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Abstract

I present a novel model of the term structure of interest rates in which mean

reversion is induced through level-dependent conditional volatility. The model rec-

onciles unit roots and cointegration with global stationarity and thus captures the

extremely persistent but mean-reverting behavior of interest rates. I introduce an

approximation that enables analytical computation of model-implied bond yields.

In an empirical application with macro-finance risk factors, I show that (i) the

short rate exhibits volatility-induced stationarity, which (ii) affects the long-run

dynamics; (ii) term premia implied by the volatility-induced stationary model are

economically plausible and consistent with survey forecasts; and (iii) the model im-

proves out-of-sample forecasting performance compared to a Gaussian affine term

structure model.
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1 Introduction

Interest rates are extremely persistent but globally stationary processes: in short samples

indistinguishable from random walks but mean-reverting over longer periods. In addition,

the term structure of interest rates appears to be cointegrating as yields of different

maturities co-move in the long run. These properties are puzzling in affine term structure

models in which unit roots and cointegration are irreconcilable with global stationarity.

This paper resolves this puzzle by introducing a novel dynamic term structure model

that can simultaneously accommodate unit roots, cointegration, and global stationarity

through volatility-induced stationarity.

The paper emphasizes that modeling unit roots and cointegration while maintaining

mean reversion is important for the decomposition of the term structure into expecta-

tions about future short rates and term premia. In a well-known speech Ben Bernanke

(2006) argues that monetary policy makers are highly dependent on models that reliably

disentangles these two components: if the current low long-term interest rates reflect

skepticism about the future economy, a monetary policy expansion is appropriate. On

the other hand, low term premia stimulate financial markets, which calls for a policy

tightening. Thus, the proposed model has both theoretical and practical impact.

The key feature of the proposed model is that it exhibits volatility-induced stationar-

ity such that a time-varying conditional volatility drive mean-reversion in the process.

Ling (2004) and Nielsen & Rahbek (2014) show that autoregressions with volatility-

induced stationarity modeled by a level-dependent conditional volatility can be globally

stationary even in presence of unit roots. Intuitively, large realizations of the process are

followed by periods in which the stochastic component is weighted by a large conditional

variance. Thus, the stochastic term eventually dominates the unit-root conditional mean.

This mechanism has also been studied in detail in Albin et al. (2006) and Nicolau (2005).

Apart from these non-linear factor dynamics, my model is akin to the discrete-time Gaus-

sian affine term structure model (GATSM).

The Volatility-induced stationary Term Structure Model (VTSM) does not admit a

closed-form expression of zero-coupon bond yields. I therefore propose an approximation

in which model-implied yields are quadratic in the risk factors. In this sense, the model

is related to the class of quadratic term structure models (QTSMs) studied in Ahn et

2



al. (2002), Leippold & Wu (2002), and Realdon (2006). However, whereas the quadratic

component in QTSMs comes from a quadratic specification of the short rate, the model

studied here generates a quadratic term structure from the conditional variance.

The approximation is sufficiently accurate for the purposes pursued in this paper.

In particular, I consider an empirical setting in which the US Treasury bond yield curve

is driven by the short and long nominal interest rates, inflation, and a measure of real

activity. These processes are extremely persistent and I find evidence on cointegration

with two long-term stable relationships. I show that the cointegrated GATSM raises puz-

zles regarding the adjustment to these long-run relations that are resolved by introducing

volatility-induced stationarity. In addition, I find that the VTSM obtains economically

plausible term premia estimates that are consistent with evidence provided from survey

forecasting data. Finally, the VTSM outperforms the GATSM in out-of-sample forecast-

ing.

Volatility-induced stationarity in interest rate data was first studied by Conley et al.

(1997), who consider Markov diffusion models with constant volatility elasticity as in the

CKLS model in Chan et al. (1992). Conley et al. (1997) apply these models to overnight

effective federal funds rates and conclude that ”when interest rates are high, local mean

reversion is small and the mechanism for inducing stationarity is the increased volatility”.

Nicolau (2005) also shows that the federal funds rate can be modelled by a process that

exhibits volatility-induced stationarity. Nielsen & Rahbek (2014) extend these analyses

by modeling two interest rates, namely the one- and three-month Treasury bill rates, in a

bi-variate autoregression with volatility-induced stationarity that allows for cointegration

between the rates. This paper contributes to this literature by (i) proposing a no-arbitrage

model for the entire term structure that exhibits volatility-induced stationarity and (ii)

allowing for more than two variables as driving factors of the term structure.

In a broader context, the paper provides insights in the discussion of the persistence

problem, i.e., that interest rates are more persistent than captured by stationary vector

autoregressions, and its implications for estimation of term premia. Shiller (1979) notes

that models that revert faster to a mean level than the data attribute almost all variation

in long-term interest rates to term premia. This is counterfactual according to survey

data, which suggest that term premia are stable an mainly driven by expectations (Kim

& Orphanides, 2007, 2012). On the other hand, non-stationary models do not allow for

any mean-reversion in interest rates. In result, expected future short rates are close to

current rates and term premia are close to constant. However, Campbell & Shiller (1991)
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and Backus et al. (2001) find evidence of time-varying premia in yields and forward rates.

The VTSM provides a solution to this puzzle by allowing for unit roots in a stationary

model.

Other methodologies have been suggested to overcome the persistence problem. One

strand of literature focuses on the well-known statistical problem that the autoregressive

parameter of stationary VAR models is downwardly biased in small samples when data

is persistent. To tackle this problem, Kim & Orphanides (2007, 2012) augment the data

with survey forecasts and Bauer et al. (2014) suggest a bias-correction that results in

stable term premia. This approach is conceptually different from that taken in this paper

in which linear dynamics is abandoned to introduce nonlinearity in the form of volatility-

induced stationarity. Abbritti et al. (2016) and Goliński & Zaffaroni (2016) suggest that

long memory represents a realistic, intermediate case between stationary I(0) and non-

stationary I(1) extremes of affine term structure models. Further, to capture the long-run

co-movement between yields of different maturities, Osterrieder (2013) considers fractional

cointegration and Jardet et al. (2013) study a model with near-cointegration modeled by

combining stationary and unit root models with model averaging techniques.

The paper is also related to stochastic volatility affine term structure models that

are studied and classified in Dai & Singleton (2000). As in the VTSM, these models

specify level-dependent conditional volatilities. There are, however, important differences.

Firstly, whereas one must impose adverse parameter restrictions to ensure positive definite

covariance matrices in affine models, the conditional variance specification in the VTSM

is positive definite by construction. Secondly, in contrast to the VTSM, affine models

constrain factor processes that drive conditional heteroskedasticity to the positive domain.

This side-effect is particular problematic in macro-finance models as the one considered

in this paper since macro risks such as inflation and growth rates can become negative.

