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Abstract

We propose a model to forecast very large realized covariance matrices of re-

turns, applying it to the constituents of the S&P 500 on a daily basis. To deal

with the curse of dimensionality, we decompose the return covariance matrix using

standard firm-level factors (e.g. size, value, profitability) and use sectoral restric-

tions in the residual covariance matrix. This restricted model is then estimated

using Vector Heterogeneous Autoregressive (VHAR) models estimated with the

Least Absolute Shrinkage and Selection Operator (LASSO). Our methodology im-

proves forecasting precision relative to standard benchmarks and leads to better

estimates of the minimum variance portfolios.
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1 Introduction

The goal of this paper is to construct models based on factors and shrinkage methods

to forecast large-dimensional and time-varying realized measures of daily covariance

matrices of returns on financial assets. Realized measures of a covariance matrix are es-

timates, based on intraday returns, of the integrated covariance matrix of a multivariate

diffusion process. One example of such estimator, used in this paper, is the composite

realized kernel method recently introduced by Lunde, Shephard, and Sheppard 2016.

Our proposed model is evaluated both in terms of its forecasting ability and, more

importantly, in terms of several performance measures in a conditional mean-variance

portfolio allocation problem.

Modeling and forecasting the covariance matrix of financial assets is essential for

portfolio allocation and risk management. Moreover, it is an established empirical fact

that (conditional) covariance matrices vary considerably over time. Natural ways to

model such dynamics is to either use multivariate generalizations of the ARCH/GARCH

family of models as proposed by Engle and Kroner (1995) or Engle (2002) or model

directly a given realized measure of the covariance matrices by usual multivariate time-

series models as in Bauer and Vornik (2011), Chiriac and Voev (2011) or Golosnoy,

Gribisch, and Liesenfeld (2012). This is motivated by the close connection between the

conditional covariance matrix and the integrated covariance of a multivariate diffusion

process.

However, when the number of assets increases, the amount of parameters to be

estimated gets very large. For instance, for a covariance matrix of n assets, there are

n(n + 1)/2 distinct entries to be modeled. If a vector autoregressive specification of

order p, VAR(p), is used, then the total number of parameters will be n(n+1)(p+1)/2.

Therefore, the curse of dimensionality precludes the application of the above referenced

methods to moderately large covariance matrices and most of the previous studies in

the literature focused on sets of less than ten assets.

More recently, based on the advances of modern statistical tools to handle high-
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dimensional models, new alternatives have been proposed in the literature in order to

deal with a large number of assets. Callot, Kock, and Medeiros (2017) advocate the

use of the Least Absolute Shrinkage and Selection Operator (LASSO) of Tibshirani

(1996) and the adaptive LASSO of Zou (2006a) to model the dynamics of the realized

covariance of the constituents of the Dow Jones index by a large dimensional VAR.

However, their modeling strategy is not able to handle sets of assets larger than the 30

used in the paper. Engle, Ledoit, and Wolf (2017) combine nonlinear shrinkage with the

DCC-GARCH model and put forward a methodology where the dynamics huge latent

conditional covariance matrices can be modeled.

In this paper we extend the results in Callot, Kock, and Medeiros (2017) by devel-

oping a modeling strategy which is able to handle high-dimensional sets of assets. More

specifically, as Engle, Ledoit, and Wolf (2017), our method can be applied to hundreds

or even thousands of assets with the difference that we will consider realized measures of

the covariance model in opposition to latent ones as in Engle, Ledoit, and Wolf (2017).

We show empirical evidence that considering realized measures of the covariance matrix

drastically improve the forecasting ability and produce portfolios with better perfor-

mance measures. Our model is based of a common factor structure to the vector of

returns which induce a decomposition of the covariance matrix. Hence, the daily co-

variance matrix can be written into a covariance matrix for a low dimensional set of

factors plus an idiosyncratic covariance matrix which is (almost) block-diagonal. The

dynamics of the variances and covariances of the factors are modeled by a VHAR model

estimated with LASSO. To guarantee positive definiteness of the forecasts we apply the

log matrix transformation of Chiu, Leonard, and Tsui (1996). The daily factor loadings

(betas) are computed with the high-frequency data. We show that these loading ex-

hibit a high degree of long-range dependence and we model their dynamics by a HAR

specification as well. Finally, the dynamics of each block of the idiosyncratic covariance

matrix is model by a restricted autoregressive model estimated as well by LASSO. As

far as we are concerned this is the first model which is able to describe the dynamics of

huge realized covariance matrices. Fan, Furger, and Xiu (20016) also considered factors
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and realized covariances but their forecasting model is just a random walk and their

results are more concerned with the estimation of the integrated covariance.

Despite the interesting challenges involved in the construction of realized measures

(e.g. how to deal with microstructure noise), specially in the multivariate case (e.g.

asynchronicity in transactions of different assets, which bias covariance estimations to-

wards zero), this work will not follow this path. Instead, we focus solely on modeling

and forecasting large realized covariance matrix of returns on hundred of financial assets

which are estimated elsewhere.

The rest of paper is organized as follows. Section 2 describes the proposed model

and the forecasting framework. In Section 4 we present the data and show a descriptive

analysis. The forecasting results and the portfolio analysis are presented, respectively,

in Sections 5 and 6. Finally, Section 7 concludes the paper. Supplementary results are

shown in the Appendix.

2 Model

We base our methodology on the fact that realized covariance matrices are highly per-

sistent over time, which suggests the use of an autoregressive model of a large order

p, usually larger than 20. Defining yt = vech(Σt), where vech is the half-vectorization

operator returning a vector with the unique entries of Σt, one possible specification is:

yt = ω +

p∑
i=1

Φiyt−1 + εt, (1)

where εt is a zero-mean random noise.

While this model is sensible for a small number of assets, the number of parameters

grows quadratically (curse of dimensionality). To circumvent this limitation, Callot,

Kock, and Medeiros (2017) propose the use of penalized regressions (LASSO) as a way

to deal with the large number of parameters. However, the direct use of penalized

regressions is unfeasible for hundreds of assets. To illustrate, assume that the represen-

tation in (1) is used to model the covariance matrix for the constituents of the S&P 500
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index1, with 10 lags, that is p = 10. Since each matrix Σt has n(n+1)/2 unique entries,

this configuration would result in 125, 250 equations with 10× 125, 250 variables each,

plus constants. In this case, estimation is unfeasible even when using the LASSO.

In order to reduce dimensionality to a manageable one, we propose the use of a

factor model as well as economic restrictions based on sector classifications and penalized

regressions (LASSO).

2.1 Factor Model

Following the factor model discussed in Chamberlain and Rothschild (1983), the excess

return on any asset i, ri,t, satisfies:

rei,t = βi1,tf1,t + · · ·+ βiK,tfK,t + εi,t = β′i,tft + εi,t (2)

where f1,t, · · · , fK,t are the excess returns of K factors, βik,t, k = 1, . . . , K, are factor

loadings for asset i, and εi,t is the error term. Notice that the factor loadings are variable

over time. For N assets, the set of equations can be written in matrix form:

ret = B′tft + εt (3)

where Bt is a K×N matrix of loadings, rt is a N × 1 vector of excess returns, and εt is

a N × 1 vector of idiosyncratic errors. Throughout we assume that E(εt|ft) = 0. The

factors used in this work are linear combinations of returns constructed solely with the

assets here considered, i.e. long-short stock portfolios where stocks that are part of our
1In our application, we restrict the analysis to stocks that remain in the index for the whole period

of our sample. This reduces the number of stocks to 430. In terms of number of equations and potential
predicting variables, our problem is still subject to the curse of dimensionality in the same order of
magnitude as the illustration.
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sample are sorted on firm characteristics. In matrix form, for all K factors:


f1,t
...

fK,t

 =


w1,1 . . . w1,N

... . . . ...

wK,1 . . . wK,N



r1,t
...

rN,t


or

ft = W ′rt,

(4)

where weights are calculated based on accounting and market information as we describe

in Section 4.

2.2 Covariance Decomposition

This section describes how we decompose the realized covariance matrix of returns for

all assets in two components: factor covariance matrix and residual covariance matrix.

Let Σt denote the realized covariance matrix of returns at time t, that is, Σt = cov(rt).

By using equation 3 and the assumption E(εt|ft) = 0, we have:

Σt = cov(B′tft) + cov(εt) = B′tΣf,tBt + Σε,t (5)

where Bt is a K × N matrix of loadings of N assets on K factors, Σf,t is the K ×K

factor covariance matrix and Σε,t is the N ×N residual covariance matrix, all in time t.

Since each factor is a linear combination of returns, the factor covariance matrices can

be obtained by using equation 4 and the known values of Σt, that is

Σf,t = cov(ft) = cov(W ′rt) = W ′ΣtW (6)

The factor loadings Bt are calculated using a similar procedure (see Appendix A)

and the values of Σε,t are simply given by the difference Σt −B′tΣf,tBt. It is common

to assume that Σε,t is diagonal, but we will be less restrictive in this work.
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3 Forecasting Methodology

With the decomposition achieved in equation 5, we forecast the complete covariance

matrix Σt by plugging separate forecasts of Bt, Σf,t, and Σε,t. That is,

Σ̂t+1|t = B̂′t+1|tΣ̂f,t+1|tB̂t+1|t + Σ̂ε,t+1|t (7)

The next subsections describe how each of the individual components are forecast.

3.1 Forecasting Σf,t

Since the number of factors is much smaller than the number of assets, one could propose

the use of an AR model for the factor covariance matrix dynamics, as in equation (1).

Despite the reduction in dimensionality achieved by using a factor model, the number

of parameters in this configuration is still quite large (note that each equation would

have K(K + 1)/2 + 1 parameters). To reduce this number to a more manageable one,

we follow the heterogeneous autoregressive (HAR) model proposed by Corsi (2009). In

this model, the predictors are obtained from simple average of daily data, computed for

different horizons (daily, weekly, and monthly). In our case, daily, weekly, and realized

covariance matrices of factors are given by:

Σday
f,t = Σf,t

Σweek
f,t =

1

5
(Σf,t + Σf,t−1 + · · ·+ Σf,t−4)

Σmonth
f,t =

1

22
(Σf,t + Σf,t−1 + · · ·+ Σf,t−21)

(8)

Using the notation yf,t = vech(Σf,t), ydayf,t = vech(Σday
f,t ), yweekf,t = vech(Σweek

f,t ), and

ymonthf,t = vech(Σmonth
f,t ), the dynamic process for yf,t is given by:

yf,t = ω + Φdayy
day
f,t−1 + Φweeky

week
f,t−1 + Φmonthy

month
f,t−1 + εt (9)

7



where Φday, Φweek, and Φmonth are M ×M matrices, where M = K(K + 1)/2 is the

number of unique entries on the the factor covariance matrix. ω is a M × 1 vector of

intercepts.

3.1.1 LASSO and adaLASSO

Due the high number of parameters in equation (15), direct estimation with ordinary

least squares (OLS) could result in overfitting, harming the precision of the model fore-

casts. LASSO shrinks these estimates by imposing a penalty related to the magnitude

of the coefficients. This estimation effectively sets most estimates to zero (Tibshirani

(1996)). This methodology has been shown to provide a higher out-of-sample forecast-

ing precision, while the reduced number of predictors makes the interpretation of the

model easier.

