing a new model, and corresponding estimation methodology, that is able to capture

the high degree of commonality in sovereign credit risk and clustering of large credit shocks

over time and across countries in a parsimonious way. Furthermore, the model gives rise

to a suitable decomposition of sovereign credit default swap (CDS) spreads, allowing me to

analyze the risk premia in more detail.

In particular, I propose a new model for the term-structure of sovereign credit risk and

assume that the default of a country can be triggered by either a common, systemic factor,

or by an independent country-specific factor. By modeling a common factor, I explicitly take

into account the high degree of commonality in the sovereign credit risk. The novelty of

the model is that I specify both the common and country-specific factors to be self-exciting

jump processes. In this way, the model can capture the clustering of large credit shocks over

time and across countries, apparent in the data, in a parsimonious way.

The model facilitates a multi-step estimation procedure. In a first step, I estimate the
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model parameters by a Bayesian MCMC procedure. In this step, I use data on the term-

structure of sovereign CDS spreads of 28 geographically dispersed countries with ratings

ranging from A to B over the period 01-01-2008 until 30-12-2016. Since CDS spreads only

contain information about risk-neutral default probabilities, I follow Driessen (2005) and

use historical sovereign default rates by rating class from S&P to estimate the default event

risk premium in a second step.

The first step of the estimation procedure seems to properly capture both systemic and

country-specific factors. For example, I find clear clusters of systemic shocks around the

default of Lehman Brothers and at the peak of the European sovereign debt crisis. The

default event risk premium estimate I find in the second step is in line with the corporate

credit risk literature.

Using the estimated model parameters, the model allows for a natural decomposition of

CDS spreads along two dimensions. First, I can decompose CDS spreads in country-specific

and systemic risk components. I find a similar decomposition across rating classes in which

approximately 65% of (5-year) CDS spreads can be attributed to country-specific risk and

35% of CDS spreads can be attributed to systemic risk. Second, I can decompose CDS

spreads into distress risk premia, default event risk premia, and default risk components. I

find that the distress risk premium is mainly relevant for higher rated countries, whereas

the default event risk premium and default risk component are more important for lower

credit ratings. For example, the default event risk premium accounts on average for 22%

of (5-year) CDS spreads of A-rated countries and up to 52% for B-rated countries. These

results confirm indeed that default event risk premia are heavily priced into CDS spreads

and should not be ignored.

In the term-structure dimension, I find that default event risk is more important for shorter

maturities, whereas distress risk is more important for longer maturities. This suggests that
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investors care relatively more about default events in the short-term, whereas the uncertainty

regarding future default arrival rates is more important in the long-term.

Although there is a large literature on sovereign credit risk, this paper is most closely related

to Pan and Singleton (2008), Remolona et al. (2008) Longstaff et al. (2011), Ang and

Longstaff (2013), Zinna (2013), Aı̈t-Sahalia et al. (2014), and Monfort et al. (2018). In

particular, Pan and Singleton (2008), Longstaff et al. (2011), and Zinna (2013) all consider

distress risk premia embedded in sovereign CDS spreads, and show that these have a high

level of commonality and are closely related to global and macroeconomic factors. They do,

however, not consider default event risk premia.

Ang and Longstaff (2013) do not consider risk premia, but instead propose a model structure

similar to mine, in which countries can default due to either shocks in a systemic or country-

specific factor. They use this model set-up to investigate the commonality of sovereign credit

risk in more detail, and show that there is less systemic risk in the US than in the Eurozone

and that the systemic risk component is mainly related to financial market variables. Aı̈t-

Sahalia et al. (2014) use self- and cross-exciting processes to investigate spillovers of credit

shocks across European countries. The main differences between my model set-up and

theirs is that I explicitly take into account a common factor, whereas they only allow for

commonality of sovereign credit risk in an implicit way through contagion effects. As a

consequence, the number of parameters they need to estimate grows quadratically in the

number of countries under consideration. In my model set-up, however, I only need to

estimate one common factor (and loadings to this factor) to capture commonality. As

a result, my model can be estimated on a broader cross-section of countries than theirs.

Furthermore, Aı̈t-Sahalia et al. (2014) also not take into account risk premia.

Two papers that do take into account default event risk premia in a sovereign context are

Remolona et al. (2008) and Monfort et al. (2018). Remolona et al. (2008) use credit rating

4



data to extract actual default arrival intensities, and construct a measure of expected loss

in case of default. They define the difference between the CDS spread and their expected

loss measure to be the risk premium embedded in the CDS spread and show that it can

be substantial. Since they do not use a formal pricing model, their risk premium measure

essentially captures the total risk premium component, but is not able to distinguish between

distress and default risk premia. My model, on the other hand, allows for an explicit

decomposition of CDS spreads in both distress and default risk premia allowing me to study

these separately. Monfort et al. (2018) develop a discrete-time pricing framework in which

they also explicitly allow for commonality, default event risk premia, and contagion. In one

of the applications of their framework they briefly consider sovereign credit risk and focus

on sovereign CDS data of four European countries. Although their framework is of a similar

flavour as this paper, their main focus is on the development of their pricing framework

(which is considerably different from this paper), and not on sovereign credit risk.

The remainder of this paper is structured as follows: Sections 2 and Section 3 describe the

data and model set-up, respectively. The estimation methodology and results are discussed

in 4. Section 5 considers a decomposition of CDS spreads into systemic and country-specific

risk and risk premia components, and Section 6 concludes.

2. Data

In the empirical analysis, I consider daily sovereign CDS data of 28 geographically dispersed

countries over the period 01-01-2008 until 30-12-2016.1 In particular, I consider for every

country the term-structure of CDS spreads and obtain the daily 2-, 3-, 5-, and 10-year CDS

spreads from Datastream. All CDS contracts are denominated in dollars.

1For some countries, CDS data was only available from a date later than 01-01-2008. The exact start
date of the sample for every country is reported in Table 1.
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Table 1 presents summary statistics. For every country, the average S&P credit rating is

determined by mapping prevailing credit rating grades to a numerical scale and taking the

average over the sample period. As expected, countries with higher credit ratings have, in

general, lower CDS spreads than countries with lower credit ratings. Furthermore, all coun-

tries, except Venezuela, have, on average, upwards-sloping term structures of CDS spreads.2

The standard deviations and minimum/maximum values show that there is substantial time-

series variation in the CDS spreads.

Figure 1 plots the 5-year CDS spreads grouped by average rating for all countries in our

sample and illustrates two eminent features of the data: 1) A high degree of commonality

across countries, and 2) the occurrences of clusters of large jumps in CDS spreads (see,

e.g., the distressed period 2008-2009). A principal component analysis on the correlation

matrix of the 5-year CDS levels reveals that over 60% of the daily variation in CDS levels

is explained by the first principal component. When restricting the sample period to the

distressed period 2008-2009, however, the first principal component explains over 90% of the

daily variation in CDS levels, suggesting that the commonality is larger in crisis periods.

Similar results hold when looking at a monthly frequency. Table 1 also reports the variation

of CDS spreads explained by the first principal component across different maturities within

each country. For most countries, the first principal component explains well over 90% of the

variation across different maturities. This high degree of commonality in sovereign credit

risk is not specific to our sample and has been well-documented and investigated in the

literature before (see, e.g., Longstaff et al., 2011, and Ang and Longstaff, 2013).

Apart from sovereign CDS data, I use historical sovereign default data. In particular, I use

2Augustin (2016) argues that the slope of the term structure of CDS spreads contains information on
the relative importance of global and domestic risk factors. He finds that country-specific factors influence
spreads mainly when there is a negative slope of the term structure. Indeed, throughout our sample period
Venezuela was prone to many country-specific risk factors such as high inflation and political unrest. This
is also reflected in the very large CDS spreads throughout our sample period.
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the average cumulative default rates per rating category as provided by Standard & Poor’s

(S&P). These default rates are averages of default rates of cohorts of countries that are

formed each year. More specifically, each cohort starts on a specific start date and consists

of all countries with a similar rating on that start date. The countries of each cohort are

followed from the start date onwards, and cumulative default rates are constructed. Finally,

in order to filter out time and cohort effects, the average cumulative default rates across

cohorts is taken. In the sample, I focus on countries with an average credit rating of A and

below. The reason for this is that there are no historical records of sovereign defaults for

countries with a credit rating higher than A, and as such the historical default rates are not

very informative for countries with a high credit rating.

