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Abstract

The marginal distribution of �nancial time series such as returns is often nega-

tively skewed. We investigate the relation between positive time-varying risk premia

and the unconditional skewness of returns. We show that if the error distribution is

symmetric, the negative unconditional asymmetry of returns should be the outcome

of a negative correlation between their �rst two conditional moments. Following

one of the implications of the intertemporal capital asset pricing model (ICAPM) of

Merton (1973), there is a positive and linear relationship between risk and expected

returns. Under an EGARCH-in-Mean speci�cation, we propose to use an asymmetric

error distribution in order to match the unconditional asymmetry of asset returns.
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1 Introduction

Portfolio selection and risk management are important problems that investors and port-

folio managers face. Modelling the volatility of returns and studying the risk and return

trade-o¤ have gained increased interest in �nancial econometrics. The optimal portfo-

lio construction assumes that investors are risk averse, meaning that given two portfolios

that o¤er the same expected return, investors will prefer the less risky one, see Markowitz

(1952). This is well known as a mean-variance analysis, as the expected return is max-

imized for a given level of risk, de�ned as variance. The distributional characteristics of

returns, for example the unconditional skewness, are able to create new challenges in the

classical portfolio theory of Markowitz. Apart from the mean and variance predictability,

portfolio choice can be also made with skewness information. Such a perspective can create

for investors the notion of skewness averse, as their �nancial decisions can be a¤ected by

properties of the return distribution.

It is often argued that the marginal distribution of �nancial time series such as returns

is negatively skewed. Asymmetries or nonlinearities in the conditional mean are impor-

tant towards meeting the objection to generate skewed marginal distributions. In that

case, one solution seems to be the use of an asymmetric distribution, which can make the

third-moment structure of the observations to be particularly �exible. Another suggestion

comes from the economic theory, see for instance Hong and Stein (2003) and Campbell

and Hentschel (1992), explaining skewness in the marginal distribution of returns. The

dynamic behavior of economic agents plays an important role for explaining the negative

skewness. This practically means that the model of use should also accommodate con-

ditional asymmetry, apart from an asymmetric error density, to match the unconditional

skewness of returns. This paper addresses the unconditional skewness of returns from the

perspective of time-varying conditional �rst and second moments, together with the use of

a more �exible conditional distribution for the returns.

We explore distribution classes, like the one by Azzalini (1985), and the Asymmet-

ric Exponential Power Distribution (AEPD) proposed by Zhu and Zinde-Walsh (2009),

which are able to accommodate skewness while nesting also the normal distribution that

is typically used in estimation. The AEPD family extends the generalized error distribu-
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tion (GED) to cases where the data exhibits asymmetry, and also accommodates fat tails.

Other classes of distributions with the desired properties of accommodating heavy tails

and skewness are the Skewed Exponential Power Distribution (SEPD) classes proposed

by Komunjer (2007). The AEPD family can be seen as a fully-asymmetric GED that is

capable to capture also the asymmetry in the tails. This is quite important since some

applications in �nance and risk management for portfolios such as S&P500 and Nasdaq

have shown that ex post innovations from estimated GARCH models, even with a leverage

e¤ect, are not normally distributed, see e.g. Bradley and Taqqu (2003) and Christo¤ersen

(2003), for Nasdaq and S&P500, respectively.

It is interested to compare between di¤erent distributions for the errors and also between

di¤erent GARCH-M-type speci�cations, symmetric and asymmetric ones. In the former

case, theoretical properties are studied under di¤erent distributional assumptions, while in

the latter case, the impact of an asymmetric GARCH model on the conditional moment

structure of returns is explored, which will shed light on the asymmetries in their marginal

distribution.

2 The EGARCH-in-Mean model

Conditional heteroskedastic models, the so-called GARCH models, have been extensively

and successfully used to model �nancial asset returns. We consider a parametrization of the

conditional mean and variance that follows the Exponential GARCH (EGARCH) model

of Nelson (1991). It also allows for the relation between risk and return in the conditional

mean to capture time-varying properties of risk premium, leading to the EGARCH-in-Mean

(EGARCH-M) model of the following form

Yt = �0 + �1ht + "t; "t =
p
htZt (1)

log ht = ! + Zt�1 + � jZt�1j+ � log ht�1; t 2 Z

where Yt represents a return process and "t is a zero mean white noise error process with

conditional variance ht. Also Zt are the i.i.d. innovations with conditional mean and

variance zero and unit, respectively. For simplicity, we focus on �rst-order model which is

often found adequate in modelling volatility in returns.
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One of the implications of the intertemporal capital asset pricing model (ICAPM) of

