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Abstract

In order to estimate the conditional risk of a portfolio’s return, two strategies can be ad-

vocated. A multivariate strategy requires estimating a dynamic model for the vector of risk

factors, which is often challenging, when at all possible, for large portfolios. A univariate ap-

proach based on a dynamic model for the portfolio’s return seems more attractive. However,

when the combination of the individual returns is time varying, the portfolio’s return series

is typically non stationary which may invalidate statistical inference. An alternative approach

consists in reconstituting a "virtual portfolio", whose returns are built using the current compo-

sition of the portfolio. This paper establishes the asymptotic properties of this method, which

we call Virtual Historical Simulation (VHS). Numerical illustrations on simulated and real data

are provided.
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1 Introduction

The quantitative standards laid down under Basel Accord II and III allow banks to develop internal

models for setting aside capital. Methods that incorporate time dependence to quantify market

risks are able to use knowledge of the conditional distribution. In particular, the conditional Value-

at-Risk (VaR) of financial returns, with a given confidence level α (typically, α = 1% or 5%) is

nothing else, from a statistical point of view, than the opposite of the α-quantile of the conditional
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distribution of the portfolio returns. Estimating conditional quantiles, or more generally conditional

risk measures, of a time series of financial returns is thus crucial for risk management.

It is also essential, for risk management purposes, to be able to evaluate the accuracy of such

estimators of conditional risks. Uncertainty implied by statistical procedures in the implementation

of risk measures may lead to false security in financial markets (see e.g. Farkas, Fringuellotti

and Tunaru (2016) and the references therein). Estimation risk thus needs to be accounted for,

in addition to market risk. However, drawing - for instance - confidence intervals (CI) for the

conditional Value-at-Risk (VaR) is generally challenging for two main reasons. Firstly, because the

stochastic nature of the conditional VaR does not allow in general to reduce the problem to the

estimation of a parameter. Deriving CIs for a stochastic process is obviously more intricate than for

a parameter. Secondly, quantiles being obtained as the solutions of optimization problems based

on non-smooth functions, establishing asymptotic properties of conditional VaR estimators may

become a difficult task.

Increasing attention has been directed in the recent econometric literature to the inference of

risk measures in dynamic risk models. Francq and Zakoïan (2015) derived asymptotic confidence

intervals for the conditional VaR of a series of financial returns driven by a parametric dynamic

model. Robust backtesting procedures were developed by Escanciano and Olmo (2010, 2011),

and Gouriéroux and Zakoïan (2013) studied the effect of estimation on the coverage probabilities.

Several articles proposed resampling methods: among others, Christoffersen and Gonçalves (2005)

and Spierdijk (2016) considered using bootstrap procedures for constructing confidence intervals for

VaR; Hurlin, Laurent, Quaedvlieg and Smeekes (2017) proposed boostrap-based comparison tests

of two conditional risk measures. See Nieto and Ruiz (2016) for an extensive survey of the methods

for constructing and evaluating VaR forecasts that have been proposed in the literature.

Most existing studies on risk measure inference focus on the risk of a single financial asset. The

aim of the present article is to estimate conditional VaR’s for portfolios of financial assets. From a

statistical point of view, the extension is far from trivial. First, because evaluating the quantile of

a linear combination of variables may require knowledge of the complete joint distribution of such

variables. When the object of interest is a conditional quantile, this approach requires specifying a

dynamic model for the vector of returns of the assets involved in the portfolio. Second, portfolios

compositions are generally time-varying, in particular if the agents adopt a mean-variance approach

which, in a dynamic framework, requires specifying the first two conditional moments. This typically

entails non-stationarity of the portfolio’s return time series, as we shall see in more detail.
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A natural approach for obtaining the VaR of a portfolio relies on specifying a multivariate

GARCH model for the vector of underlying asset returns. This approach was investigated by

Rombouts and Verbeek (2009), and its asymptotic properties–with or without sphericity of the

innovations vector– were derived by Francq and Zakoïan (2017). As noted by Rombouts and Verbeek

the advantage of multivariate approaches is to "take into account the dynamic interrelationships

between the portfolio components, while the model underlying the VaR calculations is independent

of the portfolio composition". On the other hand, for large portfolios multivariate approaches

often become untractable due to the well-known dimensionality curse. In this paper, we study

the properties of an alternative univariate procedure relying on "virtual portolios" constructed

with the current composition of the portfolio. The series of virtual returns thus obtained allows

to estimate the conditional VAR of the portfolio. By circumventing the inherent non stationarity

of the observed portfolio’s time series, this procedure–which we call Virtual Historical Simulation

(VHS)–is amenable to asymptotic statistical inference. From a numerical point of view, it allows to

avoid difficulties caused by the dimensionality curse in estimation of multivariate volatility models

for vectors of asset returns.

The paper is organized as follows. Section 2 presents a general multivariate model and mul-

tivariate approaches for estimating the conditional VaR of a portfolio whose composition at the

current date may depend on the historical prices. Section 3 studies univariate methods. We first

consider a "naive" approach in which a standard volatility model is directly fitted to the portfo-

lio returns series. Then we derive in Section 4 the asymptotic properties of the VHS procedure

under general assumptions. Section 5 presents some numerical illustrations based on Monte Carlo

experiments.Proofs are collected in the Appendix.

2 General setup

2.1 Model and dynamic portfolio

Let pt = (p1t, . . . , pmt)
′ denote the vector of prices of m assets at time t. Let yt = (y1t, . . . , ymt)

′

denote the corresponding vector of log-returns, with yit = log(pit/pi,t−1) for i = 1, . . . ,m. We

assume throughout that the vector of log-returns follow a general multivariate model of the form

yt = mt(ϑ0) + ǫt, ǫt = Σt(ϑ0)ηt, (2.1)

where (ηt) is a sequence of independent and identically distributed (iid) Rm-valued variables with

zero mean and identity covariance matrix; the m × m non-singular matrix Σt(ϑ0) and the m × 1
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vector mt(ϑ0) are specified as functions parameterized by a d-dimensional parameter ϑ0 of the past

values of yt:

mt(ϑ0) = m(yt−1,yt−2, . . . ,ϑ0), Σt(ϑ0) = Σ(yt−1,yt−2, . . . ,ϑ0). (2.2)

Let Vt denote the value at time t of a portfolio composed of µi,t−1 units of asset i, for i = 1, . . . ,m:

V0 =
m∑

i=1

µipi0, Vt =
m∑

i=1

µi,t−1pit, for t ≥ 1 (2.3)

where the µi,t−1 are measurable functions of the prices up to time t− 1, and the µi are constants.

The return of the portfolio over the period [t− 1, t] is, for t ≥ 1, assuming that Vt−1 6= 0,

Vt

Vt−1
− 1 =

m∑

i=1

ai,t−1e
yit − 1 ≈

m∑

i=1

ai,t−1yit + a0,t−1

where

ai,t−1 =
µi,t−1pi,t−1∑m
j=1 µj,t−2pj,t−1

, i = 1, . . . ,m and a0,t−1 = −1 +

m∑

i=1

ai,t−1.