Section 2 presents the volatility-induced stationary term structure model and ap-

proximate computation of model-implied bond yields. The section includes a detailed

comparison between the model and respectively the affine and quadratic classes of term

structure models. In Section 3, I analyze the data, construct a set of risk factors, and

estimate a vector autoregression with reduced rank and volatility-induced stationarity.

Given these estimated factor dynamics, Section 4 considers the term structure implica-

tions of volatility-induced stationarity and analyze model-implied term premia. Section

5 concludes.
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2 Volatility-Induced Stationary Term Structure Model

2.1 Factor Dynamics

I set up a model in which the term structure is driven by both yield and macro risks. The

yield risks are summarized by the short rate, rt, and a long-maturity yield, Rt. I model

macro risks by an inflation measure, πt, and a measure of real activity, gt. Let Xt denote

a state vector containing these risks: Xt = [rt, Rt, πt, gt]
′.

The primary challenge of this paper is to model factor dynamics that are highly

persistent but remain globally stationary. For this purpose, I propose a factor process that

can induce stationarity through the conditional factor volatilities. In particular, consider

the double-autoregressive process (Ling, 2004, Nielsen & Rahbek, 2014); a discrete-time,

autoregressive model with level-dependent conditional covariance matrix:

Xt+1 = µ+ ΦXt + εt+1, εt+1 = Ω
1/2
t ǫt+1

ǫt+1 ∼ i.i.d. N (0, I4)

Ωt = Ω+ ΓXtX
′

tΓ
′,

(1)

where Ω is symmetric positive definite matrix, which ensures that Ωt is positive definite.

I leave Φ, Ω, and Γ fully parameterized allowing for dependence between all risk

factors. This contrasts other studies in the macro-finance term structure literature in

which yield and macro risks are assumed to be orthogonal (Ang & Piazzesi, 2003, Ang et

al., 2006, Goliński & Zaffaroni, 2016, Monfort & Pegoraro, 2007).

Volatility-induced stationarity

The process in (1) is stationary and geometrically ergodic if its top Lyapunov exponent

is strictly negative (Nielsen & Rahbek, 2014, Theorem 1). Importantly, this restriction

does not exclude cases with unit roots in the characteristic polynomial. To understand

the intuition behind this result, consider a univariate example with Φ = 1. If Γ = 0,

the process is obviously a random walk and non-stationary. With Γ 6= 0, however, a

large value of Xt results in a large conditional variance of Xt+1. Thus, extended periods

of increasing realizations eventually imply that the stochastic component dominates the

unit-root conditional mean. In result, when a negative innovation is realized to a process
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that is far above its mean, the process is pushed towards its mean level. In this sense,

the conditional volatility can induce mean-reversion in a unit root vector autoregression.

Cointegration and Short-Run Structure

I allow for reduced rank to model cointegration between the factors. Assuming that the

characteristic polynomial has q unit roots and (4 − q) roots outside the unit circle, the

rank of (Φ− I4) in (1) is r = 4− q. Then, Φ can be parameterized by Φ = I4+αβ ′, where

α and β are 4× r matrices. Thus, the model can be written in error-correction form by

∆Xt = µ+ αβ ′Xt−1 +

K
∑

k=1

Ψk∆Xt−k + εt, εt ∼ N (0,Ωt−1) (2)

To achieve a well-specified model, I will let the data dictate the lag structure of the

model. Note that the error correction model can be re-written in the form of (1). Thus, I

will abstract from the error-correction model in (2) in the further discussion of the model.

2.2 Stochastic Discount Factor

The one-period stochastic discount factor is given by

Mt+1 = exp

(

−rt −
1

2
Λ′

tΩtΛt − Λ′

tε
Q
t+1

)

, (3)

where εQt+1 = Ω
1/2
t ǫQt+1, ǫ

Q
t+1 ∼ i.i.d. N (0, I4) and Λt is the market price of risk measured by

conditional variance, Ωt. I specify the market price of risk such that the factor dynamics

also follow a DAR process under the risk-neutral Q-measure. Thus, let

Λt = Ω−1
t (λ0 + λ1Xt) (4)

which result in Q-dynamics given by

Xt+1 = µQ + ΦQXt + εQt+1 (5)

with µQ = µ−λ0, Φ
Q = Φ−λ1, and Ωt defined in (1). Finally, note that per construction

of the state vector, there is the following relationship between the short rate and Xt:

rt = ι′1Xt (6)

where ι′1 denotes a unit vector with one in its first element. Equations (1)-(6) establish

the volatility-induced stationary term structure model, which I coin the VTSM.
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2.3 Zero-Coupon Bond Yields

Let Yt,n denote the yield of a bond with price Pt,n, hence Yt,n = − log(Pt,n)/n. The no-

arbitrage price of a zero-coupon bond expiring (n+ 1) periods from the current time t is

given by

Pt,n+1 = Et (Mt+1Pt+1,n) .

The VTSM does not admit a closed-form bond price expression that satisfies this equation.

Instead, I propose the following approximative bond price solution, P̃t,n:

P̃t,n =exp (An +B′

nXt + C ′

nvec (XtX
′

t)) , (7)

where

An = An−1 +B′

n−1µ
Q + C ′

n−1

(

vec
(

µQµQ′

)

+ vec (Ω)
)

+
1

2
B′

n−1ΩBn−1

B′

n = −ι1 +B′

n−1Φ
Q + C ′

n−1

(

ΦQ ⊗ µQ + µQ ⊗ ΦQ
)

C ′

n = C ′

n−1

(

ΦQ ⊗ ΦQ + Γ⊗ Γ
)

+
1

2

(

[B′

n−1Γ]⊗ [B′

n−1Γ]
)

initiated at n = 0 with A0 = 0, B0 = 0p×1, C0 = 0p2×1.

2.4 Enforcing the Zero-Lower Bound

The bond price expression in (7) allow us to formulate restrictions on the loading recur-

sions that ensure positive yields across the entire term structure.

Lemma 1 The VTSM enforces the zero-lower bound for yields with n ≥ 2, if the loading

recursions satisfy 1
4
Bn′C̃−1

n Bn − An ≥ 0 and C̃n, defined such that vec
(

C̃n

)

= Cn, is

positive definite.

Proof. The quadratic term in (7) can be re-written in the following way

C ′

nvec (XtX
′

t) = (Xt ⊗Xt)
′ vec

(

C̃n

)

= X ′

tC̃nXt.

Assuming C̃n is positive definite, the model-implied bond yield takes it minimum at

−n
∂Yt,n

∂Xt
= Bn + 2C̃nXt = 0 ⇔ Xt = −

1

2
C̃−1

n Bn.