We estimate (15) equation by equation. Consider a sample size of T and let Zt =

(1,y′day,f,t−1,y
′
week,f,t−1,y

′
month,f,t−1)

′ be the 3m + 1 vector of explanatory variables and

Z = (ZT , . . . ,Z1)
′ the T × (3m + 1) matrix of covariates. Let yf,i = (yf,T,i, . . . , yf,1,i)

′

be the T × 1 vector of observations on the ith equation of (15), i = 1, . . . ,M , and

εf,i = (εf,T,i, . . . , εf,1,i)
′ the corresponding vector of error terms. With γf,i = (ωi,β

′
i)
′

being the 3M + 1 vector of true parameters for equation i, one can write:

yf,i = Zγf,i + εf,i, i = 1, . . . ,M (10)

Each vector γf,i is then estimated by minimizing the following objective function:

L(γf,i) =
1

T
||yf,i −Zγf,i||2 + 2λT ||βi||`1, i = 1, . . . ,M (11)

The penalty parameter λT determines how much penalization is imposed on the size of

the coefficients. In our setup, the value of λT is determined by minimizing the Bayesian

information criterion (BIC). For equation i and penalty parameter λ, the BIC is given
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by:

BICi(λ) = T × log(ε̂′λ,iε̂λ,i) +
3M∑
j=1

1(β̂λij 6= 0)log(T ), i = 1, . . . ,M (12)

where ε̂λ,i is the estimated vector of error terms for penalty λ. After obtaining γ̂f,i from

equation (11), the one-step-ahead forecast is given by

ŷf,T+1,i = γ̂ ′f,iZT , i = 1, . . . ,M (13)

which can be used to provide Σ̂f,T+1.

We also consider the adaptive version of the LASSO (adaLASSO), as in Zou (2006b).

The adaLASSO is a two-step procedure that consists in estimating the model via LASSO

in the first step and excluding the variables classified as zero from the second step. The

second step estimates the parameters with a slightly modified objective function that

takes in account the size of the parameters estimated in the first step. To illustrate,

consider the set of indices of the coefficients in the i-th equation that are different from

zero in the first step: J(β̂i) = {j ∈ R3M : β̂i,j 6= 0}. The adaLASSO estimates the

vector of parameters γf,i by minimizing the following objective function:

L(γf,i) =
1

T
||yf,i −Zγf,i||2 + 2λT

∑
j∈J(β̂i)

|βi,j|
|β̂i,j|

, i = 1, . . . ,M (14)

As before, the penalty parameter λT is calculated by minimizing the BIC. One-step-

ahead forecasts are calculated as in equation 13.

3.2 Forecasting Bt

Instead of using unconditional loadings on factors, we assume that betas change daily.

In Appendix B, we show the distribution of the fractional integration parameter for

the beta series. The results show that these series present high persistence, similar to

what is observed on realized covariance data. Based on this evidence, and to maintain

consistency with the rest of our methodology, we forecast each series of betas using HAR

models. For each element of Bt, we have:
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βk,i,t = ω + Φdayβ
day
k,i,t−1 + Φweekβ

week
k,i,t−1 + Φmonthβ

month
k,i,t−1 + εk,i,t (15)

where βk,i,t, the entry k × i on the matrix Bt, is the loading of stock i on the factor

k at date t. We estimate the coefficients Φday, Φday, and Φday by OLS.

3.3 Forecasting Σε,t

Since the residual covariance matrix dimension is N × N , the curse of dimensionality

remains a concern when forecasting Σε,t. A factor model may not explain all the co-

variances between assets depending on the number and choice of factors, implying the

the covariance matrix of the residuals is not diagonal. Instead of imposing the com-

mon hypothesis that Σε,t is diagonal (as in Fan, Fan, and Lv (2008)), we consider a

less restrictive assumption that stocks in the same sector may still co-vary even after

controlling for the standard factors used in the finance literature.

We assume that Σε,t is block-diagonal where blocks are defined by industry clas-

sification. We assume that there is no contemporaneous correlation between assets in

different sectors after controlling for factor exposure. We argue that this assumption is

not too strong in Section 4.4, where we analyze residual correlations between stocks in

different sectors.

We assume that each asset belongs to an industrial sector s, where S is the total

number of sectors and S << N . Without loss of generality, we can order assets so that

the residual covariance matrix has sector covariance matrices near its diagonal:

Σε,t =


Σ1
ε,t

. . .

ΣS
ε,t

 (16)

Depending on the selected industry classification, the number of assets on each

group s (call it N s) can still be quite large as each block has M s = N s(N s + 1)/2

unique elements.
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Our second assumption is that the dynamics of each block Σs
ε,t depends only on the

t-1 elements of the same block, i.e., only Σs
ε,t−1 predict values in Σs

ε,t. In order to further

simplify this model, we also consider an additional restriction that only past variances

matter in this prediction. This last assumption relies on the previous evidence in Callot,

Kock, and Medeiros (2017) that past variances are more frequently selected by LASSO

as good predictors of covariance and variance terms.

With the notation ysε,t = vech(Σs
ε,t), we have:

ysε,t = ωsε + ΦsΛs
ε,t−1 + usε,t, s = 1, . . . , S, (17)

where ωsε is a M s × 1 vector of intercepts, Φs is a M s × N s matrix of coefficients,

Λs
ε,t−1 = diag(Σs

ε,t−1) is a N s × 1 vector of past variances, and usε,t is the vector of

errors.

The parameters estimation is done block by block, that is, each equation in (17) is

estimated separately. The procedure is the same as the one used for the factor covariance

matrix model: LASSO/adaLASSO regression equation by equation, using a sample size

of T . We then regroup the one-day ahead forecast for each group, Σ̂s
ε,T+1, to form the

full residual covariance matrix forecast Σ̂ε,T+1.

4 Data and Descriptive Analysis

4.1 Realized Return Covariance Matrices

The data consists of daily realized covariance matrices of returns for constituents of

the S&P 500 index. These matrices were constructed using 5-minutes returns by the

composite realized kernel method (discussed in Lunde, Shephard, and Sheppard (2016)

and provided by the authors). The full sample comprises all business days between

January 2006 and December 2011. We consider companies that remained in the index

and had balance sheet data available for the full sample period, resulting in a total of

430 stocks. With these considerations, the data set consists of 1495 daily 430 × 430
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realized covariance matrices of returns.

Data Cleaning

Our sample spans the 2008 financial crisis as well as the flash crashes from 2010 and

2011. In order to mitigate the effect of these extreme events, we perform a light cleaning

on the realized covariance matrices, as in Callot, Kock, and Medeiros (2017). For each

day, we verify which (unique) entries are more than 4 standard errors (of the series

corresponding to that entry) away from the their sample average up to then. If more

than 25% of the unique entries have extreme values according to this criterion, we flag

that specific day. We replace the matrices corresponding to the flagged days by an

average of the nearest five preceding and five following non-flagged matrices.

4.2 Factors

We construct each factor as the return time series for a long-short stock portfolio derived

from individual sorts of the underlying stocks on different signals. Since our approach

uses the loading matrix W as an input to calculate factor covariance matrices and factor

loadings, we could not use the widely available data on financial factors series of returns

(such as in Kenneth French website). Instead, we had to rank our own universe of stocks

in different signals and calculate the matrices W for our sample.

In total, we use 7 factors that have been widely used in the finance literature.

Besides the market factor, we also consider: Size (SMB) and Value (HML) (Fama and

French 1993), Gross Profitability (Novy-Marx 2013), Investment (Lyandres, Sun, and

Zhang 2008), Asset Growth (Cooper, Gulen, and Schill 2008), and Accruals (Sloan

1996). We report a detailed description of each factor construction in Appendix C.

We use four different combinations of factors with 1, 3, 5, and 7 factors. They are

denoted by 1F(Market), 3F (Market, Size, and Value), 5F (3F + Gross Profitability

and Investment), and 7F (5F + Asset Growth and Accruals), respectively.
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4.3 Sector Classification

Each stock is classified in one of 10 sectors, following the Standard Industrial Classifi-

cation (SIC). Table 1 shows the number of companies from our sample on each sector.

Notice that some groups are quite large (the group Others, for instance, has more than

100 stocks). This motivates the use of additional restrictions we discussed in subsection

3.3.

Table 1: Number of Stocks per Sector

Sector Number of Stocks

Consumer Non-Durables 31
Consumer Durables 8
Manufacturing 65
Oil, Gas, and Coal Extraction 32
Business Equipment 61
Telecommunications 10
Wholesale and Retail 45
Healthcare, Medical Equipments, and Drugs 26
Utilities 36
Others 116

4.4 Residual Covariance Matrices

In this section, we analyze the series of residual covariance matrices for the 4 factors

combinations. Using notation from previous sections, these series are given by Σε,t =

Σt−B′tΣf,tBt, for each of the 1495 days in the sample. To analyze if these matrices are

approximately block diagonal, we follow the procedure discussed in Ait-Sahalia and Xiu

(forthcoming). First, we transform the covariance matrices in correlation matrices. We

classify a correlation as significant if it is higher than 0.15 in at least 1/3 of the sample.

We then plot the significant relations as dots, while the rest of the points are left in

blank. Sectors in Table 1 are represented as red squares (in the same order) . Figure 7

shows the results when we apply the criterion to the full covariance matrices Σt, before

the factor decomposition. We can see that most correlations are classified as significant

in the original data.
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Figure 1: Significant Correlations Between Stocks on the Realized Covariance Matrices

The blue dots represent the correlations between stocks that are higher than 0.15 in at least 1/3 of the
sample days. Red squares represent the groups defined by sector industrial classification (SIC). The
axis have indexes that correspond to the 430 stocks in our sample. This plot is calculated using the
complete series of realized covariance matrices, before any factor decomposition.
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400

0 100 200 300 400
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Figure 2: Significant Correlations Between Stocks on the Residual Covariance Matrices

The blue dots represent the correlations between stocks that are higher than 0.15 in at least 1/3 of the
sample days. Red squares represent the groups defined by sector industrial classification (SIC). The
axis have indexes that correspond to the 430 stocks in our sample. This plot show the results for the
3 series of residual covariance matrices obtained after using the factor decomposition, for three factors
configurations.

When we follow this procedure for the residual covariance matrices (Figure 2), we

obtain plots that are much more sparse than the previous. This means that most of the

correlations are not significant according to the criterion. Besides, we can see that most

of the dots are contained inside the blocks, meaning that the majority of significant

correlations are between stocks in the same sector. We interpret the three plots as

evidence that we would not lose much information by assuming block diagonality for

the residual covariance matrices. Notice that the results are robust across different

factors configurations.
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5 Forecasting Results

This section reports the forecasting results using the methodology described in Section

3. Subsection 5.1 shows the forecasting results for Σf , while subsection 5.2 shows the

results for the complete covariance matrix Σ. In both cases, daily forecasts are computed

using a sample size of 1000 observations. Since we need 22 days to compute the first

monthly regressor, Σmonth
f,t , our out-of-sample forecasts comprise days 1023 to 1495 (T1

to T2), totaling 473 daily forecasts.

