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Abstract

In this paper, I analyze in more detail credit risk premia embedded in sovereign CDS spreads.
In particular, I explicitly take into account “default event risk premia”, which are risk premia
related to the timing of default events. These premia have been investigated in the corporate
credit risk literature, but did not receive much attention in the sovereign credit risk literature.

I propose a novel model for the term-structure of sovereign credit risk in which sovereign de-
faults can be triggered by shocks in either a common or country-specific factor. Both factors
are modeled as self-exciting processes, allowing the model to capture apparent features in
the data such as the high degree of commonality of sovereign credit risk and the clustering
of credit shocks over time and across countries.

The model allows for a natural decomposition of CDS spreads in two dimensions: First,
I can decompose CDS spreads in country-specific and systemic risk components. 1 find a
similar decomposition across rating classes in which approximately 65% of CDS spreads can
be attributed to country-specific risk and 35% of CDS spreads can be attributed to systemic
risk. Second, I can decompose CDS spreads into risk premia and a default risk component.
I find that the default event risk premium is heavily priced in CDS spreads and is more
important for lower credit ratings. For example, the default event risk premium accounts
on average for 22% of (5-year) CDS spreads of A-rated countries and up to 52% for B-rated
countries. In the term-structure dimension, I find that default event risk is more important
for shorter maturities.
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1. Introduction

It has been well documented that there is a high degree of commonality and contagion in
sovereign credit risk. As argued by Jarrow et al. (2005), this systemic nature of sovereign
credit risk makes it plausible that investors do not only demand a risk premium for the risk of
unexpected variations in credit spreads (hereafter referred to as the “distress risk premium”),
but also for the risk of the credit events itself (hereafter referred to as the “default event
risk premium”). Evidence for such default event risk premia has, for example, been found
in corporate bond and CDS contexts (see, e.g., Driessen, 2005, Saita, 2006, and Berndt
et al., 2008). In the sovereign credit literature, however, a detailed empirical analysis of

both distress and default event risk premia is still lacking.

The main aim of this paper is, therefore, to investigate in more detail the distress and
default event risk premia embedded in sovereign CDS data. I contribute to the literature by
introducing a new model, and corresponding estimation methodology, that is able to capture
the high degree of commonality in sovereign credit risk and clustering of large credit shocks
over time and across countries in a parsimonious way. Furthermore, the model gives rise
to a suitable decomposition of sovereign credit default swap (CDS) spreads, allowing me to

analyze the risk premia in more detail.

In particular, I propose a new model for the term-structure of sovereign credit risk and
assume that the default of a country can be triggered by either a common, systemic factor,
or by an independent country-specific factor. By modeling a common factor, I explicitly take
into account the high degree of commonality in the sovereign credit risk. The novelty of
the model is that I specify both the common and country-specific factors to be self-exciting
jump processes. In this way, the model can capture the clustering of large credit shocks over
time and across countries, apparent in the data, in a parsimonious way.

The model facilitates a multi-step estimation procedure. In a first step, I estimate the
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model parameters by a Bayesian MCMC procedure. In this step, I use data on the term-
structure of sovereign CDS spreads of 28 geographically dispersed countries with ratings
ranging from A to B over the period 01-01-2008 until 30-12-2016. Since CDS spreads only
contain information about risk-neutral default probabilities, I follow Driessen (2005) and
use historical sovereign default rates by rating class from S&P to estimate the default event

risk premium in a second step.

The first step of the estimation procedure seems to properly capture both systemic and
country-specific factors. For example, I find clear clusters of systemic shocks around the
default of Lehman Brothers and at the peak of the European sovereign debt crisis. The
default event risk premium estimate I find in the second step is in line with the corporate

credit risk literature.

Using the estimated model parameters, the model allows for a natural decomposition of
CDS spreads along two dimensions. First, I can decompose CDS spreads in country-specific
and systemic risk components. I find a similar decomposition across rating classes in which
approximately 65% of (5-year) CDS spreads can be attributed to country-specific risk and
35% of CDS spreads can be attributed to systemic risk. Second, I can decompose CDS
spreads into distress risk premia, default event risk premia, and default risk components. I
find that the distress risk premium is mainly relevant for higher rated countries, whereas
the default event risk premium and default risk component are more important for lower
credit ratings. For example, the default event risk premium accounts on average for 22%
of (5-year) CDS spreads of A-rated countries and up to 52% for B-rated countries. These
results confirm indeed that default event risk premia are heavily priced into CDS spreads

and should not be ignored.

In the term-structure dimension, I find that default event risk is more important for shorter

maturities, whereas distress risk is more important for longer maturities. This suggests that



investors care relatively more about default events in the short-term, whereas the uncertainty

regarding future default arrival rates is more important in the long-term.

Although there is a large literature on sovereign credit risk, this paper is most closely related
to Pan and Singleton (2008), Remolona et al. (2008) Longstaff et al. (2011), Ang and
Longstaff (2013), Zinna (2013), Ait-Sahalia et al. (2014), and Monfort et al. (2018). In
particular, Pan and Singleton (2008), Longstaff et al. (2011), and Zinna (2013) all consider
distress risk premia embedded in sovereign CDS spreads, and show that these have a high
level of commonality and are closely related to global and macroeconomic factors. They do,

however, not consider default event risk premia.

Ang and Longstaff (2013) do not consider risk premia, but instead propose a model structure
similar to mine, in which countries can default due to either shocks in a systemic or country-
specific factor. They use this model set-up to investigate the commonality of sovereign credit
risk in more detail, and show that there is less systemic risk in the US than in the Eurozone
and that the systemic risk component is mainly related to financial market variables. Aft-
Sahalia et al. (2014) use self- and cross-exciting processes to investigate spillovers of credit
shocks across European countries. The main differences between my model set-up and
theirs is that I explicitly take into account a common factor, whereas they only allow for
commonality of sovereign credit risk in an implicit way through contagion effects. As a
consequence, the number of parameters they need to estimate grows quadratically in the
number of countries under consideration. In my model set-up, however, I only need to
estimate one common factor (and loadings to this factor) to capture commonality. As
a result, my model can be estimated on a broader cross-section of countries than theirs.

Furthermore, Ait-Sahalia et al. (2014) also not take into account risk premia.

Two papers that do take into account default event risk premia in a sovereign context are

Remolona et al. (2008) and Monfort et al. (2018). Remolona et al. (2008) use credit rating
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data to extract actual default arrival intensities, and construct a measure of expected loss
in case of default. They define the difference between the CDS spread and their expected
loss measure to be the risk premium embedded in the CDS spread and show that it can
be substantial. Since they do not use a formal pricing model, their risk premium measure
essentially captures the total risk premium component, but is not able to distinguish between
distress and default risk premia. My model, on the other hand, allows for an explicit
decomposition of CDS spreads in both distress and default risk premia allowing me to study
these separately. Monfort et al. (2018) develop a discrete-time pricing framework in which
they also explicitly allow for commonality, default event risk premia, and contagion. In one
of the applications of their framework they briefly consider sovereign credit risk and focus
on sovereign CDS data of four European countries. Although their framework is of a similar
flavour as this paper, their main focus is on the development of their pricing framework

(which is considerably different from this paper), and not on sovereign credit risk.

The remainder of this paper is structured as follows: Sections 2 and Section 3 describe the
data and model set-up, respectively. The estimation methodology and results are discussed
in 4. Section 5 considers a decomposition of CDS spreads into systemic and country-specific

risk and risk premia components, and Section 6 concludes.

2. Data

In the empirical analysis, I consider daily sovereign CDS data of 28 geographically dispersed
countries over the period 01-01-2008 until 30-12-2016.> In particular, I consider for every
country the term-structure of CDS spreads and obtain the daily 2-, 3-, 5-, and 10-year CDS

spreads from Datastream. All CDS contracts are denominated in dollars.

!For some countries, CDS data was only available from a date later than 01-01-2008. The exact start
date of the sample for every country is reported in Table 1.



Table 1 presents summary statistics. For every country, the average S&P credit rating is
determined by mapping prevailing credit rating grades to a numerical scale and taking the
average over the sample period. As expected, countries with higher credit ratings have, in
general, lower CDS spreads than countries with lower credit ratings. Furthermore, all coun-
tries, except Venezuela, have, on average, upwards-sloping term structures of CDS spreads.?
The standard deviations and minimum/maximum values show that there is substantial time-

series variation in the CDS spreads.

Figure 1 plots the 5-year CDS spreads grouped by average rating for all countries in our
sample and illustrates two eminent features of the data: 1) A high degree of commonality
across countries, and 2) the occurrences of clusters of large jumps in CDS spreads (see,
e.g., the distressed period 2008-2009). A principal component analysis on the correlation
matrix of the 5-year CDS levels reveals that over 60% of the daily variation in CDS levels
is explained by the first principal component. When restricting the sample period to the
distressed period 2008-2009, however, the first principal component explains over 90% of the
daily variation in CDS levels, suggesting that the commonality is larger in crisis periods.
Similar results hold when looking at a monthly frequency. Table 1 also reports the variation
of CDS spreads explained by the first principal component across different maturities within
each country. For most countries, the first principal component explains well over 90% of the
variation across different maturities. This high degree of commonality in sovereign credit
risk is not specific to our sample and has been well-documented and investigated in the

literature before (see, e.g., Longstaff et al., 2011, and Ang and Longstaff, 2013).