Table 1 About Here

Figure 1 About Here

3. The model

Motivated by the apparent features of the data and recent literature on the modeling of

sovereign credit risk, I propose a semi-closed-form model for the term structure of sovereign

CDS spreads. Similar to Ang and Longstaff (2013), I assume that defaults can occur via two

channels: Both a systemic shock, affecting all sovereigns, as well as independent country-

specific factors can induce a country to default. A key distinction of my model compared

to Ang and Longstaff (2013), however, is that it departs from the diffusive setting and uses

self-exciting jump processes to model the country-specific and systemic factors (see also Aı̈t-

Sahalia et al., 2014). This feature allows the model to capture the empirical observation that

large credit shocks tend to cluster both in time as well as between countries (see Figure 1). A
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major difference between my model and Aı̈t-Sahalia et al. (2014), on the other hand, is that I

explicitly account for the commonality in sovereign credit risk by modeling a common factor.

Aı̈t-Sahalia et al. (2014) allow for commonality of sovereign credit risk in an implicit way

through contagion effects which they model as cross-exciting jumps. The main advantage

of my approach over theirs is that I only need to estimate one common factor (and loadings

to this factor) to capture commonality, whereas the number of parameters they need to

estimate grows quadratically in the number of countries under consideration. As a result,

my model can be estimated on a broader cross-section of countries than theirs. Furthermore,

Ang and Longstaff (2013) and Aı̈t-Sahalia et al. (2014) do not consider the estimation of

risk premia, which is the core focus of this paper.

Specifically, every country i, i = 1, 2, . . . , K, can be hit by country-specific shocks, Ni, or

shocks in a common, systemic factor, Nc, where the subscript c refers to “common”.3 Every

time a country is hit by a country-specific shock there is a probability γi that this country

defaults. Similarly, when a country is hit by a common shock, there is a probability of γci

of going into default. The probabilities γci are thus sovereign-specific and can be viewed as

loadings to the common factor. Since both systemic and country-specific shocks can trigger

a default event, the CDS spread of country i depends on both the systemic as well as the ith

country-specific factors (see equation (6) in Section 3.1 below). The Nj, j ∈ {c, 1, 2, . . . , K},

are independent counting processes with each an underlying shock arrival intensity process

λPj,t under the actual probability measure P, and an arrival intensity process λQj,t under

3The common factor shocks can be interpreted in two ways: The most straightforward interpretation is
that they represent exogeneous shocks hitting all countries at the same time. A slightly different interpre-
tation could be that they are not purely exogeneous shocks, but that they represent country-specific shocks
that, through instantaneous contagion, also directly affect other countries. In this second interpretation, the
shocks are thus qualitatively different from country-specific shocks that only affect the country itself. For
example, high inflation or political unrest can be viewed as country-specific shocks, not directly affecting
other countries, whereas a shock in the banking system of a certain country may directly spread to other
countries due to the interconnectedness of the financial system. In a strict sense, I could specify contagion
more directly by allowing country-specific shocks to cross-excite the default intensities of other countries.
However, the main reason I specify a common factor is exactly to avoid this, as this would blow up the
number of parameters to be estimated.
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the risk-neutral measure Q. The difference between the actual and risk-neutral intensities

constitute the risk premia related to default event risk.

In particular, assuming absence of arbitrage, it can be shown that there exists the following

relation between the default intensity processes under the actual probability measure P and

the risk-neutral measure Q (see, e.g., Jarrow et al., 2005):

λQj,t = µλPj,t, j ∈ {c, 1, 2, . . . , K}. (1)

Here µ is the risk premium associated with the (unpredictable) default event itself. More

specifically, if µ > 1 default event risk is priced as investors overestimate the (instantaneous)

probability of default under the risk-neutral measure. In principle, µ can be time-varying

and different across j, j ∈ {c, 1, 2, . . . , K}. To estimate µ, data on real-world sovereign

default probabilities (see Yu, 2002) is needed. However, since sovereign default events are

scarce, it is not feasible to construct accurate time-varying and/or country-specific estimates

of real-world default probabilities, and, therefore I assume µ to be constant over time and

the same for all country-specific and common factors.4

Jarrow et al. (2005) argue that there are in principle two reasons for why default event

risk could be priced. First, default event risk is priced when there is a positive probability

of countries defaulting at the same time (i.e., conditional on the state vectors driving the

default intensities, sovereign defaults are not independent). Second, default event risk is

priced when there are only a finite number of entities/assets, even if defaults are conditionally

independent. It is plausible that, especially in a sovereign context, both these conditions

are met, and that default event risk should be taken into account.

In addition to default event risk, captured by the difference between the default intensities

4In estimating µ I perform a robustness check and estimate µ per rating class. Except for the A-rated
countries, I find little variation across these rating-specific estimates, suggesting that this assumption is
reasonable.
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under P (λPj,t) and Q (λQj,t), another source of risk stems from the fact that the likelihood

of default changes over time. In the case that fluctuations in the intensities over time are

priced, the dynamics of λPj,t and λQj,t also differ under both measures. Risk premia related to

changes of default risk over time have been investigated in a sovereign context before (see,

e.g., Pan and Singleton, 2008, and Longstaff et al., 2011), and I refer to these risk premia

as ‘distress risk premia’. In total there are thus four configurations of probability measures

associated with the default intensity processes and their dynamics: The P- and Q-dynamics

of λPj,t, and the P- and Q-dynamics of λQj,t, j ∈ {c, 1, 2, . . . , K}.5

I assume that the P-dynamics of λQj,t are given by the following self-exciting dynamics:

dλQj,t = αP
j (λ

P
j,∞ − λ

Q
j,t)dt+ σj

√
λQj,tdW

P
j,t + ZjdNj,t, j ∈ {c, 1, 2, . . . , K}, (2)

where W P
j,t are independent P-Brownian motions and Nj,t are the independent credit shock

arrival processes with intensity processes λQj,t themselves. Every time the counting process

Nj,t jumps (i.e., a common or country-specific credit event occurs), λQj,t jumps by Zj > 0.

This again induces an increase in the probability of another jump in Nj,t, since this jump

process is driven by λQj,t. This self-exciting specification allows the model to capture the

clustering of large credit shocks in time and across countries.6

Consistent with the literature, I assume that the market prices of risk underlying the change

5Throughout this paper, the actual and risk-neutral default intensities are denoted with superscripts P
and Q, respectively. Similarly, where necessary, the parameters governing the P- and Q-dynamics are also
denoted with superscripts P and Q, respectively.

6In principle, the model can be generalized in a few ways: As mentioned above, the model could also
take into account direct spillover effects from country-specific shocks to other countries by allowing for cross-
excitation effects. In this case, one can explicitly differentiate between direct contagion effects and common
shocks. The number of parameters to be estimated would, however, be much larger and identification would
become infeasible. Therefore, I use the common component to capture both direct contagion and exogenous
shocks. Another possible generalization of the model is to allow for stochastic jump sizes Zj . The reason
I take fixed jump size parameters Zj > 0 instead of stochastic jump sizes is again that the number of
parameters to be identified and estimated (i.e., additional distribution and risk premia parameters) would
be too large.
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of measure from P to Q are dependent on the current levels of the default intensities and

are given by

ξj,t =
δj,0√
λQj,t

+ δj,1

√
λQj,t, j ∈ {c, 1, 2, . . . , K}. (3)

These market prices of risk assure that the Q-dynamics of λQj,t are of a similar form as the

P-dynamics and are given by

dλQj,t = αQ
j (λQj,∞ − λ

Q
j,t)dt+ σj

√
λQj,tdW

Q
j,t + ZjdNj,t, (4)

where αQ
j = αP

j + δj,1σj, α
Q
j λ

Q
j,∞ = αP

jλ
P
j,∞ − δj,0σj, and WQ

j,t are independent Q-Brownian

motions. Note that the difference between the P -and Q-dynamics of λQj,t stem from the

change of measure in the Brownian motions. The market price of risk parameters capture

the risk premia investors require with respect to changes in default risk.