We assume that, at date t, the investor may rebalance his portfolio under a "self-financing" con-

straint.

SF: The portfolio is rebalanced in such a way that
∑m

i=1 µi,t−1pit =
∑m

i=1 µi,tpit.

In other words, the value at time t of the portfolio bought at time t− 1 equals the value at time t

of the portfolio bought at time t. An obvious consequence of the self-financing assumption SF, is

that the change of value of the portfolio between t− 1 and t is only due to the change of value of

the underlying assets:

Vt − Vt−1 =

m∑

i=1

µi,t−1(pi,t − pi,t−1).

Another consequence is that the weights ai,t−1 sum up to 1, that is a0,t−1 = 0. Thus, under SF we

have Vt
Vt−1

− 1 ≈ rt, where

rt =

m∑

i=1

ai,t−1yit = a
′
t−1yt, ai,t−1 =

µi,t−1pi,t−1∑m
j=1 µj,t−1pj,t−1

, (2.4)

for i = 1, . . . ,m, and at−1 = (a1,t−1, . . . , am,t−1)
′. A portfolio is usually called crystallized when the

number of units of each asset is time independent, that is for each i = 1, . . . ,m, µi,t−1 = µi for

all t. We will call static a portfolio with fixed proportion in value of each return, that is for each

i = 1, . . . ,m, ai,t−1 = ai for all t.
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2.2 Conditional VaR of a dynamic portfolio

The conditional VaR of the portfolio’s return process (rt) at risk level α ∈ (0, 1), denoted by

VaR
(α)
t−1(r), is defined by

Pt−1

[
rt < −VaR

(α)
t−1(r)

]
= α, (2.5)

where Pt−1 denotes the historical distribution conditional on {pu, u < t}. In view of (2.1) and (2.4),

the portfolio’s return satisfies

rt = a
′
t−1mt(ϑ0) + a

′
t−1Σt(ϑ0)ηt, (2.6)

from which it follows that its conditional VaR at level α is given by1

VaR
(α)
t−1(r) = −a

′
t−1mt(ϑ0) + VaR

(α)
t−1

(
a
′
t−1Σt(ϑ0)ηt

)
. (2.7)

The VaR formula can be simplified if we assume that the errors ηt have a spherical distribution,

that is, for any non-random vector λ ∈ Rm, λ′ηt
d
= ‖λ‖η1t, where ‖ · ‖ denotes the euclidian norm

on Rm, ηit denotes the i-th component of ηt, and
d
= stands for the equality in distribution. Under

the sphericity assumption we have

VaR
(α)
t−1(r) = −a

′
t−1mt(ϑ0) +

∥∥a′t−1Σt(ϑ0)
∥∥VaR(α) (η) , (2.8)

where VaR(α) (η) is the (marginal) VaR of η1t.

2.3 Multivariate approaches

Multivariate approaches require specifying the first two conditional moments in (2.2) of the vector

of individual returns. While the conditional mean is generally modelled using a small-order AR

process, there are plenty of GARCH-type specifications for the conditional variance. See for instance

Bauwens, Laurent and Rombouts (2006), Francq and Zakoïan (2010, Chapter 11) or Bauwens,

Hafner and Laurent (2012) for presentations of the most commonly used specifications.

2.3.1 Conditional VaR estimation under conditional ellipticity

Under the sphericity assumption, a natural strategy for estimating the conditional VaR of a portfolio

is to estimate ϑ0 by some consistent estimator ϑ̂n in a first step, to extract the residuals and to

estimate VaR(α) (η) in a second step.

1The presence of the sign "−" in this formula comes from the fact that the VaR is defined in terms of returns

instead of loss variables.
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An estimator of the conditional VaR at level α accounting for the conditional ellipticity is thus

V̂aR
(α)

S,t−1(r) = −a
′
t−1m̃t(ϑ̂n) + ‖a′t−1Σ̃t(ϑ̂n)‖ξn,1−2α, (2.9)

where ξn,1−2α is the empirical (1− 2α)-quantile of the residuals η̂t = Σ̃
−1

t (ϑ̂n){yt− m̃t(ϑ̂n)}. Here

m̃t(ϑ̂n) and Σ̃t(ϑ̂n) denote the estimated conditional mean and variance of yt based on initial

values ỹi for i ≤ 0.

Francq and Zakoian (2017) derived, under appropriate assumptions, the asymptotic joint distri-

bution of ϑ̂n and ξn,1−2α from which confidence intervals for the VaR can be deduced.

2.4 Conditional VaR estimation without the sphericity assumption

The Filtered Historical Simulation (FHS) approach (see Barone-Adesi, Giannopoulos and Vosper

(1999), Mancini and Trojani (2011) and the references therein) does not require any symmetry as-

sumption. It relies on estimating the conditional quantile of a linear combination of the components

of the innovation, where the coefficients depend on both the model parameter and the past returns.

Indeed, the conditional VaR of the portfolio return is

VaR
(α)
t−1(r) = VaR

(α)
t−1

{
bt(ϑ0) + c′t(ϑ0)ηt

}

where bt(ϑ) = a
′
t−1mt(ϑ) and c′t(ϑ) = a

′
t−1Σt(ϑ). A natural estimator is thus

V̂aR
(α)

FHS,t−1(r) = −qα

(
{bt(ϑ̂n) + c′t(ϑ̂n)η̂s, 1 ≤ s ≤ n}

)
.

Based on this estimator and asymptotic arguments, Francq and Zakoian (2017) proposed CIs for

the conditional VaR at time t of the portfolio return.

3 Univariate approaches

An obvious alternative to the multivariate approaches is to estimate a univariate GARCH model on

the series of portfolio returns. We will see that this approach, which can be called "naive", is actually

invalid in general, due to the fact that the return’s portfolio is a time-varying combination of the

individual returns. Instead, a reasonable approach consists in reconstituting a "virtual portfolio",

whose returns are built using the current composition of the portfolio. We start by considering the

naive approach.
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3.1 Invalidity of the naive univariate approach

For simplicity, we consider a crystallized portfolio, with weight µi and initial price pi0 for the asset

i ∈ {1, . . . ,m}. The composition at−1 of such a portfolio is non stationary, in general. Indeed, we

have

log (ai,t/aj,t) = log(µipi,0/µjpj,0) +
t∑

k=1

Di,j,k, Di,j,k = yi,k − yj,k,

and (
∑t

k=1Di,j,k)t≥1 is a non stationary integrated process of order 1 under general assumptions.2

More precisely, the following lemma shows that, with probability tending to one, the composition

at−1 of the portfolio converges to the set of the vectors ei of the canonical basis (corresponding to

single-asset portfolios): P (at−1 ∈ {e1, . . . ,em}) → 1 as t → ∞.