Merton (1973) is a positive and linear relation between the conditional expectation of the

returns and their conditional variance, which is interpreted as a linear-in-variance risk

premium. Hafner and Kyriakopoulou (2017) showed that exponential-type of GARCH

models are more natural to deal with linear-in-variance risk premia as they can avoid

restrictions of the classical GARCH models and provided the asymptotic theory of the

quasi-maximum likelihood estimator. Also exponential models within the GARCH class

allow for richer dynamics incorporating the so-called leverage e¤ect and they do not impose

any positive restrictions on the parameters that could entail statistical and estimation

di¢ culties.

The conditional mean and variance of Yt given the information set available at time

t� 1, are given by

Et�1 (Yt) = �0 + �1ht;

and

Vart�1 (Yt) = Et�1 (Yt � Et�1 (Yt))2 = ht;

so that shocks have a nonzero e¤ect on both the conditional mean and conditional variance.

As a consequence, the degree of asymmetry for the conditional mean is controlled by the

asymmetry of the EGARCH process. We assume that the conditional distribution of the

return process is modelled as an asymmetric standardized distribution, e.g. a skew-normal

or exponential power distribution1, whose details are given below, so that Zt � i:i:d: (0; 1),

i.e. the distribution is normalized with Et�1 (Zt) = 0 and Vart�1 (Zt) = 1.

3 The unconditional third moment structure

Tha main purpose of the paper is to investigate the implications of the EGARCH-M

model on the third moment structure of the marginal distribution. We examine under

which conditions the marginal distribution of returns can be skewed, how much, and of

what sign. He et al. (2008) found that using an asymmetric or nonlinear speci�cation

1The generalized error distribution (GED) is also called the exponential (or generalized) power distri-

bution or the generalized Laplace distribution.
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for the conditional mean is of greater importance to produce unconditional skewness for

the returns, than the properties of the conditional variance itself. They also assumed a

symmetric density for the errors, focusing only on the conditional mean and its implications

on the skewness. In our paper, we allow the density of the errors to be asymmetric,

examining under which parameter conditions this density can potentially explain skewness

in returns. We are mainly interested in negatively skewed marginal distributions, as there

is strong empirical evidence, using data from �nancial markets, that returns have negative

skewness. In Table 1 we summarize some descriptive statistics of some of the largest stock

indices. These are daily return series for the period 2/1/1986 - 30/12/2016, except for

CAC40, which is for the period 9/7/1987 - 30/12/2016. We notice that for all cases the

unconditional skewness is negative and for some it is even more severe. So, this paper can

be seen as generalization of He et al. (2008).

Obs. Mean Variance Skewness Kurtosis

S&P500 7815 0:037 1:321 �0:826 23:981

FTSE100 7847 0:027 1:246 �0:297 11:615

DAX 7830 0:037 2:073 �0:130 8:487

CAC40 7464 0:026 1:958 �0:018 8:248

Dow Jones 7815 0:039 1:252 �1:076 32:158

Table 1: Distributional properties of daily stock market returns. Returns have been mul-

tiplied by 100.

We study the third moment structure assuming that the average of the conditional

mean of returns is nonzero, i.e. E (Et�1 (Yt)) 6= 0. He et al. (2008) simpli�ed their analysis

by assuming that the unconditional mean, E (Yt), is 0. Also, they parameterized the

conditional standard deviation instead of the conditional variance, while we are interested

in the latter case as this is in accordance with the implications of Merton (1973) and also

in relation with the estimation theory for the EGARCH-M by Hafner and Kyriakopoulou

(2017). Following Penaranda and Wu (2017), the excess returns can be decomposed as

Yt = Et�1 (Yt) + "t (2)
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and we can also decompose the deviation of the excess return with respect to its uncondi-

tional mean as

Yt � E (Yt) = dt�1 + "t; (3)

where

dt�1 = Et�1 (Yt)� E (Yt) :

The moments of the term dt�1, that is about the conditional mean of returns, will help to

determine the moment structure of the returns. We have

Edt�1 = E [Et�1 (Yt)� E (Yt)] = 0;

E
�
d2t�1

�
= E [Et�1 (Yt)� E (Yt)]2 = Var (Et�1 (Yt)) ;

E
�
d3t�1

�
= E [Et�1 (Yt)� E (Yt)]3 = Sk (Et�1 (Yt)) :

From (2) and (3), the unconditional mean and variance of returns are given by

E (Yt) = E (Et�1 (Yt)) ;

Var (Yt) = E [Yt � E (Yt)]2 = E
�
"2t
�
+ E

�
d2t�1

�
= E (Vart�1 (Yt)) + Var (Et�1 (Yt)) :

Lemma 1 The unconditional �rst and second-order moments of Yt for the EGARCH(1; 1)-

M model are given by

E (Yt) = �0 + �1E

(
exp

�
!