Since λQ and λP are related through the constant parameter µ, the P- and Q-dynamics of λPj,t

are of a similar form as the P- and Q-dynamics of λQj,t. In the estimation procedure, detailed

in Section 4, I first use sovereign CDS spread data to estimate the P- and Q-dynamics of

the risk-neutral default intensity processes, λQj,t. After that, I use historical sovereign default

rates obtained from S&P to estimate the default event risk premium parameter µ.

3.1. CDS Pricing

The time t level of the CDS spread of country i with maturity M , CDSi,t(M) is determined

by equating the payoff value for the protection buyer to the payoff value for the protection

seller. I will make the standard simplifying assumption that the risk-free rate is independent

from the common and country-specific factors, and denote D(t, T ) = EQ
[
e−

∫ T
t rsds

∣∣∣Ft] =

EQ
t

[
e−

∫ T
t rsds

]
. I use US Treasury rates to construct the risk-free discount factors D(t, T ).
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Specifically, I get (see, e.g., Duffie and Singleton, 2003)

1

4
CDSi,t(M)

4M∑
j=1

D(t, t+ 0.25j)EQ
t

[
(1− γi)Ni,t+0.25j−Ni,t

]
EQ
t

[
(1− γci )Nc,t+0.25j−Nc,t

]
= (1−R)

∫ t+M

t

D(t, u)EQ
t

[(
γiλ

Q
i,u + γciλ

Q
c,u

)
(1− γi)Ni,u−Ni,t(1− γci )Nc,u−Nc,t

]
du. (5)

The left-hand side of (5) reflects the present value of the (quarterly) premium payments

that the buyer makes to the seller, contingent upon a default event not having occurred. A

default can occur either through a country-specific shock, Ni,t, or through a shock in the

common factor, Nc,t. The right-hand side of (5) reflects the present value of the payout

that the seller makes in case of default. I assume fractional recovery of face value of the

underlying bond and let R denote the constant recovery rate.7

Solving for CDSi,t(M) gives the following CDS pricing formula:

CDSi,t(M) =
(1−R)

∫ t+M
t

D(t, u)EQ
t

[(
γiλ

Q
i,u + γciλ

Q
c,u

)
(1− γi)Ni,u−Ni,t(1− γci )Nc,u−Nc,t

]
du.

1
4

∑4M
j=1D(t, t+ 0.25j)EQ

t [(1− γi)Ni,t+0.25j−Ni,t ]EQ
t [(1− γci )Nc,t+0.25j−Nc,t ]

.

(6)

The expectations appearing in (6) can be computed in closed-form (up to a system of ODEs)

by exploiting the affine structure of the model and using the framework outlined in Duffie

et al. (2000). The computations are detailed in Appendix A.

4. Estimation methodology

Similar to Driessen (2005), the model setup is such that it can be estimated in two steps. In

the first step, I estimate the model governing the risk-neutral intensities λQj,t, j ∈ {c, 1, 2, . . . , K}

using sovereign CDS data. In the second step, I estimate the default event risk premium

7Following the literature, I assume a constant recovery rate of 25% for all countries and abstract away
from recovery rate risk premia (see, e.g., Longstaff et al., 2011).
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parameter µ using S&P historical sovereign default data. The global outline and results

of the first and second steps of the estimation procedure are described in Section 4.1, and

Section 4.2, respectively.

4.1. Estimation risk-neutral intensities λQj,t

In estimating the model of the risk-neutral intensities, I use a Bayesian Markov chain Monte

Carlo (MCMC) procedure similar to Sperna Weiland et al. (2018). This procedure makes

use of the sovereign CDS spreads and provides estimates for the parameters driving the P-

and Q-dynamics of λQj,t, values of the latent risk-neutral intensity processes, and latent jump

times.

I estimate the parameters governing the common and the country-specific factors in three

steps. First, I estimate the common factor by pooling the CDS data of all countries and

ignoring the country-specific factors. In the second step, I estimate the country-specific

factors, keeping the common factor results from the first step fixed. In a third step, I re-

estimate the common factor, but now fixing the country-specific factors obtained in step

two. In this way, the estimation of the common factor explicitly takes into account the

presence of country-specific factors. I investigated whether applying more iterations of steps

two and three would lead to significant changes in the parameter estimates, but found this

not to be the case.

The main challenges in estimating the (risk-neutral intensity) model are that the intensity

processes and jump times are latent, and that, due to self-excitation, their transition densities

are not known. The key of dealing with these issues is to properly discretize and orderly

sample the intensity processes defined in (2). To see this, consider the following discretized
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version of (2):

λQj,t+1−λ
Q
j,t = αP

jλ
P
j,∞∆t+1−αP

jλ
P
j,t∆t+1 +σj

√
λQj,t∆t+1εj,t+1 +ZcNj,t+1, j ∈ {c, 1, 2, . . . , K},

(7)

where ∆t+1 is the time interval between t and t + 1 (i.e., a business day), εj,t+1 an inde-

pendent standard normal random variable, and Nj,t+1 = 1 indicates a jump arrival. The

jump counters Nj,t+1 are Bernoulli random variables with non-constant success probabilities

λQj,t∆t+1. The discretization thus assumes that at most one jump can occur in the time-

interval ∆t+1, which follows from the small-time property of self-exciting processes stating

that P [Nj,t+∆ −Nj,t > 1| Ft] = o(∆). Sperna Weiland et al. (2018) show in a Monte Carlo

study that this discretization on a daily frequency does not impose notable biases.

Using the discretization refEqn:: Discretized inensity process and denoting Xj
t = {Nj,t, λ

Q
j,t}

and Θ̄ the vector with parameters, the transition density can be decomposed as

p(Xj
t |X

j
t−1, Θ̄) = p(λQj,t|Nj,t, X

j
t−1, Θ̄)p(Nj,t|Xj

t−1, Θ̄), (8)

where p(λQj,t|Nj,t, X
j
t−1, Θ̄) is Gaussian, and p(Nj,t|Xj

t−1, Θ̄) Bernoulli with success probability

λQj,t−1∆t. That is, under the above discretization the transition density is a mixture of normal

densities, allowing me to sequentially draw Nj,t from the Bernoulli densities p(Nj,t|Xj
t−1,Θ)

and λQj,t from p(λQj,t, |Nj,t, X
j
t−1,Θ) using the newly drawn Nj,t in the conditioning informa-

tion. The discretization above thus simplifies the transition densities, which play a crucial

role in determining the posterior densities necessary for Bayesian inference. The details of

the estimation procedure are explained in Appendix B.
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4.1.1. Estimation results risk-neutral intensities

Table 2 reports the posterior means and standard deviations of the parameter estimates of

the common and country-specific risk-neutral intensities, the number of estimated jumps in

each of the factors, and the average relative pricing errors of the CDS spreads per country.

Table 2 shows that the speed-of-mean-reversion parameters governing the P-dynamics of the

intensity processes (αP
j ) are larger than the speed-of-mean-reversion parameters governing

the Q-dynamics of the intensity processes (αQ
j ) for all systemic and country-specific factors.

That is, under the risk-neutral dynamics, distressed periods are more persistent. The αP
jλ

P
j,∞

parameters, on the other hand, are all larger than the αQ
j λ

Q
j,∞ parameters. However, backing

out the implied long-term average intensity values, λPj,∞ and λQj,∞, reveals that the long-term

average intensities are higher under the Q-dynamics than under the P-dynamics for the

systemic factor and most of the country-specific factors. Only for the Dominican Republic,

Egypt, and Venezuela the opposite result holds. In principle, the slower speed-of-mean-

reversions and higher long-term average default intensities under the risk-neutral dynamics

suggest the presence of distress risk premia (i.e., risk premia related to the differences in

process dynamics under the actual and risk-neutral measures). In Section 5, I study these

risk premia in more detail.

