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The prices of the traded assets that are comprised in an ETF do not update simultane-
ously and this asynchronicity creates difficulties when estimating covariances among assets.
We propose the Beta Adjusted Covariance estimator as an improvement to a traditional
realized covariance estimator by exploiting the information in the realized stock-ETF beta
(i.e., the covariance between the ETF’s components and the ETF itself) estimated at the
highest frequency possible. We find that the proposed estimator efficiently deals with bi-
ased approximations by traditional estimators caused by asynchronous trading data and
significantly improves accuracy of the estimated covariances.
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1. Introduction

Exchange traded funds keep on attracting record high inflows of capital. In 2017 cumulative
amount of ETF has exceeded USD 4.6 trillion [6]. Also growth of the ETFs contributed to
the rise of high-frequency trading via ETF arbitrage with for instance daily creations and
redemptions amounting to only a small (about 10%) proportion of the ETF transactions
and overwhelming majority of trading happening at the secondary market.
We propose the Beta Adjusted Covariance estimator in that we exploit the information from
the beta’s of the assets comprised in an ETF, i.e., we consider the covariances between the
asset and the ETF. Doing so improves precision and robustness of the estimate. There is a
great amount of literature on the realized covariance estimation. However the idea of exploit-
ing the information on covariances and correlations of the assets as components contained
in the pricing data of the exchange traded funds (ETF) was not examined to a large extent.
The precision of covariance estimation depends on returns being synchronised, which is not
always the case especially at high-frequency trading. Asynchronous trading causes some
estimators to increase estimation error due to a number of reasons, for instance Epps effect
[5] when the cross-correlations of high frequency data are significantly smaller than their
asymptotic value as observed on longer intervals. Such problems have been investigated in
[2], [7] and [3], among others.
The proposed approach based on betas and covariances between individual assets and ETF
or an index (market index for instance) allows much more precise estimation of cross-
covariances adjusted for individual variances/size of approximation error and trading fre-
quencies. Betas can be estimated at higher precision as a factor in a regression model (such
as market portfolio index) are typically very frequently traded and allows exact synchro-
nization. Improved approximation is found by projecting initial estimate to the subset of
matrices satisfying more precise constraints defined using high-precision betas. The ad-
justment for positive semidefiniteness and further estimate improvement are reached using
alternating projections and Dykstra’s correction [4]. The instruments for fine-tuning of the
estimator correction depending on the component volatilities and trading frequencies are
also proposed.
The simulation study run for stochastic and constant volatilities and different number of
assets confirmed significant reduction in MSE as predicted by theoretical model. The em-
pirical application demonstrated increased robustness of BAC to reduction in frequency of
available data comparing to the pairwise estimator. Section 2 of the present paper defines
the theoretical setup. In Section 3 we propose our estimation approach. In Sections 4 and
5 we define BAC estimator and discuss some of its properties. Sections 6 and 7 provide a
simulation study and an empirical application that show the usefulness of our approach. The
most proofs are relegated to an appendix which also discusses some properties, empirical
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data, etc.

2. Notation, model and some properties

2.1. The securities’ prices of interest

We assume p assets with logprices given by the p-dimensional vector Xt defined as Brownian
semimartingale on the probability space (Ω ,F , (Ft),P),

Xt =

∫ t

0
µs ds+

∫ t

0
σs dWs, (1)

where σt := σ(t) and µt := µ(t) are bounded variation vector functions, µt is p×1-sized and
σt is p×m-sized with m ≥ p. Furthermore σ(i)

t is i-th row of σt and Wt is m-dimensional
vector of independent standard Brownian motions. Σ is the integrated covariance matrix:

Σ =

∫ 1

0
σsσ

′
sds. (2)

Let X(i)
t be a logprice for ith assets at the moment t with t(j)1 , t

(j)
2 , ...t

(j)
i , ..., t

(j)
Nj

- time points
when price of the jth asset is available, Nj is a quantity of the time periods for the asset j.
We assume to have initial approximation of the covariance matrix, which we denote Σ̂0 or
we build it using the approach described in subsection 3.2.