1� �

� 1Y
i=1

exp
�
�i�1 (Zt�i + � jZt�ij)

�)
;

Var (Yt) = E

(
exp

�
!

1� �

� 1Y
i=1

exp
�
�i�1 (Zt�i + � jZt�ij)

�)
+ �21

�
Eh2t � (Eht)

2� :
Proof. See Section 6.

In terms of skewness, the unconditional coe¢ cient of asymmetry (standardized skew-

ness) of an excess return is

Sk (Yt) =
E [Yt � E (Yt)]3

[Var (Yt)]
3=2

; (4)
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where the third centered moment in the numerator can be decomposed as

E [Yt � E (Yt)]3 = E
�
"3t
�
+ E

�
d3t�1

�
+ 3E

�
"2tdt�1

�
(5)

= E
�
Et�1 (Yt � Et�1 (Yt))3

�
+ E [Et�1 (Yt)� E (Yt)]3

+ 3Cov (Vart�1 (Yt) ;Et�1 (Yt)) ;

where the �rst component is the average of the conditional third moment of Yt, the second

component is the third moment (asymmetry) of Et�1 (Yt), i.e. E
�
d3t�1

�
= Sk (Et�1 (Yt)),

and the third component is three times the covariance between the conditional �rst and

second moments of Yt. So, the �rst component depends on the conditional distribution of

Zt, the second component is the level of skewness in the conditional mean that comes from

the asymmetry of the conditional variance, ht, and the third component is the time-varying

risk premium as the co-movement between return volatility and expected returns.

Penaranda and Wu (2017) showed that even if Yt is conditionally symmetric, and

hence the �rst component is zero, the other two components may yield asymmetry in the

unconditional distribution of Yt. When the conditional mean is time-invariant and Yt is

conditionally symmetric, the three above compoments are zero and thus E [Yt � E (Yt)]3 =

0, which implies that Sk (Yt) = 0 in (4). Therefore, only assuming that the conditional

second moment is time-varying does not imply unconditional skewness. However, assuming

also that the conditional mean is time-varying results in the skewed marginal distribution

for the observations, see He et al. (2008) who studied the term Sk (Et�1 (Yt)), i.e. the

second component in (5), considering processes with a nonconstant conditional mean, but

normal errors and therefore the �rst component in (5) was zero in their paper.

Lemma 2 The unconditional third-order moment of Yt for the EGARCH(1; 1)-M model
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is given by

Sk (Yt) =
E
h
Et�1 (Z3t )Et�1

�p
ht
�3i

[Var (Yt)]
3=2

(6)

+

�31E

"
ht � E

(
exp

�
!
1��

� 1Y
i=1

exp [�i�1 (Zt�i + � jZt�ij)]
)#3

[Var (Yt)]
3=2

+
3�1

�
Eh2t � (Eht)

2�
[Var (Yt)]

3=2

Proof. See Section 6

We expect the last component in (6), the covariance, to be nonnegative because we

have assumed a positive correlation between the conditional mean and variance, which

represents a positive risk premium that is implied by (1). Periods of high expected returns

are associated with periods of high volatility. Hence, the unconditional negative skewness

of the returns will depend on the conditional third moment of the innovations Zt and the

asymmetry of the conditional mean, E
�
d3t�1

�
. Since the true conditional distribution of

the returns is skewed, the use of a symmetric distribution is inappropriate. The correct

speci�cation of the conditional distribution is important for the quasi-maximum likelihood

estimation. Engle and Gonzalez-Rivera (1991) have showed that the ine¢ ciency of the

QMLE may be substantial when the true distribution is asymmetric, while instead using

the normal distribution.

We have seen that a skewed marginal distribution can be a result of some type of

asymmetric or nonlinear behavior in the process for the conditional mean. This makes the

question of testing for asymmetries and nonlinearities in the conditional mean important.