Thus, the lower bound is given by

Yt,n ≥ −
1

n

(

An −
1

4
B′

nC̃
−1
n Bn

)

which satisfies the zero-lower bound if 1
4
Bn′C̃−1

n Bn − An ≥ 0.
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2.5 The VTSM versus Affine and Quadratic Term Structure Models

Affine term structure models

Time-varying conditional variances can be modeled in the affine framework by specifying

the factor dynamics as a mixture of Gaussian and gamma autoregressive processes. Dai

& Singleton (2000) introduce the notation Am(p), for affine models with p factors, where

m ≤ p factors control the stochastic volatilities of all factors. Thus, the GATSM is

denoted by A0(p).

The VTSM generally allows all factors to affect the conditional variance matrix akin

to Ap(p) models but with non-linear dynamics. The non-linearity in the VTSM brings

two advantages over the Ap(p) class. First, the conditional state variance matrix, Ωt, is

positive definite so long as the constant component, Ω, is positive definite. This restric-

tion is straightforwardly implemented by a Cholesky decomposition with strictly positive

diagonal elements. In contrast, the parameter restrictions necessary for ensuring admissi-

bility of affine models limit the flexibility in modeling conditional correlations to an extend

that affects the empirical performance of these models. At the extreme, Dai & Singleton

(2000) show that the class of Ap(p) models require that state variables are conditionally

uncorrelated and that unconditional correlations are non-negative.

Second, VTSMs do not constrain the state variables to the positive domain, whereas

gamma autoregressive processes are positive by construction. Obviously, when the state

vector contains macroeconomic variables such as growth in real activity or inflation rates,

such constraints are disadvantageous. In the Am(p) class, (p −m) factors are Gaussian

and can in fact become negative. But these same factors cannot control the conditional

volatility. In practice, this limitation implies that affine term structure models are not

suitable for applications in which macro risks drive time-varying volatility of the yield

curve. In the empirical part of this paper, I do indeed find that inflation and real activity

drives the conditional volatility matrix of the state vector.

Quadratic term structure models

Due to the quadratic form of (7), it is natural to compare the VTSM with the class of

quadratic models (QTSMs) studied in Leippold & Wu (2002), Ahn et al. (2002), and

Realdon (2006). QTSMs assume a quadratic short rate of the form,

rt = γ0 + γ′

1Xt +X ′

tΨXt.
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When the factors follow vector autoregressive dynamics and the stochastic discount factor

is specified as in (3), the model has a closed-form bond price solution given by

P̌t,n = exp
(

Ǎn + B̌′

nXt +X ′

tČnXt

)

with loadings given recursively in Realdon (2006). This expression can be written in the

same form as (7) (see the proof of Lemma 1). It follows that the QTSM and VTSM can

produce similar shapes of the yield curve abstracting from the no-arbitrage restrictions

implicit in the recursions. However, the source of the quadratic term and thus the loading

recursions are highly different across the two model frameworks: whereas the quadratic

bond yield stems naturally from the variance specification in the VTSM, the QTSM

imposes this non-linearity through an arbitrary specification of the short rate. Thus, the

VTSM is conceptually different from the class of QTSMs.

This difference is particularly highlighted in the macro-finance model considered in

this paper in which the short rate is a factor itself. In this setting, the short-rate spec-

ification is linear per construction and the QTSM reduces in this case to the Gaussian

ATSM.

3 Empirical Analysis of Risk Factors

3.1 The Data

The yield data is US Treasury zero-coupon bond yields sampled monthly (end-of-month)

between January 1985 and December 2016 with maturities 1, 2, ..., 10 years from Gürkaynak

et al. (2007). The sample has 384 observations in the time-series dimension. I augment

this data with the one-month Treasury Bill rate.1 Thus, the short and the long rates are

given by respectively the one-month and ten-year yields, rt = Yt,1 and Rt = Yt,12.

The macro risk factors are constructed following the approaches in Ang & Piazzesi

(2003) and Goliński & Zaffaroni (2016). The inflation measure is thus given by the first

principal component of standardized series of CPI and PPI data from the US Bureau of

Labor Statistics. Analogously, The measure of real activity is the first principal com-

ponent of standardized data on the unemployment and employment growth rates from

the US Bureau of Labor Statistics; the industrial production index from Federal Reserve

1This is extracted from the Fama/French factor files available at the authors’ website, http://mba.
tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Economic Data; and the help-wanted-advertising-in-newspapers (HELP) index from Bar-

nichon (2010).

Table 1 characterizes these macro risks in terms of the observed data series. The

inflation factor is equally correlated with each of the inflation data series, while the factor

on real activity correlates strongest with employment growth rate and the HELP index.

Correlation with the unemployment rate is negative as expected. In total, the inflation

and real activity factors account for respectively 85 and 66 pct of the total variation in

the underlying data series.

The risk factors are exhibited in Figure 1. We observe that the processes are extremely

persistent but fluctuate around stationary levels throughout the sample. Particularly

the short rate appears to exhibit volatility-induced stationarity: the process is clearly

heteroskedastic with higher volatility in periods with higher short-rate levels. Towards

the end of the sample, where the short rate is absorbed at the zero-lower bound, the

short-rate is very stable. In addition, the process exhibits occasional jumps.

3.2 Unit Roots and Reduced Rank

The risk factors are cross-correlated with coefficients reported in Table 2. Hence, the

standard assumption of orthogonality between yield and macro risks is inappropriate

and a full parametrization of the autoregressive parameter matrix Φ and the parameters

of the conditional covariance matrix appears to be necessary. The table also report

autocorrelations supporting a local unit root behavior of the factors. Formal unit root

and stationarity tests detect unit roots in the yield factors but not in the macro factors,

as shown in Table 9 in appendix.

I proceed by testing for cointegration by the Johansen (1991) test based on the linear

Explained (pct) Correlations

CPI PPI UNEMP EMP PROD HELP

πt 85.49 0.92 0.92 - - - -

gt 65.75 - - -0.71 0.93 0.71 0.87

Table 1: The table reports the percentage of variation in respectively inflation data (CPI, PPI)
and data related to real activity (UNEMP, EMP, PROD, HELP) explained by respectively the
inflation measure (πt) and the real activity measure (gt). Correlations between these measures
and the underlying variables is shown as well.
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Figure 1: Risk factors.

rt Rt gt πt rt−1 Rt−1 gt−1 πt−1

rt 1.00 0.87 0.42 0.56 0.98 0.87 0.42 0.58

Rt 0.87 1.00 0.39 0.37 0.86 0.99 0.39 0.37

πt 0.42 0.39 1.00 0.29 0.42 0.38 0.96 0.30

gt 0.56 0.37 0.29 1.00 0.54 0.36 0.27 0.99

Table 2: Auto- and cross-correlations in the risk factors

vector error correction model, i.e., (2) with Γ = 0p×p. The lag structure in the short-

run dynamics in this model is determined by general-to-specific LR tests, information

criteria, and misspecification tests. For the choice of three-months lags, the residuals are

not autocorrelated according to univariate Ljung-Box tests. The Johansen test, for which

results are reported in Table 10 in appendix, suggests a reduced rank of r = 2, hence,

two common stochastic factors drive the yield curve and there are two long-run stable

relations between the risk factors.