The upper panel of Figure 2 plots the estimated systemic default risk intensities. The model

seems to capture systemic risk well. For example, the systemic risk factor was especially

large during the 2008-2009 crisis period in which the CDS spreads of all countries spiked

up. Furthermore, there is an increase in the systemic risk factor during the second half of

2011, reflecting the peak of the European sovereign debt crisis. The bottom panel of Figure

2 shows the estimated (self-exciting) jumps in the systemic risk factor.8 I find a cluster of

systemic jumps shortly after the default of Lehman Brothers. Furthermore, I find a systemic

8For both the systemic and country-specific factors, I take those days for which the estimated jump
probability is larger than 0.25 to be the jump dates.
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jump on September 22nd, 2011. On this date, global stock markets dropped over 3% and

the VIX index spiked with 11% as a result of increasing fear of investors regarding spillovers

of the European sovereign debt crisis.

To illustrate the performance of the model regarding country-specific factors, I plot in Figure

3 the model-fit of 5-year CDS spreads (upper panels), estimated country-specific intensities

(middle panels), and estimated country-specific jump probabilities of Brazil (left column)

and Russia (right column). I focus on these countries, since their model-fit is close to

the average relative pricing error of 9% over all countries. Furthermore, both Brazil and

Russia experienced country-specific distress periods during the sample period, making it

appropriate candidates to evaluate the model performance. The middle panels show that

the country-specific factors indeed seem to pick up country-specific distress. For Brazil, the

intensities spike up from 2015 onwards, coinciding with the start of an economic recession

and increased political unrest. Similarly, Russia also experienced a recession in 2015-2016

as a result of international sanctions in response to the Ukraine conflict, sharp declines in

oil prices, and strong depreciation of the currency. Again, the country-specific intensities

seem to capture this episode of distress well.

As Table 2 indicates, I find a relatively large number of jumps in some country-specific

factors, whereas in other country-specific factors I do not find evidence of any jumps. This

suggests that the self-exciting specification is not per se appropriate for some countries, and

an easier diffusive specification would suffice. However, to keep the model consistent and

comparable across countries, I take the same specification for all country-specific factors.

For those countries without any estimated jumps the jump size parameter Zi should be

interpreted with care.

Table 2 About Here
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Figure 2 About Here

Figure 3 About Here

4.2. Estimation default event risk premium parameter

In the second step, I estimate the default event risk premium parameter µ, which defines

the difference between the actual and risk-neutral default intensities (i.e., λQj,t = µλPj,t, j ∈

{c, 1, 2, . . . , K}). In principle, this parameter can be time-varying, but, given the scarcity of

historic sovereign default data, I assume it to be constant. This means that I focus on the

average risk premium on default events rather than exploring time-varying aspects of it.

In estimating µ, I follow the procedure proposed by Driessen (2005). That is, I estimate µ

by using moment conditions for the conditional default probabilities, which are defined as

the probabilities of defaulting in year t+n, conditional upon no default between time t and

t+n−1 (and the average credit rating during the sample period). These moment conditions

are given by

EP
t [Zi,t+n|Ri,t = R,Zi,t + Zi,t+1 + . . .+ Zi,t+n−1 = 0] = qn,R(µ, φ),

n = 0, . . . , 9, R = A,BBB,BB,B, (9)

where Zi,t is a variable that is equal to 1 if country i defaults in the annual time interval

[t, t+1], R is the average credit rating of the country during the sample period, and qn,R(µ, φ)

is the model-implied conditional default probability under the actual probability measure,

and φ is a parameter vector containing all other parameters of the model.

The model-implied conditional default rates can be computed explicitly. First, I note that
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the actual probability that country i defaults within the next n years, conditional upon that

no default has occurred yet, is given by

pi,n,R(t, µ, φ) = EP[Zi,t + Zi,t+1 + . . .+ Zi,t+n−1|Ri = R]

= 1− EP
t

[
(1− γi)Ni,t+n−Ni,t

]
EP
t

[
(1− γci )Nc,t+n−Nc,t

]
. (10)

Because of the affine structure of the model, expression (10) can be computed explicitly up

to a system of ODEs (see Appendix A). I average out (10) over all days in our sample period

and denote the obtained probabilities by pi,n,R(µ, φ). The yearly conditional default rates

are now given by qi,n,R(µ, φ) = 1 − (1 − pi,n+1,R(µ, φ))/(1 − pi,n,R(µ, φ)). In a last step, I

average the conditional default probabilities over all countries in a given rating category to

obtain qn,R(µ, φ).

I use average historical cumulative default rates provided by S&P to consistently estimate

the left-hand side of (9). I use the cumulative default rates up to 10 years, since the longest

maturity contract in our sample is 10 year. I convert the cumulative default probabilities

into yearly conditional default rates qDatan,R .

I now estimate µ by using the first step of the generalized method of moments and minimize

the sum of squared differences between the model-implied and observed conditional default

rates over µ, inserting the estimates for the other parameters φ̂:

min
µ

[ ∑
R=A,BBB,BB,B

9∑
n=0

(
qn,R(µ, φ̂)− qDatan,R

)2
]
. (11)

4.2.1. Estimation results default event risk premium parameter

Using the estimation procedure detailed in the previous section, I find µ̂ = 2.07. This

implies that investors multiply (instantaneous) default probabilities with a factor of over 2
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when pricing sovereign credit default swaps. The estimated value µ̂ is in line with values of

default event risk premia found previously in the literature on corporate default risk (see,

e.g., Driessen, 2005, and Berndt et al., 2008)

In Figure 4, I illustrate the effect of the risk premium parameter µ on default probabili-

ties. For every rating class, the line “Risk-neutral” depicts the risk-neutral model-implied

conditional default probabilities (i.e., using the Q-dynamics of λQ in calculating the default

probabilities). The line “µ = 1” plots the actual model-implied default probabilities, as-

suming that there is no default event risk premium (i.e., using the P-dynamics of λQ and

assuming µ = 1 in calculating the default probabilities). The difference between these lines

is completely caused by the risk premia related to changes in default risk over time (i.e.,

distress risk premia).

Next, the line “S&P historical data” presents the empirical conditional default probabilities

based on S&P historical default data. For all rating classes except A, the historical default

probabilities lie completely below the “Risk-neutral” and “µ = 1” lines, indicating that

distress risk premia can not sufficiently explain observed default rates. Finally, the line “µ =

2.07” depicts the model-implied actual default probabilities, using µ = 2.07. Taking into

account default event risk premia clearly improves the fit of historical default probabilities

for the BBB, BB and B ratings.

Figure 4 About Here

As a robustness check, I also estimate the default event risk premium parameter µ per rating

class. For the BBB, BB, and B rating classes I find µ̂ = 2.03, µ̂ = 1.59, and µ̂ = 2.12,

respectively. Hence, for all these rating classes I find µ > 1, implying a positive default event

risk premium. Furthermore, these results are reasonably close to the total estimate µ̂ = 2.07,

indicating that there is not much variation in the default event risk premium across countries
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from these rating classes. For the A rating class, however, I find µ̂ = 0.75, which indicates

that there is even a negative default event risk premium for A-rated countries. The reason

for this deviating value is that the estimated historical default rates are (relatively) very

high for A-rated countries as a result of the recent double default of Greece. Greece rated

A in 2009, and, therefore, still plays a role in some of the A-rated cohorts used by S&P

to construct the historical cumulative default rates. Since sovereign defaults are scarce,

especially for higher rated countries, one or two default events can result in substantial

upwards biases in the historical default probability estimates, thereby affecting the default

event risk premium estimate. This thus reveals that there are limitations in using historical

default rates for higher rated countries.

5. CDS spread decomposition

The differences in the parameters governing the P- and Q-dynamics of λQ and the estimated

value of the default event risk parameter µ indicate the presence of both distress and de-

fault event risk premia in sovereign CDS spreads. In this section, I explore the economic

significance of these risk premia in more detail, and decompose CDS spreads into distress

risk premia, default event risk premia, and actual default risk components.