4 Simulations

The unconditional skewness of returns, Sk (Yt) ; from an EGARCH-M process with normal

errors and parameters ! = �0:08;  = �0:06; � = 0:15; � = 0:98 (solid line) and � = 0:9

(dashed line) is plotted in Figure 1, as a function of �1 and assuming also �0 = 0:02.

When �1 = 0, the skewness is 0 and the curves intersect the horizontal axis. When

the risk premium as a function of the conditional variance enters the conditional mean
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equation, which implies that the conditional mean now is also time-varying, we can see

from the graph that the degree of skewness increases so that the marginal distribution

of Yt becomes skewed. It is also apparent that the range of possible skewness increases

with the rate of persistence of the EGARCH process. Notice that when the risk premium

is positive, the asymmetry is also positive, while the opposite holds as well. In order to

explain the negative asymmetry in the marginal distribution of the returns, when also

assuming a positive relation between risk and expected return, this exercise shows that the

conditional distrubution of the errors should be asymmetric.

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
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Figure 1: Unconditional skewness of returns as a function of the risk premium parameter

for EGARCH-M parameters ! = �0:08;  = �0:06; � = 0:15;

� = 0:98 (solid blue line) and � = 0:90 (dashed red line), with normal errors.

When the errors follow a skew-normal distribution, we plot in next �gures the uncon-

ditional skewness of Yt with the same parameter values as before, assuming that the shape

parameter (�) of the distribution is either �1 (solid blue lines) or �5 (dashed red lines),

indicating a negative skewness for the errors. The case � = �1 is representative for some

stock markets, and the case of � = �5 is already indicative of the convergence to the half-

normal distribution on R� which occurs for � ! �1. Figures 2 and 3 compare between
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lower (�1) and higher (�5) skewness, again for two cases of persistence, i.e. when there

is high persistence (� = 0:98) in Figure 2 and lower persistence (� = 0:90) in Figure 3.

Notice also that the �rst component in (5) is now nonzero. As we can see, the uncondi-

tional skewness when dropping normality is not anymore symmetric around zero as in the

previous case with normal errors. When �1 = 0, the unconditional skewness of Yt, that is

given by the �rst term in (6), is equal to �0:1658 (blue line) and �0:9877 (red line). As

it is expected, when the shape parameter increases, the skewness is even higher. What is

most important here is the fact that the unconditional skewness is still negative with some

positive values of the risk premium parameter. For instance, when the skewness parameter

of the error distrbution is �5; we can still generate negative unconditional skewness of the

returns when the risk premium takes values in the interval (0; 0:18).
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Figure 2: Unconditional skewness of returns as a function of the risk premium parameter

for EGARCH-M parameters ! = �0:08;  = �0:06; � = 0:15; � = 0:98

with skew-normal (SN) errors and shape parameters � = �1 (solid blue line), and

� = �5 (dashed red line).

The case of lower persistence is quite di¤erent than the previous one, as it is plotted in

Figure 3. Here we see that we can get negative unconditional skewness with higher values
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of risk premium, as the shape parameter of the SN distribution increases.
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Figure 3: Unconditional skewness of returns as a function of the risk premium parameter

for EGARCH-M parameters ! = �0:08;  = �0:06; � = 0:15; � = 0:90

with skew-normal (SN) errors and shape parameters � = �1 (solid blue line), and

� = �5 (dashed red line).

4.1 Shock impact curve (SIC)

He et al. (2008) generalized the News Impact Curve (NIC) of Engle and Ng (1993) by

considering the conditional mean structure. The NIC for the EGARCH process is plotted

in Figure 4, showing how past shocks a¤ect the current volatility.

The new tool is called Shock Impact Curve (SIC) and describes the impact of a shock

on the conditional mean squared error (CMSE) of the returns. The conditional mean of

Yt is given by

Et�1 (Yt) = �0 + �1ht;

so it is a function of the conditional variance and therefore of past shocks. We begin with
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Figure 4: News Impact Curve for the EGARCH(1,1) process

with parameters ! = �0:08;  = �0:06; � = 0:15; � = 0:98:

the conditional variance of the returns, where

Vart�1 (Yt) = Et�1 (Yt)2 � (Et�1 (Yt))2 :