Apart from sovereign CDS data, I use historical sovereign default data. In particular, I use

2Augustin (2016) argues that the slope of the term structure of CDS spreads contains information on
the relative importance of global and domestic risk factors. He finds that country-specific factors influence
spreads mainly when there is a negative slope of the term structure. Indeed, throughout our sample period
Venezuela was prone to many country-specific risk factors such as high inflation and political unrest. This
is also reflected in the very large CDS spreads throughout our sample period.
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the average cumulative default rates per rating category as provided by Standard & Poor’s
(S&P). These default rates are averages of default rates of cohorts of countries that are
formed each year. More specifically, each cohort starts on a specific start date and consists
of all countries with a similar rating on that start date. The countries of each cohort are
followed from the start date onwards, and cumulative default rates are constructed. Finally,
in order to filter out time and cohort effects, the average cumulative default rates across
cohorts is taken. In the sample, I focus on countries with an average credit rating of A and
below. The reason for this is that there are no historical records of sovereign defaults for
countries with a credit rating higher than A, and as such the historical default rates are not

very informative for countries with a high credit rating.

TABLE 1 ABOoUT HERE

FIGURE 1 ABouT HERE

3. The model

Motivated by the apparent features of the data and recent literature on the modeling of
sovereign credit risk, I propose a semi-closed-form model for the term structure of sovereign
CDS spreads. Similar to Ang and Longstaff (2013), I assume that defaults can occur via two
channels: Both a systemic shock, affecting all sovereigns, as well as independent country-
specific factors can induce a country to default. A key distinction of my model compared
to Ang and Longstaff (2013), however, is that it departs from the diffusive setting and uses
self-exciting jump processes to model the country-specific and systemic factors (see also Aft-
Sahalia et al., 2014). This feature allows the model to capture the empirical observation that

large credit shocks tend to cluster both in time as well as between countries (see Figure 1). A
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major difference between my model and Ait-Sahalia et al. (2014), on the other hand, is that I
explicitly account for the commonality in sovereign credit risk by modeling a common factor.
Aft-Sahalia et al. (2014) allow for commonality of sovereign credit risk in an implicit way
through contagion effects which they model as cross-exciting jumps. The main advantage
of my approach over theirs is that I only need to estimate one common factor (and loadings
to this factor) to capture commonality, whereas the number of parameters they need to
estimate grows quadratically in the number of countries under consideration. As a result,
my model can be estimated on a broader cross-section of countries than theirs. Furthermore,
Ang and Longstaff (2013) and Ait-Sahalia et al. (2014) do not consider the estimation of

risk premia, which is the core focus of this paper.

Specifically, every country i¢,7 = 1,2,..., K, can be hit by country-specific shocks, N;, or
shocks in a common, systemic factor, IN,, where the subscript ¢ refers to “common”.? Every
time a country is hit by a country-specific shock there is a probability 7; that this country
defaults. Similarly, when a country is hit by a common shock, there is a probability of ~¢
of going into default. The probabilities 7§ are thus sovereign-specific and can be viewed as
loadings to the common factor. Since both systemic and country-specific shocks can trigger
a default event, the CDS spread of country ¢ depends on both the systemic as well as the ith
country-specific factors (see equation (6) in Section 3.1 below). The N;,j € {¢,1,2,..., K},
are independent counting processes with each an underlying shock arrival intensity process

A?t under the actual probability measure P, and an arrival intensity process )\;th under

3The common factor shocks can be interpreted in two ways: The most straightforward interpretation is
that they represent exogeneous shocks hitting all countries at the same time. A slightly different interpre-
tation could be that they are not purely exogeneous shocks, but that they represent country-specific shocks
that, through instantaneous contagion, also directly affect other countries. In this second interpretation, the
shocks are thus qualitatively different from country-specific shocks that only affect the country itself. For
example, high inflation or political unrest can be viewed as country-specific shocks, not directly affecting
other countries, whereas a shock in the banking system of a certain country may directly spread to other
countries due to the interconnectedness of the financial system. In a strict sense, I could specify contagion
more directly by allowing country-specific shocks to cross-excite the default intensities of other countries.
However, the main reason I specify a common factor is exactly to avoid this, as this would blow up the
number of parameters to be estimated.



the risk-neutral measure Q. The difference between the actual and risk-neutral intensities

constitute the risk premia related to default event risk.

In particular, assuming absence of arbitrage, it can be shown that there exists the following
relation between the default intensity processes under the actual probability measure P and

the risk-neutral measure Q (see, e.g., Jarrow et al., 2005):
AL =X, jede 12, K} 1)

Here p is the risk premium associated with the (unpredictable) default event itself. More
specifically, if 4 > 1 default event risk is priced as investors overestimate the (instantaneous)
probability of default under the risk-neutral measure. In principle, p can be time-varying
and different across j,j € {¢,1,2,...,K}. To estimate u, data on real-world sovereign
default probabilities (see Yu, 2002) is needed. However, since sovereign default events are
scarce, it is not feasible to construct accurate time-varying and/or country-specific estimates
of real-world default probabilities, and, therefore I assume p to be constant over time and

the same for all country-specific and common factors.*

Jarrow et al. (2005) argue that there are in principle two reasons for why default event
risk could be priced. First, default event risk is priced when there is a positive probability
of countries defaulting at the same time (i.e., conditional on the state vectors driving the
default intensities, sovereign defaults are not independent). Second, default event risk is
priced when there are only a finite number of entities/assets, even if defaults are conditionally
independent. It is plausible that, especially in a sovereign context, both these conditions

are met, and that default event risk should be taken into account.

In addition to default event risk, captured by the difference between the default intensities

4In estimating u I perform a robustness check and estimate p per rating class. Except for the A-rated
countries, I find little variation across these rating-specific estimates, suggesting that this assumption is
reasonable.



under P (A7) and Q ()\%), another source of risk stems from the fact that the likelihood
of default changes over time. In the case that fluctuations in the intensities over time are
priced, the dynamics of /\% and )\% also differ under both measures. Risk premia related to
changes of default risk over time have been investigated in a sovereign context before (see,
e.g., Pan and Singleton, 2008, and Longstaff et al., 2011), and I refer to these risk premia
as ‘distress risk premia’. In total there are thus four configurations of probability measures

associated with the default intensity processes and their dynamics: The P- and Q-dynamics

of AT, and the P- and Q-dynamics of A%, j € {¢,1,2,..., K}.5

gt Jit)

I assume that the P-dynamics of /\;% are given by the following self-exciting dynamics:
dNY = ol (A7 0 = At + 0/ ALAWT, + Z;dN;, G €{c1,2,..., K}, (2)

where WJ]-}; are independent P-Brownian motions and NV;; are the independent credit shock

Qt themselves. Every time the counting process

arrival processes with intensity processes A;

Nj, jumps (i.e., a common or country-specific credit event occurs), )\;th jumps by Z; > 0.
This again induces an increase in the probability of another jump in N;,, since this jump
process is driven by )\% This self-exciting specification allows the model to capture the

clustering of large credit shocks in time and across countries.®

Consistent with the literature, I assume that the market prices of risk underlying the change

SThroughout this paper, the actual and risk-neutral default intensities are denoted with superscripts P
and Q, respectively. Similarly, where necessary, the parameters governing the P- and Q-dynamics are also
denoted with superscripts P and Q, respectively.

6In principle, the model can be generalized in a few ways: As mentioned above, the model could also
take into account direct spillover effects from country-specific shocks to other countries by allowing for cross-
excitation effects. In this case, one can explicitly differentiate between direct contagion effects and common
shocks. The number of parameters to be estimated would, however, be much larger and identification would
become infeasible. Therefore, I use the common component to capture both direct contagion and exogenous
shocks. Another possible generalization of the model is to allow for stochastic jump sizes Z;. The reason
I take fixed jump size parameters Z; > 0 instead of stochastic jump sizes is again that the number of
parameters to be identified and estimated (i.e., additional distribution and risk premia parameters) would
be too large.
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of measure from P to Q are dependent on the current levels of the default intensities and

are given by
5]70

_ /\Q ;
gj,t - \/T%+5],1 )\j,t? J € {671’27“'7[(}‘ (3)
7

These market prices of risk assure that the Q-dynamics of )\% are of a similar form as the

P-dynamics and are given by

Ay = o Wiso = At + 05 [N AW, + Z,AN,, (4)

where a;Q = a + 0105, ofj@)\gw = af )\t

Q . .
i Njoo — 05005, and W5 are independent Q-Brownian

motions. Note that the difference between the P -and Q-dynamics of )\;th stem from the
change of measure in the Brownian motions. The market price of risk parameters capture

the risk premia investors require with respect to changes in default risk.

Since A% and A" are related through the constant parameter j, the P- and Q-dynamics of A7,
are of a similar form as the P- and Q-dynamics of )\(J%. In the estimation procedure, detailed
in Section 4, I first use sovereign CDS spread data to estimate the P- and Q-dynamics of
the risk-neutral default intensity processes, )\%. After that, I use historical sovereign default

rates obtained from S&P to estimate the default event risk premium parameter .

3.1. CDS Pricing

The time ¢ level of the CDS spread of country ¢ with maturity M, CDS; (M) is determined
by equating the payoff value for the protection buyer to the payoff value for the protection

seller. I will make the standard simplifying assumption that the risk-free rate is independent

F| =

from the common and country-specific factors, and denote D(t,T) = E? [e‘ R

E2 [e* I ’”Sd“”] I use US Treasury rates to construct the risk-free discount factors D(¢,T).
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Specifically, I get (see, e.g., Duffie and Singleton, 2003)

aM
1
JCDS; (M) Y D11+ 0.95))ER [(1 = ) Sessozm Vo] ER [(1 — ) Vecsoass o]

j=1

t+M
=(1-R) / D(t, w)E [(7aAd, + 1AZ) (1= 7)Mo Mot (1 — 4g)New=Net | du. (5)
t

The left-hand side of (5) reflects the present value of the (quarterly) premium payments
that the buyer makes to the seller, contingent upon a default event not having occurred. A
default can occur either through a country-specific shock, N;,, or through a shock in the
common factor, N.;. The right-hand side of (5) reflects the present value of the payout
that the seller makes in case of default. I assume fractional recovery of face value of the

underlying bond and let R denote the constant recovery rate.”