3.3 Factor Dynamics Estimation

The VTSM factor dynamics are thus given by the error-correction model in (2) with

reduced rank r = 2 and lag length K = 3. I estimate this model by maximum likelihood2

2Nielsen & Rahbek (2014) prove that maximum likelihood estimators in a particular bi-variate specifica-
tion of the model in (1) are consistent and asymptotically normal. Since these results do not generalize
to the specification considered here, I confirm by simulations that the maximum likelihood estimator
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under just-identifying restrictions. Then, I impose further restrictions to obtain models

with economically sensible interpretations, which I comment on below.3 I repeat this

procedure for the GATSM by setting Γ = 0p×p. Since the reduced-rank GATSM is

identical to the VTSM in absence of volatility-induced stationarity, I use it as reference

throughout the empirical application.

Tables 3 provides the estimated long-run dynamics and short-run estimates are placed

in Appendix A, Table 11. The VTSM obtains the lowest value of the AIC and the

likelihood values of the models are significantly different when compared by a LR test.

Likewise, misspecification tests reported in Table 12 in appendix suggest that the time-

varying conditional covariance matrix of the VTSM removes autocorrelation and improves

normality tests of the standardized residuals in comparison with the linear dynamics in

the GATSM.

We also note that the estimated top Lyapunov exponent in the VTSM is strictly

negative.4 Therefore, the volatility-induced stationary factor process is stationary, hence

compatible with mean-reverting yield processes despite unit roots in the yield factors. This

feature contrasts the GATSM dynamics in which unit roots imply global non-stationarity.

We shall see below that this difference carry implications for the long-run adjustments

and term premia implied by the models.

3.4 Sources of Volatility-Induced Stationarity

The VTSM allows all factors to exhibit volatility-induced stationarity and furthermore,

the conditional heteroskedasticity can be driven by all factors. This general setting allows

me to make statements about the estimated sources of volatility-induced stationarity.

Table 4 report standard deviations of all conditional covariances between the risk factors

and how each of these correlate with the risk factors.

The short rate stands out with a highly volatile conditional variance, which is driven

mainly by the yield curve factors. The macro factors also correlate with the conditional

short-rate variance, but I note that the estimated coefficient on the real activity measure

is insignificant (see Table 11, Appendix A). Also the conditional covariances between the

exhibit reasonable properties for the four-factor DAR model. The simulations are available upon request.
3The restrictions are imposed sequentially starting with setting the most insignificant estimates to zero
first in the cointegrating vector and then in the adjustment matrix. At each step, the restrictions are
tested by LR tests and the short-run coefficient estimates are compared.
4The Lyapunov exponents are obtained by the efficient and numerically stable algorithm described in
Nielsen & Rahbek (2014). Standard errors are extremely computationally demanding in this system of
16 exponents and therefore, not reported.
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Long-run factor dynamics in the VTSM:

∆
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gt
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0 0

0 −0.031
(0.012)

0.017
(0.008)

0

0.008
(0.003)

0



















νt−1 +
∑3

i=1 Γ̂i∆Xt−i + µ̂+ εt,

rt = 3.672
(1.150)

πt + 1.681
(0.611)

gt + νt,1,

Rt − rt = νt,2.

Log-likelihood: 6986, AIC= −13806, dim(θX) = 83, T = 384

Top-Lyapunov Exponent: −0.004.

Long-run factor dynamics in the GATSM:

∆















rt

Rt

πt

gt















=



















−0.016
(0.008)

0.050
(0.027)

0 0

0.017
(0.009)

−0.033
(0.017)

0.009
(0.003)

0



















νt−1 +
∑3

i=1 Γ̂i∆Xt−i + µ̂+ εt,

rt = 3.097
(0.911)

πt + 2.174
(0.715)

gt + νt,1,

Rt − rt = νt,2.

Log-likelihood: 6823, AIC: −13507, dim(θX) = 69, T = 384.

Table 3: Estimates of cointegrating relations and adjustment speeds in the factor dynamics of
the VTSM and GATSM. Estimated top Lyapunov exponent is reported for the former. Standard
errors in parentheses. Remaining estimation results are reported in Table 11 in Appendix A.
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std corr(·,rt) corr(·,Rt) corr(·,πt) corr(·,gt)

vart−1(rt) 2.32 0.93 0.82 0.40 0.48

vart−1(Rt) 0.04 -0.07 -0.04 -0.22 -0.43

vart−1(πt) 0.29 -0.31 -0.12 -0.34 -0.84

vart−1(gt) 0.01 0.03 0.05 -0.29 -0.42

covt−1(rt, Rt) 0.24 0.75 0.50 0.14 0.68

covt−1(rt, πt) 0.36 0.17 0.32 0.25 -0.40

covt−1(rt, gt) 0.08 0.80 0.62 0.50 0.56

covt−1(Rt, πt) 0.11 0.42 0.25 0.35 0.77

covt−1(Rt, gt) 0.02 0.07 0.09 -0.31 -0.39

covt−1(πt, gt) 0.05 0.30 0.18 0.53 0.64

Table 4: Standard deviations and correlations with risk factors of the elements of the estimated
conditional covariance matrix, Ω̂t−1. Boldfaced standard deviations for covariances that are
significantly time-varying (associated Γ̂ij significant on the 5% level for at least one i, j.).

short rate, long rate, and inflation measure along with the conditional variance of inflation

exhibit volatility-induced stationarity although to a lesser extent than that of the short

rate. Thus, the short rate is the primary source of volatility-induced stationarity in the

term structure. The variance of the real activity measure and its associated covariances

are very stable and the corresponding estimated coefficients of Γ are insignificant. To this

end we recall that the unit root test was rejected for this variable.

The estimated conditional covariances that involve the short rate are exhibited in

Figure 2. As expected, the variances implied by the VTSM are fluctuating around the

constant levels implied by the GATSM. I also observe that the conditional covariances are

highly time-varying and only stay near zero during the zero-lower bound regime. These

patterns cannot be replicated by the affine Ap(p) models in Dai & Singleton (2000) due

to the admissibility restrictions discussed earlier.

3.5 Long-Run Dynamics and Stationarity

The VTSM and the GATSM carry similar predictions concerning the long-run stable

relations: the long and short rates are cointegrated as in Hall et al. (1992) and there is a

long-run co-movement between the short rate, inflation, and real activity. Since the short

rate follows the Federal Funds rate closely, this relation mimics the dual mandate of the
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Figure 2: Estimated conditional variance of the short rate and conditional covariance between
the short rate and the remaining factors; Ωt(i, 1) denotes the covariance with the i’th risk factor
in the state vector. Reported in basis points.