Lemma 3.1. Consider a process (Dk)k≥1. Assume that there exist real sequences an > 0 and bn,

both tending to zero, such that

Zn := an

n∑

k=1

Dk + bn
L→ Z as n → ∞, (3.1)

for some random variable Z, whose cdf is continuous at 0 and such that p = P (Z > 0) ∈ (0, 1). For

any c > 0, we have P (
∑n

k=1Dk > c) → p and P (
∑n

k=1Dk < −c) → 1− p as n → ∞.

Note that a generalized central limit theorem of the form (3.1) holds for any iid sequence (Dk)

whenever the distribution of Dk belongs to the domain of attraction of Z, which then follows a

stable distribution. If the assumptions of Lemma 3.1 hold with Dk = Di,j,k for any pair (i, j), with

i 6= j, then all the ratios ai,t/aj,t are arbitrarily close to either 1 or 0 with probability tending to 1

as t → ∞. In that case, the composition at−1 tends to be totally undiversified, but is not always

close to the same single-asset composition ei. If the dynamics of the individual returns ǫit are not

identical, the dynamics of the return rt will be time-varying, and the naive method based on a fixed

stationary GARCH model is likely to produce poor results.

Simulation experiments reported in Section 5 confirm that for crystallized portfolios, the naive

approach behaves badly due to the non stationarity of the univariate returns rt. Of course, for static

portfolios the non stationarity issue vanishes, but such portfolios may be considered as artificial. The

next section studies a remedy to the non stationarity issue, while keeping the univariate framework.

2By the Chung-Fuks theorem, this is the case when yt is iid with zero mean and a non-singular covariance matrix

Σ. The non stationarity of the process also holds, for instance, if the sequence (Di,j,k)k is mixing and nondegenerated.
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3.2 The VHS univariate approach

At time t0, given the current portfolio composition at0−1 = x, say, and the series of individual

returns, we construct a series of virtual returns

r∗t (x) = x′yt, t ∈ Z.

Note that, in general, r∗t (x) 6= rt because the composition of the (non virtual) portfolio is time

varying (at−1 6= x, in general, for t 6= t0). Given the stationarity of (yt), it is clear that the series

of virtual returns {r∗t (x)} is also stationary, with conditional moments

Et−1{r∗t (x)} =: µt(x), vart−1{r∗t (x)} =: σ2
t (x),

where Et−1(X) = E(X | r∗s(x), s < t) for any variable X, and the variance is defined accordingly.

Thus, r∗t (x) follows a model of the form

r∗t (x) = µt(x) + σt(x)ut, where Et−1(ut) = 0 and vart−1(ut) = 1. (3.2)

Noting that rt0 = r∗t0(at0−1), the conditional VaR at time t0 thus satisfies

VaR
∗(α)
t0−1(rt0) = −µt0(at0−1) + σt0(at0−1)VaR

∗(α)
t0−1(ut0) (3.3)

where VaR
∗(α)
t−1 (X) is the VaR of X at level α conditional on (r∗s(x), s < t).

Note that the martingale difference (ut) may not be iid, as the following example illustrates.

Example 3.1. Consider the bivariate ARCH(1) process, defined as the stationary non anticipative

solution of the model

yt =


 y1t

y2t


 = Σtηt, Σt =


 σ2

1t := ω1 + α11y
2
1,t−1 + α12y

2
2,t−1 0

0 σ2
2t := ω2 + α21y

2
1,t−1


 ,

where ηt iid (0, I), and assuming that the components η1t and η2t are independent. Let the return

of the portfolio which is fully invested in the first asset, that is, rt = (1, 0)yt = y1t. Denote by F1t

the σ-field generated by {y1u, u ≤ t}. We have E(rt|F1,t−1) = 0 and

E(r2t |F1,t−1) = E(σ2
1t|F1,t−1) = ω1 + α11y

2
1,t−1 + α12E(y22,t−1|F1,t−1)

= ω1 + α11y
2
1,t−1 + α12σ

2
2,t−1E(η22,t−1|F1,t−1)

= ω1 + α11y
2
1,t−1 + α12σ

2
2,t−1 := σ2

t .
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It follows that (rt) satisfies the model rt = σtut, where

ut =
σ1t
σt

η1t =

(
1 +

α12σ
2
2,t−1(η

2
2,t−1 − 1)

ω1 + α11y
2
1,t−1 + α12σ

2
2,t−1

)1/2

η1t.

It is then clear that (ut,F1,t) is a martingale difference but (ut) is generally not iid (except when

α12 = 0 or η22,t is degenerated).

Even in the simple previous example, the conditional quantile VaR
∗(α)
t0−1(ut0) popping up in (3.3)

cannot be explicitly computed. Whether or not this quantity could be estimated nonparametrically

is beyond the scope of this paper. Instead, we consider a "hybrid" VaR defined by

VaR
(α)
H,t0−1(rt0) = −µt0(at0−1) + σt0(at0−1)VaR(α)(u) (3.4)

where VaR(α)(u) is the marginal VaR of ut at level α. An estimator of VaR
(α)
H,t0−1(r) is obtained as

follows: given at0−1 = x,

Step 1: Compute the virtual historical returns r∗t (x) for t = 1, . . . , n.

Step 2: Estimate µt(x) and σt(x). Denote by µ̂t(x) and σ̂t(x) the resulting estimators, and

by ût = {r∗t (x)− µ̂t(x)}/σ̂t(x) the residuals.

Step 3: Compute the α-quantile ξn,α of {ûs, 1 ≤ s ≤ n} and define an estimator of VaR
(α)
t0−1(r)

as

V̂aR
(α)

V HS,t0−1(r) = −µ̂t0(x)− σ̂t0(x)ξn,α. (3.5)

This procedure is particularly appropriate for large portfolios, when the large dimension of the

vector of underlying assets precludes–or at least formidably complicates– estimation of multivariate

volatility models. Moreover, the following example shows that for large portfolios a univariate

GARCH model is a reasonable assumption for the virtual returns.

Example 3.2. Suppose that m is large and that the vector of log-returns is driven by a vector f t

of K factors (with K ≪ m) as

yt = βf t + ǫt

where β is a m×K matrix, vart−1(f t) = F t is a full-rank matrix and vart−1(ǫt) = Σt is a diagonal

matrix. With a composition fixed to x, the virtual portfolio’s returns thus satisfy

r∗t = x′βf t + x′ǫt.

Suppose that the portfolio is well-diversified so xi = O(1/m) for i = 1, . . . ,m. The conditional

variance of the error term is given by vart−1(x
′ǫt) = x′

Σ
2
tx and is of order 1/m in probability as
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m goes to infinity, while vart−1(x
′βf t) = x′βF tβ

′x = OP (1) and does not vanish as m increases

under appropriate assumptions. 3 It follows that r∗t ≈ x′βf t. If now K = 1 and the (real-valued)

factor ft is the solution of a GARCH model, the process x′βft will follow the same model up to a

change of scale. It is therefore natural to fit a GARCH model for the virtual returns under these

assumptions when m is large.