Solving for CDS, (M) gives the following CDS pricing formula:

t
4M : . N - Nes
M D(t 4 0.255)E [(1 — ;) Nutrozsi =Nt B [(1 — g ) Newt0.255—Net] .

The expectations appearing in (6) can be computed in closed-form (up to a system of ODEs)

1-R) ["MDp t,u EQ i)\Q + AL ) (1 — ;) Niw=Nit (1 — @) New=Ner] dy,.
CDSZ-’,:(M):( ) (¢, u)E; [(7 iu T i C,u)( i) ( %) ] .

by exploiting the affine structure of the model and using the framework outlined in Duffie

et al. (2000). The computations are detailed in Appendix A.

4. Estimation methodology

Similar to Driessen (2005), the model setup is such that it can be estimated in two steps. In
the first step, I estimate the model governing the risk-neutral intensities )\%, jei{e1,2,...,K}

using sovereign CDS data. In the second step, I estimate the default event risk premium

"Following the literature, I assume a constant recovery rate of 25% for all countries and abstract away
from recovery rate risk premia (see, e.g., Longstaff et al., 2011).
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parameter p using S&P historical sovereign default data. The global outline and results
of the first and second steps of the estimation procedure are described in Section 4.1, and

Section 4.2, respectively.

4.1. Estimation risk-neutral intensities )\%

In estimating the model of the risk-neutral intensities, I use a Bayesian Markov chain Monte
Carlo (MCMC) procedure similar to Sperna Weiland et al. (2018). This procedure makes

use of the sovereign CDS spreads and provides estimates for the parameters driving the IP-

Q

1> values of the latent risk-neutral intensity processes, and latent jump

and Q-dynamics of A

times.

I estimate the parameters governing the common and the country-specific factors in three
steps. First, I estimate the common factor by pooling the CDS data of all countries and
ignoring the country-specific factors. In the second step, I estimate the country-specific
factors, keeping the common factor results from the first step fixed. In a third step, I re-
estimate the common factor, but now fixing the country-specific factors obtained in step
two. In this way, the estimation of the common factor explicitly takes into account the
presence of country-specific factors. I investigated whether applying more iterations of steps
two and three would lead to significant changes in the parameter estimates, but found this

not to be the case.

The main challenges in estimating the (risk-neutral intensity) model are that the intensity
processes and jump times are latent, and that, due to self-excitation, their transition densities
are not known. The key of dealing with these issues is to properly discretize and orderly

sample the intensity processes defined in (2). To see this, consider the following discretized
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version of (2):

AP =AY =N A — ol N A o AT A€ + ZeNjen,  j € {c,1,2,... K},

(7)
where A,.; is the time interval between ¢t and t + 1 (i.e., a business day), €;,4+1 an inde-
pendent standard normal random variable, and N;:y; = 1 indicates a jump arrival. The
jump counters N, ; are Bernoulli random variables with non-constant success probabilities
A%tAt+1. The discretization thus assumes that at most one jump can occur in the time-
interval A;,q, which follows from the small-time property of self-exciting processes stating
that P[N;¢en — Njp > 1| F] = o(A). Sperna Weiland et al. (2018) show in a Monte Carlo

study that this discretization on a daily frequency does not impose notable biases.

Using the discretization refEqn:: Discretized inensity process and denoting X7 = {N;4, )\%}

and © the vector with parameters, the transition density can be decomposed as
p(th |Xt]—17 @) = p(A;‘th|Nj,ta Xt]—lﬁ é)p(Nj,t|Xg—17 (:))a (8)

where p()\;-th|N 6, X1 1, ©) is Gaussian, and p(N;,| X7 |, ) Bernoulli with success probability
A%t_lAt. That is, under the above discretization the transition density is a mixture of normal
densities, allowing me to sequentially draw NN;, from the Bernoulli densities p(Nj7t|th_1, 0)
and /\;Qit from p()\%, | N, X/ |, 0) using the newly drawn N;+ in the conditioning informa-
tion. The discretization above thus simplifies the transition densities, which play a crucial
role in determining the posterior densities necessary for Bayesian inference. The details of

the estimation procedure are explained in Appendix B.
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4.1.1. Estimation results risk-neutral intensities

Table 2 reports the posterior means and standard deviations of the parameter estimates of
the common and country-specific risk-neutral intensities, the number of estimated jumps in
each of the factors, and the average relative pricing errors of the CDS spreads per country.

Table 2 shows that the speed-of-mean-reversion parameters governing the P-dynamics of the

intensity processes (af

;) are larger than the speed-of-mean-reversion parameters governing

the Q-dynamics of the intensity processes (o/jQ) for all systemic and country-specific factors.

That is, under the risk-neutral dynamics, distressed periods are more persistent. The a?)\?oo

Q

parameters, on the other hand, are all larger than the «; )\?oo parameters. However, backing

Q

00> Teveals that the long-term

out the implied long-term average intensity values, )\?OO and A
average intensities are higher under the Q-dynamics than under the P-dynamics for the
systemic factor and most of the country-specific factors. Only for the Dominican Republic,
Egypt, and Venezuela the opposite result holds. In principle, the slower speed-of-mean-
reversions and higher long-term average default intensities under the risk-neutral dynamics
suggest the presence of distress risk premia (i.e., risk premia related to the differences in

process dynamics under the actual and risk-neutral measures). In Section 5, I study these

risk premia in more detail.

The upper panel of Figure 2 plots the estimated systemic default risk intensities. The model
seems to capture systemic risk well. For example, the systemic risk factor was especially
large during the 2008-2009 crisis period in which the CDS spreads of all countries spiked
up. Furthermore, there is an increase in the systemic risk factor during the second half of
2011, reflecting the peak of the European sovereign debt crisis. The bottom panel of Figure
2 shows the estimated (self-exciting) jumps in the systemic risk factor.® I find a cluster of

systemic jumps shortly after the default of Lehman Brothers. Furthermore, I find a systemic

8For both the systemic and country-specific factors, I take those days for which the estimated jump
probability is larger than 0.25 to be the jump dates.
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jump on September 22nd, 2011. On this date, global stock markets dropped over 3% and
the VIX index spiked with 11% as a result of increasing fear of investors regarding spillovers

of the European sovereign debt crisis.

To illustrate the performance of the model regarding country-specific factors, I plot in Figure
3 the model-fit of 5-year CDS spreads (upper panels), estimated country-specific intensities
(middle panels), and estimated country-specific jump probabilities of Brazil (left column)
and Russia (right column). I focus on these countries, since their model-fit is close to
the average relative pricing error of 9% over all countries. Furthermore, both Brazil and
Russia experienced country-specific distress periods during the sample period, making it
appropriate candidates to evaluate the model performance. The middle panels show that
the country-specific factors indeed seem to pick up country-specific distress. For Brazil, the
intensities spike up from 2015 onwards, coinciding with the start of an economic recession
and increased political unrest. Similarly, Russia also experienced a recession in 2015-2016
as a result of international sanctions in response to the Ukraine conflict, sharp declines in
oil prices, and strong depreciation of the currency. Again, the country-specific intensities

seem to capture this episode of distress well.

As Table 2 indicates, I find a relatively large number of jumps in some country-specific
factors, whereas in other country-specific factors I do not find evidence of any jumps. This
suggests that the self-exciting specification is not per se appropriate for some countries, and
an easier diffusive specification would suffice. However, to keep the model consistent and
comparable across countries, I take the same specification for all country-specific factors.
For those countries without any estimated jumps the jump size parameter Z; should be

interpreted with care.

TABLE 2 ABOoUT HERE
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FIGURE 2 ABOUT HERE

F1GURE 3 ABouT HERE

4.2. Estimation default event risk premium parameter

In the second step, I estimate the default event risk premium parameter p, which defines
the difference between the actual and risk-neutral default intensities (i.e., Xijt = u/\[ﬁt, J €
{¢,1,2,..., K}). In principle, this parameter can be time-varying, but, given the scarcity of

historic sovereign default data, I assume it to be constant. This means that I focus on the

average risk premium on default events rather than exploring time-varying aspects of it.

In estimating u, I follow the procedure proposed by Driessen (2005). That is, I estimate p
by using moment conditions for the conditional default probabilities, which are defined as
the probabilities of defaulting in year ¢t + n, conditional upon no default between time ¢ and
t+n—1 (and the average credit rating during the sample period). These moment conditions

are given by

E]f (Zitin|Rit =R, Zis + Zigi1+ ..+ Zigin—1 = 0] = qn.r(1t, ¢),

n=0,...,9,R=A BBB,BB,B, (9)

where Z,, is a variable that is equal to 1 if country ¢ defaults in the annual time interval
[t,t+1], R is the average credit rating of the country during the sample period, and ¢, r(u, ¢)
is the model-implied conditional default probability under the actual probability measure,
and ¢ is a parameter vector containing all other parameters of the model.

The model-implied conditional default rates can be computed explicitly. First, I note that
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the actual probability that country ¢ defaults within the next n years, conditional upon that

no default has occurred yet, is given by

Pinr(t, 11, @) = EP[Zi,t +Zit1+ .o+ Zigina|Ri = R

= 1B [(1— Ve ] B 1=y ] (10)

Because of the affine structure of the model, expression (10) can be computed explicitly up
to a system of ODEs (see Appendix A). I average out (10) over all days in our sample period
and denote the obtained probabilities by p;, r(t, ). The yearly conditional default rates
are now given by ¢inr(it,®) =1 — (1 — pint1.r(1,0)) /(1 — pinr(p, @)). In a last step, I
average the conditional default probabilities over all countries in a given rating category to

obtain g n(i, 6).