Federal Reserve (Fed). In addition, the signs of the estimates are intuitive: a low interest

rate is associated with high levels of inflation and real activity.

The models, however, produce different estimates of the adjustment matrix. In the

VTSM, the long-run stability of the yield spread is maintained by the long rate, whereas

the GATSM predicts that the short rate adjust towards this equilibrium. To the extend

that the yield spread equilibrium reflects no-arbitrage, we should expect the long rate,

i.e., market mechanisms, to erode short-lived arbitrage opportunities rather than the short

rate, which is primarily controlled by the Fed.5 As for the second equilibrium, the models

disagree on whether the short rate enters the error-correcting mechanism jointly with the

macro factors. The fact that the Fed determines the policy discretionally rather than

mechanically from macro risks (Bernanke, 2015) is an argument for the plausibility of the

VTSM, in which the short rate is not significant in the adjustment matrix.

The common stochastic factors of the yield curve are determined by the orthogonal

complement of the adjustment matrix, α⊥, as α̂
′

⊥

∑t
s=1 ε̂s, where ε̂ denotes the standard-

ized residual. These are plotted in Figure 3. By comparing with the risk factor plot in

5While the FOMC does use information on developments in the long-term yield to make decisions about
the discount rate (Bernanke, 2006), it is not concerned with maintaining a stable spread.
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Figure 3: Common stochastic factors computed by α̂′

⊥

∑t
s=1 ε̂s for the VTSM and GATSM.

Figure 1, we identify that the VTSM is partly driven by shocks to the short rate. Hence,

the VTSM predicts that the Fed can affect the dynamics of the entire yield curve by

controlling the short rate and that the market will adjust to such monetary policy shocks.

The GATSM, on the other hand, is partly driven by shocks to the long rate. A similar

conclusion is reached by Hall et al. (1992) also in an affine model but with yields only.

They interpret these results as evidence of the expectations hypothesis: the term structure

is driven by the long rate to which current short rates adjust using the information

contained in the yield spread. We shall see in Section 4.2 that the GATSM is indeed

consistent with the expectations hypothesis as it implies almost constant term premia.

In conclusion, I find that the short rate is an important factor for establishing mean

reversion in the factor dynamics. In the GATSM, this property is realized as an error-

correcting behavior that is economically implausible. In contrast, the VTSM allows the

short rate to induce stationarity through the conditional volatility.

4 Empirical Term Structure Results

4.1 Term Structure Estimation

The error-correction model analyzed thus far can be re-written as a process that follows

the single-lag model in (1) given by X̃t = [X ′

t, X ′

t−1, X ′

t−2, X ′

t−3]
′ with constant µ̃ =

[µ′, 01×12]
′ and autoregressive parameter

Φ̃ =
αβ ′ + I4 +Ψ1 Ψ2 −Ψ1 Ψ3 −Ψ2 −Ψ3

I12 04×4







.

The corresponding dynamics under the Q-measure given by (5) has conditional mean

parameters, µ̃Q and Φ̃Q. I treat lagged states as unspanned factors. Thus, lagged risk
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factors are included in the model to forecast current states, but do no explain the term

structure cross-section 6. It follows that

Φ̃Q = ΦQ Ψ2 −Ψ1 Ψ3 −Ψ2 −Ψ3

I12 04×4







.

Thus, µQ and ΦQ are free parameters with dimensions of respectively 4× 1 and 4 × 4. I

estimate the parameters taking the parameters obtained from the factor dynamics, Θ̂P,

as given.7 The parameters are fitted to the yield curve given by maturities 1 to 10 years

from Gürkaynak et al. (2007). Thus, there is N = 10 observations in the cross-section for

T = 384 months. The estimation problem is given by

min
µQ,ΦQ

T
∑

t=1

N
∑

i=1

{

Yt,12i − Ŷt,12i

(

µQ,ΦQ, Θ̂P
)}2

where Ŷt,n

(

µQ,ΦQ,ΘP
)

= −n−1 log P̂t,n

(

µQ,ΦQ,ΘP
)

with P̂t,n computed in closed form

by (7). To achieve convergence of this highly non-linear problem, I first estimate ΦQ

with µQ = 0p×1 and then, µQ given the estimated value of ΦQ. Using these estimates as

starting values, the parameters are re-estimated jointly. The results are shown in Table

5.

The persistence of the models under the P-measure is given by maximum eigenvalues

equal to one by construction. Under the Q-measure, the VTSM contains an eigenvalue

outside the unit circle, equal to −1.025, while the maximum eigenvalue of the GATSM

is 0.9999. However, due to the time-varying conditional volatility, the VTSM remains

stationary with a top-Lyapunov exponent of −0.017.

4.2 Term Premia

The volatility-induced stationary property of the VTSM affects its implied term premia

estimates radically. Figure 4 presents the five-by-five-year forward rate and associated

term premia8 of the VTSM against the GATSM. I compare these term premia to those

generated by a stationary Gaussian affine term structure model, in which reduced-rank

restrictions are not imposed, computed by Wright (2011). Bauer, Rudebusch, and Wu

6Models with unspanned factors are studied in Duffee (2011), Joslin et al. (2014), Ludvigson & Ng (2009),
Wright (2011)
7This two-step estimation method is a common approach in the macro-finance term structure literature,
see for instance Ang & Piazzesi (2003), Ang et al. (2006), Goliński & Zaffaroni (2016).
8Computed by the difference between the forward rate and the model-implied forward rate when the
market price of risk is zero.
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VTSM GATSM

µQ′

(×10−3)
-2.591 -2.765 1.459 5.371 -0.140 0.066 -0.284 -0.052

(1.336) (1.212) (0.731) (2.490) (0.050) (0.047) (0.284) (0.095)

ΦQ

-1.336 1.615 1.413 -0.130 0.548 0.251 -0.010 -0.029

(0.235) (0.329) (0.085) (0.087) (0.011) (0.015) (0.010) (0.010)

-2.451 2.728 1.750 -0.059 -0.037 1.034 0.157 0.068

(0.197) (0.178) (0.213) (0.089) (0.008) (0.011) (0.008) (0.006)

1.374 -0.876 0.550 0.046 0.043 0.050 1.396 0.035

(0.217) (0.157) (0.195) (0.068) (0.044) (0.066) (0.045) (0.037)

4.635 -3.240 -2.961 1.613 0.014 0.022 0.058 1.217

(0.297) (0.458) (0.251) (0.169) (0.018) (0.026) (0.016) (0.015)

Table 5: Estimated conditional mean parameters under the Q-measure. Standard errors in
paranthesis.