4 Asymptotic properties of the VHS approach

To obtain asymptotic properties of the VHS procedure, we make the following parametric assump-

tions on Model (3.2). For simplicity, we consider the model without conditional mean, that is

µt(x) = 0. For some (known) function σ : R∞ ×Θ → (0,∞), let

σt(x;θ) = σ(r∗t−1(x), r
∗
t−2(x), . . . ;θ), (4.1)

where θ0 = θ0(x) is the true value of the finite dimensional parameter θ, belonging to some compact

set Θ. To alleviate notations, we will denote the virtual returns by ǫt := r∗t (x). Model (3.2) thus

reduces to

ǫt = σtut, σt = σ(ǫt−1, ǫt−2, . . . ;θ). (4.2)

Recall that iidness of the sequence (ut) is not a natural assumption in our framework. To study

the asymptotic properties of the VHS estimator, we introduce the following additional assumptions.

Let Dt(θ) = σ−1
t (θ)∂σt(θ)/∂θ.

A1: The sequence (ut) is stationary and ergodic, with E|ut|4+ν < ∞ for some ν > 0, and mixing

coefficients {α(h)}h≥0 satisfying

∞∑

h=1

hr
∗

α(ν−ǫ)/(4+ν−ǫ)(h) < ∞ for some r∗ >
κ(4 + 2ν)

ν − κ(4 + 2ν)
and some ǫ ∈ (0, ν).

Denoting by Ft−1 the sigma-field generated by {uu, u < t}, suppose that E(ut | Ft−1) = 0

and E(u2t | Ft−1) = 1. Assume that the conditional distribution of ut given Ft−1 has a density

ft−1 such that ft−1(ξα) > 0 a.s. and E supξ∈V (ξα) f
4
t−1(ξ) < ∞ for some neighborhood V (ξα)

of ξα. Assume also that this density is continuous at ξα uniformly in Ft−1, in the sense that

for sufficiently small ε > 0, there exists a stationary and ergodic sequence (Kt) such that

3For instance if the matrix β does not contain too many many zeroes or, more precisely, if at least one column βj

of β is such that lim inf |x′βj | > 0 as m → ∞.
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Kt−1 ∈ Ft−1 and

sup
x∈[ξα−ε,ξα+ε]

|ft−1(x)− ft−1(ξα)| ≤ Kt−1ε

with EK4
t < ∞ a.s.

A2: (ǫt) is a strictly stationary and ergodic solution of (4.2), and there exists s > 0 such that

E|ǫ1|s < ∞.

A3: Assume that there exists a sequence Dt,Tn such that Dt = Dt,Tn + D̃t,Tn , where Tn → ∞ and

Tn = O(nκ) for some κ ∈ [0, ν/4(2 + ν)) (with E|ut|4+ν < ∞) and Dt,Tn is measurable with

respect to ut−1, . . . , ut−Tn , and for any r ≥ 0

E‖Dt‖r < ∞, sup
n≥1

E‖Dt,Tn‖r < ∞, D̃t,Tn = oP (1) as n → ∞.

A4: For some ω > 0, almost surely, σt(θ) ∈ (ω,∞] for any θ ∈ Θ. Moreover, for θ1,θ2 ∈ Θ, we

have σt(θ1) = σt(θ2) a.s. if and only if θ1 = θ2.

A5: There exist a random variable C1 measurable with respect to {ǫu, u < 0} and a constant

ρ ∈ (0, 1) such that supθ∈Θ |σt(θ)− σ̃t(θ)| ≤ C1ρ
t.

A6: The function θ 7→ σ(x1, x2, . . . ;θ) has continuous second-order derivatives, and

sup
θ∈Θ

∥∥∥∥
∂σt(θ)

∂θ
− ∂σ̃t(θ)

∂θ

∥∥∥∥+
∥∥∥∥
∂2σt(θ)

∂θ∂θ′ − ∂2σ̃t(θ)

∂θ∂θ′

∥∥∥∥ ≤ C1ρ
t,

where C1 and ρ are as in A5.

A7: There exists a neighborhood V (θ0) of θ0 such that

sup
θ∈V (θ0)

∥∥∥∥
1

σt(θ)

∂σt(θ)

∂θ

∥∥∥∥
4

, sup
θ∈V (θ0)

∥∥∥∥
1

σt(θ)

∂2σt(θ)

∂θ∂θ′

∥∥∥∥
2

, sup
θ∈V (θ0)

∣∣∣∣
σt(θ0)

σt(θ)

∣∣∣∣
2δ

have finite expectations.

For particular volatility models, some of the assumptions can be simplified as the following

lemma shows.

Lemma 4.1. For the standard GARCH(1,1) model

ǫt = σtut, σ2
t = ω0 + α0ǫ

2
t−1 + β0σ

2
t−1, (ut)

iid∼ (0, 1), ω0 > 0, α0 > 0, β0 > 0, (4.3)

Assumptions A1-A7 reduce to: i) E log(α0η
2
t + β0) < 0; ii) η2t has a non-degenerate distribution

with Eη4t < ∞; iv) Θ = {(ω,α, β)} is a compact subset of (0,∞)3 such that, for all θ ∈ Θ, ω > ω

for some ω > 0 and β < 1.
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We are now in a position to state our main result.

Theorem 4.1. Assume ξα < 0. Let A1-A7 hold. Then




√
n
(
θ̂n − θ0

)

√
n(ξα − ξn,α)


 L→ N (0,Σα), Σα =


 J−1S11J−1 Λα

Λ′
α ζα


 ,

where J = E(DtD
′
t) with Dt = Dt(θ0), and

Λα =
ξα

Eft−1(ξα)
J−1S11J−1Ω+

1

2Eft−1(ξα)
J−1S12

α , Ω = E{ft−1(ξα)Dt},

ζα =
1

{Eft−1(ξα)}2
(
ξ2αΩ

′J−1S11J−1Ω+ ξαΩ
′J−1S12

α + S22
α

)
,

S11 = E
[{

E
(
u4t | Ft−1

)
− 1
}
DtD

′
t

]
, S22

α =

∞∑

h=−∞
cov
(
1{ut<ξα},1{ut−h<ξα}

)
,

S12
α = S21′

α =

∞∑

h=0

cov
{
(u2t − 1)Dt,1{ut+h<ξα}

}
.

Let Σ̂α(x) denote a consistent estimator of Σα(x). By the delta method, an approximate

(1− α0)% confidence interval (CI) for VaRt(α) has bounds given by

σt{x; θ̂n(x)}ξ|u|n,1−2α(x)±
1√
n
Φ−1(1− α0/2)

{
δ′t−1(x)Σ̂α(x)δt−1(x)

}1/2
, (4.4)

where

δ′t−1(x) =

(
∂σt(x; θ̂n(x))

∂θ
ξ
|u|
n,1−2α(x) σt{x; θ̂n(x)}

)
.