Similar to Pan and Singleton (2008) and Longstaff et al. (2011), I quantify the magnitude of

the distress risk premium by computing the difference in CDS spreads implied by the P- and

Q-dynamics of λQj,t. The CDS spread of country i implied by the Q-dynamics of risk-neutral

intensities is given by equation (6). This CDS spread includes the market prices of risk ξc,t

and ξi,t related to the dynamics of the common and country-specific factors, respectively, and

the default event risk premium parameter µ. The CDS spread of country i implied by the

P-dynamics of the risk-neutral intensities, on the other hand, does not include these market

prices of risk (i.e., ξc,t = ξi,t = 0), and the difference between the CDS spreads computed in
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these ways thus constitutes the distress risk premium embedded in the CDS spread.

I denote the CDS spread of country i implied by the P-dynamics of the risk-neutral intensities

by CDSPQ
i,t (M). Here, the first superscript (P) refers to the probability measure governing

the dynamics of the intensity process, and the second superscript (Q) refers to the probability

measure under which we consider the intensity values (i.e., the superscript PQ denotes the

P-dynamics of λQ). The pseudo-CDS spread CDSPQ
i,t (M) can thus be computed by using

(6) and taking expectations with respect to the P-dynamics of the risk-neutral intensities

implied by (2). That is,

CDSPQ
i,t (M) =

(1−R)
∫ t+M
t

D(t, u)EPQ
t

[(
γiλ

Q
i,u + γciλ

Q
c,u

)
(1− γi)Ni,u−Ni,t(1− γci )Nc,u−Nc,t

]
du.

1
4

∑4M
j=1D(t, t+ 0.25j)EPQ

t [(1− γi)Ni,t+0.25j−Ni,t ]EPQ
t [(1− γci )Nc,t+0.25j−Nc,t ]

.

(12)

Clearly, if the market prices of risk ξc,t and ξi,t are zero, CDSi,t(M) and CDSPQ
i,t (M) are

the same, and there is no distress risk premium. If, on the other hand, ξc,t or ξi,t are non-

zero, CDSi,t(M) and CDSPQ
i,t (M) differ and the difference between the two, [CDSi,t(M)−

CDSPQ
i,t (M)], constitutes the distress risk premium. I also investigate the distress risk pre-

mium in relative terms, which is given by [CDSi,t(M)− CDSPQ
i,t (M)]/CDSi,t(M).

Both CDSi,t(M) and CDSPQ
i,t (M) still contain the default event risk premium parameter

µ, since they consider the risk-neutral common and country-specific intensities λQc,t and λQi,t,

respectively. To extract the default event risk premium, I can thus go one step further and

compute the CDS spreads implied by the P-dynamics of λPj,t, which I denote by CDSPP
i,t (M):

CDSPP
i,t (M) =

(1−R)
∫ t+M
t

D(t, u)EPP
t

[(
γiλ

P
i,u + γciλ

P
c,u

)
(1− γi)Ni,u−Ni,t(1− γci )Nc,u−Nc,t

]
du.

1
4

∑4M
j=1D(t, t+ 0.25j)EPP

t [(1− γi)Ni,t+0.25j−Ni,t ]EPP
t [(1− γci )Nc,t+0.25j−Nc,t ]

.

(13)
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CDSPP
i,t (M) thus represents the CDS spread absent of any risk premia and is a measure of

actual default risk. The difference between CDSPQ
i,t (M) and CDSPP

i,t (M), [CDSPQ
i,t (M) −

CDSPP
i,t (M)] is then the default event risk premium embedded in the CDS spread. The

relative default event risk premium is given by [CDSPQ
i,t (M)− CDSPP

i,t (M)]/CDSi,t(M).

Table 3 reports summary statistics on the average decomposition of 5-year CDS spreads,

both on the country level as well as the rating class level.9 Considering the results on the

rating class level, a few clear patterns emerge: First, I find a strong decreasing pattern in the

relative distress risk premia as the rating gets lower. For example, the distress risk premium

makes up, on average, 60.8% of CDS spreads of A-rated countries, but only 5.9% of CDS

spreads of B-rated countries. Second, I find increasing patterns in both the relative default

event risk premia and default risk components as the rating gets lower. The default event

risk premium and default risk component constitute, on average, 22.0%, and 17.2% of the

CDS spread of A-rated countries, respectively. For B-rated countries these relative weights

are 52.9%, and 41.3%, respectively. Intuitively, as a default event becomes more likely (i.e.,

countries with a lower credit rating), investors start caring relatively more about default

event risk than distress risk. Figure 5 shows the evolution of the decomposition over time

for four countries of different rating classes. In particular, I plot the decomposition for Chile

(A), Croatia (BBB), Vietnam (BB), and Lebanon (B).

Table 3 About Here

Figure 5 About Here

9The results on the rating class level are obtained by taking the average of the countries in that rating
class. Since Venezuela is quite different from the other countries under consideration, I also report the
results for B-rated countries excluding Venezuela. I find that all results stay qualitatively the same when
excluding Venezuela from the sample.
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The results discussed above focus on the decomposition of 5-year CDS spreads. Table 4,

however, reports the average relative decomposition of CDS spreads for different maturities.

Again a few interesting patterns emerge. For all countries, I find that the portion attributable

to the distress risk premium increases, whereas the portions attributable to the default event

risk premium and default risk component decrease as the maturity gets longer. This suggests

that investors mainly worry about actual default events in short-term horizons. For longer

horizons, on the other hand, investors worry more about the increasing uncertainty around

future default probabilities.

Table 4 About Here

In addition to decomposing CDS spreads in risk premia and default risk components, the

model also allows for a decomposition of CDS spreads in systemic risk and country-specific

risk components. To compute the systemic risk component, I take (6) and ignore the country-

specific part. That is,

CDS
systemic
i,t (M) =

(1−R)
∫ t+M
t

D(t, u)EQ
t

[
γciλ

Q
c,u(1− γci )Nc,u−Nc,t

]
du.

1
4

∑4M
j=1D(t, t+ 0.25j)EQ

t [(1− γci )Nc,t+0.25j−Nc,t ]
. (14)

Similarly, to compute the country-specific risk component, I take (6) and ignore the common

factor. That is,

CDS
country
i,t (M) =

(1−R)
∫ t+M
t

D(t, u)EQ
t

[
γiλ

Q
i,u(1− γi)Ni,u−Ni,t

]
du.

1
4

∑4M
j=1D(t, t+ 0.25j)EQ

t [(1− γi)Ni,t+0.25j−Ni,t ]
. (15)

Table 5 displays the results of the decomposition of 5-year CDS spreads in systemic and

country-specific risk parts. I find a relatively stable decomposition across rating classes,

where the country-specific and systemic components account for approximately 65% and
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35% of CDS spreads, respectively. Figure 6 displays the average relative decomposition of

5-year CDS spreads in the country-specific and systemic risk components for all countries.

Table 5 About Here

Figure 6 About Here

The decompositions outlined above can also be combined. In Table 6 and Figure 7 I show

the results of this two-dimensional decomposition in which I first decompose the spreads in

country-specific and systemic risk components, and then decompose both these parts in the

risk premia and default risk components. I find that the sub-decomposition of the systemic

part is very similar across rating classes: The systemic distress risk premium, systemic de-

fault event risk premium, and systemic default risk component account for roughly 20%, 9%,

and 6% of CDS spreads across rating classes. The sub-decomposition of the country-specific

component, however, differ substantially across rating classes. I find a strong decreasing

pattern in the relative importance of country-specific distress risk premia as the rating gets

lower. The country-specific default event risk premium and country-specific default risk

component, on the other hand, become relatively more important as the rating gets lower.

These results thus show that the patterns found in Table 3 are mainly due to the differences

in the country-specific components across rating classes.

Table 6 About Here

Figure 7 About Here
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6. Conclusions

In this paper, I investigate credit risk premia embedded in sovereign CDS spreads. In

particular, I consider risk premia related to unpredictable changes in future default arrival

rates (i.e., ‘distress risk premium’), and risk premia related to (the unpredictable timing of)

default events themselves (i.e., default event risk premium), which, until now, have largely

been ignored in the sovereign credit risk literature.