We evaluate our forecasts by using the `2-norm for the vector of errors, that is,

||êT+1|| = ||vech(Σ̂T+1 − ΣT+1)||. We compare different methods by using the average

`2-forecast error:

average `2-forecast error =
1

T2 − T1 + 1

T=T2∑
T=T1

||ε̂T+1|| (18)

In all cases, our reference forecast is a random walk model: Σ̂f,T+1 = Σf,T and Σ̂T+1 =

ΣT for the complete covariance matrix.

5.1 Factor Covariance Matrix

Table 2 shows the forecast results for the factor covariance matrices, following the

method described in Section 3.1 (we refer to this method as FHAR, from Factor HAR,

hereafter). Results are uniformly stronger when we apply a log-matrix transformation

as proposed by Chiu, Leonard, and Tsui (1996). Prior to estimation, we apply the ma-

trix logarithm to all data, that is, Ωf,t = log(Σf,t). We then use the method FHAR with

Ωf,t to construct Ω̂f,t+1. Finally, we revert the transformation by applying the matrix

exponential and get our forecasts, that is, Σ̂f,t+1 = exp(Ω̂f,t+1). We also report results

without applying the log-matrix transformation.
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Table 2: Forecast Precision for Factor Covariance Matrices

`2 `2 / `2,RW

Model Random Walk FHAR FHAR, Log-matrix

1F 0.40 0.96 (0.96) 0.92 (0.92)
3F 0.44 0.98 (0.97) 0.90 (0.90)
5F 0.51 0.95 (0.95) 0.89 (0.89)
7F 0.62 0.99 (1.04) 0.86 (0.87)

Notes: `2 represents the average `2-forecast error, calculated for
473 days. `2/`2,RW represents the ratio of average error for other
methods relative to the random walk value. FHAR stands for
the methodology described in Section 3.1. Each line represents a
factor configuration. Results in parenthesis column are obtained
with adaLASSO.

From Table 2, we see that using the log matrix transformation considerably improves

the forecasts. After this transformation, variance and covariance series become smoother

than the original data. This reduces the weights of outliers when fitting the model and

improves forecasting precision. Another advantage is that the exponential matrix is

positive definite by construction. This consideration is important, since we will need

the inverse of the covariance matrix Σ when solving the minimum variance problems

in Section 6. Finally, applying the adaLASSO to the best performing models does not

improve the results up to the second decimal place.

Since we estimate all equations daily, we now investigate their evolution over time2.

Figure 3 shows the average number of variables selected by the LASSO over the 473

days, for the FHAR Log-matrix models. To illustrate, consider the upper-left panel on

this figure. It shows the average model size for the diagonal equations in the FHAR

Log-matrix model with 3 factors. In other words, it displays the mean size for the

equations of σ2
market, σ2

SMB, and σ2
HML. Panels on the right show the same results for

the covariance equations. From top to bottom, we vary the number of factors3.
2Results for average equation size and average change on the number of selected variables obtained

with the adaLASSO estimator are quite similar to the ones obtained via LASSO estimation. These
results are readily available upon request.

3For the 1F configuration, we only have one element to be forecast: σ2
market. In this case, the

equations estimated by LASSO and adaLASSO have only three potential predictors, which are, in
this case, always selected. For such reason, we do not present average number of selected variables
(constant) or average change on the number of selected variables (zero) for this case.
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Figure 3: Average Number of Selected Variables in FHAR Log-matrix models (LASSO)

These panels shows the daily average number of variables selected by the lasso for variance equations
and covariance equations. Averages are simple means of the number of variables selected in each class
of equations on a given day. We sort the panels by number of factors in the model (increasing from top
to bottom) and by variable class (variances on the left and covariances on the right). Blue lines are
local polynomial regressions. The maximum number predictive variables for each configuration are: 18
(3 factors), 45 (5 factors), and 76 (7 factors).
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In all cases, the Lasso reduces the number of selected variables substantially. This

reduction is most noticeable for the FHAR Log-matrix model with 7 factors, in which

the number of selected variables fluctuates around 10 (out of 76 potential predictors)

for the variance equations and even less for the covariance equations.

Another interesting feature is that average equation sizes are stable over time. Figure

4 shows the average change on the number of selected variables from one day to the

next. We consider parameters changing from zero to non-zero values or the opposite

direction. All results are reported in percentage (relative to the maximum number of

variables on each equation). For the 3 factors models presented, both variance and

covariance equations remain unchanged in most days. Despite the stronger variation on

the 5 and 7 factors configurations, the percentage changes are smaller than 5% in almost

all days. In general, variance equations are slightly more stable. We present results for

the average equation size and average change on the number of selected variables for

the residual covariance matrices forecasts in Appendix F.
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Figure 4: Average Change on the Number of Selected Variables in FHAR Log-matrix
models

These panels shows the daily average change in the number of variables selected by the lasso for
variance equations and covariance equations. We count a change when a variable goes from being
zero to non-zero or from being non-zero to zero. Results are presented as percentage relative to the
maximum number of variables on each equation. We sort the panels by number of factors in the model
(increasing from top to bottom) and by variable class (variances on the left and covariances on the
right). Blue lines are local polynomial regressions.
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5.2 Complete Covariance Matrix

Table 3 shows the forecast results for the complete covariance matrix (430 stocks). In

this case, VHAR denotes the complete methodology described in Section 3. We compute

all models using Log-matrix transformation and estimate these models using LASSO

and adaLASSO. Table 3 also reports alternative models for comparison purposes:

1. Random Walk (RW): the standard reference model throughout this work;

2. Exponentially weighted moving average (EWMA) with smoothing parameter λ =

0.96;

3. A Dynamic Conditional Correlation model and a BEKK model, both with nonlin-

ear shrinkage, as proposed by Engle, Ledoit, and Wolf (2017). These approaches

will be called DCC-NL and BEKK-NL hereafter.

4. Modified versions of the random walk model (Block 1F, 3F, 5F, and 7F). In these
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cases, we decompose the original realized covariance matrices using factors and

impose block diagonality to the residual covariance matrices. Instead of using

VHAR models to forecast future realizations, we simply use the random walk

model with the adjusted covariance matrices as forecasts. By doing this, we try

to approximate the methodology used by Fan, Furger, and Xiu (20016)4.

Some of the the alternative models use daily returns data, instead of using realized

covariance matrices as inputs. We compare our results to these models to see if the use of

a richer dataset (remember that realized covariances are calculated from high-frequency

data) brings gains in terms of portfolio performance and economic value.

Table 3: Forecast Precision for Complete Covariance Matrices

Model (Benchmarks) `2/`2,RW VHAR (Log-matrix) `2/`2,RW
RW 1.00 1F, LASSO 0.86
EWMA (Returns) 6.93 3F, LASSO 0.85
BEKK-NL 1.71 5F, LASSO 0.85
DCC-NL 1.71 7F, LASSO 0.85
Block 1F 0.97 1F, adaLASSO 0.86
Block 3F 0.97 3F, adaLASSO 0.85
Block 5F 0.97 5F, adaLASSO 0.85
Block 7F 0.97 7F, adaLASSO 0.85

Random Walk (RW) `2,RW 341.57

Notes: `2 represents the average `2-forecast error, calculated for 473 days.
`2,RW is this error calculated using the random walk. `2/`2,RW represents
the ratio between these values. The column "Return Models" has the
models based on daily return data. The columns "VHAR" and "VHAR,
Log-matrix" have our results (without and with log-matrix transformation,
respectively). 1F, 3F, 5F, and 7F stand for the 1 factor, 3 factors, 5 fac-
tors, and 7 factors configurations for the factor covariance matrix. For the
VHAR (Log-matrix) forecasts, the results are presented for the LASSO and
adaLASSO estimation.

Models based on daily returns do not outperform the benchmark in any case, with

a particular bad performance for the EWMA. Despite having performed much better,
4Fan, Furger, and Xiu (20016) impose block diagonality when using the high-frequency data for

factors and returns to estimate the integrated covariance. Another difference is that the authors use
the GICS system to classify stocks in sectors. The model used for forecasting and portfolio allocation
is the random walk.
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BEKK-NL and DCC-NL have errors that are almost 2 times larger than the random

walk model. Imposing block diagonality to the residual covariance matrices (Block

1F, 3F, 5F, and 7F) improves the results, relative to the wandom walk, by 3%. Our

methodology is able to beat the random walk model by up to 15%. In terms of average

`2-forecast error, there is no difference when estimating the models with LASSO or

adaLASSO.

6 Portfolio Selection

Despite the encouraging results obtained when forecasting covariance matrices, one

could argue that our measure of forecast precision is too aggregate, specially when

taking into account that we have more than 90000 unique entries being forecast si-

multaneously. To evaluate the economic advantages provided by our forecasts, we use

them to construct daily investment portfolios5. This section is divided in two subsec-

tions. On the first (6.1), we calculate minimum variance portfolios using the models

described in the previous section. We consider the global minimum variance portfolio

(without any restrictions on weights), the restricted portfolio (limiting long positions

and short-selling) and the long-only portfolios (without any short-selling). In the second

section (6.2), we follow the methodology used by Callot, Kock, and Medeiros (2017) and

construct restricted minimum variance portfolio with a target for returns.

Before exploring our portfolios results, we calculate some basic statistics for indexes

directly related to our sample and portfolio exercise. Table 4 shows the average excess

return (over the risk-free rate), standard deviation and Sharpe ratio for the daily series

of returns for three S&P 500 indexes: minimum volatility, low volatility, and equal

weight. We provide these values as a reference point to evaluate the results in sections

6.1 and 6.2, as these indexes are commonly used by practitioners.
5For this section, we use daily covariance matrices forecasts to build portfolios for the next day.

These portfolios are rebalanced daily, using the most recent forecast. We investigate portfolios formed
based on several daily forecasts in Appendix F. By doing this, we hope to investigate how portfolio
performance is affected by using monthly information.

21



Table 4: S&P Indeces Performance

S&P 500
Minimum Volatility

S&P 500
Low Volatility

S&P 500
Equal Weight

Average Excess Return (%) 13,00 13,50 12,78
Standard Deviation (%) 16,41 14,84 23,48
Sharpe Ratio 0,79 0,91 0,54

Notes: Average Excess Returns are defined as the annualized average excess returns
(over the free rate) for the index price series. Standard deviations are calculated for
these series and also annualized. Sharpe ratio is calculated using these two quantities.

6.1 Minimum Variance Portfolios

6.1.1 Global Minimum Variance Portfolios

Consider the problem of an investor at time t = t0, ..., T − 1 who wishes to construct a

minimum variance portfolio to be held in time t+1. For this minimization problem, the

investor needs to forecast the future covariance matrix, Σ̂t+1. The optimization problem

consists in choosing a vector of weights ŵt+1 (dimension N × 1):

ŵt+1 = arg min
wt+1

w′t+1Σ̂t+1wt+1

subject to w′t+11 = 1

(19)

We use our VHAR method with log matrix transformation, since they provide the

best results in terms of forecasting precision. Estimation is done via LASSO and

adaLASSO. We compare our results against the random walk models (RW and Block

models), the EWMA, BEKK-NL, and DCC-NL. We evaluate ex-post portfolio perfor-

mance, that is, we use our time t estimated weights, ŵt+1, with data from t+1. In the

following, ŵit is the i-th component of ŵt. We show the following statistics:

1. Max. weight: maxt0+1≤t≤Tmax1≤i≤N(ŵit) for t = t0 + 1, ..., T and i = 1, ..., N .

2. Min. weight: mint0+1≤t≤Tmin1≤i≤N(ŵit) for t = t0 + 1, ..., T and i = 1, ..., N .

3. Proportion of leverage: 1
n(T−t0)

∑T
t=t0+1

∑N
i=1 I(ŵit < 0).