5 Numerical illustrations

The first part of the section illustrates the invalidity of the naive approach. The second part

presents a selection of Monte-Carlo experiments aiming at studying the performance of the previous

approaches in finite sample. Real data examples will be presented in the third part.4

5.1 Non stationarity of the portfolio’s return

For simplicity, we consider a crystallized equally weighted portfolio of 3 assets (of initial price

pi0 = 1000) Vt =
∑3

i=1 pit. Thus, the return portfolio composition is time varying, with coefficients

4 The code and data used in the paper are available on the web site

http://perso.univ-lille3.fr/~cfrancq/Christian-Francq/VaRPortfolio.html
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at−1 = (a1,t−1, a2,t−1, a3,t−1)
′ and ai,t−1 = pi,t−1/

∑3
j=1 pj,t−1. Assume that the vector of the log-

returns is iid, centered, with variance Var(ǫt) = Σ
2 = DRD, with

D =




0.01 0 0

0 0.02 0

0 0 0.04


 , R =




1 −0.855 0.855

−0.855 1 −0.810

0.855 −0.810 1


 .

The composition at−1 of the portfolio is plotted in Figure 2. As we have seen in Section 3.1, this

vector is non stationary. More precisely, by the Chung-Fuks theorem, with increasing probability,

the composition at−1 of the portfolio is arbitrarily close to one of the three single-asset portfolios

(1, 0, 0), (0, 1, 0) and (0, 0, 1).

It is thus non surprising to see that the univariate return series rt plotted in Figure 1 exhibits

some nonstationarity features, in particular marginal heteroscedasticity. The increased variance in

the second part of the sample reflects the fact that the portfolio tends to be less and less diversified

(see Figure 2).

However, because the series also presents conditional heteroscedasticity, we fitted a GARCH(1,1)

model which corresponds to common practice. The parameters of this model are estimated online,

starting from t = 200. We have V̂aR
(α)

FHS,t−1(r) = −qα
(
{a′

t−1ǫ1, . . . ,a
′
t−1ǫt−1}

)
. These empirical

quantiles were computed starting from t = 150. The spherical method, based on the estimation of

Σ, was computed on the same range of observations. Figure ?? displays the sample paths of the

true conditional VaR as well as the 3 estimated VaRs. It can be seen that the spherical method

converges faster to the true value than the FHS method. On the other hand, the univariate method

fails to converge to the theoretical conditional VaR. This can be explained by the difference between

the information sets (point iii) in Section ??), and also by the non stationarity of the univariate

series of portfolio returns. appropriate for this non stationary series. Figure ?? provides another

simulation, including the VHS method. It is seen that, contrary to Figure ??, the VHS estimator

behaves like the spherical estimator. This is not surprising since the returns are iid in this setting.

5.2 Monte-Carlo experiments

A Monte Carlo study was conducted in order to compare the multivariate and univariate approaches

in finite sample. We simulated m-multivariate factor models, with two GARCH factors of the form

f1t = σ1tη1t, f2t = σ2tη2t,

13
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where (η1t)t and (η2t)t are two independent sequences of iid N (0, 1)-distributed random variables.

The volatilities follow standard GARCH(1, 1) equations of the form

σ2
it = ωi + αif

2
i,t−1 + βiσ

2
i−1,t.

We took (ω1, α1, β1) = (1, 0.09, 0.87) and (ω2, α2, β2) = (0.1, 0.7, 0.01), so the dynamics of the

two factors be quite distinct. The even and odd components of our simulated factor model are

respectively of the form

ǫ2k,t = f2t + e2k,t, ǫ2k+1,t = f1t + e2k+1,t,

where (ekt)t, for k = 1, . . . ,m, are idiosyncratic independent iid noises with law N (0, 0.12). To

obtain a graphical comparison of the VaR estimates, we first simulated a trajectory of size 1, 100

of the factor model with m = 4. A crystalized portfolio of composition (1/m, . . . , 1/m) at time

t = 1 has been considered. The four competing estimators of the 5% VaRt−1 at time t = 1001

were estimated on the basis on the first 1, 000 simulated values ǫ1, . . . , ǫt−1. Then, VaR at time

t = 1, 002 was estimated based on the past 1, 000 simulations ǫ2, . . . , ǫt−1. We continued until we

obtained the last VaR estimations at time t = 1, 100. Figure 3 shows that the estimates obtained

by the Spherical, FHS and VHS methods are very close (actually, they are not distinguishable on

the figure), whereas the estimates obtained by the naive method behave differently. This can be

explained by the fact that the portfolio is crystallized but not static. In other words, even if the

portfolio is constituted of an equal quantity of the m simulated assets, the return rt is not a fixed

average of the individuals returns ǫkt (see Figure 4).

In this first graphical illustration, the number of estimated VaRs is not sufficient to compare the

methods by using formal backtests. We thus considered the same framework of GARCH estimations

on rolling windows of length 1, 000, but the methods have been backtested of a longer period of

length 2, 000. Moreover, in order to obtain a clearcut comparison between the naive method and

the VHS method, the composition of the portfolio has to be highly time-varying. We thus simulated

portfolios whose composition alternates as follows: we take an equal proportion of the returns of

the even assets ǫ2k,t during a period of length 100, and then we switch to an equal proportion of

the odd assets ǫ2k+1,t during another period of length 100. Table 1 summarizes the results of the 4

VaR estimation methods for m = 2 or m = 4. This simulation exercise is intensive since 2000 DCC-

GARCH models must be estimated for each of the two multivariate methods, and 2000 univariate

GARCH(1,1) models must be estimated for each of the univariate methods. The spherical and FHS

methods become rapidly too time consuming when the number m of returns increases, because

15



multivariate m-GARCH models have to be estimated. Interestingly, the numerical complexity of

the univariate methods does not increase much with m, so that Table 1 reports results on portfolios

of m = 8 and m = 100 assets for the univariate methods only.

Viol gives the relative frequency of violations (in %), the columns LRuc, LRind and LRcc give

respectively the p-values of the the unconditional coverage test that the probability of violation

is equal to the nominal 5% level, the independence test that the violations are independent and

the conditional coverage test of Christoffersen (2003). Conclusions drawn from those backtests,

which solely focus on the violations, are that all methods are validated on these experiments. It

is necessary to introduce alternative statistics, related to the amount of violation, to compare the

different approaches. The next column VaR provides the average VaR, while the column AV displays

the average amount of violation, and the column ES gives the expected shorfall, that is the average

loss when the VaR is violated: for each estimator V̂ aRt of the conditional VaR, let

AV =

∑n
t=1 −(ǫt + V̂ aRt)1lǫt<−V̂ aRt∑n

t=1 1lǫt<−V̂ aRt

, ES =

∑n
t=1 −ǫt1lǫt<−V̂ aRt∑n

t=1 1lǫt<−V̂ aRt

.

These statistics clearly show that the naive approach is inefficient compared to its competitors.

With this method, the amount of violation tends to be higher whatever the size m of the portfolio.