(2014) emphasize that these term premia should be adjusted to correct for a small-sample

bias; the resulting bias-corrected term premia are also shown in the figure denoted BRW.9

Considering the degree of mean-reversion in the factor dynamics implied the models,

the GATSM and the Wright model stand out as two extremes: the former exhibit no

mean-reversion and the latter is too mean reverting in the sense that it is affected by

small-sample bias in the autoregressive parameter. In short, both estimates suffer from

the persistence problem. The VTSM and BRW model represent in-between cases. These

properties are clearly reflected in the implied term premia. In the GATSM, expectations

of future yields are almost equal to current yields. In result, the expectations hypothesis

is satisfied with highly stable and acyclical term premia. The Wright model, in contrast,

attributes almost all variation in the forward rate to term premia. In fact, the correlation

between the term premium and the forward rate is 0.96 as reported in Table 6. This

implication of mean-reversion is also noted in Shiller (1979) and Kozicki & Tinsley (2001).

Both the VTSM and BRW term premia are stable and countercyclical. The cyclical

patterns are most pronounced in the VTSM with very low premia in the years leading to

9The Wright and BRW term premia are both available at quarterly frequency from the website of Bauer
et al. (2014). In both models, the factors are given by the first three principal components of the yield
curve along with two unspanned macro risks constructed by smoothed inflation and GDP growth data.
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Figure 4: Five-by-five-year forward rate and corresponding term premia computed in the
VTSM and GATSM. Forward term premia estimates from Bauer et al. (2014) and Wright
(2011) are reported for reference (quarterly frequency). Shaded areas mark recessionary periods
as defined by NBER.

the financial crisis of 2007/8. As reported in Table 6, the VTSM term premia are more

volatile than the BRW, which shows that the volatility-induced stationarity introduces

a higher degree of mean reversion than the affine model does after correcting for small-

sample bias. The table illustrates further differences between the models: whereas the

BRW premia are almost uncorrelated with the forward rate, the VTSM does imply some

correlation. Thus, whereas the bias-corrected affine model predicts that the downward

trend in long interest rates is caused by lower expected future short rates, the volatility-

induced stationary model assigns this pattern partly to decreasing risk preferences and

partly to the expectations component. As noted by Bernanke (2006), these differences

carry different implications for the appropriate policy response. Thus, there are significant

economic differences between the volatility-induced stationary model with reduced rank

and the bias-corrected affine model.

Since term premia are unobserved, we can only argue that the VTSM appears more

economically plausible compared to the GATSM. Therefore, I use survey data to sup-

port this conclusion with data and quantify the model differences. The data is from

the Survey of Professional Forecasters (SPF) conducted by the Federal Reserve Bank of

Philadelphia on a quarterly basis. I use median forecasts of the three-month Treasury

bill rate as proxy for the short rate; the ten-year Treasury bond yield; and standardized

CPI inflation following the construction of the inflation factor. I compare this data to
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VTSM GATSM BRW Wright

Standard deviation 0.92 0.25 0.60 1.13

Correlation with forward rate 0.48 0.17 -0.09 0.96

Correlation matrix:

VTSM 1

GATSM 0.88 1

BRW 0.44 0.63 1

Wright 0.42 0.11 -0.10 1

Table 6: Standard deviations and correlations of term premia in the VTSM, the GATSM,
Bauer et al. (2014) (BRW), and Wright (2011).

VTSM GATSM

Short rate Long rate Inflation Short rate Long rate Inflation

3M 39.71 217.80 106.38 44.09 221.18 115.33

6M 49.14 200.23 98.49 58.74 205.46 113.78

1Y 74.56 167.48 92.66 83.90 174.33 106.66

Table 7: Root mean squared errors of model-implied expectations compared to survey data
from Survey of Professional Forecasters. Reported in basis points.

expectations of the corresponding risk factors computed using respectively the VTSM

and the GATSM. Table 7 compare root mean squared errors in basis points between

model-implied and survey expectations for forecasting horizons of 3, 6, and 12 months

ahead. The results unambiguously show that the VTSM matches market expectations

better than the GATSM.

4.3 Out-of-Sample Performance

In this section, I show that volatility-induced stationarity improve the ability to forecast

the yield curve. First, I estimate respectively factor dynamics (with one lag) and the

parameters relating to the term structure cross-section in the VTSM and the GATSM for

a sample from January 1985 to December 2005 (T=252). Then, using these estimated

models I forecast the yield curve 3, 6, and 12 months ahead. I repeat this procedure by re-

estimating the models based on a rolling-window sample from January 2006 to December
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VTSM GATSM Random Walk

Horizon 3M 6M 12M 3M 6M 12M 3M 6M 12M

Average 58.06 71.77 87.42 69.07 88.21 102.74 63.37 79.48 125.61

1Y 65.90 85.18 113.43 99.57 131.34 168.83 65.53 102.71 175.08

2Y 63.23 78.86 99.29 86.35 111.69 136.38 64.60 91.40 156.03

3Y 61.77 75.03 90.18 77.96 99.04 115.84 64.20 83.29 140.76

4Y 60.24 72.83 85.93 72.16 90.75 103.14 63.82 78.08 129.29

5Y 58.33 70.88 83.53 67.52 84.74 94.88 63.45 75.12 120.86

6Y 56.33 69.02 81.94 63.50 79.94 89.03 63.12 73.64 114.60

7Y 54.55 67.39 80.76 59.96 75.87 84.56 62.80 73.00 109.85

8Y 53.24 66.16 79.95 56.90 72.36 80.96 62.47 72.73 106.11

9Y 52.64 65.56 79.46 54.35 69.37 78.05 62.07 72.54 103.05

10Y 54.36 66.78 79.72 52.42 66.95 75.77 61.60 72.28 100.44

Table 8: Root mean squared errors from forecasting the term structure using the VTSM and
the GATSM estimated on a rolling window starting with the sample from January 1985 to
December 2005. Forecasts by the random walk are reported for reference. The minimum value
obtained for each forecast horizon and maturity is boldfaced. Reported in basis points.

2015. This period contains events that are difficult to forecast including the financial

crisis of 2007/08 and the zero-lower bound regime.

Root mean squared errors from the exercise are presented in Table 8 along with

random walk forecasts. The VTSM outperform both the GATSM and the random walk

for all maturities but the 10-year yield. The differences between the models’ forecasting

performance increase inversely with maturity, which is consistent with the result that

volatility-induced stationarity is generated by the short end of the yield curve.

4.4 In-Sample Performance

To compare the VTSM and the GATSM with respect to in-sample fit, Figure 5 shows the

average observed and fitted yield curves for two years: 2006 and 2011. Year 2006 repre-

sents an expansionary period, where the conditional variance of the factors is estimated

with a peak in the VTSM (see Figure 2). On average, the yield curve was nearly flat.