4. Average turnover: 1
n(T−t0)

∑T
t=t0+1

∑N
i=1 |ŵit − ŵholdit |, where ŵholdit = ŵit−1

1+rit−1

1+rpt−1
.

rpt is the portfolio return at time t, rit is the stock i return at time t, and ŵholdit is
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the weight of stock i on the hold portfolio. The hold portfolio at time t+1 is

defined as the resulting portfolio from keeping all the stocks from period t.

5. Average excess return: µep = 1
(T−t0)

∑T
t=t0+1(r

e
pt) = 1

(T−t0)
∑T

t=t0+1(ŵ
′
trt − rf,t),

where rf,t is the risk free rate

6. Cumulative Return:
∏T

t=t0+1(1 + rpt).

7. Standard deviation: σp =
√

1
(T−t0)

∑T
t0+1(rpt −

1
(T−t0)

∑T
t=t0+1 rpt)

2.

8. Sharpe ratio: µep
σp
.

9. Average diversification ratio: 1
(T−t0)

∑T
t0+1

∑N
i=1 ŵitσit
σpt

, where σpt = ŵ′tΣtŵt.

Table 5 shows these results for the minimum variance portfolio optimization problem,

presented in equation 19. In terms of standard deviations, the VHAR class of models

perform better than all others. For these models, the standard deviations go from a

high of 10.39 % (1 factor and LASSO) to a low of 8.58 % (5 factors and adaLASSO).

Notice that the lowest value is almost half of the standard deviation for the S&P 500

Minimum Volatility index, presented in Table 4. Benchmark models (upper results)

also have smaller standard deviation than the S&P 500 indexes (except for the EWMA,

which has the worst performance in this sense).

In terms of average excess returns and cumulative returns, our models provide mixed

results: slightly inferior performance compared to the BEKK-NL and DCC-NL; similar

performance compared to the RW and Block models; and much better performance

relative to the EWMA. Since the optimization problem focus on minimizing the port-

folio variance, it is not obvious which models should achieve higher returns. For this

reason, we do not see the slightly superior performance of the BEKK-NL and DCC-NL

models as a problem. Moreover, the small difference is more than compensated by the

substantial reduction in standard deviation (as evidenced by the higher Sharpe ratios

for our models).
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Table 5: Statistics for Daily Portfolios - Global Minimum Variance

RW Block 1F Block 3F Block 5F Block 7F EWMA (Returns) BEKK-NL DCC - NL

Max. Weight 0.20 0.20 0.20 0.20 0.20 0.51 0.08 0.30
Min.Weight -0.20 -0.20 -0.20 -0.20 -0.20 -0.46 -0.05 -0.06

Proportion of leverage (%) 1.91 3.11 3.08 3.06 2.93 49.17 45.11 51.73
Average Turnover (%) 0.43 0.40 0.42 0.41 0.42 0.27 0.11 0.21

Average Excess Return (%) 12.58 12.96 12.87 16.78 16.43 5.33 16.58 19.78
Cumulated Return (%) 24.81 25.69 25.50 35.09 34.17 7.58 34.90 42.07
Standard Deviation (%) 13.26 13.35 13.27 13.17 13.26 17.72 12.24 15.73

Sharpe Ratio 0.95 0.97 0.97 1.27 1.24 0.30 1.35 1.26
Diversification Ratio 3.55 3.92 4.11 4.12 4.07 1.01 3.03 3.53

1 Factor 3 Factors 5 Factors 7 Factors
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Max. Weight 0.45 0.48 0.47 0.51 0.47 0.51 0.49 0.52
Min.Weight -0.03 -0.03 -0.04 -0.05 -0.04 -0.04 -0.05 -0.05

Proportion of leverage (%) 45.89 46.01 44.88 45.03 44.89 45.12 45.26 45.50
Average Turnover (%) 0.20 0.22 0.20 0.22 0.19 0.21 0.20 0.22

Average Excess Return (%) 13.61 13.27 14.60 14.36 14.65 14.12 14.24 13.90
Cumulated Return (%) 28.09 27.34 30.77 30.20 30.99 29.72 29.98 29.17
Standard Deviation (%) 10.39 10.11 9.20 9.11 8.70 8.58 8.74 8.66

Sharpe Ratio 1.31 1.31 1.59 1.58 1.68 1.65 1.63 1.61
Diversification Ratio 4.79 4.81 5.02 5.03 4.87 4.88 4.96 4.96

Notes: The columns LASSO and adaLASSO refer to the estimation of the VHAR (Log matrix) models for the 4 factors configuration.

Table 5 shows that some portfolios have extreme short positions. In most of the

cases, the proportion of leverage is close to 50%. Since shorting stocks may not be

feasible and can be costly, we consider these positions potentially extreme. Values for

maximum and minimum weights are also quite large in some cases. In one of the cases,

for one of the days, more than 50% of the portfolio is allocated into a single stock. We

now resort to what we consider a more realistic investor problem.

6.1.2 Restricted Minimum Variance Portfolios

In this section, we solve a problem similar to equation 19, except that now we impose

two additional restrictions. First, we allow maximum leverage to be 30% (in some sense,

consistent with a 130-30 fund concept in the mutual fund industry). Second, we restrict

the maximum weights on individual stocks to be 20% (in absolute value). The problem

for an investor at time t = t0, ..., T − 1 is then given by:
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ŵt+1 = arg min
wt+1

w′t+1Σ̂t+1wt+1

subject to w′t+11 = 1,

N∑
i=1

|wit+1|I(wit < 0) ≤ 0.30 and |wit+1| ≤ 0.20

(20)

In Table 6 we report the same performance statistics as in last subsection. Again,

our methodology generates lower standard deviations than the competing models (our

VHAR 1 Factor model performs closely to the RW and Block benchmarks). In terms

of returns, the results are, again, mixed. While our models perform better against the

EWMA, BEKK-NL, and DCC-NL, the RW and Block models are much more compet-

itive this time. Again, we do not consider this to be a problem, since we were able to

obtain smaller standard deviations with our models. Finally, the restriction on leverage

drastically reduces the proportion of leverage in all cases.

Table 6: Statistics for Daily Portfolios - Restricted Minimum Variance

RW Block 1F Block 3F Block 5F Block 7F EWMA (Returns) BEKK-NL DCC - NL

Max. Weight 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Min.Weight -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20

Proportion of leverage (%) 1.91 3.11 3.08 3.06 2.93 0.71 0.85 1.41
Average Turnover (%) 0.43 0.40 0.42 0.41 0.42 0.09 0.10 0.11

Average Excess Returns (%) 12.58 12.96 12.87 16.78 16.43 10.11 10.07 13.93
Cumulated Return (%) 24.81 25.69 25.50 35.09 34.17 18.52 18.36 27.53
Standard Deviation (%) 13.26 13.35 13.27 13.17 13.26 15.25 15.49 14.71

Sharpe Ratio 0.95 0.97 0.97 1.27 1.24 0.66 0.65 0.95
Diversification Ratio 3.55 3.92 4.11 4.12 4.07 2.22 2.24 2.15

1 Factor 3 Factors 5 Factors 7 Factors
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Max. Weight 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Min.Weight -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20

Proportion of leverage (%) 2.46 2.44 2.37 2.38 2.43 2.41 2.27 2.25
Average Turnover (%) 0.22 0.23 0.24 0.24 0.23 0.24 0.22 0.23

Average Excess Returns (%) 11.64 15.62 15.51 15.99 13.88 14.89 16.03 14.69
Cumulated Return (%) 22.67 32.11 32.04 33.21 28.05 30.50 33.39 30.02
Standard Deviation (%) 13.16 13.33 12.76 12.82 12.76 12.78 12.59 12.72

Sharpe Ratio 0.88 1.17 1.22 1.25 1.09 1.17 1.27 1.16
Diversification Ratio 3.41 3.38 3.64 3.65 3.73 3.70 3.68 3.65

Notes: The columns LASSO and adaLASSO refer to the estimation of the VHAR (Log matrix) models for the 4 factors configuration.

6.1.3 Long-Only Minimum Variance Portfolios

In this section, we impose a restriction of no short-selling. The problem for an investor

at time t = t0, ..., T − 1 is then given by:
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ŵt+1 = arg min
wt+1

w′t+1Σ̂t+1wt+1

subject to w′t+11 = 1,

0 ≤ wit+1 ≤ 0.20

(21)

From Table 7, we see that, except for the 1 Factor models, our methodology is able to

reduce standard deviations when compared to the benchmarks. This time, interestingly,

average returns and cumulated returns are higher in all cases. These facts are reflected

on higher Sharpe ratios.

Table 7: Statistics for Daily Portfolios - Restricted Minimum Variance (Long Only)

RW Block 1F Block 3F Block 5F Block 7F EWMA (Returns) BEKK-NL DCC - NL

Max. Weight 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Min.Weight 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Proportion of leverage (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average Turnover (%) 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

Average Excess Returns (%) 12.50 12.50 12.79 11.46 11.53 12.79 11.46 11.53
Cumulated Return (%) 23.30 23.30 24.02 21.01 21.14 24.02 21.01 21.14
Standard Deviation (%) 17.03 17.03 16.93 16.81 16.84 16.93 16.81 16.84

Sharpe Ratio 0.73 0.73 0.76 0.68 0.68 0.76 0.68 0.68
Diversification Ratio 3.04 3.04 3.07 3.09 3.09 3.07 3.09 3.09

1 Factor 3 Factors 5 Factors 7 Factors
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Max. Weight 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Min.Weight 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Proportion of leverage (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average Turnover (%) 0.08 0.08 0.07 0.08 0.07 0.08 0.07 0.07

Average Excess Returns (%) 14.21 14.16 14.05 14.37 14.37 14.54 13.52 13.50
Cumulated Return (%) 27.35 27.23 27.13 27.88 27.98 28.33 25.96 25.86
Standard Deviation (%) 16.94 16.96 16.53 16.57 16.34 16.47 16.30 16.44

Sharpe Ratio 0.84 0.84 0.85 0.87 0.88 0.88 0.83 0.82
Diversification Ratio 3.10 3.09 3.09 3.10 3.12 3.13 3.11 3.11

Notes: The columns LASSO and adaLASSO refer to the estimation of the VHAR (Log matrix) models for the 4 factors configuration.