2.2. The ETF

Let Yt be a logprice of the ETF invested in 1 . . . p assets with given amounts a1, . . . , ap of the
components per share of the ETF (the number of shares of the components divided by the
number of outstanding shares of the ETF) and t1, t2, ...ti, ..., tN - time points when price of
the ETF is available, NY is a quantity of the time periods for the ETF. Pricing information
of the ETF is available at reasonably high frequencies. As the ETF itself is traded asset the
logprice of the index is also a Brownian semimartingale process:

Yt =

∫ t

0
µ(Y )
s ds+

∫ t

0

[
σ(Y )
s

]′
dWs, (3)

where σ(Y )
s is m-dimensional vector.

We assume no-arbitrage environment, so the value of the ETF is equal to weighted sum of
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its components (a(i)t - amount of the asset i at time t)

Yt = log

(
p∑
i=1

ai exp(Xt)

)
(4)

Arithmetic return of the index at time t is equal to the weighted sum of arithmetic returns
of its components:

exp(dYt)− 1 =

p∑
i=1

w
(i)
t

[
exp(dX(i)

t )− 1
]
, (5)

where

w
(i)
t =

ai exp(X
(i)
t )

exp(Yt)

We denote expected weights of returns as w̄:

w̄j = Ew(j)
t

For modelling purposes we assume trading to occur on fixed window of time [0, 1], t(i)i ∈ [0, 1].
Number of time points with pricing information available is different across the assets. Some
are liquid and others are illiquid. ETF/index is liquid. We assume that NY ≥ N1 ≥ N2 ≥
... ≥ Ni ≥ ... ≥ Np.

2.3. β representation

Comparably lower frequency of the pricing information of the illiquid assets and asyn-
chronous trading creates difficulties of estimating covariances and contributes to the size
of errors. The proposed approach is to extract maximum information from the covariances
with the asset which price is mostly available and which has high frequency of the trades -
the ETF itself. We assume that we are given Σ̂0 approximation of the integrated covariance
matrix Σ (for instance produced by refresh time pair-wise realised covariance estimator).
Now we want to express linear relations between elements of rows(or columns) of the co-
variance matrix and link that to β parameters which we introduce below. We will prove
that spot covariance of logreturns of the index and its components can be represented as
a weighted sum of spot cross-covariances of the components. This is true for arithmetic
returns (5).

Z
(i)
t = exp(X

(i)
t )

We use Ito’s formula:
dZ(i)

t = Z
(i)
t dX(i)

t + Z
(i)
t

1

2
[dX(i)

t ]
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dZ(i)
t

Z
(i)
t

= dX(i)
t +

1

2
[dX(i)

t ] =

(
µ
(i)
t +

1

2

[
σ
(i)
t

2
]′)

du+
[
σ
(i)
t

]′
dWt

So instantaneous arithmetic return has the same stochastic term and the same variation as
instantaneous logarithmic return.
This works for index as well:

Z
(Y )
t = exp(Yt)

dZ(Y )
t

Z
(Y )
t

=

(
µ
(Y )
t +

1

2

[
σ
(Y )
t

2
]′)

du+
[
σ
(Y )
t

]′
dWt (6)

From (5):
dZ(Y )

t

Z
(Y )
t

=

p∑
j=1

w
(j)
t

( (
µ
(i)
t +

1

2

[
σ
(i)
t

2
]′)

du+
[
σ
(i)
t

]′
dWt

)
(7)

Therefore comparing (6) and (7):

σ
(Y )
t =

p∑
j=1

w
(j)
t σ

(i)
t

It is easy to see that βi, which we define as integrated covariance between ETF returns and
i-th asset returns is equal:

βi :=

∫ 1

0

[
σ
(Y )
t

]′
σ
(i)
t dt =

p∑
j=1

∫ 1

0
w

(j)
t

[
σ
(j)
t

]′
σ
(i)
t dt

This immediately follows from linearity of covariance.
To express relation between

∫ 1
0 w

(j)
t σ

(j)
t
′σ

(i)
t dt and

∫ 1
0 σ

(j)
t
′σ

(i)
t dt, let’s consider integral from

0 to 1 of spot covariance matrix as expectation of the integrand if t is uniformly distributed
in the interval [0;1]

βi :=

∫ 1

0
σ
(Y )
t
′σ

(i)
t dt =

p∑
j=1

∫ 1

0
w

(j)
t σ

(j)
t σ

(i)
t

′
dt =

p∑
j=1

∫ 1

0
w̄(j)σ

(j)
t
′σ

(i)
t dt+ ui

ui =

p∑
j=1

∫ 1

0
(w

(j)
t − w̄j)σ

(j)
t
′σ

(i)
t dt

where w(j)
t =

X
(j)
t
Yt

as we assume no-arbitrage environment w(j)
t is a martingale, σ(j)′σ(i) is

bounded variation function. Therefore E(w
(j)
t − w̄j)σ(j)′σ(i) = 0. Therefore u is an error
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term having zero expectation:

u =

∫ 1

0
(w

(j)
t − w̄j)σ(j)′σdt

β :=

∫ 1

0
σtσ

(Y )
t dt = w̄′

∫ 1

0
σtσ

(Y )
t dt+ u (8)

The special case to consider is constant σt.
If we assume constant variance σt = σ, then

βi :=

p∑
j=1

∫ 1

0
w

(j)
t

[
σ(j)

]′
σ(i)dt =

p∑
j=1

[
σ(j)

]′
σ(i)

∫ 1

0
w

(j)
t dt =

p∑
j=1

w̄j

[
σ(j)

]
σ(i)

So we have p linear equations expressing relation between integrated pair-wise covariances
of the index components and integrated covariances of index and its components. β is
approximated by realized covariance of the index and its components.

3. Synchronization issues when performing pairwise estimation

We use refresh time approach similar to the one from [2].

3.1. Estimating pairwise covariances

The sets of trading points are joined and ordered:

T i = {t(i)1 , ..., t
(i)
Ni
}

T j = {t(j)1 , ..., t
(j)
Ni
}

T = T j ∪ T i

T1, ...Tm are points in T such that each of the intervals in {(0, T1], (T1, T2], ...} contains a
least one point from each asset trades. Returns of the index are grouped according to the
interval between asset trades they belong to.

Ti = max(t ∈ T | t ∈ (Ti−1, Ti])

min(|T Y ∩ (Ti−1, Ti]|, |T i ∩ (Ti−1, Ti]|) = 1
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We denote as β̂i estimated covariance of the index (as discussed above) and ith asset and
ui as an error term of approximation

X
(i)
k := X

(i)

max(T (i)∩(Tk−1,Tk])

X
(j)
k := X

(j)

max(T (i)∩(Tk−1,Tk])

Ñ = |Xj |

Cov(X(i), X(j)) =

Ñ∑
k=1

(X
(i)
k −X

(i)
k−1)(X

(j)
k −X

(j)
k−1) (9)

3.2. Estimating β

Due to high frequency of the ETF returns we are able to estimate its covariance with all p
assets with less synchronization difficulties as not overlapping periods will be smaller thus
resulting in higher precision.

The sets of trading points are joined and ordered:

T Y = {t(Y )
1 , ..., t

(Y )
N }

T i = {t(i)1 , ..., t
(i)
Ni
}

T = T Y ∪ T i

T1, ...Tm are points in T such that each of the intervals in {(0, T1], (T1, T2], ...} contains a
least one point from asset trades and one points from ETF trades. Returns of the index are
grouped according to the interval between asset trades they belong to.