In 2011, the conditional variances and yield levels were close to zero and the yield curve

was on average upward-sloping. In both periods, the models match observed yields well
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Figure 5: Observed and fitted yield curves averaged across 2006 (left) and 2011 (right).

and there are practically no difference between the models’ capability of matching levels

in sample.

I also consider the conditional second-order moments, which are time-varying in the

VTSM and constant in the GATSM by construction of the factor dynamics. In the

GATSM, vart−1(Yt,n) = B′

nΩBn. For the VTSM, I apply a local linearization around Xt−1

such that vart−1(Yt,n) ≈ [B′

n + C ′

ng(Xt−1)] Ωt−1 [B
′

n + C ′

ng(Xt−1)]
′, where the function g(·)

is defined by g(a) = ∂vec (XtX
′

t) /∂X
′

t|Xt=a. Since conditional variances are unobserved,

I compare these measures to two proxies: realized variance computed from daily obser-

vations, also available from Gürkaynak et al. (2007), and rolling-sample variance with a

6-month look-back.

The results are shown for the three- and eight-year yields, which are representative

for the entire term structure, in Figure 6. Considering the 3-year maturity, the VTSM

captures the low conditional variance during the zero-lower bound regime with a peak

centered at the outbreak of the financial crisis of 2007/08. Apart from these observations,

the model-implied volatility appears to more correlated with levels of the risk factors than

with the conditional volatility proxies. At the longer maturity, the level of the model-

implied volatility is consistent with the proxies, but the fluctuations are not captured.

These results are supported by Filipović et al. (2017), who find evidence that yield

volatilities are level-dependent near the zero-lower bound but unspanned at higher levels.10

Also, Christensen et al. (2014) find that term structure models with spanned factors

cannot capture realized yield volatility although they attribute this finding to that the

realized volatility measure is misleading.

10Unspanned stochastic volatility is presented in Colin-Dufresne & Goldstein (2002).
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Figure 6: Conditional volatilities of 3- and 8-year yields implied by the VTSM and the GATSM.
The former is computer by a local linearization. Proxies for conditional volatilities of the data
given by respectively realized variances (RV) based on daily data and rolling-sample variance
with a 6-month look-back are plotted for reference. Reported in basis points.

5 Concluding Remarks

I presented a volatility-induced stationary term structure model (VTSM), which allows

interest rates to be stationary processes despite presence of unit roots and cointegration.

The novelty of the model is that it exhibits volatility-induced stationarity, i.e., that the

conditional variance depends on levels such that stochastic shocks affect levels more in

periods where the process takes on large values in magnitude.

The combination of unit roots and mean reversion is important for estimating reliable

term premia. In a nutshell, the proposed model provides a solution to the persistence

problem of affine term structure models by estimating term premia that are time-varying

but stable. In contrast, affine models imply term premia that are either almost constant

(non-stationary case) or almost identical to interest rates (stationary case).

Bond yields in the VTSM can be approximated in closed form with sufficient accuracy.

The empirical part of the paper presented a macro-finance model and identified volatility-

induced stationarity in the short rate. Compared to the Gaussian affine term structure

model with reduced rank, I showed that the VTSM obtains more realistic term premia

and smaller out-of-sample forecasting errors.

Since the VTSM involves a time-varying conditional variance, one might expect the

model to fit second-order moments of the yield curve. However, I find that further work is

needed to fulfil this objective. In particular, examining the ability of the VTSM to match

conditional yield variance may require unspanned factors of the conditional variance;
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that second-order moments are targeted in estimation as in Cieslak & Povala (2016);

or inclusion of derivatives in the information set as in Almeida et al. (2011), Bikbov &

Chernov (2011) and Jagannathan et al. (2003). I leave these extensions for future research.
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A Additional Tables

H0 rt Rt πt gt

ADF test unit root
2.16 3.19 -16.98 -14.83

[0.44] [0.17] [0.00] [0.01]

KPSS test stationarity
1.49 1.89 0.39 0.43

[0.00] [0.00] [0.08] [0.06]

Table 9: Augmented Dickey-Fuller and KPSS tests for respectively unit root and stationarity.
P-values in brackets.

Bartlett r ≤ 0 r ≤ 1 r ≤ 2 r ≤ 3

Trace test No

90.89 32.62 15.99 5.06

[0.00] [0.02] [0.04] [0.02]

{0.00} {0.03} {0.07} {0.11}

Trace test Yes
84.99 31.57 15.06 4.56

[0.00] [0.03] [0.06] [0.03]

Table 10: Johansen test of the null, H0: r ≤ r⋆ < p, against r = p with and without Bartlett
small-sample correction. P-values in brackets and bootstrapped p-values in curly brackets.
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VTSM GATSM

Σ̂ (×10−3) 0.045
(0.010)

0.369
(0.022)

0.049
(0.037)

0.217
(0.012)

0.029
(0.015)

0.228
(0.010)

-0.016
(0.040)

0.022
(0.016)

0.247
(0.017)

0.020
(0.013)

-0.007
(0.016)

0.275
(0.016)

0.012
(0.015)

0.014
(0.007)

0.002
(0.009)

0.113
(9,995)

0.013
(0.005)

0.017
(0.005)

-0.001
(0.008)

0.114
(0.005)

Γ̂ -0.096
(0.013)

-0.019
(0.006)

-0.015
(0.006)

-0.008
(0.005)

-0.015
(0.014)

0.007
(0.010)

0.012
(0.011)

-0.028
(0.012)

-0.006
(0.018)

-0.007
(0.011)

-0.012
(0.018)

0.076
(0.016)

-0.002
(0.006)

-0.000
(0.004)

-0.008
(0.007)

-0.0074
(0.007)

µ̂′ (×10−4) -0.041
(0.060)

0.288
(0.217)

-0.273
(0.263)

-0.244
(0.106)

-0.637
(0.448)

-0.215
(0.119)

-0.122
(0.425)

-0.241
(0.095)

Ψ̂1 -0.175
(0.064)

0.059
(0.034)

0.027
(0.022)

0.036
(0.039)

-0.427
(0.076)

0.183
(0.088)

0.014
(0.060)

-0.064
(0.161)

-0.026
(0.034)

0.027
(0.055)

0.150
(0.050)

0.140
(0.102)

-0.028
(0.032)

0.034
(0.059)

0.148
(0.054)

0.069
(0.100)

0.039
(0.032)

0.032
(0.056)

0.444
(0.059)

-0.087
(0.113)

0.020
(0.030)

0.024
(0.056)

0.449
(0.077)

0.029
(0.140)

0.027
(0.016)

0.010
(0.027)

0.068
(0.022)

0.244
(0.048)

0.020
(0.015)

0.021
(0.027)

0.065
(0.023)

0.236
(0.049)

Ψ̂2 -0.028
(0.072)

-0.032
(0.023)

0.011
(0.019)