6.2 Minimum Variance Portfolios with Return Target

We redo the calculations of last section with a target for the portfolio returns, as in

Callot, Kock, and Medeiros (2017). Let µ̂t+1 denote the expected N vector of returns

at time t. In our case, we estimate these values as the moving average of 100 days. We

set µtarget=10% and estimate:
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ŵt+1 = arg min
wt+1

w′t+1Σ̂t+1wt+1

subject to w′t+1µ̂t+1 = µtarget, w′t+11 = 1,

N∑
i=1

|wit+1|I(wit < 0) ≤ 0.30 and |wit+1| ≤ 0.20

(22)

To complement our analysis, we also use the methodology described in Fleming,

Kirby, and Ostdiek (2003) to evaluate the economic value of our method when compared

against the benchmark, EWMA, BEKK-NL and DCC-NL. This analysis assumes an

investor with utility given by:

U(rpt) = (1 + rpt)−
γ

2(1 + γ)(1 + rpt)2
(23)

where γ is the investor’s risk aversion coefficient. The variable economic value is

then defined as the value ∆ such that, for different portfolios p1 and p2, we have∑T
t=t0+1 U(rp1t) =

∑T
t=t0+1 U(rp2t −∆).

We break the presentation of results in two tables. Table 8 shows the results of

our methodology compared with the first set of benchmarks: RW, EWMA, BEKK-NL,

and DCC-NL. Table 9 shows the results with the Block benchmarks, that is, Block 1F,

3F, 5F, and 7F. In both cases, besides the previous portfolio statistics, we present the

economic value of our methodologies compared to the aforementioned benchmarks. We

use 3 levels of risk averison γ: 1, 5, and 10.
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Table 8: Statistics for Daily Portfolios - Restricted Minimum Variance with Target for Returns (First Set of Benchmarks)

1 Factor 3 Factors 5 Factors 7 Factors
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
RW EWMA (Returns) BEKK-NL DCC - NL LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Max. Weight 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Min.Weight -0.19 -0.20 -0.20 -0.20 -0.19 -0.19 -0.20 -0.19 -0.20 -0.20 -0.19 -0.20

Proportion of leverage (%) 7.89 5.76 7.71 7.55 10.11 10.08 8.63 9.48 8.85 8.81 8.99 9.06
Average Turnover (%) 0.45 0.18 0.19 0.18 0.25 0.26 0.26 0.26 0.26 0.27 0.25 0.26

Average Excess Returns (%) 6.38 1.85 9.93 8.01 9.07 5.03 9.94 9.18 9.19 10.15 11.68 9.09
Cumulated Return (%) 11.08 1.54 18.25 14.28 16.84 8.08 18.86 17.22 17.09 19.24 22.88 17.03
Standard Deviation (%) 13.36 15.15 14.88 14.23 13.30 14.13 13.00 12.86 13.38 13.32 12.77 12.82

Sharpe Ratio 0.48 0.12 0.67 0.56 0.68 0.36 0.76 0.71 0.69 0.76 0.91 0.71
Diversification Ratio 3.80 2.33 2.41 2.31 3.70 3.67 3.90 3.90 3.92 3.90 3.90 3.88

Economic Value (Gamma = 1)

RW - - - - 2.70 -1.45 3.61 2.87 2.81 3.78 5.38 2.78
EWMA (Returns) - - - - 7.48 3.33 8.39 7.65 7.59 8.56 10.16 7.56

BEKK-NL - - - - -0.64 -4.79 0.27 -0.47 -0.53 0.44 2.04 -0.56
DCC - NL - - - - 1.18 -2.97 2.09 1.35 1.29 2.26 3.86 1.26

Economic Value (Gamma = 5)

RW - - - - 2.73 -1.88 3.80 3.13 2.80 3.80 5.69 3.06
EWMA (Returns) - - - - 8.52 3.92 9.59 8.93 8.60 9.60 11.48 8.86

BEKK-NL - - - - 0.25 -4.36 1.32 0.65 0.32 1.32 3.21 0.58
DCC - NL - - - - 1.69 -2.91 2.76 2.10 1.77 2.77 4.65 2.03

Economic Value (Gamma = 10)

RW - - - - 2.76 -2.41 4.03 3.45 2.79 3.82 6.07 3.41
EWMA (Returns) - - - - 9.83 4.66 11.10 10.52 9.86 10.89 13.14 10.48

BEKK-NL - - - - 1.36 -3.81 2.63 2.05 1.39 2.42 4.67 2.01
DCC - NL - - - - 2.34 -2.84 3.61 3.03 2.36 3.40 5.64 2.99

Notes: Economic Value is presented in annualized return.

From Table 8, we see that our methodology provides the smallest standard deviations

(except for the 1 Factor adaLASSO VHAR and the 5 Factors VHAR Lasso, which are

higher than the RW standard deviation). Average Returns and Cumulated Returns are

higher, except for the 1 Factor VHAR adaLASSO. To help evaluate which model is

more useful for a representative investor, we resort to the economic value of each case.

We see that 3 configurations have positive economic value against the 4 benchmarks,

for all levels of risk aversions. For the best performing of these of these, the 7 Factors

VHAR LASSO, economic value ranges from 2.04% a year (against the BEKK-NL, for

γ = 1) to 13.14% a year (against the EWMA, for γ = 10).
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Table 9: Statistics for Daily Portfolios - Restricted Minimum Variance with Target for Returns (Second Set of Benchmarks)

1 Factor 3 Factors 5 Factors 7 Factors
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
Block 1F Block 3F Block 5F Block 7F LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Max. Weight 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Min.Weight -0.20 -0.19 -0.20 -0.19 -0.19 -0.19 -0.20 -0.19 -0.20 -0.20 -0.19 -0.20

Proportion of leverage (%) 10.26 9.68 9.50 9.30 10.11 10.08 8.63 9.48 8.85 8.81 8.99 9.06
Average Turnover (%) 0.41 0.43 0.43 0.43 0.25 0.26 0.26 0.26 0.26 0.27 0.25 0.26

Average Excess Returns (%) 11.49 11.39 8.70 6.98 9.07 5.03 9.94 9.18 9.19 10.15 11.68 9.09
Cumulated Return (%) 22.30 22.14 16.12 12.44 16.84 8.08 18.86 17.22 17.09 19.24 22.88 17.03
Standard Deviation (%) 13.22 13.00 13.00 12.97 13.30 14.13 13.00 12.86 13.38 13.32 12.77 12.82

Sharpe Ratio 0.87 0.88 0.67 0.54 0.68 0.36 0.76 0.71 0.69 0.76 0.91 0.71
Diversification Ratio 4.28 4.40 4.40 4.38 3.70 3.67 3.90 3.90 3.92 3.90 3.90 3.88

Economic Value (Gamma = 1)

Block 1F - - - - -2.43 -6.58 -1.52 -2.26 -2.32 -1.35 0.25 -2.35
Block 3F - - - - -2.36 -6.51 -1.45 -2.19 -2.25 -1.28 0.32 -2.28
Block 5F - - - - 0.33 -3.82 1.24 0.50 0.45 1.41 3.01 0.41
Block 7F - - - - 2.05 -2.10 2.96 2.22 2.16 3.13 4.73 2.13

Economic Value (Gamma = 5)

Block 1F - - - - -2.47 -7.08 -1.40 -2.07 -2.40 -1.40 0.49 -2.14
Block 3F - - - - -2.52 -7.12 -1.45 -2.12 -2.45 -1.45 0.44 -2.19
Block 5F - - - - 0.17 -4.43 1.24 0.58 0.25 1.25 3.13 0.51
Block 7F - - - - 1.87 -2.73 2.95 2.28 1.95 2.95 4.83 2.21

Economic Value (Gamma = 10)

Block 1F - - - - -2.53 -7.70 -1.26 -1.84 -2.50 -1.47 0.78 -1.88
Block 3F - - - - -2.72 -7.89 -1.45 -2.03 -2.69 -1.66 0.59 -2.07
Block 5F - - - - -0.02 -5.20 1.25 0.67 0.00 1.04 3.28 0.62
Block 7F - - - - 1.66 -3.52 2.93 2.35 1.68 2.72 4.97 2.31

Notes: The columns LASSO and adaLASSO refer to the estimation of the VHAR (Log matrix) models. for the 3 factors configuration.

Table 9 shows the results with the Block benchmarks. In this case, benchmarks are

much more competitive. Still, three of our models have smaller standard deviations

than all benchmarks. Our methodology seems to perform worse in terms of average

returns, except for the 7 Factors VHAR LASSO model. In terms of economic value,

this models is the only one able to beat all benchmarks, for all values of risk aversion.

For this case, economic value ranges from 0.25% a year (against Block 1F, for γ = 1)

to 4.97% (against Block 7F, for γ = 10).

7 Conclusion

We propose a model to forecast very large realized covariance matrices of returns, ap-

plying it to the constituents of the S&P 500 on a daily basis. To deal with the curse

of dimensionality, we decompose the return covariance matrix using standard firm-level

factors (e.g. size, value, profitability) and use sectoral restrictions in the residual co-

variance matrix. This restricted model is then estimated using Vector Heterogeneous

Autoregressive (VHAR) models estimated with the Least Absolute Shrinkage and Se-

lection Operator (LASSO). Our methodology improves forecasting precision relative to
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standard benchmarks and leads to better estimates of the minimum variance portfolios.

Appendix

A Factor Loadings

This appendix describes how daily loadings on factors can be calculated using daily

realized covariance matrices of returns Σt, daily factor covariance matrices Σf,t, and

factor weights W (which are calculated yearly). To simplify the notation, we drop the

subscript t and derive the equation for a daily matrix of loadings B̂ (the final equation is

applied to daily data, providing 1495 matrices B̂). Letters with one subscript t represent

vectors with cross-sectional data at time t, while letters with one superscript n represent

time series data for asset n.

Assume that we have T observations for K factors and N assets (in our case, T

can be thought as intra-daily high-frequency observations). Stacking all observations in

matrix form,

F =


f1,1 . . . fK,1
... . . . ...

f1,T . . . fK,T

 =


f ′1
...

f ′T



R =


r1,1 . . . r1,T
... . . . ...

rN,1 . . . rN,T

 =


r′1
...

r′N

 =

(
r1 . . . rT

) (24)

From equation 4, we can rewrite the matrix F,

F =


w′1r1 . . . w′Kr1
... . . . ...

w′1rT . . . w′KrT

 =


r′1w1 . . . r′1wK
... . . . ...

r′Tw1 . . . r′TwK

 =


r′1
...

r′T


(
w1 . . . wK

)
= R′W

(25)
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With this setup, consider the linear model of asset n, n in (1,...,N), on K factors:


rn,1
...

rn,T


rn

=


f ′1
...

f ′T


F


bn,1
...

bn,K


bn

+


εn,1
...

εn,T

 (26)

The OLS estimator for bn, b̂n, is given by:

b̂n = (F ′F )−1F ′rn for i in 1,..,N (27)

In matrix form for all n,

B̂ =

(
b̂1 . . . b̂N

)
= (F ′F )−1F ′

(
r1 . . . rN

)
=

= (F ′F )−1F ′


r′1
...

r′T

 = (F ′F )−1F ′R′ =

= (F ′F )−1W ′RR′
mean=0−−−−→ (Σf )

−1W ′Σ

(28)

with equation 25 being used on the last line. Again, in our setup, B̂ is different for

every day in the sample.
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B Betas Long Memory

Figure 5: Estimated Fractional Differencing Parameter (d) - Whittle Method

These panels show the distribution of fractional differencing parameter (d) estimated by the Whittle
method. Each panel correspondes to one of the factors configuration (3, 5, or 7 factors). In total, there
are 430×number of factors series of betas for each case. We plot the distribution of d for these series.
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Figure 6: Estimated Fractional Differencing Parameter (d) - GPH Method

These panels show the distribution of fractional differencing parameter (d) estimated by the GPH
method. Each panel correspondes to one of the factors configuration (3, 5, or 7 factors). In total, there
are 430×number of factors series of betas for each case. We plot the distribution of d for these series.
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C Factors Construction

Market: The market portfolio is a value-weighted portfolio of all stocks in our sample.