For these statistics AV and ES, the VHS approach appears comparable to the multivariate methods

when comparison is possible, that is when m is not too large. Alternative comparisons are provided

by considering the loss function

Loss =
1

n

n∑

t=1

−(ǫt + V̂ aRt)(α− 1l
ǫt<−V̂ aRt

).

The last column of Table 1 reports, for each of the three non-naive methods, p-values of the Diebold-

Mariano (1995) test for the null that the naive method produces the same loss against the alternative

that it induces higher loss. The null is rejected in each situation, leading to the same conclusion

as before: the naive method is outperformed by its three competitors when m is small, and is

outperformed by the other univariate method when m is large.
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Table 1: Backtests of the 5%-VaR estimates

Viol LRuc LRind LRcc VaR AV ES Loss DM

m = 2 Naive 5.20 68.34 79.24 88.89 4.64 1.87 6.56 0.33 -

VHS 5.55 26.71 72.63 50.81 4.26 1.07 5.30 0.27 5.e-10

Spherical 5.30 54.19 86.71 81.87 4.28 1.10 5.49 0.27 1.e-09

FHS 5.60 22.67 90.67 47.82 4.25 1.10 5.33 0.27 3.e-09

m = 4 Naive 5.55 26.71 12.95 17.12 4.51 1.90 6.08 0.33 -

VHS 4.35 17.30 90.93 39.26 4.60 1.18 5.45 0.28 1.e-07

Spherical 5.20 68.34 5.95 15.59 4.36 1.19 5.61 0.28 2.e-08

FHS 4.30 14.15 87.19 33.50 4.60 1.19 5.55 0.28 2.e-07

m = 8 Naive 5.10 83.79 56.34 82.87 4.87 1.61 6.10 0.33 -

VHS 5.50 31.23 69.02 55.44 4.44 1.05 5.38 0.28 1.e-08

m = 100 Naive 4.90 83.69 6.93 18.8 4.53 2.16 7.65 0.34 -

VHS 5.25 61.07 81.42 85.46 4.56 1.09 5.61 0.29 6.e-09
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Appendices

A Proofs

A.1 Proof of Lemma 3.1

We have

P

(
n∑

k=1

Dk > c

)
= P (Zn > cn) = P (Zn > 0)− sign(cn)P (Zn ∈ (0, cn])

with cn = anc+ bn and obvious notation. We have P (Zn > 0) → p and, for any ε > 0, there exists

cε > 0 such that limn→∞ P (Zn ∈ (0, cn]) ≤ limn→∞ P (Zn ∈ [−cε, cε]) ≤ ε. ✷

A.2 Proof of Lemma 4.1.

Letting a(z) = α0z
2 + β0, the volatility of a GARCH(1,1) model can be written as

σ2
t (θ0) = σ2

t,Tn
+ σ̃2

t,Tn
, σ2

t,Tn
= ω0

{
1 +

Tn∑

k=1

k∏

i=1

a(ut−i)

}
.

Note that, under the strict stationarity condition E log a(u1) < 0, we have

σ̃2
t,Tn

= ω0

∞∑

k=Tn+1

k∏

i=1

a(ut−i) → 0 a.s. when Tn → ∞ (A.1)

We also set ǫ2t = ǫ2t,Tn
+ ǫ̃2t,Tn

, where ǫt,Tn = utσt,Tn is a measurable function of ut, . . . , ut−Tn . We

thus have

σ2
t,Tn

=
Tn−2∑

i=0

βi
0

(
ω0 + α0ǫ

2
t−i−1,Tn−i−1

)
+ βTn−1

0 σ2
t−Tn+1,1.

The first and second components of Dt are bounded, and thus can be handled easily. The last

component of Dt has the form

βσ
2
t :=

1

2σ2
t

∂σ2
t (θ0)

∂β
= βσ

2
t,Tn

+ βσ̃
2
t,Tn

, βσ
2
t,Tn

=

∑Tn−2
i=1 iβi−1

0

(
ω0 + α0ǫ

2
t−i,Tn−i

)

σ2
t,Tn

.

Note that βσ
2
t,Tn

is a measurable function of ut−1, . . . , ut−Tn and, using the inequality x/(1+x) ≤ xs

for any x ≥ 0 and any s ∈ (0, 1), we have

βσ
2
t,Tn

≤ 1

(1− β0)2
+

Tn−2∑

i=1

iβi−1
0 α0ǫ

2
t−i,Tn−i

ω0 + βi
0α0ǫ

2
t−i,Tn−i

≤ 1

(1− β0)2
+

αs
0

β0ω
s
0

Tn−2∑

i=1

i {βs
0}i ǫ2st−i,Tn−i.
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Recall that the strictly stationary solution of a GARCH model satisfies E|ǫt|ν0 < ∞ for some ν0 > 0.

Therefore, for any r ≥ 1, choosing s > 0 such that E|ǫt|2sr < ∞, the Hölder inequality shows that

sup
n

∥∥
βσ

2
t,Tn

∥∥
r
≤ 1

(1− β0)2
+

αs
0

β0ω
s
0

∥∥ǫ2s1
∥∥
r

∞∑

i=1

i {βs
0}i < ∞,

∥∥
βσ

2
t

∥∥
r
< ∞.

Now note that

βσ̃
2
t,Tn

=
1

σ2
t,Tn

∂σ2
t (θ0)

∂β
+

∂σ2
t (θ0)

∂β

(
1

σ2
t (θ0)

− 1

σ2
t,Tn

)

=
1

σ2
t,Tn

Tn−2∑

i=1

iβi−1
0

(
ω0 + α0ǫ

2
t−i,Tn−i

)
+

1

σ2
t,Tn

Tn−2∑

i=1

iβi−1
0 α0(ǫ

2
t−i − ǫ2t−i,Tn−i)

+
1

σ2
t,Tn

∞∑

i=Tn−1

iβi−1
0

(
ω0 + α0ǫ

2
t−i

)
+ βσ

2
t

(
1− σ2

t (θ0)

σ2
t,Tn

)

= −
σ̃2
t,Tn

σ2
t,Tn

βσ
2
t +

α0
∑Tn−2

i=1 iβi−1
0 ǫ̃2t−i,Tn−i

σ2
t,Tn

+

∑∞
i=Tn−1 iβ

i−1
0

(
ω0 + α0ǫ

2
t−i

)

σ2
t,Tn

. (A.2)

In view of (A.1), the first term of the right-hand side of the equality tends to zero in probability.

Using Lemma 2.3 in Francq and Zakoïan (2010), the strict stationarity condition E log a(u1) < 0

entails the existence of s ∈ (0, 1) such that ρ := Eas(u1) < 1. We then have Eǫ̃2st,Tn
≤ KρTn , which

entails

E

∣∣∣∣∣
Tn−2∑

i=1

iβi−1
0 ǫ̃2t−i,Tn−i

∣∣∣∣∣

s

≤ K

Tn−2∑

i=1

isβ
s(i−1)
0 ρTn−i → 0 as n → ∞.