0.014
(0.045)

-0.125
(0.082)

0.164
(0.080)

0.035
(0.065)

0.527
(0.165)

-0.035
(0.040)

-0.119
(0.055)

0.064
(0.044)

0.048
(0.106)

-0.025
(0.039)

-0.117
(0.053)

0.057
(0.048)

0.005
(0.114)

0.036
(0.032)

-0.063
(0.049)

-0.162
(0.066)

0.292
(0.118)

0.015
(0.033)

-0.035
(0.052)

-0.124
(0.079)

0.480
(0.137)

0.008
(0.017)

-0.015
(0.025)

0.025
(0.029)

0.187
(0.053)

0.010
(0.016)

-0.009
(0.025)

0.017
(0.033)

0.193
(0.049)

Ψ̂3 -0.061
(0.056)

-0.022
(0.022)

-0.0359
(0.0220)

0.061
(0.038)

0.030
(0.074)

-0.064
(0.083)

-0.190
(0.062)

-0.070
(0.141)

-0.045
(0.034)

0.065
(0.058)

-0.090
(0.043)

0.001
(0.096)

-0.026
(0.034)

0.056
(0.061)

-0.078
(0.044)

-0.063
(0.099)

0.007
(0.029)

0.064
(0.051)

0.122
(0.056)

-0.084
(0.113)

0.009
(0.030)

0.066
(0.056)

0.063
(0.070)

0.050
(0.111)

-0.039
(0.015)

-0.015
(0.025)

0.034
(0.025)

0.288
(0.052)

-0.035
(0.014)

-0.017
(0.024)

0.032
(0.028)

0.278
(0.053)

Table 11: Short-run factor dynamics in the VTSM and GATSM. Standard errors in parenthe-
ses. Σ̂ denotes the Cholesky decomposition of Ω̂.
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VTSM GATSM

rt Rt πt gt rt Rt πt gt

Ljung-Box test
7.71 1.67 0.61 4.96 3.72 1.48 1.05 5.75

[0.10] [0.80] [0.96] [0.29] [0.44] [0.83] [0.90] [0.22]

Engle’s ARCH test
23.81 4.37 2.53 1.58 36.15 9.92 20.82 0.60

[0.00] [0.04] [0.11] [0.21] [0.00] [0.00] [0.00] [0.44]

Kolmogorov-Smirnov test
0.07 0.06 0.06 0.06 0.09 0.06 0.10 0.05

[0.05] [0.09] [0.12] [0.16] [0.00] [0.12] [0.00] [0.12]

Table 12: Residual specification tests: Ljung-Box test of no autocorrelation. Engle’s test of no
ARCH effects. Kolmogorov-Smirnov test of standard normal distribution. P-values in brackets.
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Goliński, A., & Zaffaroni, P. (2016). Long memory affine term structure models.

Journal of Econometrics , 191 , 33–56.

Gürkaynak, R. S., Sack, B., & Wright, J. H. (2007). The U.S. Treasury yield curve:

1961 to the present. Journal of Monetary Economics , 54 , 2291–2304.

Hall, A., Anderson, H., & Granger, C. (1992). A Cointegration Analyisis of Treasury

Bill Yields. The Review of Economics and Statistics , 74 (1), 116–126.

Jagannathan, R., Kaplin, A., & Sun, S. (2003). An evaluation of multi-factor CIR

models using LIBOR, swap rates, and cap and swaption prices. Journal of

29



Econometrics , 116 , 113–146.

Jardet, C., Monfort, A., & Pegoraro, F. (2013). No-arbitrage Near-Cointegrated

VAR(p) term structure models, term premia and GDP growth. Journal of Banking &

Finance, 37 , 389–402.

Johansen, S. (1991, nov). Estimation and Hypothesis Testing of Cointegration Vectors

in Gaussian Vector Autoregressive Models. Econometrica, 59 (6), 1551–1580.

Joslin, S., Priebsch, M., & Singleton, K. J. (2014). Risk Premiums in Dynamic Term

Structure Models with Unspanned Macro Risks. Journal of Finance, 69 (3),

1197-1233.

Kim, D. H., & Orphanides, A. (2007). The Bond Market Term Premium: What is It,

and How Can we Measure It? BIS Quarterly Review(June), 27–40.

Kim, D. H., & Orphanides, A. (2012). Term Structure Estimation with Survey Data on

Interest Rate Forecasts. Journal of Financial and Quantitative Analysis , 47 (1),

241–272.

Kozicki, S., & Tinsley, P. A. (2001). Shifting endpoints in the term structure of interest

rates. Journal of Monetary Economics , 47 (3), 613–652.

Leippold, M., & Wu, L. (2002). Class Asset Pricing under the Quadratic. The Journal

of Financial and Quantitative Analysis , 37 (2), 271–295.

Ling, S. (2004). Estimation and testing of stationarity for double-autoregressive models.

Journal of Statistics , 66 , 63–78.

Ludvigson, S. C., & Ng, S. (2009). Macro factors in bond risk premia. The Review of

Financial Studies , 22 (12), 5027-5067.

Monfort, A., & Pegoraro, F. (2007). Switching VARMA Term Structure Models.

Journal of Financial Econometrics , 5 (1), 105–153.

Nicolau, J. (2005). Processes with volatility-induced stationarity: an application for

interest rates. Statistica Neerlandica, 59 (4), 376–396.

Nielsen, H. B., & Rahbek, A. (2014). Unit root vector autoregression with volatility

induced stationarity. Journal of Empirical Finance, 29 (C), 144–167.

Osterrieder, D. (2013). Interest Rates with Long Memory : A Generalized Affine

Term-Structure Model.

30



Realdon, M. (2006). Quadratic Term Structure Models in Discrete Time. Finance

Research Letters , 3 , 277–289.

Shiller, R. (1979). The Volatility of Long-Term Interest Rates and Expectations Models

of the Term Structure. The Journal of Political Economy , 87 (6), 1190–1219.

Wright, J. H. (2011). Term Premiums and Inflation Uncertainty: Empirical Evidence

from an International Dataset. American Economic Reivew , 101 (4), 1514–1534.

31


	Introduction
	Volatility-Induced Stationary Term Structure Model
	Factor Dynamics
	Stochastic Discount Factor
	Zero-Coupon Bond Yields
	Enforcing the Zero-Lower Bound
	The VTSM versus Affine and Quadratic Term Structure Models

	Empirical Analysis of Risk Factors
	The Data
	Unit Roots and Reduced Rank
	Factor Dynamics Estimation
	Sources of Volatility-Induced Stationarity
	Long-Run Dynamics and Stationarity

	Empirical Term Structure Results
	Term Structure Estimation
	Term Premia
	Out-of-Sample Performance
	In-Sample Performance

	Concluding Remarks
	Additional Tables
	References