The market factor is the excess return of this portfolio relative to the risk free rate.

Size and Value: These factors are based on a double-sorting of stocks on market

equity and book-to-market equity. Market equity is defined as the the last available

price of June times the corresponding value of shares outstanding. Book-to-market

ratio is calculated using the book value of the previous fiscal year and the market equity

from December of the previous year. Stocks are ranked on market equity and split into

two portfolios, small and big (S and B). Book-to-market is used to split the stocks into

three book-to-market equity groups based on breakpoints for the bottom 30% (Low, or

L), middle 40% (Medium, or M), and high 30% (High, or H). Six portfolios are formed

from intersections of the aforementioned groups: S/L, S/M, S/H, B/L, B/M, B/H. Daily

value-weighted returns are calculated for the six portfolios, for the whole year (portfolios

are rebalanced annually). The factor SMB (small minus big) is the difference between

the simple average of returns on the three small-stock portfolios and the simple average

on returns of the three big-stock portfolios, that is:

SMB =
(RS/L +RS/M +RS/H)

3
−

(RB/L +RB/M +RB/H)

3

Similarly, the factor HML (high minus low) is defined as the difference, daily, of the

simple average of the returns on the two high book-to-market portfolios (S/H and B/H)

and the simple average of the returns on the two low book-to-market portfolios (S/L

and B/L), that is:

HML =
(RS/H +RB/H)

2
−

(RS/L +RB/L)

2

Gross Profitability: Follows Novy-Marx (2013). The signal gross profitability (GP)

is defined as the ratio between gross profits and total assets. Stocks are ranked and

split in 10 deciles every year, using current year financial data. The gross profitability
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portfolio consists of a strategy that is long in the group with lowest GP and short in

the group with the highest GP. For both groups, value-weighted returns are calculated

and the factor GP is given by:

GP = RlowGP −RhighGP

Accruals: Follows Sloan (1996). The signal accrual is defined as:

Accruals =
∆ACT −∆CHE −∆LCT + ∆DLC + ∆TXP −DP

(AT + AT−12)/2

where ACT is the annual total current assets, CHE is the annual total cash and short-

term investments , LCT is the annual current liabilities , DLC is the annual debt

in current liabilities , TXP is the annual income taxes payable , DP is the annual

depreciation and amortization , and (AT +AT−12)/2 represents the average total assets

over the last two years. ∆ stands for annual variation in these variables. The stocks

are split in 10 deciles every year, and two value-weighted portfolios are formed on the

lowest and highest deciles. The accruals portfolio consists of a strategy that is long on

the small accrual portfolio and short on the high accrual portfolio. The factor is then

given by:

Accrual = RlowAccrual −Rhighaccrual

Asset Growth: Follows Cooper, Gulen, and Schill (2008). The asset growth signal

is defined as Asset Growth = AT/AT−12, with AT AT−12 previously defined in the

accruals section. Analogous to the procedure done for the accruals factor, the asset

growth portfolio is simply a strategy that is long on the lowest decile asset growth

portfolio and short on the highest decile portfolio (the stocks are sorted into 10 deciles).

Following this procedure, the factor is then given by:

AssetGrowth = RlowAssetGrowth −RhighAssetGrowth
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Asset Growth: Follows Lyandres, Sun, and Zhang (2008). The investment signal is

defined as

Investment = (∆PPEGT + ∆INV T )/AT−12

where PPEGT is the gross total property, plant, and equipment (COMPUSTAT’s vari-

able ’ppegt’), and INVT is total inventories (COMPUSTAT’s ’invt’). For the investment

portfolio, the stocks are triple-sorted in size, value (as in the Fama-French factors), and

investment. For each of the three characteristics, each stock is classified in one of the

three groups: low (30%), medium (30%-70%), or high (70%-100%). This procedure

results in 27 different portfolios. The investment portfolio consists of a strategy that is

long on the low investment portfolio (the simple average between the 9 groups with low

investment) and short on the high investment portfolio (the simple average between the

9 groups with high investment), that is:

Investment = RlowInvestment −RhighInvestment

Risk Free: We get the daily series of returns from Kenneth French website.

36



D Diagnostic Criterion for Approximate Factor Struc-

ture

Figure 7: Approximate Factor Structure

adsdsdasdasdasdasd

E Residual Covariance Matrix - Parameter Selection

In this appendix we show the average equation size and average parameter change for

models used to forecast the residual covariance matrices. Since the number of equations

categories is much higher than the one used for the factor covariance matrices, we present

the results in percentiles of the distribution (instead of individual plots).
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Table 10: Average Equation Size Distribution for Blocks in the Residual Covariance Matrix
(1-Factor VHAR)

Distribution Min 0.25 0.5 0.75 Max Mean

Variance Equations
Group
Consumer Non-Durables 11.29 11.90 12.16 12.48 13.55 12.25
Consumer Durables 6.12 6.38 6.62 6.88 7.62 6.69
Manufacturing 16.05 16.57 16.74 16.92 17.26 16.74
Oil, Gas, and Coal Extraction 9.38 10.16 10.47 10.66 11.38 10.43
Business Equipment 14.70 15.15 15.33 15.52 15.97 15.33
Telecommunications 6.50 6.90 7.40 7.60 7.90 7.28
Wholesale and Retail 12.51 13.27 13.44 13.6 14.00 13.43
Healthcare, Medical Equipments, and Drugs 11.69 12.19 12.46 12.85 13.35 12.5
Utilities 11.86 12.56 12.83 13.17 13.72 12.85
Others 15.46 15.88 16.52 16.97 18.1 16.47

Covariance Equations
Group
Consumer Non-Durables 0.77 1.07 1.51 1.63 1.75 1.36
Consumer Durables 0.39 0.96 1.50 1.68 1.93 1.35
Manufacturing 0.51 0.60 0.69 0.76 0.82 0.68
Oil, Gas, and Coal Extraction 1.72 2.03 2.43 2.59 3.00 2.33
Business Equipment 0.37 0.45 0.60 0.64 0.69 0.55
Telecommunications 1.44 1.67 1.78 1.89 2.18 1.79
Wholesale and Retail 0.56 0.69 1.03 1.14 1.28 0.95
Healthcare, Medical Equipments, and Drugs 0.58 0.85 1.39 1.83 2.02 1.34
Utilities 0.69 0.77 0.84 1.48 1.92 1.09
Others 0.48 0.54 0.64 0.74 0.77 0.63

Notes: Distribution represents the percentiles and mean value calculated over 473 estimated
models. The 430 stocks are separeted in 10 groups. according to SIC. Averages are calculated
among stocks in the same group.
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Table 11: Average Parameter Change Distribution for Blocks in the Residual Covari-
ance Matrix (1-Factor VHAR)

Distribution Min 0.25 0.5 0.75 Max Mean

Variance Equations
Group
Consumer Non-Durables 0.21 0.94 1.25 1.66 3.75 1.33
Consumer Durables 0.00 0.00 0.00 1.56 4.69 0.52
Manufacturing 0.17 0.78 0.99 1.25 3.48 1.05
Oil, Gas, and Coal Extraction 0.10 0.88 1.37 1.86 4.30 1.43
Business Equipment 0.46 0.96 1.16 1.43 4.03 1.21
Telecommunications 0.00 0.00 0.00 1.00 4.00 0.65
Wholesale and Retail 0.20 0.89 1.14 1.43 2.91 1.19
Healthcare, Medical Equipment, and Drugs 0.00 0.74 1.04 1.48 6.07 1.16
Utilities 0.15 0.62 0.93 1.16 4.32 0.94
Others 0.37 0.68 0.79 0.94 1.81 0.82

Covariance Equations
Group
Consumer Non-Durables 0.10 0.30 0.39 0.48 0.96 0.39
Consumer Durables 0.00 0.45 0.89 1.34 4.46 0.94
Manufacturing 0.07 0.11 0.13 0.14 0.24 0.13
Oil, Gas, and Coal Extraction 0.26 0.55 0.67 0.79 1.32 0.68
Business Equipment 0.05 0.09 0.10 0.12 0.17 0.1
Telecommunications 0.00 0.44 0.89 1.33 3.56 0.9
Wholesale and Retail 0.07 0.17 0.21 0.26 0.42 0.21
Healthcare, Medical Equipment, and Drugs 0.11 0.30 0.43 0.58 1.04 0.45
Utilities 0.06 0.22 0.31 0.41 0.78 0.32
Others 0.04 0.06 0.07 0.07 0.1 0.07

Notes: Distribution represents the percentiles and mean value calculated over 473
estimated models. The 430 stocks are separeted in 10 groups. according to SIC.
Averages are calculated among stocks in the same group.
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Table 12: Average Equation Size Distribution for Blocks in the Residual Covariance Matrix
(3-Factor VHAR)

Distribution Min 0,25 0,5 0,75 Max Mean

Variance Equations
Group
Consumer Non-Durables 11.19 11.97 12.19 12.48 13.61 12.29
Consumer Durables 6.25 6.50 6.62 7.00 7.75 6.79
Manufacturing 16.22 16.69 16.85 17.05 17.46 16.86
Oil, Gas, and Coal Extraction 9.00 9.78 10.19 10.59 11.12 10.17
Business Equipment 15.03 15.46 15.64 15.77 16.18 15.62
Telecommunications 6.60 6.90 7.30 7.60 7.90 7.27
Wholesale and Retail 12.80 13.36 13.53 13.71 14.22 13.55
Healthcare, Medical Equipment, and Drugs 11.54 12.19 12.42 12.92 13.58 12.53
Utilities 12.03 12.75 13.00 13.25 14.25 13.03
Others 15.41 15.85 16.47 17.13 18.11 16.53

Covariance Equations
Group
Consumer Non-Durables 0.66 0.83 1.28 1.39 1.52 1.15
Consumer Durables 0.21 0.36 0.54 0.68 0.89 0.53
Manufacturing 0.47 0.55 0.63 0.68 0.72 0.61
Oil, Gas, and Coal Extraction 1.46 1.76 2.09 2.23 2.64 2.01
Business Equipment 0.34 0.40 0.55 0.67 0.71 0.54
Telecommunications 1.36 1.53 1.62 1.73 2.11 1.65
Wholesale and Retail 0.51 0.60 0.89 1.02 1.09 0.83
Healthcare, Medical Equipment, and Drugs 0.42 0.73 1.12 1.58 1.77 1.13
Utilities 0.67 0.74 0.85 1.58 2.06 1.14
Others 0.52 0.60 0.65 0.70 0.72 0.64

Notes: Distribution represents the percentiles and mean value calculated over 473 estimated
models. The 430 stocks are separeted in 10 groups, according to SIC. Averages are calculated
among stocks in the same group.
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Table 13: Average Parameter Change Distribution for Blocks in the Residual Covari-
ance Matrix (3-Factor VHAR)