I propose a novel way of modeling the term-structure of sovereign credit risk and assume

that the default of a country can be triggered by either a common, systemic factor, or by

an independent country-specific factor. By modeling a common factor, I explicitly take into

account the high degree of commonality in the sovereign credit risk. The novelty of the

model is that I specify both the common and country-specific factors to be self-exciting

jump processes. In this way, the model can capture the clustering of large credit shocks over

time and across countries, apparent in the data, in a parsimonious way.

I estimate the model using sovereign CDS data and historical sovereign default rates per

rating class from S&P. The model allows for a decomposition of CDS spreads along two

dimensions. First, I can decompose CDS spreads in country-specific and systemic risk com-

ponents. I find a similar decomposition across rating classes in which approximately 65%

of (5-year) CDS spreads can be attributed to country-specific risk and 35% of CDS spreads

can be attributed to systemic risk. Second, I can decompose CDS spreads into distress risk

premia, default event risk premia, and default risk components. I find that the distress risk

premium is mainly relevant for higher rated countries, whereas the default event risk pre-

mium and default risk component are more important for lower credit ratings. These results

are mainly driven by differences in country-specific risk. In the term-structure dimension, I

find that default event risk is more important for shorter maturities, whereas distress risk

is more important for longer maturities. This suggests that investors care relatively more
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about actual default events in the short-term, whereas the uncertainty regarding future

default arrival rates is more important in the long-term.
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Appendices

Appendix A Closed-form price formulas

In this Appendix, I show how the expectations appearing in the CDS pricing formula (6)

can be computed explicitly (up to a system of ODEs).

Let Xj,t = (Nj,t, λ
Q
j,t)
′, j ∈ {c, 1, 2, . . . , K}. The dynamics of Xj,t are given by

dXj,t = d

 Nj,t

λQj,t


=

 0

αQ
j (λQj,∞ − λ

Q
j,t)

 dt+

 0 0

0 σj

√
λQj,t

 d

 0

WQ
j,t


+

 1

Zj

 dNj,t. (16)

From this specification it is clear that the process Xj,t falls into the generalized affine jump-

diffusion framework and, therefore, I can use the framework of Duffie et al. (2000) and prove

the following Propositions:

Proposition 1.

EQ [(1− γj)Nj,T ∣∣Ft] = eα(t)+β1(t)Nj,t+β2(t)λQj,t ,
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with

α̇(t) = −αQ
j λ

Q
j,∞β2(t),

α(T ) = 0,

β̇1(t) = 0,

β1(T ) = β1(s) = log(1− γj) t ≤ s ≤ T,

β̇2(t) = αQ
j β2(t)− 1

2
β2

2(t)σ2
j −

(
eβ1(t)+Zjβ2(t) − 1

)
,

β2(T ) = 0.

Proof. Consider an affine jump-diffusion process X in some state space D ⊂ Rn solving the

stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt +
m∑
i=1

dZi
t ,

where Zi are pure jump processes whose jumps have a fixed probability distribution νi on

Rn and arrive with intensity λi(Xt) for some λi : D → [0,∞). Let us fix an affine process

R : D → R. Then we have that the complete affine structure of the model is captured by:

µ(x) = K0 +K1x, for K = (K0, K1) ∈ Rn × Rn×n.

σ(x)σ(x)> = H0 +
n∑
k=1

H
(k)
1 xk, for H = (H0, H1) ∈ Rn×n × Rn×n×n.

λi(x) = li0 + li1 · x, for l = (l0, l1) ∈ R× Rn.

R(x) = ρ0 + ρ1 · x, for ρ = (ρ0, ρ1) ∈ R× Rn.

Let us furthermore denote the jump-transforms, which determine the jump-size distributions,
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as θi(c) =
∫
Rn exp (c · z) dνi(z) for c ∈ Cn. We want to compute an expression of the form

φX(u,X, t, T ) = EX
[

exp

(
−
∫ T

t

R(Xs)ds

)
eu·XT

∣∣∣∣Ft] .
According to Proposition 1 of Duffie et al. (2000), we have, under some technical assumptions

on the processes being well-behaved, that we can write

φX(u, x, t, T ) = eα(t)+β(t)·x,

where β and α satisfy the following (complex-valued) ODEs:

β̇(t) = ρ1 −K>1 β(t)− 1

2
β(t)>H1β(t)−

m∑
i=1

li1(θi(β(t))− 1)

α̇(t) = ρ0 −K0 · βt −
1

2
β(t)>H0β(t)−

m∑
i=1

li0(θi(β(t))− 1),

with boundary conditions β(T ) = u and α(T ) = 0.

Applying the situation described above to the process defined in (16), we have n = 2, m = 1,

K0 = (0, αQ
j λ

Q
j,∞)>,

K1 =

 0 0

0 −αQ
j

 ,

H0 = 0,

H1
1 =

 0 0

0 0

 , H2
1 =

 0 0

0 σ2
j


l10 = 0 and l11 = (0, 1)>. Since NQ

j,t is a counting process, and the coefficient Zj is a constant,

we have fixed jump sizes and therefore θ1(c) = exp (c1 + Zjc2). Since we want to compute

EQ
[
(1− γj)Nj,T

∣∣Ft], we have that ρ0 = 0, ρ1 = (0, 0)> and u = (log(1−γj), 0)>. The result

thus follows by applying Proposition 1 of Duffie et al. (2000).

30



Proposition 2.

EQ [γjλQj,T (1− γj)Nj,T
∣∣Ft] = eα(t)+log(1−γj)Nj,t+β2(t)λQj,t × (A(t) +B2(t)λQj,t),

with

−Ȧ(t) = αQ
j λ

Q
j,∞B2(t),

−Ḃ2(t) = −αQ
j B2(t) + β2(t)σ2

jB2(t) + (1− γj)ZjeZjβ2(t),

B2(T ) = γj,

A(T ) = 0,

and α(t) and β(t) satisfy the ODEs in the previous proposition.

Proof. Proposition 3 of Duffie et al. (2000) with

u = (log(1− γj), 0)> and v = (0, γj)
> yields the result.

Appendix B MCMC details

In this Appendix, I provide more details of the estimation methodology used to estimate

the model of the risk-neutral intensities. As explained in Section 4.1, the estimation of

the risk-neutral model is divided into three steps. Since all these steps rely on the same

MCMC procedure, I briefly explain the set-up of the first and third steps in which I keep

the country-specific factors fixed and only consider the common factor with country-specific

loadings γci to this factor. I denote the fixed country-specific parts of the model with Ψ.

That is, Ψ contains all parameters related to the country-specific factors, as well as the

country-specific jump times and intensities.10

10In the first substep, I ignore the country-specific factors, which essentially boils down to setting all
country-specific parameters and intensities equal to zero. In the third substep, I fix the country-specific
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I first denote the right-hand side of the CDS pricing formula (6) as a function F of a

vector with the common factor parameters and country-specific loadings to this factor,

Θi = {αQ
c , α

Q
c λ

Q
c,∞, σ

2
c , Zc, γ

c
i }, i = 1, . . . , K, state variables Xt = {Nc,t, λ

Q
c,t}, maturity M ,

and fixed country-specific parts. That is

CDSi,t(M) = F (Xt,Θi,M,Ψ) . (17)

Since the data does not start on the same date for all countries, I let S(t) denote the set

of CDS contracts for which I have an observation on day t, t = 1, . . . , N . I assume that the

(log) CDS spreads Yt,k, k ∈ S(t) are observed with normally distributed pricing errors, that

is

Yt,k = log (F (Xt,Θk,M,Ψ)) + ξt,k, ∀k ∈ S(t), t = 1, . . . , N, (18)

with ξt,k ∼ N (0, h2
c).