Following He et al. (2008), the SIC is de�ned as

ESICt�1 (Yt)
2 = (Et�1 (Yt))2 +Vart�1 (Yt) ;

where Et�1 (Yt) and Vart�1 (Yt) = ht are replaced with their unconditional counterparts,

for instance Et�1 (Yt) is replaced by E (Yt) = �0 + �1Eht and Vart�1 (Yt) by

Var (Yt) = E (Vart�1 (Yt)) + Var (Et�1 (Yt))

= Eht + �21
�
Eh2t � (Eht)

2� ;
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see Lemma 1. Hence,

ESICt�1 (Yt)
2 = (�0 + �1Eht)2 + Eht + �21

�
Eh2t � (Eht)

2�
= �20 + 2�0�1Eht + �21 (Eht)

2 + Eht + �21
�
Eh2t � (Eht)

2�
= �20 + (1 + 2�0�1)Eht + �21Eh2t :

All in all, this tool helps us to see how the past news a¤ect not only the current volatility

but also the magnitude of today�s returns. This can be illustrated by the means of squared

returns and their relationship with the conditional mean and conditional variance. If

Et�1 (Yt) = 0, SIC coincides with NIC. On the other hand, if the conditional mean is

nonzero, the impact of news and that of a shock on the next return can have di¤erent

shapes.

5 Skewed distributions

5.1 The skew-normal (SN) distribution (Azzalini, 1985)

Azzalini�s class of skew-normal distributions has been proved useful for modeling the skew-

ness observed in many �nancial time series. The skew-normal (SN) distribution has the

following properties: it enjoys the �strict inclusion�property of the normal density, it is

mathematically tractable and has a wide range of the indices of skewness and kurtosis. This

class of continuous probability distributions generalises the normal distribution to allow

for non-zero skewness. A random variable Z is skew-normal with asymmetry parameter

�, denoted by SN (�) ; if it has density function

f (z;�) = 2� (z) � (�z) ; �1 < z <1; � 2 R (7)

where � and � are the standard normal density and distribution function, respectively.

Thus, the density of the skew-normal can be interpreted as a normal density times a

weight factor given by 2� (�z). If � = 0, it is the N (0; 1) density. As � ! 1, f (z;�)

tends to the half-normal density. For positive values of � we obtain a distribution skewed

to the right (the weight will be larger for positive z), and for negative � a distribution
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skewed to the left (the weight will be larger for negative z). The distribution function of

(7) is

� (z;�) = 2

Z z

�1

Z �t

�1
� (t)� (u) dudt:

We can write the distribution function based on the Owen�s function as follows

� (z;�) = � (z)� 2T (z; �) ; (8)

where the function T (z; �) studied by Owen (1956) gives the integral of the standard

normal bivariate density over region bounded by the lines x = z; y = 0; y = �t in the

(x; y) plane. This function has the following properties:

�T (z; �) = T (z;��) ;

T (�z; �) = T (z; �) ;

2T (z; 1) = � (z) � (�z) :

Taking into account the previous properties, (8) holds also for negative values of z and �,

i.e. it is the general expression of the distribution function of (7).

By Lemma 2 of Azzalini (1985), we have that for a variable

Z = � + wX;

where X is a continuous i.i.d. random variable with density function (7) and mean and

variance given by b� and 1� (b�)2, respectively, assuming that � = 0; and w = 1, as it is

often the case, the moment generating function of Z is

M (t) = 2 exp
�
t2=2

�
� (�t) ;

where

� =
�p

(1 + �2)
; � 2 (�1; 1) :

We can then obtain the �rst three (conditional) moments as

E (Z) = b�;

Var (Z) = 1� (b�)2 ;

E
�
Z3
�
= b

�
3�� �3

�
;
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where b =
q

2
�
. So, Z has a nonzero mean for � 6= 0.

The third and fourth standardized cumulants, i.e. skewness and kurtosis, respectively

are denoted by 1; and 2; and given by

1 (Z) = 1=2 (4� �) sign (�)
"
(E (Z))2

Var (Z)

#3=2

=
(4� �) sign (�)

2

�
�
q

2
�

�3
�
1� 2�2

�

�3=2
=

p
2 (4� �)�3sign (�)
(� � 2�2)3=2

2 (�0:995; 0:995) ;

and

2 (Z) = 2 (� � 3)
"
(E (Z))2

Var (Z)

#2

= 2 (� � 3)

�
�
q

2
�

�4
�
1� 2�2

�

�2
=
8 (� � 3)�4

(� � 2�2)2
2 [0; 0:869) ; �! �1

Our element of interest is the innovations term Zt for which we assume that is distrib-

uted as i.i.d. skew-normal with zero mean, unit variance, and unconditional skewness s,

i.e. Zt � i:i:d:SN (0; 1; s) and is the standardized and centered version of the skew-normal

random variable Z, that is

Zt =
Z � b�q
1� (b�)2

;

where s is given by 1 (Z). For more discussion on the moments of the SN distribution,

see Henze (1986), Martínez et al. (2008), and Haas (2012).