I use average historical cumulative default rates provided by S&P to consistently estimate
the left-hand side of (9). I use the cumulative default rates up to 10 years, since the longest
maturity contract in our sample is 10 year. I convert the cumulative default probabilities

into yearly conditional default rates qg wa,

I now estimate u by using the first step of the generalized method of moments and minimize
the sum of squared differences between the model-implied and observed conditional default

rates over u, inserting the estimates for the other parameters ngS:

min [ > 29: (qn,R(u,@ = q,?,%“ﬂ . (11)

" \R=A,BBB.BB,B n=0

4.2.1. Estimation results default event risk premium parameter

Using the estimation procedure detailed in the previous section, I find 4 = 2.07. This

implies that investors multiply (instantaneous) default probabilities with a factor of over 2
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when pricing sovereign credit default swaps. The estimated value f is in line with values of
default event risk premia found previously in the literature on corporate default risk (see,

e.g., Driessen, 2005, and Berndt et al., 2008)

In Figure 4, I illustrate the effect of the risk premium parameter p on default probabili-
ties. For every rating class, the line “Risk-neutral” depicts the risk-neutral model-implied
conditional default probabilities (i.e., using the Q-dynamics of A? in calculating the default
probabilities). The line “u = 1” plots the actual model-implied default probabilities, as-
suming that there is no default event risk premium (i.e., using the P-dynamics of A? and
assuming x4 = 1 in calculating the default probabilities). The difference between these lines
is completely caused by the risk premia related to changes in default risk over time (i.e.,

distress risk premia).

Next, the line “S&P historical data” presents the empirical conditional default probabilities
based on S&P historical default data. For all rating classes except A, the historical default
probabilities lie completely below the “Risk-neutral” and “u = 17 lines, indicating that
distress risk premia can not sufficiently explain observed default rates. Finally, the line “u =
2.07” depicts the model-implied actual default probabilities, using p = 2.07. Taking into
account, default event risk premia clearly improves the fit of historical default probabilities

for the BBB, BB and B ratings.

Fi1GURE 4 ABouT HERE

As a robustness check, I also estimate the default event risk premium parameter u per rating
class. For the BBB, BB, and B rating classes I find 4 = 2.03, i = 1.59, and g = 2.12,
respectively. Hence, for all these rating classes I find ¢z > 1, implying a positive default event
risk premium. Furthermore, these results are reasonably close to the total estimate i = 2.07,

indicating that there is not much variation in the default event risk premium across countries
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from these rating classes. For the A rating class, however, I find i = 0.75, which indicates
that there is even a negative default event risk premium for A-rated countries. The reason
for this deviating value is that the estimated historical default rates are (relatively) very
high for A-rated countries as a result of the recent double default of Greece. Greece rated
A in 2009, and, therefore, still plays a role in some of the A-rated cohorts used by S&P
to construct the historical cumulative default rates. Since sovereign defaults are scarce,
especially for higher rated countries, one or two default events can result in substantial
upwards biases in the historical default probability estimates, thereby affecting the default
event risk premium estimate. This thus reveals that there are limitations in using historical

default rates for higher rated countries.

5. CDS spread decomposition

The differences in the parameters governing the P- and Q-dynamics of A€ and the estimated
value of the default event risk parameter p indicate the presence of both distress and de-
fault event risk premia in sovereign CDS spreads. In this section, I explore the economic
significance of these risk premia in more detail, and decompose CDS spreads into distress

risk premia, default event risk premia, and actual default risk components.

Similar to Pan and Singleton (2008) and Longstaff et al. (2011), I quantify the magnitude of
the distress risk premium by computing the difference in CDS spreads implied by the P- and
Q-dynamics of )\%. The CDS spread of country ¢ implied by the Q-dynamics of risk-neutral
intensities is given by equation (6). This CDS spread includes the market prices of risk .,
and &; ; related to the dynamics of the common and country-specific factors, respectively, and
the default event risk premium parameter . The CDS spread of country ¢ implied by the
P-dynamics of the risk-neutral intensities, on the other hand, does not include these market

prices of risk (i.e., {.; = & = 0), and the difference between the CDS spreads computed in
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these ways thus constitutes the distress risk premium embedded in the CDS spread.

I denote the CDS spread of country ¢ implied by the P-dynamics of the risk-neutral intensities
by C’DSE) ;@(M ). Here, the first superscript (IP) refers to the probability measure governing
the dynamics of the intensity process, and the second superscript (Q) refers to the probability
measure under which we consider the intensity values (i.e., the superscript PQ denotes the
P-dynamics of A?). The pseudo-CDS spread C’DS;P: 2(M) can thus be computed by using
(6) and taking expectations with respect to the P-dynamics of the risk-neutral intensities

implied by (2). That is,

M ¢ i, u Vit c c,u— Vet
epsreny - LR D wES [(305,+ 9008 (L= 3 Nor(1 = )]
it -

122500 Dt 1+ 0.255)E; [(1 — ) Verso s =N B9 [(1 — ) Versozss —Nev]
(12)
Clearly, if the market prices of risk &, and &;; are zero, C'DS; (M) and C’DSE ;@(M ) are
the same, and there is no distress risk premium. If, on the other hand, &.; or ;; are non-
zero, CDS; (M) and C’DSE;@(M) differ and the difference between the two, [C'DS; (M) —
C’DSE> ;@ (M)], constitutes the distress risk premium. I also investigate the distress risk pre-

mium in relative terms, which is given by [C'DS; (M) — CDSE;@(M)]/CDSM(M).

Both CDS; (M) and C’DSE (M) still contain the default event risk premium parameter
14, since they consider the risk-neutral common and country-specific intensities )\(St and Agt,

respectively. To extract the default event risk premium, I can thus go one step further and

compute the CDS spreads implied by the P-dynamics of A7, which I denote by CDS7f (M):

M c iou—1Vi ¢ c c,u—4Ve,t
opsrrn < L= I DB (05, +90%,) (1= 5o (1 = 50) ¥ ]
T D(E 4 0.25 BT [(1— 5 rsomm Mo ETF (1 — 5)esrosn Vo]

(13)
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C’DSE’ T(M) thus represents the CDS spread absent of any risk premia and is a measure of
actual default risk. The difference between CDS%@(M) and CDS;y (M), [CDSE;@(M) —
CDS;{(M))] is then the default event risk premium embedded in the CDS spread. The
relative default event risk premium is given by [C'DS; (M) — CDS?F(M)]/CDS;,(M).

Table 3 reports summary statistics on the average decomposition of 5-year CDS spreads,
both on the country level as well as the rating class level.? Considering the results on the
rating class level, a few clear patterns emerge: First, I find a strong decreasing pattern in the
relative distress risk premia as the rating gets lower. For example, the distress risk premium
makes up, on average, 60.8% of CDS spreads of A-rated countries, but only 5.9% of CDS
spreads of B-rated countries. Second, I find increasing patterns in both the relative default
event risk premia and default risk components as the rating gets lower. The default event
risk premium and default risk component constitute, on average, 22.0%, and 17.2% of the
CDS spread of A-rated countries, respectively. For B-rated countries these relative weights
are 52.9%, and 41.3%, respectively. Intuitively, as a default event becomes more likely (i.e.,
countries with a lower credit rating), investors start caring relatively more about default
event risk than distress risk. Figure 5 shows the evolution of the decomposition over time

for four countries of different rating classes. In particular, I plot the decomposition for Chile

(A), Croatia (BBB), Vietnam (BB), and Lebanon (B).

TABLE 3 ABouT HERE

FIGURE 5 ABouUT HERE

9The results on the rating class level are obtained by taking the average of the countries in that rating
class. Since Venezuela is quite different from the other countries under consideration, I also report the
results for B-rated countries excluding Venezuela. I find that all results stay qualitatively the same when
excluding Venezuela from the sample.
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The results discussed above focus on the decomposition of 5-year CDS spreads. Table 4,
however, reports the average relative decomposition of CDS spreads for different maturities.
Again a few interesting patterns emerge. For all countries, I find that the portion attributable
to the distress risk premium increases, whereas the portions attributable to the default event
risk premium and default risk component decrease as the maturity gets longer. This suggests
that investors mainly worry about actual default events in short-term horizons. For longer
horizons, on the other hand, investors worry more about the increasing uncertainty around

future default probabilities.

TABLE 4 ABoUT HERE

In addition to decomposing CDS spreads in risk premia and default risk components, the
model also allows for a decomposition of CDS spreads in systemic risk and country-specific
risk components. To compute the systemic risk component, I take (6) and ignore the country-

specific part. That is,

(1= R) J;™ D(t, w)EE [yAZ, (1 — 4¢)NerNer] du

t i \eu

£ 3050 Dt 4 0.25) B [(1 — ) Nessoans=Ner]

tormi
CDS??S emlc(M) _ 14)
Similarly, to compute the country-specific risk component, I take (6) and ignore the common
factor. That is,

M Dt w)ER (102, (1 — 3N Nee] d

countr (1 - R) )
DS MY (M) = —— = — (15)
122 jm1 Dt 1+ 0.25))Ey [(1 — ;) Niero2s—Nie]

Table 5 displays the results of the decomposition of 5-year CDS spreads in systemic and
country-specific risk parts. I find a relatively stable decomposition across rating classes,

where the country-specific and systemic components account for approximately 65% and
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35% of CDS spreads, respectively. Figure 6 displays the average relative decomposition of

5-year CDS spreads in the country-specific and systemic risk components for all countries.