11

Let Y = {Yt,k : t = 1, . . . , N, k ∈ S(t)} denote the vector of all CDS price observations, X =

{Xt : t = 1 . . . , N} the vector with all states, and Θ̄ = {h2
c , α

Q
c , α

Q
c λ

Q
c,∞, σ

2
c , Zc, {γci }Ki=1, α

P
c , α

P
cλ

P
c,∞}

the vector with all parameters related to the common factor (i.e., both the parameters gov-

erning the P- and Q-dynamics of λQc,t). Furthermore, for notational convenience, I from now

on drop the fixed Ψ from the notation. Then the conditional density of the joint observations

can be written as

p(Y |X, Θ̄) ∝
N∏
t=1

∏
k∈S(t)

φ(Yt,k;F (Xk,t,Θk,M), h2)

=:
N∏
t=1

p(Yt|Xt,Θ),

(19)

components to the estimates found in substep two.
11For every country, the pricing formula (6) of the 2-, 3-, 5-, and 10-year maturity CDS spreads depend

on the same parameters and state variables. Therefore Θk is the same for CDS spreads of the same country
across different maturities.
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where φ(x;m, s2) denotes a normal density with mean m and variance s2 evaluated at x.

The full joint posterior density p(Y,X, Θ̄) is then given by

p(Y,X, Θ̄) ∝ p(Y |X, Θ̄)p(X|Θ̄)p(Θ̄), (20)

where p(Θ̄) is the prior for Θ̄. I choose our priors to be proper but in such a way that they

impose little information.

Using the Markovian property of the joint intensity and jump process (see Aı̈t-Sahalia et al.,

2014), I can rewrite this as a product over the observations times:

p(Y,X, Θ̄) ∝ p(Θ̄)
N∏
t=1

p(Yt|Xt, Θ̄)p(Xt|Xt−1, Θ̄), (21)

where p(Xt|Xt−1, Θ̄) is the transition density of the state process. As explained in Section

4.1, I use a discrete-time approximation of the transition densities, making it possible to

express the transition density in closed-form.

Ultimately, the goal is to sample from the joint conditional posterior density p(Θ̄, X|Ȳ ). The

reason for this is that, by Bayes theorem, p(Θ̄|Y ) ∝ p(Θ̄, X|Y ). Hence, the sample average

of Θ̄(1), Θ̄(2), . . . , Θ̄(G), ˆ̄Θ = 1
G

∑G
g=1 Θ̄(g), can be used as the estimate of Θ̄. In a similar way,

the latent jump intensities can be estimated by considering the sample averages λ
Q(g)
j,t for

all t = 1, . . . , N . To estimate the jump times, i.e., to decide whether a jump occurred at

time t, t = 1, . . . , N , I define a threshold, ω > 0, and say that a jump occurred at time t if

1
G

∑G
g=1 N

(g)
j,t > ω (see Johannes et al., 1999).

Since the joint conditional posterior density is high-dimensional and nonstandard, it is not

possible to sample from this density directly. In order to overcome these problems, I employ

a Gibbs sampler, which sequentially draws all random variables from the joint posterior

density.
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The Gibbs sampler consists of the following steps, initialized by an appropriate set of starting

values for X and Θ̄ when g = 0:

For g = 1, . . . , G, t = 1, . . . , N , simulate

1. X
(g+1)
t from p(Xt|X(g)

1:N\t
, Θ̄(g), Ȳ ), and

2. Θ̄(g+1) from p(Θ̄|X(g+1), Ȳ ),

where X1:N\t denotes the collection of state vectors Xs at all s = 1, . . . , N except at s = t.

In the sections below, I first explain the details of the steps involved in drawing the new

states, and next those of drawing the new parameters.

B.1 Metropolis Step for Simulating the States

The drawing of the state vectors requires alternating between two different sampling schemes.

This is to deal with the latency of the states, which makes it challenging for the algorithm to

initialize the drawing of jumps. For a more detailed discussion on this, I refer to Sperna Wei-

land et al. (2018).

B.1.1 State Simulation Scheme 1

In the first simulation scheme, I use that p(Xt|X(g)
1:N\t

, Θ̄(g), Ȳ ) is characterized by its full

conditionals. Therefore, the drawing of X
(g+1)
t can be split into the following two steps:

1. draw N
(g+1)
j,t from p(Nj,t|λQ(g)

j,t , X
(g)
1:N\t

, Θ̄(g), Y );

2. draw λ
Q(g+1)
j,t from p(λQj,t|N

(g+1)
j,t , X

(g)
1:N\t

, Θ̄(g), Y ).
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Under the discretization of the state transition dynamics introduced in (7), the full posterior

of Nj,t is a Bernoulli density with success probability

p(Nj,t = 1|λQ(g)
j,t , X

(g)
1:N\t

, Θ̄(g), Y ) =
p(λ

Q(g)
j,t |Nj,t = 1, X

(g+1)
t−1 , Θ̄(g))p(Nj,t = 1|X(g+1)

t−1 )∑
s=0,1 p(λ

Q(g)
j,t |Nj,t = s,X

(g+1)
t−1 , Θ̄(g))p(Nj,t = s|X(g+1)

t−1 )
.

(22)

(22) is easy to compute, since p(λ
Q(g)
j,t |Nj,t = s,X

(g+1)
t−1 , Θ̄(g)) is a normal density and

p(Nj,t = s|X(g+1)
t−1 ) a Bernoulli with success probability λ

Q(g+1)
j,t−1 ∆t. The credit jump probabil-

ity does not depend on Y , since the CDS prices only depend on the intensities and parameter

vector. Therefore, the jump probabilities are determined only by the state transition equa-

tions and not by the measurement equations. This makes it hard for the algorithm to

draw initial jumps. For this reason, I alternate between this sampling scheme and the one

explained below, which does take into account the measurement equations.

After having drawn N
(g+1)
j,t , the new intensity λ

Q(g+1)
j,t is drawn from the density

p(λQj,t|N
(g+1)
j,t , X

(g)
1:N\t

, Θ̄(g), Y ) ∝ p(Yt|λQj,t, N
(g+1)
j,t , Θ̄(g))p(λ

Q(g)
j,t+1|λ

Q
j,t, N

(g)
j,t+1, Θ̄

(g))

× p(λQj,t|λ
Q(g+1)
j,t−1 , N

(g+1)
j,t , Θ̄(g)),

which is the product of a multivariate normal density and two univariate normal densities.

This density is non-standard, and, therefore, I use a Metropolis step with proposal density

p(λQj,t|λ
Q(g+1)
j,t−1 , N

(g+1)
j,t , Θ̄(g)), which is a normal distribution with mean

λ
Q(g+1)
j,t−1 + α

P(g)
j λ

P(g)
j,∞∆t − αP(g)

j λ
Q(g+1)
j,t−1 ∆t + Z

(g)
j N

(g+1)
j,t and variance σ

2(g)
j λ

Q(g+1)
j,t−1 ∆t

Using this proposal density, the acceptance criterion becomes

min

(
p(Yt|X(g+1)

t , Θ̄(g))p(λ
Q(g)
j,t+1|N

(g)
j,t+1, X

(g+1)
t , Θ̄(g))

p(Yt|X(g)
t , Θ̄(g))p(λ

Q(g)
j,t+1|N

(g)
j,t+1, X

(g)
t , Θ̄(g))

, 1

)
.
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For the end point t = N the acceptance criterion simplifies, since the terms

p(λ
Q(g)
j,t+1|N

(g)
j,t+1, X

(g+1)
t , Θ̄(g)) and p(λ

Q(g)
j,t+1|N

(g)
j,t+1, X

(g)
t , Θ̄(g)) do not appear anymore in the nu-

merator and denominator, respectively. For the starting point t = 1, I use a slightly dif-

ferent proposal density, since I cannot condition on Xt−1. I therefore draw λ
Q(g+1)
j,1 from a

normal density with mean λ
Q(g)
j,2 and variance σ2

jλ
Q(g)
j,2 ∆2. Denoting this proposal density as

q(λ
Q(g+1)
j,1 |λQ(g)

j,2 , Θ̄) gives the following acceptance criterion:

min

(
p(Y1|X(g+1)

1 , Θ̄(g))p(λ
Q(g)
j,2 |N

(g)
j,2 , X

(g+1)
1 , Θ̄(g))q(λ

Q(g)
j,1 |λ

Q(g)
j,2 , Θ̄(g))

p(Y1|X(g)
1 , Θ̄(g))p(λ

Q(g)
j,2 |N

(g)
j,2 , X

(g)
1 , Θ̄(g))q(λ

Q(g+1)
j,1 |λQ(g)

j,2 , Θ̄(g))
, 1

)
.