Distribution Min 0,25 0,5 0,75 Max Mean

Variance Equations
Group
Consumer Non-Durables 0.21 0.94 1.25 1.66 3.85 1.33
Consumer Durables 0.00 0.00 0.00 1.56 3.12 0.52
Manufacturing 0.33 0.83 1.02 1.23 3.36 1.08
Oil, Gas, and Coal Extraction 0.00 0.68 1.17 1.56 4.49 1.19
Business Equipment 0.40 0.94 1.18 1.40 3.60 1.21
Telecommunications 0.00 0.00 0.00 1.00 5.00 0.57
Wholesale and Retail 0.25 0.94 1.19 1.43 3.80 1.24
Healthcare, Medical Equipment, and Drugs 0.00 0.74 1.04 1.48 4.88 1.16
Utilities 0.08 0.62 0.93 1.23 4.55 0.98
Others 0.31 0.67 0.80 0.94 1.63 0.82

Covariance Equations
Group
Consumer Non-Durables 0.10 0.25 0.33 0.40 0.64 0.33
Consumer Durables 0.00 0.00 0.45 0.89 3.12 0.50
Manufacturing 0.06 0.09 0.11 0.12 0.20 0.11
Oil, Gas, and Coal Extraction 0.15 0.45 0.56 0.69 1.16 0.58
Business Equipment 0.04 0.08 0.10 0.12 0.20 0.10
Telecommunications 0.00 0.44 0.67 1.11 3.33 0.78
Wholesale and Retail 0.07 0.15 0.18 0.22 0.42 0.19
Healthcare, Medical Equipment, and Drugs 0.05 0.25 0.34 0.45 0.86 0.36
Utilities 0.08 0.21 0.31 0.42 0.78 0.33
Others 0.05 0.06 0.07 0.07 0.10 0.07

Notes: Distribution represents the percentiles and mean value calculated over 473 es-
timated models. The 430 stocks are separeted in 10 groups, according to SIC. Averages
are calculated among stocks in the same group.
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Table 14: Average Equation Size Distribution for Blocks in the Residual Covariance Matrix
(5 Factors VHAR)

Distribution Min 0,25 0,5 0,75 Max Mean

Variance Equations
Group
Consumer Non-Durables 11.32 11.97 12.19 12.45 13.61 12.27
Consumer Durables 6.12 6.50 6.62 7.00 7.62 6.77
Manufacturing 15.91 16.46 16.72 16.97 17.57 16.72
Oil, Gas, and Coal Extraction 10.28 10.75 11.12 11.38 12.06 11.08
Business Equipment 15.00 15.34 15.52 15.72 16.39 15.55
Telecommunications 6.50 6.90 7.30 7.70 7.90 7.30
Wholesale and Retail 12.56 13.22 13.40 13.62 14.24 13.42
Healthcare, Medical Equipment, and Drugs 11.69 12.15 12.54 12.96 13.50 12.55
Utilities 13.47 14.22 14.36 14.56 14.97 14.37
Others 15.35 15.94 16.60 17.22 18.12 16.61

Covariance Equations
Group
Consumer Non-Durables 0.59 0.83 1.33 1.43 1.52 1.17
Consumer Durables 0.21 0.39 0.46 0.57 0.79 0.48
Manufacturing 0.46 0.53 0.61 0.63 0.69 0.59
Oil, Gas, and Coal Extraction 1.38 1.67 1.73 1.95 2.33 1.80
Business Equipment 0.37 0.42 0.57 0.68 0.74 0.56
Telecommunications 1.13 1.44 1.56 1.69 1.91 1.55
Wholesale and Retail 0.59 0.70 0.97 1.06 1.13 0.90
Healthcare, Medical Equipment, and Drugs 0.52 0.75 1.20 1.54 1.78 1.16
Utilities 0.64 0.74 0.95 1.15 1.39 0.95
Others 0.60 0.67 0.70 0.74 0.77 0.70

Notes: Distribution represents the percentiles and mean value calculated over 473 estimated
models. The 430 stocks are separeted in 10 groups, according to SIC. Averages are calculated
among stocks in the same group.
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Table 15: Average Parameter Change Distribution for Blocks in the Residual Covari-
ance Matrix (5-Factor VHAR)

Distribution Min 0,25 0,5 0,75 Max Mean

Variance Equations
Group
Consumer Non-Durables 0.10 0.83 1.25 1.56 3.95 1.27
Consumer Durables 0.00 0.00 0.00 0.00 3.12 0.41
Manufacturing 0.31 0.88 1.07 1.30 3.98 1.12
Oil, Gas, and Coal Extraction 0.10 0.59 0.88 1.27 4.49 0.97
Business Equipment 0.27 0.97 1.16 1.37 3.55 1.19
Telecommunications 0.00 0.00 0.00 1.00 6.00 0.61
Wholesale and Retail 0.20 0.94 1.23 1.53 4.10 1.27
Healthcare, Medical Equipment, and Drugs 0.00 0.59 1.04 1.63 4.44 1.17
Utilities 0.00 0.85 1.16 1.47 5.71 1.19
Others 0.42 0.66 0.77 0.91 1.66 0.81

Covariance Equations
Group
Consumer Non-Durables 0.10 0.26 0.33 0.41 0.68 0.33
Consumer Durables 0.00 0.00 0.00 0.45 3.57 0.41
Manufacturing 0.05 0.09 0.10 0.12 0.17 0.10
Oil, Gas, and Coal Extraction 0.14 0.42 0.49 0.58 0.95 0.50
Business Equipment 0.04 0.08 0.10 0.12 0.18 0.10
Telecommunications 0.00 0.22 0.67 0.89 3.11 0.68
Wholesale and Retail 0.08 0.16 0.20 0.24 0.39 0.20
Healthcare, Medical Equipment, and Drugs 0.07 0.26 0.39 0.50 1.11 0.39
Utilities 0.08 0.20 0.28 0.36 0.59 0.28
Others 0.05 0.07 0.07 0.08 0.10 0.07

Notes: Distribution represents the percentiles and mean value calculated over 473 es-
timated models. The 430 stocks are separeted in 10 groups, according to SIC. Averages
are calculated among stocks in the same group.
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Table 16: Average Equation Size Distribution for Blocks in the Residual Covariance Matrix
(7-Factor HVAR)

Distribution Min 0,25 0,5 0,75 Max Mean

Variance Equations
Group
Consumer Non-Durables 11.29 11.94 12.13 12.48 13.74 12.24
Consumer Durables 6.12 6.38 6.50 6.88 7.62 6.65
Manufacturing 15.82 16.38 16.65 16.91 17.37 16.65
Oil, Gas, and Coal Extraction 10.12 10.81 11.03 11.34 11.97 11.09
Business Equipment 14.72 15.20 15.38 15.56 16.05 15.37
Telecommunications 6.40 6.80 7.30 7.50 8.00 7.23
Wholesale and Retail 12.73 13.31 13.47 13.69 14.33 13.49
Healthcare, Medical Equipment, and Drugs 11.77 12.31 12.69 13.15 13.73 12.73
Utilities 13.69 14.22 14.36 14.53 14.92 14.35
Others 15.36 15.93 16.57 17.12 18.05 16.59

Covariance Equations
Group
Consumer Non-Durables 0.59 0.82 1.33 1.41 1.51 1.15
Consumer Durables 0.14 0.36 0.46 0.54 0.75 0.45
Manufacturing 0.50 0.56 0.63 0.65 0.72 0.61
Oil, Gas, and Coal Extraction 1.40 1.64 1.77 2.05 2.42 1.84
Business Equipment 0.54 0.62 0.77 0.90 0.95 0.76
Telecommunications 1.58 1.82 1.91 2.02 2.56 1.93
Wholesale and Retail 0.62 0.73 1.03 1.11 1.16 0.93
Healthcare, Medical Equipment, and Drugs 0.54 0.77 1.02 1.41 1.65 1.06
Utilities 0.78 0.88 1.06 1.12 1.25 1.00
Others 0.63 0.71 0.75 0.78 0.81 0.74

Notes: Distribution represents the percentiles and mean value calculated over 473 estimated
models. The 430 stocks are separeted in 10 groups, according to SIC. Averages are calculated
among stocks in the same group.
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Table 17: Average Parameter Change Distribution for Blocks in the Residual Covari-
ance Matrix (7-Factor HVAR)

Distribution Min 0.25 0.5 0.75 Max Mean

Variance Equations
Group
Consumer Non-Durables 0.00 0.94 1.25 1.66 3.64 1.32
Consumer Durables 0.00 0.00 0.00 0.00 3.12 0.40
Manufacturing 0.38 0.88 1.04 1.25 3.74 1.10
Oil, Gas, and Coal Extraction 0.00 0.59 0.88 1.17 3.71 0.92
Business Equipment 0.46 0.91 1.13 1.35 3.14 1.16
Telecommunications 0.00 0.00 0.00 1.00 8.00 0.67
Wholesale and Retail 0.25 0.89 1.19 1.53 3.90 1.24
Healthcare, Medical Equipment, and Drugs 0.00 0.59 1.04 1.63 4.44 1.19
Utilities 0.23 0.85 1.16 1.47 6.10 1.22
Others 0.36 0.65 0.77 0.92 1.73 0.80

Covariance Equations
Group
Consumer Non-Durables 0.05 0.25 0.33 0.40 0.65 0.33
Consumer Durables 0.00 0.00 0.00 0.89 2.23 0.43
Manufacturing 0.06 0.09 0.10 0.12 0.18 0.11
Oil, Gas, and Coal Extraction 0.17 0.43 0.51 0.61 0.92 0.52
Business Equipment 0.06 0.11 0.12 0.14 0.25 0.13
Telecommunications 0.00 0.44 0.89 1.33 4.00 0.93
Wholesale and Retail 0.08 0.17 0.20 0.24 0.40 0.20
Healthcare, Medical Equipment, and Drugs 0.06 0.25 0.34 0.44 0.75 0.35
Utilities 0.10 0.22 0.29 0.36 0.63 0.30
Others 0.05 0.07 0.08 0.08 0.10 0.08

Notes: Distribution represents the percentiles and mean value calculated over 473
estimated models. The 430 stocks are separeted in 10 groups. according to SIC.
Averages are calculated among stocks in the same group.
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F Daily Average Portfolios

Table 18: Statistics for Daily Average Portfolios - Global Minimum Variance

RW Block 1F Block 3F Block 5F Block 7F EWMA (Returns) BEKK-NL DCC - NL

Max. Weight 0.07 0.41 0.42 0.41 0.41 0.37 0.07 0.22
Min.Weight -0.05 -0.03 -0.03 -0.03 -0.03 -0.42 -0.05 -0.05

Proportion of leverage (%) 37.74 42.09 41.75 41.36 41.54 49.07 45.15 50.94
Average Turnover (%) 0.09 0.04 0.04 0.04 0.04 0.08 0.03 0.04

Average Excess Returns (%) 19.69 13.84 14.29 14.65 14.51 4.55 15.22 16.84
Cumulated Return (%) 41.75 28.41 29.51 30.47 30.08 6.57 31.52 35.06
Standard Deviation (%) 15.88 11.24 11.19 10.93 11.04 15.98 12.16 13.90

Sharpe Ratio 1.24 1.23 1.28 1.34 1.31 0.28 1.25 1.21
Diversification Ratio 7.09 7.19 7.29 7.30 7.35 1.08 3.07 3.90

1 Factor 3 Factors 5 Factors 7 Factors
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Max. Weight 0.32 0.35 0.35 0.38 0.33 0.37 0.36 0.39
Min.Weight -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04

Proportion of leverage (%) 45.61 45.70 44.64 44.78 44.65 44.81 44.95 45.14
Average Turnover (%) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Average Excess Returns (%) 12.23 11.87 12.88 12.58 12.69 12.20 12.05 11.67
Cumulated Return (%) 24.75 23.95 26.50 25.79 26.11 24.99 24.60 23.73
Standard Deviation (%) 10.57 10.43 9.68 9.62 9.32 9.26 9.38 9.29

Sharpe Ratio 1.16 1.14 1.33 1.31 1.36 1.32 1.28 1.26
Diversification Ratio 4.84 4.88 5.05 5.08 4.85 4.88 4.96 4.98

Notes: The columns LASSO and adaLASSO refer to the estimation of the VHAR (Log matrix) models for the 4 factors configuration.