TABLE 5 ABOUT HERE

FIGURE 6 ABOUT HERE

The decompositions outlined above can also be combined. In Table 6 and Figure 7 I show
the results of this two-dimensional decomposition in which I first decompose the spreads in
country-specific and systemic risk components, and then decompose both these parts in the
risk premia and default risk components. I find that the sub-decomposition of the systemic
part is very similar across rating classes: The systemic distress risk premium, systemic de-
fault event risk premium, and systemic default risk component account for roughly 20%, 9%,
and 6% of CDS spreads across rating classes. The sub-decomposition of the country-specific
component, however, differ substantially across rating classes. I find a strong decreasing
pattern in the relative importance of country-specific distress risk premia as the rating gets
lower. The country-specific default event risk premium and country-specific default risk
component, on the other hand, become relatively more important as the rating gets lower.
These results thus show that the patterns found in Table 3 are mainly due to the differences

in the country-specific components across rating classes.

TABLE 6 ABOoUT HERE

FIGURE 7 ABOUT HERE
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6. Conclusions

In this paper, I investigate credit risk premia embedded in sovereign CDS spreads. In
particular, I consider risk premia related to unpredictable changes in future default arrival
rates (i.e., ‘distress risk premium’), and risk premia related to (the unpredictable timing of)
default events themselves (i.e., default event risk premium), which, until now, have largely

been ignored in the sovereign credit risk literature.

I propose a novel way of modeling the term-structure of sovereign credit risk and assume
that the default of a country can be triggered by either a common, systemic factor, or by
an independent country-specific factor. By modeling a common factor, I explicitly take into
account the high degree of commonality in the sovereign credit risk. The novelty of the
model is that I specify both the common and country-specific factors to be self-exciting
jump processes. In this way, the model can capture the clustering of large credit shocks over

time and across countries, apparent in the data, in a parsimonious way.

I estimate the model using sovereign CDS data and historical sovereign default rates per
rating class from S&P. The model allows for a decomposition of CDS spreads along two
dimensions. First, I can decompose CDS spreads in country-specific and systemic risk com-
ponents. I find a similar decomposition across rating classes in which approximately 65%
of (5-year) CDS spreads can be attributed to country-specific risk and 35% of CDS spreads
can be attributed to systemic risk. Second, I can decompose CDS spreads into distress risk
premia, default event risk premia, and default risk components. I find that the distress risk
premium is mainly relevant for higher rated countries, whereas the default event risk pre-
mium and default risk component are more important for lower credit ratings. These results
are mainly driven by differences in country-specific risk. In the term-structure dimension, I
find that default event risk is more important for shorter maturities, whereas distress risk

is more important for longer maturities. This suggests that investors care relatively more
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about actual default events in the short-term, whereas the uncertainty regarding future

default arrival rates is more important in the long-term.
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Appendices

Appendix A Closed-form price formulas

In this Appendix, I show how the expectations appearing in the CDS pricing formula (6)

can be computed explicitly (up to a system of ODEs).

Let X, = (Nj;, \Y

j?t

).j€{c1,2,...,K}. The dynamics of X;, are given by

dX; =d|
A7
0 0 0 0
_ dt + d
a(j@(/\%oo - )‘?t) 0 o )‘%t WJ%
1
+ dN;,. (16)
Z

From this specification it is clear that the process X, falls into the generalized affine jump-
diffusion framework and, therefore, I can use the framework of Duffie et al. (2000) and prove

the following Propositions:

Proposition 1.

EQ [(1 — zyj)Nj,T‘ J—"t} _ ea(t)—l—ﬁl(t)N]-’t_;,_ﬂQ(t))\%t7
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with

Oé(t) = _Q?AEW/BQ( )7
a(T) = 0,
Bi(t) = 0,

BUT) = Bi(s)=log(l—r;) t<s<T,
Ba(t) = afpa(t) — %Bg(t)cr? — (P OFZ5R0 1)

52(T) = 0.

Proof. Consider an affine jump-diffusion process X in some state space D C R" solving the

stochastic differential equation

dX; = p(X,)dt + o(X,)dW, + Y dZ;,

=1

where Z* are pure jump processes whose jumps have a fixed probability distribution v on
R"™ and arrive with intensity A (X;) for some A" : D — [0,00). Let us fix an affine process

R : D — R. Then we have that the complete affine structure of the model is captured by:

ulx) = Ko+ Kjz, for K = (Ky, K;) € R" x R™*",
o(x)o(z)" = Hy+ ZHl(k)xk, for H = (Hy, Hy) € R™*™ x R"*nxn,
k=1
N(z) = L+ -z, forl = (lp,l;) € R x R™

R(x) = po+p1-x, for p=(po,p1) € R x R".

Let us furthermore denote the jump-transforms, which determine the jump-size distributions,
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as 0'(c) = [pn exp (c- z) dv'(z) for ¢ € C". We want to compute an expression of the form

7]

According to Proposition 1 of Duffie et al. (2000), we have, under some technical assumptions

¢~ (u, X,t,T) = EX [eXp (— /T R(Xs)ds) ev T

on the processes being well-behaved, that we can write

¢X (U, I7 t, T) g ea(t)+ﬁ(t)~x7

where 5 and « satisfy the following (complex-valued) ODEs:

m

Bt) = pl—KfﬁU——ﬁ )T H\B(t) Zli (6"(B(t)) — 1)
a(t) = po—Ko- @;——ﬁ ()T HoB(t) = > I5(0°(B() — 1),
=1

with boundary conditions 5(7") = u and «(7") = 0.

Applying the situation described above to the process defined in (16), we have n = 2, m = 1,
Ko = (0,037 )T,

0 0
Klz )
0 —a}Q
HO_OJ
0 0 0 0
Hllz ,Hf:
0 0 0 o?

Il =0and I} = (0,1)". Since NJ(% is a counting process, and the coefficient Z; is a constant,

we have fixed jump sizes and therefore 6'(c) = exp (¢c1 + Zjc2). Since we want to compute

EQ [(1 —~;)No| F], we have that py = 0, py = (0,0)" and u = (log(1 —~;),0)". The resuls

thus follows by applying Proposition 1 of Duffie et al. (2000). O
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Proposition 2.
; a og(1l—~;)N; Q
EC [ AP (1 — 7))o | | = e®Hos0=m Mot 52000 s (A(t) + Ba(t)AT),

with

—A®) = aFNLB(),

—By(t) = —a}Bs(t) + Bo(t)oiBa(t) + (1 — 7;) Z;e” 0,
By(T) =

A(T) = 0,

and a(t) and B(t) satisfy the ODEs in the previous proposition.

Proof. Proposition 3 of Duffie et al. (2000) with

u = (log(1 —;),0)" and v = (0,7;)" yields the result. O

Appendix B MCMC details

In this Appendix, I provide more details of the estimation methodology used to estimate
the model of the risk-neutral intensities. As explained in Section 4.1, the estimation of
the risk-neutral model is divided into three steps. Since all these steps rely on the same
MCMC procedure, I briefly explain the set-up of the first and third steps in which I keep
the country-specific factors fixed and only consider the common factor with country-specific
loadings 7§ to this factor. I denote the fixed country-specific parts of the model with W.
That is, ¥ contains all parameters related to the country-specific factors, as well as the

country-specific jump times and intensities.!°

10Tn the first substep, I ignore the country-specific factors, which essentially boils down to setting all
country-specific parameters and intensities equal to zero. In the third substep, I fix the country-specific
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I first denote the right-hand side of the CDS pricing formula (6) as a function F' of a
vector with the common factor parameters and country-specific loadings to this factor,
0; = {a2,aQ\2 02 Z. 4}, i = 1,..., K, state variables X; = {cht,)\gt}, maturity M,

c,00

and fixed country-specific parts. That is
CDS; (M) =F (X;,0;,M,V). (17)

Since the data does not start on the same date for all countries, I let S(¢) denote the set
of CDS contracts for which I have an observation on day t,t = 1,..., N. I assume that the
(log) CDS spreads Y;y, k € S(t) are observed with normally distributed pricing errors, that
is

Yie =log (F (X, O, M, V) + &k, VkeS(t),t=1,...,N, (18)

with & ~ N(0, h2).11

Let Y ={Y,,:t=1,...,N,k € S(t)} denote the vector of all CDS price observations, X =

{X;:t=1..., N} the vector with all states, and © = {h2, a@, a2A2, 02, Ze, {111, o, ag e oo

c,007

the vector with all parameters related to the common factor (i.e., both the parameters gov-
erning the P- and Q-dynamics of )\gt). Furthermore, for notational convenience, I from now
on drop the fixed ¥ from the notation. Then the conditional density of the joint observations

can be written as

N
p(YIX.0) o< [T TI ¢(Yins F(Xis, Ok, M), h?)
t=1 keS(t)
N

= [[p(vil X1, 0),

t=1

(19)

components to the estimates found in substep two.

UFor every country, the pricing formula (6) of the 2-, 3-, 5-, and 10-year maturity CDS spreads depend
on the same parameters and state variables. Therefore Oy is the same for CDS spreads of the same country
across different maturities.
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where ¢(z;m, s*) denotes a normal density with mean m and variance s* evaluated at .

The full joint posterior density p(Y, X, ©) is then given by
p(Y, X, 0) o< p(Y]X, ©)p(X|0)p(0), (20)

where p(©) is the prior for ©. I choose our priors to be proper but in such a way that they

impose little information.

Using the Markovian property of the joint intensity and jump process (see Ait-Sahalia et al.,

2014), I can rewrite this as a product over the observations times:
N
p(Y, X,0) o p(©) [ [ p(Vil X1, ©)p(Xi| X1, 0), (21)
t=1

where p(X;|X,_1,©) is the transition density of the state process. As explained in Section
4.1, T use a discrete-time approximation of the transition densities, making it possible to

express the transition density in closed-form.