Noting that E|Xn|s → 0 for some s > 0 entails that Xn → 0 in probability, we conclude that the

second term of the right-hand side of the equality (A.2) tends to zero in probability. Let s ∈ (0, 1)

such that E|ǫt|2s < ∞. We have

E

∣∣∣∣∣
∞∑

i=Tn−1

iβi−1
0

(
ω0 + α0ǫ

2
t−i

)
∣∣∣∣∣

s

≤
(
ωs
0 + αs

0E|ǫ1|2s
) ∞∑

i=Tn−1

is(βs
0)

i−1 → 0

as n → ∞. If follows that the third term of the right-hand side of the equality (A.2) tends to zero

in probability. We thus have shown that βσ
2
t,Tn

can be chosen as being the last component of Dt,Tn .

As already argued, the two other components are handled more easily. ✷

A.3 Proof of Theorem 4.1

We start by showing the following lemma.

Lemma A.1. Under A1 and A3, we have

1√
n

n∑

t=1


 (u2t − 1)Dt

1{ut<ξα} − α)


 L→ N (0,Sα), Sα =


 S11 S12

α

S21
α S22

α


 .
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Proof. Let c0 ∈ R, c1 ∈ Rm, c = (c0, c
′
1)

′ and

xt = (u2t − 1)c′1Dt + c0(1{ut<ξα} − α), xt,n = (u2t − 1)c′1Dt,Tn + c0(1{ut<ξα} − α).

We will apply the central limit theorem given in Francq and Zakoian (2005) (hereafter FZ) to the

triangular array (xt,n). Note that, by A1 and A3, we have

sup
n

‖u2tDt,Tn‖2+ν∗

2+ν∗ ≤ ‖u4+2ν∗

t ‖p
∥∥∥∥sup

n
‖Dt,Tn‖2+ν∗

∥∥∥∥
q

< ∞

if 0 < ν∗ < ν/2 and p = q/(q − 1) > 1 is sufficiently small to satisfy p(4 + 2ν∗) < 4 + ν. Therefore

(1) in FZ is satisfied. Now, note that ‖D̃t,Tn‖r → 0 in probability, and the sequence ‖D̃t,Tn‖r is

uniformly integrable because

sup
n

‖D̃t,Tn‖r ≤ sup
n

‖Dt,Tn‖r + ‖Dt‖r < ∞.

From Theorem 3.5 in Billingsley (1999) it follows that E‖D̃t,Tn‖r → 0 as n → ∞, for any r ≥ 1.

With ν∗ = ν/4, we have

Var
1√
n

n∑

t=1

(xt − xt,n) = E
{
E(u4t | Ft−1)− 1

}
c′1D̃t,TnD̃

′
t,Tn

c1

≤ ‖E(u4t | Ft−1)− 1‖1+ν∗‖c′1D̃t,Tn‖22(1+ν∗)/ν∗ → 0 (A.3)

as n → ∞. Therefore

lim
n→∞

n−1Var
n∑

t=1

xt,n = lim
n→∞

n−1Var
n∑

t=1

xt → σ2 = c′Sαc.

Thus (2) in FZ is satisfied. Conditions (3) and (4) in FZ are satisfied if ν∗ is chosen sufficiently

close to ν/2 and ν − ǫ < 2ν∗ < ν. By Denoting by {αn(h), h ∈ N} the strong mixing coefficients of

{xn,t)t, we have (4) of FZ. It follows that

1√
n

n∑

t=1

xt,n
L→ N (0, σ2).

The conclusion then follows from (A.3) and the Cramér-Wold device. ✷

Now we turn to the proof of Theorem 4.1. Let ut(θ) = ǫt/σt(θ). Note that, by A4 and A5, for

n large enough

∣∣∣ût − ut(θ̂n)
∣∣∣ =

∣∣∣∣∣ǫt
σt(θ̂n)− σ̃t(θ̂n)

σ̃t(θ̂n)σt(θ̂n)

∣∣∣∣∣ ≤
C

ω
ρtut sup

θ∈V (θ0)

∣∣∣∣
σt(θ0)

σt(θ)

∣∣∣∣ . (A.4)

21



A Taylor expansion around θ0 and A4, A5 yield

ût = ut − utD
′
t(θ̂n − θ0) + rn,t

with

rn,t =
1

2
(θ̂n − θ0)

′∂
2ut(θn,t)

∂θ∂θ′ (θ̂n − θ0) + ût − ut(θ̂n),

where Dt = Dt(θ0) and θn,t is between θ̂n and θ0. Following the approach of Knight (1998) and

Koenker (2006) (see also Francq and Zakoian (2015)), we then obtain

√
n(ξn,α − ξα) = argmin

z∈R
Qn(z)

where

Qn(z) = zXn + In(z) + Jn(z) +Kn(z)

with

Xn =
1√
n

n∑

t=1

(1{ut<ξα} − α),

In(z) =
n∑

t=1

∫ z/
√
n

0
(1{ut≤ξα+s} − 1{ut<ξα})ds,

Jn(z) =

n∑

t=1

∫ Rt,n/
√
n

0

(
1{ut−ξα−z/

√
n≤u} − 1{ut−ξα−z/

√
n<0}

)
du,

Kn(z) =

n∑

t=1

Rt,n√
n
1
∗
{ut−ξα∈(0,z/

√
n)},

and Rt,n = utD
′
t

√
n(θ̂n − θ0)−

√
nrn,t. We will show that

Qn(z) =
z2

2
Ef0(ξα) + z{Xn + ξαΩ

′√n(θ̂n − θ0)}+OP (1). (A.5)

Noting that

Kn(z) =

(
1√
n

n∑

t=1

ut1
∗
{ut−ξα∈(0,z/

√
n)}D

′
t

)
√
n(θ̂n − θ0)

−√
n(θ̂n − θ0)

′ 1
2n

n∑

t=1

∂2ut(θn,t)

∂θ∂θ′ 1
∗
{ut−ξα∈(0,z/

√
n)}

√
n(θ̂n − θ0)

−
n∑

t=1

{
ût − ut(θ̂n)

}
1
∗
{ut−ξα∈(0,z/

√
n)}

:= Kn1(z) +Kn2(z) +Kn3(z),

the proof of (A.5) will be divided in the following steps.
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i) Kni(z) → 0 in probability as n → ∞, for i = 2, 3.

ii) Kn1(z) = zξαΩ
′√n(θ̂n − θ0) + oP (1) in probability as n → ∞.

iii) Jn(z) does not depend on z asymptotically.

iv) In(z) → z2

2 Ef0(ξα) in probability as n → ∞.

To prove i) for i = 2, note that

∂2ut(θ)

∂θ∂θ′ = −ut
σt(θ0)

σt(θ)

1

σt(θ)

∂2σt(θ)

∂θ∂θ′ + 2ut
σt(θ0)

σt(θ)

1

σ2
t (θ)

∂σt(θ)

∂θ

∂σt(θ)

∂θ′ .