B.1.2 State Simulation Scheme 2

In the second simulation scheme, instead of drawing Xt in two steps, I sample the complete

vector Xt at once from p(Xt|X1:N\t , Θ̄, Y ). Equation (21) shows that the Markovian property

of the state processes implies that I only need to consider the terms in (21) where (parts of)

Xt enters directly. This gives

p(Xt|X(g−1)
1:N\t

, Θ̄, Y ) ∝ p(Yt|Xt, Θ̄)p(Xt|X(g)
t−1, Θ̄)p(X

(g−1)
t+1 |Xt, Θ̄). (23)

In this density, both the likelihoods as well as the transition densities play a role, and,

therefore, the drawing of jumps depends on both the measurement equations as well as the

transition densities of the states. By assumption of the normally distributed error terms

p(Yt|Xt, Θ̄) is multivariate normal with dimension equal to the number of observations at

time t.

According to (8), the transition density can be written as

p(Xt|Xt−1, Θ̄) = p(λQj,t|Nj,t, Xt−1, Θ̄)p(Nj,t|Xt−1, Θ̄), (24)
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In order to draw X
(g+1)
t from (23), I use the following proposal density

q(Xt|X(g)
1:N\t

, Θ̄(g)) = p(Xt|X(g+1)
t−1 , Θ̄(g))

= p(λQj,t|Nj,t, N
l
t , X

(g+1)
t−1 , Θ̄(g))p(Nj,t|X(g+1)

t−1 , Θ̄(g)).

Under the discretization of the intensity processes, this is a mixture of normal distribu-

tions. When drawing from this distribution, one can first draw N
(g+1)
j,t from an independent

Bernoulli distribution with success probability λ
Q(g+1)
j,t−1 ∆t, and then, given the outcome, draw

p(λQj,t|N
(g+1)
j,t , X

(g+1)
t−1 ,Θ(g)) from a normal distribution with the appropriate mean (depending

on outcome of the draw of N
(g+1)
j,t ).

Using this proposal density, the acceptance criterion is as follows:

min

(
p(Yt|X(g+1)

t ,Θ(g))p(λ
Q(g)
j,t+1, N

(g)
j,t+1|X

(g+1)
t ,Θ(g))

p(Yt|X(g)
t ,Θ(g))p(λ

Q(g)
j,t+1, N

(g)
j,t+1|X

(g)
t ,Θ(g))

, 1

)
,

where p(λ
Q(g)
j,t+1, N

(g)
j,t+1|X

(g+1)
t , Θ̄(g)) = p(λ

Q(g)
j,t+1|N

c(g)
t+1 , X

(g+1)
t , Θ̄(g))×p(N (g)

j,t+1|X
(g+1)
t , Θ̄(g)). Since

all densities are standard (i.e., multivariate normal, univariate normal or bernoulli), eval-

uating this acceptance criterion is straightforward. For the end points t = 1 and t = N

similar comments apply as in simulation scheme 1.

B.2 Metropolis Step for Simulating the Parameters

Next I explain the Metropolis step for estimating the parameters Θ̄(g+1) from p(Θ̄|X(g+1), Ȳ )

in more detail.

For h2
j , j ∈ {c, 1, 2, . . . , K}, the inverse gamma distribution is a conjugate prior. This follows

from p(h2
j |Θ̄\{h2

j}, X, Y ) ∝ p(Y |Θ̄, X)p(h2
j), where p(Y |Θ̄, X) is multivariate normal with

diagonal variance matrix with h2
j as variance and p(h2

j) the prior inverse gamma density.

Explicit computations are standard and are therefore omitted.
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For the other parameters I rely on Metropolis steps. I use random-walk Metropolis steps with

Gaussian proposal densities with as mean vectors the previous draws and with a diagonal

covariance matrices. I choose the priors on all parameters to be proper but uninformative

in the sense that the prior variances should be high compared to the estimated posterior

variances. I use the following priors:

• αQ
j , αP

j , α
Q
j λ

Q
j,∞, αQ

j λ
Q
j,∞, σ2

j , Zj, j ∈ {c, 1, 2, . . . , K}: Gamma(0.02, 10)

• γi and γci , i ∈ {1, 2, . . . , K}: Uniform(0, 1)

• h2
j , j ∈ {c, 1, 2, . . . , K}: IG(3, 0.1)

In line with theoretical parameter restrictions for nonnegativity and stationarity of the

processes, I impose some parameters to be nonnegative by using gamma priors. Since γi

and γci are the probability of going into default in the case a country-specific or common

credit shock arrives, respectively, I use Uniform(0, 1) priors. In general, the means and

variances of all parameters are chosen arbitrarily, but such that the means are small and

positive for all parameters and the variances relatively large compared to their means. All-in-

all, results are robust against prior specification, since typically the likelihood contribution

of the priors is small compared to the likelihood contribution of the data in the acceptance

criteria. Furthermore, the posterior standard deviations are also much smaller than the prior

standard deviations, indicating that our priors do not impose much information.

B.3 Estimation country-specific components

In the second substep of the estimation procedure, the common factor part of the model is

fixed and the country-specific factors are estimated. In the notation of above, I now denote

the fixed common factor part of the model by Ψ, and write the right-hand side of the CDS

pricing formula (6) as a function F of a vector with the country-specific parameters Θ̄ =
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{h2
i , α

Q
i , α

Q
i λ

Q
i,∞, σ

2
i , Zi, γi, γ

c
i , α

P
i , α

P
i λ

P
i,∞}, country-specific states Xt = {Ni,t, λ

Q
i,t}, maturity

M , and fixed common component Ψ. That is,

CDSi,t(M) = F (Θ̄, Xi,t,M,Ψ). (25)

Apart from this change, the mechanics of the estimation methodology are exactly identical

to those of the first and third substeps outlined in this Appendix.
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Figure 1. 5y CDS spreads. This figure plots the 5y CDS spreads for A-rated (upper left panel), BBB-
rated (upper right panel), BB-rated (bottom left panel), and B-rated (bottom right panel) countries. Source:
Datastream.

Figure 2. Estimated common factor intensities and jump times. This figure plots the estimated
common factor intensities (upper panel) and estimated probabilities of arrivals of large systemic credit shocks
(bottom panel).
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Figure 3. Model-fit and country-specific factors. This figure illustrates the 5-year CDS spread model-
fit (upper panels), estimated country-specific intensities (middle panels), and estimated jump times (bottom
panels) for Brazil (left column) and Russia (right column).

Figure 4. Conditional default probabilities. This figure plots the conditional default probabilities for
A-rated (upper left panel), B-rated (upper right panel), BB-rated (bottom left panel), and B-rated (bottom
right panel) countries. The conditional default probability is defined as the probability of a country going
into default in period [n, n + 1] given no default has occurred before year n. The S&P historical data
line gives the historically estimated conditional default probabilities obtained using S&P data. The line
µ = 2.07 represents the model-implied actual conditional default probabilities. The line µ = 1 represents
the model-implied actual conditional default probabilities assuming absence of default event risk premia.
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Figure 5. Absolute decomposition 5-year CDS spreads over time. This figure shows the decompo-
sition of 5 year CDS spreads of Chile (upper left panel), Croatia (upper right panel), Vietnam (bottom left
panel), and Lebanon (bottom right panel) into distress risk premia, default event risk premia, and default
risk components over time.

Figure 6. Relative decomposition 5-year CDS spreads into country-specific and systemic risk
components. This figure shows the relative decomposition of 5 year CDS spreads into country-specific and
systemic risk components.

Tables
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Figure 7. Detailed relative decomposition 5-year CDS spreads. This figure shows the relative
decomposition of 5 year CDS spreads into country-specific distress risk premia, country-specific default
event risk premia, country-specific default risk,systemic distress risk premia, systemic default event risk
premia, and systemic default risk components.
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