Ultimately, the goal is to sample from the joint conditional posterior density p(©, X|Y). The
reason for this is that, by Bayes theorem, p(©|Y) o p(0, X|Y). Hence, the sample average
of 6 6@ . 6@, o= (‘—1; Zngl O can be used as the estimate of ©. In a similar way,
the latent jump intensities can be estimated by considering the sample averages /\%g) for
allt = 1,...,N. To estimate the jump times, i.e., to decide whether a jump occurred at
time t, t =1,..., N, I define a threshold, w > 0, and say that a jump occurred at time ¢ if

e Zg 1 ) > w (see Johannes et al., 1999).

Since the joint conditional posterior density is high-dimensional and nonstandard, it is not
possible to sample from this density directly. In order to overcome these problems, I employ
a Gibbs sampler, which sequentially draws all random variables from the joint posterior

density.
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The Gibbs sampler consists of the following steps, initialized by an appropriate set of starting

values for X and © when g = 0:
Forg=1,...,G,t=1,..., N, simulate

1. X9 from p(Xt|X1(:gJ)V\t, 0¥ Y), and

2. O+ from p(0|X W+ V),

where X;. Ny denotes the collection of state vectors X at all s =1,..., N except at s = t.
In the sections below, I first explain the details of the steps involved in drawing the new

states, and next those of drawing the new parameters.

B.1  Metropolis Step for Simulating the States

The drawing of the state vectors requires alternating between two different sampling schemes.
This is to deal with the latency of the states, which makes it challenging for the algorithm to
initialize the drawing of jumps. For a more detailed discussion on this, I refer to Sperna Wei-

land et al. (2018).

B.1.1 State Sitmulation Scheme 1

In the first simulation scheme, I use that p(Xt]Xl(‘f]])\,\t, 0 ,Y) is characterized by its full

)

conditionals. Therefore, the drawing of Xt(ngl can be split into the following two steps:

1. draw N;iﬂ) from p(N]-,t|/\%§g), Xf;q}[\t, 0¥ Y);

2. draw AZ"" from p(AL NSV, X%, 0@, V).
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Under the discretization of the state transition dynamics introduced in (7), the full posterior

of Nj, is a Bernoulli density with success probability

PO [N = LX), 09)p(N;, = 11x,%7)
1 1
> acon PO NGy = 5, X770, ©@)p(N;, = s| X7V
(22)

p(Nje = 1’)‘%5?)7 Xl(:g])\/\tv @(g)7 Y) =

(22) is easy to compute, since p( | it=5 thH) 01) is a normal density and

p(Nj: = s]Xt(f J{ ) a Bernoulli with success probability )\;thJ{I)At. The credit jump probabil-

ity does not depend on Y, since the CDS prices only depend on the intensities and parameter
vector. Therefore, the jump probabilities are determined only by the state transition equa-
tions and not by the measurement equations. This makes it hard for the algorithm to
draw initial jumps. For this reason, I alternate between this sampling scheme and the one

explained below, which does take into account the measurement equations.

(g+1) g+1) .

After having drawn N;3" 7, the new intensity )\Q is drawn from the density

1) = 1) _
POZINGY, X, 09.Y) oc pVilAT, N7, 0@)p(\F NG, NI, 69)

Jit? gyt

POZIZE N, 60)

7,t—1

which is the product of a multivariate normal density and two univariate normal densities.
This density is non-standard, and, therefore, I use a Metropolis step with proposal density

p(A t|)\;thJ1r1 ,N;Trl), 0)), which is a normal distribution with mean

AHD 4 QFONDN, — TONTI A, 4 79 Nt

Q(g+1)
Jt—1 J Jt—1 J Ay

and variance o g))\]t 1

Using this proposal density, the acceptance criterion becomes

1 A o
min (p(Yt|Xt(9+ eI >p(>‘?ti)1’ ]tH, pean) 0) 1)
p(Yt|Xt(9)’@ W“ﬁiﬁ! jt+1a G)(g)
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For the end point ¢t = N the acceptance criterion simpliﬁes since the terms

(A(j@ti)ﬂ]\fﬂll, X 0) and p()\?tﬂ\ ]Hl, 9 9) do not appear anymore in the nu-

merator and denominator, respectively. For the starting point ¢t = 1, I use a slightly dif-
ferent proposal density, since I cannot condition on X; ;. I therefore draw X%gﬂ) from a

normal density with mean )\Q 9 and variance 02A%Y A,. Denoting this proposal density as

37,2
q(A; WU +1)|/\] 7 ©) gives the following acceptance criterion:

. (mmxfg*”,@ PN |N9>X~"“ Bl ><A;@ "N, 8) )
1mn

3,27

p(Yi] X1, 06@)p(AHI|IN'Y, X 6@)g(AHTV A )

B.1.2 State Simulation Scheme 2

In the second simulation scheme, instead of drawing X, in two steps, I sample the complete
vector X; at once from p(X;|Xi.n,,, ©,Y). Equation (21) shows that the Markovian property
of the state processes implies that I only need to consider the terms in (21) where (parts of)

X, enters directly. This gives

(Xt|X1gN\1) ©,Y) o< p(Yi| X1, ©)p(Xo| X[, ©)p(X 11| X, ©). (23)

In this density, both the likelihoods as well as the transition densities play a role, and,
therefore, the drawing of jumps depends on both the measurement equations as well as the
transition densities of the states. By assumption of the normally distributed error terms
p(Y;] Xy, ©) is multivariate normal with dimension equal to the number of observations at

time t.

According to (8), the transition density can be written as

P(X¢| X1, 0) = p(A}|Nje, Xeo1, ©)p(Nj4| X1, 0), (24)
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(g+

In order to draw X, Y from (23), T use the following proposal density

(X X%, 0) = p(X| X1V, 819)

= pAHINj., N XD, 09)p(Ny, | X 7Y, 0@,

Under the discretization of the intensity processes, this is a mixture of normal distribu-
tions. When drawing from this distribution, one can first draw N; (g ™ from an independent
Bernoulli distribution with success probability )\@ g+1 A, and then, given the outcome, draw

( | NS (o+1) gH) ,0) from a normal distribution with the appropriate mean (depending

on outcome of the draw of N (o1) .

Using this proposal density, the acceptance criterion is as follows:

1 1
- (mmxﬁﬁ 0D, Ny X @@)’ ) |
p(Yt]Xt(g), )p(A;Qti)pN t+1|X ,00)

1 1 1) & .
where p()\;QifilvN](,il—lyX7f(Q+ : ,0)) = ()‘(g@tH‘NtHa Xy ,00) )XP(N(gt+1|X s ,01)). Since
all densities are standard (i.e., multivariate normal, univariate normal or bernoulli), eval-

uating this acceptance criterion is straightforward. For the end points ¢t = 1 and t = N

similar comments apply as in simulation scheme 1.

B.2  Metropolis Step for Simulating the Parameters

Next I explain the Metropolis step for estimating the parameters @91 from p(6|X ¥+, Y)

in more detail.

For hjz, j€{c1,2,..., K}, the inverse gamma distribution is a conjugate prior. This follows
from p(h3|©\{Ar3}, X,Y) x p(Y|©, X)p(h?), where p(Y'|©, X) is multivariate normal with
diagonal variance matrix with h? as variance and p(hjz) the prior inverse gamma density.

Explicit computations are standard and are therefore omitted.
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For the other parameters I rely on Metropolis steps. 1 use random-walk Metropolis steps with
Gaussian proposal densities with as mean vectors the previous draws and with a diagonal
covariance matrices. I choose the priors on all parameters to be proper but uninformative
in the sense that the prior variances should be high compared to the estimated posterior

variances. I use the following priors:

Q P ,2)Q

° a;,a;, aj A, a;QAQ 03, Zj, j €{c,1,2,...,K}: Gamma(0.02,10)

j,007
o v, and ¢, i € {1,2,...,K}: Uniform(0,1)

o 12, je{c1,2,...,K}: IG(3,0.1)

In line with theoretical parameter restrictions for nonnegativity and stationarity of the
processes, I impose some parameters to be nonnegative by using gamma priors. Since ;
and ¢ are the probability of going into default in the case a country-specific or common
credit shock arrives, respectively, I use Uniform(0,1) priors. In general, the means and
variances of all parameters are chosen arbitrarily, but such that the means are small and
positive for all parameters and the variances relatively large compared to their means. All-in-
all, results are robust against prior specification, since typically the likelihood contribution
of the priors is small compared to the likelihood contribution of the data in the acceptance
criteria. Furthermore, the posterior standard deviations are also much smaller than the prior

standard deviations, indicating that our priors do not impose much information.