In view of A1 and the last part of A7, for θ ∈ V (θ0), ut
σt(θ0)
σt(θ)

admits a moment larger than 2. The

first part of A7 and the Cauchy-Schwartz inequality then entail that

E sup
θ∈V (θ0)

∥∥∥∥
∂2ut(θn,t)

∂θ∂θ′

∥∥∥∥
1+ν

< ∞. (A.6)

for some ν > 0. By the Hölder inequality, for θn,t ∈ V (θ0),
∥∥∥∥∥
1

n

n∑

t=1

∂2ut(θn,t)

∂θ∂θ′ 1
∗
{ut−ξα∈(0,z/

√
n)}

∥∥∥∥∥

≤
{
1

n

n∑

t=1

sup
θ∈V (θ0)

∥∥∥∥
∂2ut(θ)

∂θ∂θ′

∥∥∥∥
1+ν
}1/(1+ν){

1

n

n∑

t=1

1
∗
{ut−ξα∈(0,z/

√
n)}

}ν/(1+ν)

By (A.6) and the ergodic theorem, the limit of the first term of the latter product is almost surely

finite. Letting νt,n = 1
∗
{ut−ξα∈(0,z/

√
n)} and νt,n = νt,n − E(νt,n | Ft−1), we have

1√
n

n∑

t=1

1
∗
{ut−ξα∈(0,z/

√
n)} =

1√
n

n∑

t=1

νt,n +
1√
n

n∑

t=1

E(νt,n | Ft−1).

First note that

E(νt,n | Ft−1) =

∫ ξα+z/
√
n

ξα

ft−1(x)dx =
z√
n
ft−1(ξα) +

kt,n√
n

where

|kt,n| =
√
n

∣∣∣∣∣

∫ ξα+z/
√
n

ξα

{ft−1(x)− ft−1(ξα)} dx
∣∣∣∣∣ ≤ Kt−1

z2√
n
,

by A1. Now, note that we have E 1√
n

∑n
t=1 νt,n = 0 and

Var

(
1√
n

n∑

t=1

νt,n

)
= Eν21,n =

∫ ξα+z/
√
n

ξα

E

{
1− z√

n
f0(ξα)−

kt,n√
n

}2

f0(x)dx → 0,

using again A1. Moreover, almost surely

1√
n

n∑

t=1

E(νt,n | Ft−1) =
1√
n

n∑

t=1

∫ ξα+z/
√
n

ξα

ft−1(x)dx → zEft−1(ξα).
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We thus have shown that
∑n

t=1 1
∗
{ut−ξα∈(0,z/

√
n)} = OP (

√
n). Thus, i) for i = 2 is established. By

the same arguments and (A.4), it can be shown that i) for i = 3 holds.

Turning to ii), we have

E
(
ut1

∗
{ut−ξα∈(0,z/

√
n)}D

′
t | Ft−1

)
=

∫ ξα+z/
√
n

ξα

xft−1(x)dxD
′
t

=

∫ ξα+z/
√
n

ξα

xft−1(ξα)dxD
′
t +

∫ ξα+z/
√
n

ξα

x{ft−1(x)− ft−1(ξα)}dxD′
t

= ξαft−1(ξα)
z√
n
D′

t +
k∗t,n√
n
D′

t

with

∣∣k∗t,n
∣∣ =

√
n

∣∣∣∣∣ft−1(ξα)
z2

2n
+

∫ ξα+z/
√
n

ξα

x {ft−1(x)− ft−1(ξα)} dx
∣∣∣∣∣

≤ z2√
n

{
2Kt−1ξα +

ft−1(ξα)

2
+

|z|√
n
Kt−1

}
.

Denoting by dt a generic element of Dt, we also have

EE

[{
ut1

∗
{ut−ξα∈(0,z/

√
n)}dt − E

(
ut1

∗
{ut−ξα∈(0,z/

√
n)}dt | Ft−1

)}2
| Ft−1

]

=

∫ ξα+z/
√
n

ξα

E

(
x− ξαft−1(ξα)

z√
n
+

k∗t,n√
n

)2

d2t ft−1(x)dx = o(1), (A.7)

as n → ∞. To show that the expectation inside the latter integral is finite, we used in particular

the fact that

E sup
x∈[ξα,ξα+z/

√
n]

d2t f
2
t−1(ξα)ft−1(x) ≤

√
Ed8tE sup

ξ∈V (ξα)
f4
t−1(ξ) < ∞

for sufficiently large n under A1 and A7. Hence, ii) is established.

To prove iii), write Jn(z) =
∑n

t=1 Jn,t. Write rn,t = rn,t(θ̂n), Rn,t = Rn,t(θ̂n), Jn,t = Jn,t(θ̂n)

and Jn(z) = Jn(z, θ̂n). Let (θn) be a deterministic sequence such that
√
n(θn − θ0) = O(1). By

the change of variable u = utv, we have

E (Jn,t(θn) | Ft−1) =

∫ D′
t(θn−θ0)+oP (n−1/2)

0
E
(
ut1

∗
{ut∈(ξα+z/

√
n,(ξα+z/

√
n)(1−v)−1)} | Ft−1

)
dv

=
ξ2α
2
ft−1(ξα)(θn − θ0)

′DtD
′
t(θn − θ0) + oP (n

−1).

By the arguments used to show (A.7), we can show that

E {Jn,t(θn)− (Jn,t(θn) | Ft−1)}2 = o(n−1).
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We thus have

Jn(z,θn) =
ξ2α
2

√
n(θn − θ0)

′E{f0(ξα)D1D
′
1}
√
n(θn − θ0) + o(1), a.s.

It follows that Jn(z,θn) does not depend of z asymptotically. Since this is true for any sequence

such that
√
n(θn − θ0) = O(1) , this also true almost surely for Jn(z) and iii) is established.

By the previously used arguments, it can be shown that iv) holds which completes the proof of

(A.5). By Lemma 2.2 in Davis et al. (1992) and convexity arguments, we can conclude that

√
n(ξα − ξn,α) =

ξα
Ef0(ξα)

Ω′√n(θ̂n − θ0) +
1

Ef0(ξα)

1√
n

n∑

t=1

(1{ut<ξα} − α) + oP (1).

We have the following Taylor expansion

√
n(θ̂n − θ0) =

−J−1

2
√
n

n∑

t=1

(1− u2t )Dt + oP (1).

Hence

Covas

(
√
n(θ̂n − θ0),

1√
n

n∑

t=1

(1{ut<ξα} − α)

)
=

1

2
pαJ

−1Ω

and thus

Varas{
√
n(ξn,α − ξα)} =

{
ξ2α

κ4 − 1

4
+

ξαpα
f(ξα)

}
Ω′J−1Ω+

α(1 − α)

f2(ξα)
,

Covas

(√
n(θ̂n − θ0),

√
n(ξα − ξn,α)

)
= λαJ

−1Ω.

We have Ω′J−1Ω = 1 and thus we obtain

Varas{
√
n(ξα − ξn,α)} = ζα.

By the CLT for martingale differences, we get the announced result. ✷
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