Figure 5 shows how skewness, 1 and kurtosis, 2 relate to each other and to �, the

shape parameter. Since we are interested in cases where there is negative skewness, we

plot for negative values of �, however for positive ones the curve is just mirrored on the

opposite side of the vertical axis.
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Figure 5: The SN distribution: grid of skewness and kurtosis as the shape parameter

� ranges from -10 to 0, with arrows corresponding to choices of �:

5.2 The asymmetric exponential power distribution (AEPD)

The density function of the Exponential Power Distribution (EPD), also known as the

Generalized Error Distribution (GED) with three parameters, v; �; and �; is usually de�ned

as

fEP (x) =
1

�

1

2v1=v� (1 + 1=v)
exp

�
�1
v

����x� ��
����v� ;

where � 2 R and � > 0 are the location and scale parameters respectively, and v is the

shape parameter. Also � (�) stands for the gamma function. When v gets smaller and

smaller, the EPD becomes more and more heavy-tailed and leptokurtic. With v = 2;

v = 1; and v ! +1, the EPD reduces to the normal, Laplace and uniform distributions,

respectively.

The Asymmetric EPD (AEPD) density proposed by Zhu and Zinde-Walsh (2009) with

parameter vector � = (�; v1; v2; �; �)
| combines the �exible tail decay property of GED,
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measured by v, with the asymmetry and has the following form

fAEP (x) =

8><>:
�
�
��

�
1
�

1

2v
1=v1
1 �(1+1=v1)

exp
�
� 1
v1

�� x��
2���

��v1� ; if x � �;�
1��
1���

�
1
�

1

2v
1=v2
2 �(1+1=v2)

exp
�
� 1
v2

��� x��
2(1���)�

���v2� ; if x > �; (9)

where � and � are still the location and scale parameters as before, � 2 (0; 1) is the

skewness parameter with � = 1=2 for the symmetric case, v1 > 0 and v2 > 0 are the left

and right tail parameters and �� is de�ned as

�� =

"
�

2v
1=v1
1 � (1 + 1=v1)

#
=

"
�

2v
1=v1
1 � (1 + 1=v1)

+
1� �

2v
1=v2
2 � (1 + 1=v2)

#
:

This parameter provides scale adjustments to the left and right parts of the density so as

to ensure continuity of the density under changes of shape parameters (�; v1; v2). Also, if

v1 = v2 = v it implies �� = �. Obviously, the AEPD collapses to GED with � = 1=2 and

v1 = v2.

A convenient reparametrization of (9) is obtained by rescaling, such that

fAEP (x) =

8<:
1
�
exp

�
� 1
v1

��� x��
2��Kv1

���v1� ; if x � �;
1
�
exp

�
� 1
v2

��� x��
2(1��)�Kv2

���v2� ; if x > �;
where Kv(�) =

1

2v
1=v(�)
(�) �(1+1=v(�))

for v(1); v(2). This density is used to derive a closed form

expression for the information matrix of the maximum likelihood estimator.

Suppose that X is a random variable with the AEPD density but also standardized, i.e.

� = 0 and � = 1, which is often the case in �nancial applications. Zhu and Zinde-Walsh

(2009) showed that the AEPD class has desired properties: interpretable parameters to

represent location, scale and shape, closed-form expressions for the moments as well as for

value at risk (VaR) and expected shortfall (ES).
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6 Proofs

Proof of Lemma 1. We have that

E (Yt) = E (Et�1 (Yt))

= E (�0 + �1ht)

= �0 + �1E

(
exp

�
!

1� �

� 1Y
i=1

exp
�
�i�1 (Zt�i + � jZt�ij)

�)
;

and as "2t = Z
2
t ht

Var (Yt) = E [Yt � E (Yt)]2 = E
�
"2t
�
+ E

�
d2t�1

�
= E (Vart�1 (Yt)) + Var (Et�1 (Yt))

= E

(
exp

�
!