Table 19: Statistics for Daily Average Portfolios - Restricted Minimum Variance

RW Block 1F Block 3F Block 5F Block 7F EWMA (Returns) BEKK-NL DCC - NL

Max. Weight 0.20 0.20 0.19 0.19 0.19 0.20 0.20 0.20
Min.Weight -0.19 -0.12 -0.13 -0.12 -0.11 -0.18 -0.19 -0.17

Proportion of leverage (%) 7.63 14.89 14.51 13.71 13.26 1.16 1.64 2.75
Average Turnover (%) 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02

Average Excess Returns (%) 12.42 13.89 13.87 13.82 13.00 11.54 9.96 11.13
Cumulated Return (%) 24.48 28.05 28.06 27.94 25.96 21.92 18.29 21.05
Standard Deviation (%) 13.14 12.83 12.69 12.62 12.71 14.76 14.98 14.55

Sharpe Ratio 0.95 1.08 1.09 1.09 1.02 0.78 0.66 0.76
Diversification Ratio 4.61 4.53 4.78 4.78 4.78 2.38 2.44 2.35

1 Factor 3 Factors 5 Factors 7 Factors
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Max. Weight 0.20 0.19 0.20 0.20 0.19 0.20 0.19 0.20
Min.Weight -0.17 -0.17 -0.17 -0.17 -0.16 -0.16 -0.16 -0.16

Proportion of leverage (%) 8.52 8.71 7.72 7.97 7.68 7.85 7.12 7.34
Average Turnover (%) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Average Excess Returns (%) 13.92 13.57 13.44 13.67 13.34 13.58 12.97 13.40
Cumulated Return (%) 28.17 27.32 27.15 27.67 26.95 27.51 26.04 27.05
Standard Deviation (%) 12.69 12.74 12.24 12.37 12.11 12.20 12.22 12.25

Sharpe Ratio 1.10 1.07 1.10 1.11 1.10 1.11 1.06 1.09
Diversification Ratio 3.62 3.61 3.87 3.86 3.91 3.91 3.87 3.85

Notes: The columns LASSO and adaLASSO refer to the estimation of the VHAR (Log matrix) models for the 4 factors configuration.
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Table 20: Statistics for Daily Average Portfolios - Restricted Minimum Variance (Long Only)

RW Block 1F Block 3F Block 5F Block 7F EWMA (Returns) BEKK-NL DCC - NL

Max. Weight 0.19 0.20 0.20 0.20 0.20 0.20 0.20 0.19
Min.Weight 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Proportion of leverage (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average Turnover (%) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Average Excess Returns (%) 13.97 13.52 13.68 13.65 13.67 14.60 13.84 12.99
Cumulated Return (%) 26.90 25.81 26.24 26.21 26.25 28.06 26.17 24.22
Standard Deviation (%) 16.63 16.71 16.60 16.50 16.51 17.50 17.70 17.54

Sharpe Ratio 0.84 0.81 0.82 0.83 0.83 0.83 0.78 0.74
Diversification Ratio 3.37 3.27 3.30 3.32 3.32 2.72 2.69 2.61

1 Factor 3 Factors 5 Factors 7 Factors
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Max. Weight 0.19 0.19 0.20 0.20 0.20 0.20 0.20 0.20
Min.Weight 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Proportion of leverage (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average Turnover (%) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Average Excess Returns (%) 13.21 13.34 13.79 13.64 13.57 13.43 13.51 13.38
Cumulated Return (%) 25.21 25.51 26.66 26.31 26.20 25.83 26.08 25.76
Standard Deviation (%) 16.36 16.38 16.13 16.14 15.99 16.07 15.94 15.99

Sharpe Ratio 0.81 0.81 0.85 0.85 0.85 0.84 0.85 0.84
Diversification Ratio 3.16 3.15 3.13 3.14 3.15 3.16 3.14 3.14

Notes: The columns LASSO and adaLASSO refer to the estimation of the VHAR (Log matrix) models for the 4 factors configuration.

Table 21: Statistics for Daily Average Portfolios - Restricted Minimum Variance with Target for Returns (First Set of Benchmarks)

1 Factor 3 Factors 5 Factors 7 Factors
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
RW EWMA (Returns) BEKK-NL DCC - NL LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Max. Weight 0.19 0.20 0.20 0.20 0.19 0.20 0.19 0.20 0.19 0.19 0.19 0.20
Min.Weight -0.13 -0.18 -0.16 -0.15 -0.16 -0.16 -0.17 -0.16 -0.16 -0.15 -0.15 -0.15

Proportion of leverage (%) 21.04 14.72 16.04 16.94 23.42 22.35 21.01 24.21 22.40 21.95 23.39 25.51
Average Turnover (%) 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Average Excess Returns (%) 11.34 11.01 9.88 10.26 11.39 11.20 10.05 10.39 9.69 9.96 9.10 9.14
Cumulated Return (%) 21.94 20.93 18.33 19.25 22.26 21.81 19.27 20.01 18.51 19.11 17.19 17.26
Standard Deviation (%) 13.28 14.07 14.30 14.05 12.59 12.63 12.39 12.52 12.21 12.29 12.28 12.38

Sharpe Ratio 0.85 0.78 0.69 0.73 0.90 0.89 0.81 0.83 0.79 0.81 0.74 0.74
Diversification Ratio 5.06 2.70 2.80 2.68 4.00 3.98 4.23 4.23 4.23 4.22 4.23 4.19

Economic Value (Gamma = 1)

RW - - - - 0.34 0.16 -1.11 -0.67 -1.43 -1.17 -2.13 -1.89
EWMA (Returns) - - - - 0.66 0.48 -0.79 -0.35 -1.11 -0.85 -1.81 -1.57

BEKK-NL - - - - 1.63 1.44 0.17 0.62 -0.15 0.11 -0.85 -0.6
DCC - NL - - - - 1.44 1.26 -0.01 0.43 -0.33 -0.07 -1.03 -0.79

Economic Value (Gamma = 5)

RW - - - - 0.71 0.50 -0.65 -0.27 -0.88 -0.66 -1.62 -1.42
EWMA (Returns) - - - - 1.46 1.25 0.10 0.48 -0.13 0.09 -0.87 -0.67

BEKK-NL - - - - 2.54 2.34 1.18 1.57 0.95 1.17 0.21 0.41
DCC - NL - - - - 2.22 2.02 0.86 1.25 0.63 0.86 -0.10 0.09

Economic Value (Gamma = 10)

RW - - - - 1.17 0.94 -0.07 0.24 -0.19 -0.02 -0.97 -0.83
EWMA (Returns) - - - - 2.46 2.23 1.22 1.53 1.09 1.27 0.31 0.45

BEKK-NL - - - - 3.69 3.46 2.45 2.76 2.33 2.50 1.55 1.69
DCC - NL - - - - 3.21 2.98 1.96 2.27 1.84 2.02 1.06 1.20

Notes: The columns LASSO and adaLASSO refer to the estimation of the VHAR (Log matrix) models. for the 3 factors configuration.
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Table 22: Statistics for Daily Average Portfolios - Restricted Minimum Variance with Target for Returns (Second Set of Benchmarks)

1 Factor 3 Factors 5 Factors 7 Factors
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
VHAR

(Log matrix)
Block 1F Block 3F Block 5F Block 7F LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO LASSO adaLASSO

Max. Weight 0.20 0.17 0.19 0.19 0.19 0.20 0.19 0.20 0.19 0.19 0.19 0.20
Min.Weight -0.12 -0.11 -0.12 -0.10 -0.16 -0.16 -0.17 -0.16 -0.16 -0.15 -0.15 -0.15

Proportion of leverage (%) 28.69 29.32 26.92 26.36 23.42 22.35 21.01 24.21 22.40 21.95 23.39 25.51
Average Turnover (%) 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Average Excess Returns (%) 11.95 11.94 11.30 10.83 11.39 11.20 10.05 10.39 9.69 9.96 9.10 9.14
Cumulated Return (%) 23.41 23.45 21.96 20.91 22.26 21.81 19.27 20.01 18.51 19.11 17.19 17.26
Standard Deviation (%) 13.05 12.86 12.85 12.82 12.59 12.63 12.39 12.52 12.21 12.29 12.28 12.38

Sharpe Ratio 0.92 0.93 0.88 0.84 0.90 0.89 0.81 0.83 0.79 0.81 0.74 0.74
Diversification Ratio 4.95 5.15 5.15 5.17 4.00 3.98 4.23 4.23 4.23 4.22 4.23 4.19

Economic Value (Gamma = 1)

Block 1F - - - - -0.75 -0.94 -2.21 -1.76 -2.53 -2.27 -3.23 -2.98
Block 3F - - - - -0.66 -0.84 -2.11 -1.67 -2.43 -2.17 -3.13 -2.89
Block 5F - - - - 0.03 -0.16 -1.43 -0.98 -1.75 -1.49 -2.45 -2.20
Block 7F - - - - 0.50 0.32 -0.95 -0.51 -1.27 -1.01 -1.97 -1.73

Economic Value (Gamma = 5)

Block 1F - - - - -0.53 -0.73 -1.89 -1.5 -2.12 -1.89 -2.85 -2.65
Block 3F - - - - -0.52 -0.73 -1.88 -1.5 -2.11 -1.89 -2.85 -2.65
Block 5F - - - - 0.16 -0.05 -1.2 -0.82 -1.43 -1.21 -2.17 -1.97
Block 7F - - - - 0.62 0.42 -0.74 -0.35 -0.97 -0.75 -1.71 -1.51

Economic Value (Gamma = 10)

Block 1F - - - - -0.24 -0.47 -1.48 -1.17 -1.6 -1.42 -2.38 -2.24
Block 3F - - - - -0.35 -0.58 -1.59 -1.28 -1.71 -1.54 -2.49 -2.35
Block 5F - - - - 0.32 0.09 -0.92 -0.61 -1.04 -0.87 -1.82 -1.68
Block 7F - - - - 0.77 0.54 -0.47 -0.16 -0.59 -0.42 -1.37 -1.23

Notes: The columns LASSO and adaLASSO refer to the estimation of the VHAR (Log matrix) models. for the 3 factors configuration.
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