B.3  FEstimation country-specific components

In the second substep of the estimation procedure, the common factor part of the model is
fixed and the country-specific factors are estimated. In the notation of above, I now denote
the fixed common factor part of the model by ¥, and write the right-hand side of the CDS

pricing formula (6) as a function F of a vector with the country-specific parameters © =
38



{hF, 0, 0PN}

4,009

02, Ziy iy VS, 04]11))\]500}» country-specific states Xy = {N,, )\%}, maturity

M, and fixed common component V. That is,
CDS; (M) =F(0,X,;, M, V). (25)

Apart from this change, the mechanics of the estimation methodology are exactly identical

to those of the first and third substeps outlined in this Appendix.
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Figure 1. 5y CDS spreads. This figure plots the 5y CDS spreads for A-rated (upper left panel), BBB-
rated (upper right panel), BB-rated (bottom left panel), and B-rated (bottom right panel) countries. Source:

Datastream.
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Figure 2. Estimated common factor intensities and jump times. This figure plots the estimated
common factor intensities (upper panel) and estimated probabilities of arrivals of large systemic credit shocks

(bottom panel).
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Figure 3. Model-fit and country-specific factors. This figure illustrates the 5-year CDS spread model-
fit (upper panels), estimated country-specific intensities (middle panels), and estimated jump times (bottom
panels) for Brazil (left column) and Russia (right column).
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Figure 4. Conditional default probabilities. This figure plots the conditional default probabilities for
A-rated (upper left panel), B-rated (upper right panel), BB-rated (bottom left panel), and B-rated (bottom
right panel) countries. The conditional default probability is defined as the probability of a country going
into default in period [n,n + 1] given no default has occurred before year n. The S&P historical data
line gives the historically estimated conditional default probabilities obtained using S&P data. The line
u = 2.07 represents the model-implied actual conditional default probabilities. The line 4 = 1 represents
the model-implied actual conditional default probabilities assuming absence of default event risk premia.
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Figure 5. Absolute decomposition 5-year CDS spreads over time. This figure shows the decompo-
sition of 5§ year CDS spreads of Chile (upper left panel), Croatia (upper right panel), Vietnam (bottom left
panel), and Lebanon (bottom right panel) into distress risk premia, default event risk premia, and default
risk components over time.
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Figure 6. Relative decomposition 5-year CDS spreads into country-specific and systemic risk
components. This figure shows the relative decomposition of 5 year CDS spreads into country-specific and
systemic risk components.
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Figure 7. Detailed relative decomposition 5-year CDS spreads. This figure shows the relative
decomposition of 5 year CDS spreads into country-specific distress risk premia, country-specific default
event risk premia, country-specific default risk,systemic distress risk premia, systemic default event risk
premia, and systemic default risk components.
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Table 1. Summary statistics. This table reports summary statistics for the CDS spreads of the 28 countries in our sample. The first
four columns display the country name, the first date for which observations are available, the total number of (daily) observations, and the
average (S%P) rating throughout the sample period, respectively. The average rating is determined by transforming the prevailing ratings to
a numerical scale and by taking the average over the sample period. Columns 5 to 8 report the average daily CDS spreads (in basis points) of
the 2-, 3-, 5-, and 10-year maturities, respectively. Columns 9 to 12 report the standard deviations of the daily CDS spreads (in basis points)
of the 2-, 3-, 5-; and 10-year maturities, respectively. Columns 13 to 16 and 17 to 21 report the sample minimum and maximum CDS spreads
(in basis points) of the 2-; 3-; 5-, and 10-year maturities, respectively. The last column reports the percentage of the variation in the levels of
the 2-, 3-, 5-, and 10-year CDS spreads explained by the first principal component. The sample period runs from 01-01-2008 until 12-30-2016.
Source: Datastream.

Mean spread Std. dev. spread Min spread Max spread
Country Start Obs Average 2y 3y 5y 10y 2y 3y 5y 10y 2y 3y 5y 10y 2y 3y 5y 10y % explained
rating 15t pC
Brazil 1-1-2008 2349 BB 119 146 193 236 76 86 98 104 41 61 91 120 587 597 606 628 92.7
Bulgaria 1-2-2008 2348 BBB 160 179 215 243 126 121 110 95 27 45 75 89 715 703 693 668 97.9
Chile 2-29-2008 2306 A 55 69 96 124 31 34 40 41 21 32 49 65 290 285 310 329 95.3 <t
Colombia 1-2-2008 2348 BBB 102 122 161 203 69 71 73 73 26 39 74 120 614 635 669 696 96.0 <t
Croatia 1-2-2008 2348 BBB 215 245 287 317 110 106 103 102 46 54 69 82 602 598 593 602 94.3
Dominican Republic 1-1-2008 2349 B 419 439 454 465 281 274 248 231 130 170 242 245 1784 1552 1547 1474 98.7
Egypt 8-20-2009 1922 B 368 389 415 425 152 153 150 152 147 167 163 177 806 826 844 854 99.0
El Salvador 2-29-2008 2306 BB 318 347 379 403 95 97 95 94 106 143 198 228 815 840 859 886 96.8
Guatemala 1-16-2008 2338 BB 200 224 255 288 86 86 89 90 94 118 123 156 667 677 686 715 97.8
Hungary 1-1-2008 2349 BB 206 232 272 297 151 144 136 123 30 43 55 68 691 692 730 719 97.4
Indonesia 2-29-2008 2306 BB 137 161 216 267 154 145 131 118 34 59 118 163 1240 1240 1240 1240 98.3
Israel 1-2-2008 2348 A 65 80 115 140 44 45 44 38 14 25 35 46 252 268 283 275 89.1
Korea 1-1-2008 2349 A 68 s 104 127 78 7 76 71 13 21 40 55 593 605 680 695 98.3
Lebanon 2-29-2008 2306 B 318 358 408 434 99 94 95 101 169 193 233 233 935 965 1000 1025 94.8
Malaysia 1-1-2008 2349 A 65 82 120 154 43 46 49 52 16 29 44 53 428 475 500 518 88.6
Mexico 1-2-2008 2348 BBB 86 104 139 177 68 69 68 66 22 32 64 89 576 590 613 635 96.5
Panama 1-2-2008 2348 BBB 91 109 145 184 67 69 70 68 24 37 73 113 609 635 677 710 97.4
Peru 1-2-2008 2348 BBB 92 111 148 188 63 65 64 62 25 41 76 123 613 634 664 695 97.2
Philippines 1-1-2008 2349 BB 92 112 156 203 93 90 83 72 21 37 79 134 823 820 840 865 97.6
Poland 1-2-2008 2348 A 75 91 120 152 68 70 69 61 10 19 26 39 418 422 421 396 95.2
Romania 1-2-2008 2348 BB 180 205 245 273 154 145 133 119 35 56 96 99 805 786 768 743 97.9
Russia 1-1-2008 2349 BBB 190 210 243 271 191 169 145 127 39 64 87 106 1107 1106 1106 1092 97.4
Slovakia 1-1-2008 2349 A 60 70 92 117 65 67 66 64 9 10 13 19 278 290 306 318 96.3
South Africa 2-29-2008 2306 BBB 120 148 189 226 81 79 76 71 33 60 101 128 673 701 701 681 93.6
Thailand 2-29-2008 2306 BBB 71 89 127 162 47 47 45 44 22 41 65 80 430 465 500 519 93.5
Turkey 10-8-2008 2148 BB 153 176 223 259 90 86 79 73 50 68 110 145 835 835 835 846 93.7
Venezuela 2-29-2008 2306 B 2267 2192 2095 1912 2312 2115 1917 1694 413 502 571 570 12129 11441 10996 10413 99.4
Vietnam 2-29-2008 2306 BB 191 220 273 318 125 116 90 83 62 100 163 185 1050 1050 1050 1050 96.5
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Table 3. Summary statistics 5-year CDS spread decomposition. This table reports summary statistics on the absolute and relative
decomposition of 5-year CDS spreads into distress risk premia, default event risk premia, and default risk components.