1� �

� 1Y
i=1

exp
�
�i�1 (Zt�i + � jZt�ij)

�)
+Var (�0 + �1ht)

= E

(
exp

�
!

1� �

� 1Y
i=1

exp
�
�i�1 (Zt�i + � jZt�ij)

�)
+ E

�
(�0 + �1ht)

2�� [E (�0 + �1ht)]2
= E

(
exp

�
!

1� �

� 1Y
i=1

exp
�
�i�1 (Zt�i + � jZt�ij)

�)
+ E

�
�20 + 2�0�1ht + �

2
1h
2
t

�
�
�
�20 + 2�0�1Eht + �21 (Eht)

2�
= E

(
exp

�
!

1� �

� 1Y
i=1

exp
�
�i�1 (Zt�i + � jZt�ij)

�)
+ �21

�
Eh2t � (Eht)

2� ;
making use of the multiplicative form of the EGARCH process, as we are interested in

the moment structure of fhtg instead of that of flog htg.

Lemma 3 Moments of ht:

Eht = E

(
exp

�
!

1� �

� 1Y
i=1

exp
�
�i�1 (Zt�i + � jZt�ij)

�)
;

Varht = Eh2t � (Eht)
2 ;

Skht =
E [ht � Eht]3

[Varht]
3=2

;

where for m � 2

Ehmt = E

(
exp

�
!

1� �

�m 1Y
i=1

exp
�
�m(i�1) (Zt�i + � jZt�ij)m

�)
:
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To evaluate the above expectations, we must make a distributional assumption about

Zt. Next Proposition deals with Azzalini (1985)�s class of a skew-normal distribution.

Proposition 1 Let us assume that Zt � i:i:d:SN (0; 1; �), with E (Zt) = 0; Var (Zt) = 1;

and � < 0. Then

E fexp [� (Zt + � jZtj)]g = �(�� (� + )) exp
�
�2 (� + )2 =2

�
+�(�� (� � )) exp

�
�2 (� � )2 =2

�
Proof. The density of a skew-normal random variable z if given by

f (z;�) = 2� (z) � (�z) ;

where � and � are the standard normal density and distribution function, respectively, i.e.

� (z) = exp
�
�z2=2

�
=
p
2�; � (�z) =

Z �z

�1
� (t) dt;

and � is the shape parameter. If � = 0, then z � N (0; 1). As � increases, the skewness of

the distribution also increases.

Then

E fexp [� (Zt + � jZtj)]g = �(�� (� + )) exp
�
�2 (� + )2 =2

�
+�(�� (� � )) exp

�
�2 (� � )2 =2

�
:

Proof of Lemma 2. In (5) we have that the conditional third centered moment of Yt is

Et�1 [Yt � Et�1 (Yt)]3 = Et�1
�p

htZt

�3
= Et�1

�
h
3=2
t

�
Et�1

�
Z3t
�
;

since Zt is independent of ht. Hence, the �rst component in the unconditional skewness

which is the average of the conditional third moment of Yt is

E
�
Et�1 (Yt � Et�1 (Yt))3

�
= E

h
Et�1

�
h
3=2
t

�i
E
�
Et�1

�
Z3t
��

= E
�
h
3=2
t

�
E
�
Z3t
�
;

where E
�
h
3=2
t

�
= [Vart�1 ("t)]

3=2, where in general [Vart�1 ("t)]
3=2 = [Vart�1 (Yt)]

3=2, but in

our setting [Vart�1 ("t)]
3=2 6= [Vart�1 (Yt)]3=2 due to the risk premium. The third moment
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(asymmetry) of Et�1 (Yt) is

E [Et�1 (Yt)� E (Yt)]3 = E [�0 + �1ht � E (Yt)]3

= E

"
�1ht � �1E

(
exp

�
!

1� �

� 1Y
i=1

exp
�
�i�1 (Zt�i + � jZt�ij)

�)#3

= �31E

"
ht � E

(
exp

�
!

1� �

� 1Y
i=1

exp
�
�i�1 (Zt�i + � jZt�ij)

�)#3
;

and the covariance between the conditional �rst and second moments of Yt is

Cov (Vart�1 (Yt) ;Et�1 (Yt)) = �1
�
Eh2t � (Eht)

2� :
Notice also that from the law of iterated expectations, E (Yt) = E (Et�1 (Yt)).
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