Distress Premium

Distress Premium Fraction

Default Event Premium

Default Event Premium Fraction

Default Risk

Default Risk Fraction

Country Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev. Mean Median Std. Dev.
Brazil 93.36 73.95 45.10 50.2% 48.7% 4.6% 47.55 42.50 11.72 27.3% 28.0% 2.5% 39.32 35.24 9.43 22.6% 23.2% 2.2%
Bulgaria 84.60 63.69 50.22 44.1% 44.0% 2.4% 55.83 43.84 26.63 30.4% 30.5% 1.3% 46.69 36.62 21.95 25.5% 25.5% 1.1%
Chile 56.93 49.12 22.48 65.3% 64.8% 2.6% 16.99 15.73 4.39 20.1% 20.4% 1.4% 12.25 11.39 2.89 14.6% 14.8% 1.2%
Colombia 88.93 81.17 38.18 62.7% 62.8% 3.5% 28.41 26.38 7.15 21.0% 20.8% 2.0% 22.11 20.97 5.16 16.3% 16.3% 1.5%
Croatia 114.20 104.77 41.76 46.6% 46.1% 3.0% 73.12 68.28 19.94 30.6% 30.8% 1.5% 54.37 50.70 14.58 22.8% 23.1% 1.5%
Dominican Republic 63.48 18.61 150.80 7.8% 5.7% 18.9% 174.56 166.44 25.76 50.0% 51.0% 10.0% 147.02 141.34 18.65 42.3% 43.3% 8.8%
Egypt -7.52 -13.77 49.79 -7.6% -4.0% 16.5% 204.38 199.87 43.35 60.8% 58.9% 9.0% 156.35 152.73 30.94 46.8% 45.2% 7.5%
El Salvador 124.48 134.06 49.93 32.9% 35.1% 7.2% 133.64 139.77 20.35 37.9% 36.7% 3.9% 102.46 107.24 14.66 29.2% 28.3% 3.3%
Guatemala 107.45 85.32 65.95 40.8% 40.3% 12.0% 72.95 69.90 9.72 32.3% 32.4% 6.5% 60.69 58.25 7.00 26.9% 27.3% 5.5%
Hungary 85.48 75.13 39.72 35.8% 35.4% 3.9% 90.41 84.27 44.67 37.0% 37.1% 2.2% 66.27 62.07 32.14 27.2% 27.4% 1.7%
Indonesia 76.65 60.02 52.92 43.6% 43.5% 3.3% 53.15 44.46 25.38 32.2% 32.2% 1.8% 39.86 33.37 18.28 24.2% 24.3% 1.6%
Israel 61.03 54.59 24.93 68.1% 68.2% 4.6% 14.13 13.39 2.66 16.9% 16.8% 2.4% 12.58 11.96 2.31 15.0% 15.0% 2.2%
Korea 54.41 41.98 36.13 68.2% 67.9% 3.4% 13.18 11.18 5.88 17.9% 18.1% 1.9% 10.18 8.61 4.54 13.8% 14.0% 1.4%
Lebanon 151.02 140.01 49.10 39.1% 38.7% 4.1% 130.83 126.75 18.35 35.0% 35.2% 2.2% 96.81 93.97 12.61 25.9% 26. 2" 1.9%
Malaysia 70.83 62.17 28.85 66.9% 66.3% 3.2% 19.12 17.84 4.39 18.8% 19.2% 1.8% 14.45 13.54 3.04 14.3% 14.5% 1.4%
Mexico 73.14 64.95 34.18 65.7% 65.3% 3.0% 21.11 19.47 5.94 19.8% 20.1% 1.7% 15.33 14.27 4.01 14.5% 14.6% 1.3%
Panama 80.23 70.01 38.67 63.3% 63.0% 3.0% 25.34 23.20 7.35 20.9% 21.1% 1.7% 19.04 17.59 5.22 15.8% 15.8% 1.3%
Peru 82.90 73.87 37.18 63.6% 63.4% 3.0% 26.41 24.52 7.15 21.1% 21.2% 1.7% 19.18 17.89 4.74 15.4% 15.4% 1.3%
Philippines 100.83 74.76 62.80 73.6% 72.7% 2.3% 19.13 15.79 8.80 14.8% 15.4% 1.3% 14.95 12.20 6.96 11.6% 11.9% 0.9%
Poland 41.95 32.55 20.75 44.8% 44.4% 2.5% 28.80 21.96 11.61 31.7% 31.8% 1.3% 21.40 16.35 8.49 23.6% 23.8% 1.2%
Romania 117.62 85.08 94.53 49.8% 51.4% 16.6% 45.43 42.44 8.05 26.5% 25.6% 8.8% 40.44 38.01 6.83 23.7% 23.0% 7.9%
Russia 128.65 94.09 91.50 56.4% 55.7% 4.4% 49.60 41.27 22.40 23.9% 24.4% 2.5% 40.73 33.72 18.26 19.6% 20.0% 2.0%
Slovakia 39.02 28.48 29.62 51.5% 51.3% 3.4% 18.73 14.85 11.01 26.8% 26.8% 1.9% 15.13 12.03 8.85 21.7% 21.8% 1.6%
South Africa 119.54 105.01 48.73 69.4% 68.9% 3.2% 28.00 26.26 6.19 17.0% 17.2% 1.8% 22.37 21.11 4.57 13.6% 13.8% 1.4%
Thailand 74.32 67.90 26.40 69.8% 69.5% 2.1% 18.04 16.87 4.60 17.4% 17.6% 1.2% 13.25 12.49 3.06 12.8% 12.9% 0.9%
Turkey 94.48 83.19 40.16 45.6% 45.1% 2.6% 64.29 61.19 18.91 31.8% 32.1% 1.4% 45.48 43.67 12.56 22.6% 22.8% 1.3%
Venezuela -270.32 -145.82 341.19 -15.8% -19.2% 11.9% 1049.85 618.43 844.49 65.6% 65.0% 8.4% 738.44 500.30 475.99 50.2% 51.1% 5.4%
Vietnam 104.50 91.68 46.09 42.5% 42.1% 2.6% 79.07 71.82 26.47 32.9% 33.1% 1.3% 58.83 54.18 18.95 24.6% 24.8% 1.3%
A 54.03 60.8% 18.49 22.0% 14.33 17.2%

BBB 94.06 60.2% 36.21 22.5% 28.12 17.4%

BB 100.54 46.1% 67.29 30.3% 52.03 23.6%

B -15.84 5.9% 389.91 52.9% 284.65 41.3%

B (w/o Venezuela) 68.99 13.1% 169.92 48.6% 133.39 38.3%
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Table 5. Summary statistics for percentage country-specific and systemic risk in 5-year CDS spreads.

This table reports

summary statistics on the absolute and relative decomposition of 5-year CDS spreads into country-specific and systemic risk components.

Country-specific

Country-specific Fraction

Systemic Risk

systemic Risk Fraction

Country Mean Min Max Std. Dev. Mean Min Max Std. Dev. Mean Min Max Std. Dev. Mean Min Max Std. Dev.
Brazil 143.50 96.96 356.73 59.44 78.8% 63.0% 90.6% 5.3% 37.20 26.88 151.86 14.30 21.5% 9.6% 36.9% 5.3%
Bulgaria 147.25 66.55 484.76 84.91 76.7% 61.7% 87.6% 5.8% 40.16 29.03 163.89 15.43 23.6% 12.6% 38.6% 5.9%
Chile 37.98 26.39 97.47 12.58 44.2% 29.0% 57.2% 4.6% 48.37 34.84 196.44 18.57 56.0% 43.0% 71.0% 4.6%
Colombia 77.49 46.97 206.30 30.63 55.1% 40.4% 69.7% 7.1% 62.38 45.16 254.56 23.92 45.3% 30.7% 59.9% 7.2%
Croatia 126.44 47.40 306.18 57.84 51.2% 10.2% 71.4% 11.7% 115.94 84.16 473.46 44.25 49.2% 28.8% 90.1% 11.7%
Dominican Republic 281.31 114.28 867.37 160.42 71.6% 56.8% 86.2% 6.2% 103.64 75.14 423.16 39.60 28.6% 13.8% 43.1% 6.3%
Egypt 299.25 117.43 642.15 123.51 82.8% 64.0% 92.0% 6.5% 54.77 43.79 101.12 9.07 17.5% 8.2% 36.3% 6.6%
El Salvador 234.19 86.50 445.44 70.29 64.1% 31.8% 82.3% 10.4% 127.30 92.08 517.50 48.53 36.2% 18.0% 67.4% 10.4%
Guatemala 154.51 52.20 298.98 66.18 62.4% 35.7% 80.9% 11.0% 87.18 63.17 355.40 33.35 37.9% 19.5% 64.4% 10.9%
Hungary 147.93 51.82 417.41 95.75 56.8% 26.9% 81.8% 13.5% 94.77 68.68 386.87 36.23 43.5% 18.4% 72.8% 13.6%
Indonesia 105.90 56.02 482.52 75.24 59.8%  44.1%  83.8% 8.0% 64.24 46.32 260.85 24.62 40.6%  16.5%  56.3% 8.1%
Israel 81.12 52.38 180.79 28.12 92.2% 81.8% 95.6% 1.8% 6.67 4.82 27.26 2.57 7.9% 4.5% 18.2% 1.8%
Korea 58.09 30.38 227.55 39.49 72.2% 57.6% 87.3% 6.5% 19.74 14.25 80.60 7.60 28.0% 12.7% 42.6% 6.5%
Lebanon 249.67 136.86 489.86 72.99 65.6% 29.1% 83.5% 9.7% 130.46 94.38 530.40 49.72 34.8% 16.8% 71.2% 9.7%
Malaysia 65.12 45.37 168.76 23.13 62.2% 47.6% 79.2% 5.3% 39.54 28.57 161.38 15.20 38.1% 21.0% 52.7% 5.3%
Mexico 48.92 32.15 162.62 22.39 44.1% 32.0% 57.4% 5.4% 60.94 44.11 248.68 23.37 56.1% 42.9% 68.1% 5.5%
Panama 62.07 39.50 203.87 29.23 49.2% 35.9% 64.9% 6.2% 62.88 45.52 256.58 24.11 51.1% 35.4% 64.4% 6.2%
Peru 51.44 33.44 156.34 21.67 39.8% 27.2% 58.6% 5.8% 77.39 56.07 315.83 29.64 60.5% 41.7% 73.1% 5.8%
Philippines 104.05 58.87 406.17 68.70 74.7% 64.8% 94.4% 6.2% 31.10 22.46 126.95 11.96 25.5% 5.7% 35.5% 6.3%
Poland 51.83 26.71 134.98 30.06 53.6% 21.5% 74.4% 9.7% 40.45 29.25 165.08 15.55 46.5% 25.8% 78.6% 9.7%
Romania 185.81 72.57 545.58 103.81 90.0% 81.2% 95.2% 3.5% 17.88 12.91 73.00 6.89 10.1% 4.9% 19.0% 3.6%
Russia 160.35 77.75 605.81 115.67 70.0% 55.8% 91.0% 8.1% 58.99 42.67 240.75 22.63 30.3% 9.1% 43.5% 8.2%
Slovakia 62.24 29.21 215.81 47.74 82.4% 54.9% 95.1% 5.8% 10.69 7.71 43.68 4.12 17.7% 4.9% 45.1% 5.8%
South Africa 124.78 80.98 308.40 45.31 73.1% 57.6% 83.1% 5.2% 45.59 32.83 185.14 17.50 27.2% 17.1% 42.7% 5.2%
Thailand 54.50 40.06 132.38 16.47 51.9% 34.8% 70.7% 5.2% 51.40 37.03 208.74 19.72 48.4% 29.6% 65.5% 5.2%
Turkey 92.16 41.10 269.20 35.31 44.7% 27.3% 62.8% 8.3% 112.75 80.90 450.07 43.12 55.7% 37.4% 73.2% 8.3%
Venezuela 900.37 177.63 3830.15 973.15 47.7% 9.9% 84.7% 20.6% 569.26 416.71 2466.88 218.94 50.4% 10.7% 87.4% 22.2%
Vietnam 119.27 59.06 278.06 54.02 48.0% 33.6% 71.6% 8.8% 124.05 89.71 504.20 47.30 52.5% 28.9% 66.7% 8.9%
A 59.40 67.8% 27.58 32.3%

BBB 94.80 56.8% 63.96 43.5%

BB 143.03 64.4% 77.39 35.9%

B 432.65 66.9% 214.53 32.8%

B (w/o Venezuela) 276.74 73.3% 79.21 26.9%
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