Ti = max(t ∈ T | t ∈ (Ti−1, Ti])

min(|T Y ∩ (Ti−1, Ti]|, |T i ∩ (Ti−1, Ti]|) = 1

We denote as β̂i estimated covariance of the index (as discussed above) and ith asset and
ui as an error term of approximation

X
(i)
j := Xmax(T (i)∩(Tj−1,Tj ])

Yj := Ymax(TY ∩(Tj−1,Tj ])

Ñ = |Xj |
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β̂i =
Ñ∑
j=1

(X
(i)
j −X

(i)
j−1)(Yj − Yj−1) (10)

β̂i = βi + ui

4. BAC Estimator

We propose an approach to estimate covariance matrix based on some less-accurate initial ap-
proximation produced for instance by some of the other estimators performing non-optimally
in the presence of asynchronity. Pairwise covariances of the components are grouped by rows
and their row-wise sums are equal to betas as shown above. Using these relations we define
a subset of all symmetric matrices of the appropriate dimension and we are looking for the
minimal correction (orthogonal projection to the subset) to adjust initial estimator in such
a way that it fits set constraints (the set Sβ defined in detail in 4.1). Improved estimate
may not be positive semidefinite (the closed set of positive semidefinite matrices S+) and
requires further processing. So we need to find the point in the intersection of Sβ and S+,
Σ̂ such that

argmin
Σ̂∈Sβ∩S+

∥∥∥Σ̂−Σ
∥∥∥
F
.

For that purpose we are using Dykstra algorithm [4] a special case of the alternating pro-
jection method. In 9.1 and 4.2 we construct projections to Sβ and S+ respectively.

4.1. Nearest correction

We start with some approximation of the covariance matrix given by symmetric matrix Σ̂0.
Common choices for Σ̂0 are synchronized or pair-wise covariance estimators as for example
the one used in 3.2 for estimation
Now we adjust estimated values using addition information from differences between covari-
ance estimated above (10) and their analytical representation (8). We estimate covariance
matrix

Σ̂1 = Σ̂0 + ∆ (11)

∆ =


0 δ12 . . . δ1p

δ21 0 . . . δ2p

. . . . . . . . . . . . . . . . . .

δp1 δp2 . . . 0

 ,
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∆i = βi −
p∑

j=1,j 6=i
w̄jΣ̂ij , (12)

where δij = δji. Then

Σ̂1 ∈ Sβ := {Z ∈ Rp×p : Zii = σii, Zij = Zji∀i, j = 1 . . . p, Z × ιp = β},

where ιp is p-sized vector of 1, ιp = (1, ..., 1)′. So Σ̂1 belongs to the flat(subset of p × p
dimensional Euclidean space congruent to a subspace of that space) formed by intersection
of p hyperplanes given by p equations X × 1 = β and subspace of symmetric matrices with
given diagonal values.
We are looking for such Σ̂1 ∈ Sβ that

∥∥∥Σ̂1 − Σ̂0

∥∥∥
F

is minimal, which is equivalent for
corrections δij such that sum of their squares is minimized given constraints (12):

argmin
Σ̂1∈Sβ

∥∥∥Σ̂1 − Σ̂0

∥∥∥
F

= argmin
Σ̂1∈Sβ

p∑
i=1

i−1∑
j=1

δ2ij . (13)

The solution is obtained using the method of Lagrange multipliers (please see 9.1). Σ̂1 is
by construction the orthogonal projection of the initial approximation Σ̂0 on the subspace
defined by the given constraints. The distance between Σ̂1 and Σ̂0 is an initial approxima-
tion error and the distance between Σ̂1 and Σ is corrected approximation error. If given
constraints are correct then Σ belongs to the same subspace S and the distance between Σ̂1

and Σ is the orthogonal projection of the distance between Σ̂0 and Σ.∥∥∥Σ− Σ̂1

∥∥∥2
F

=
∥∥∥Σ− Σ̂0

∥∥∥2
F
− ‖∆‖2F

Therefore estimation error in the beta adjusted covariance estimate is always less than the
initial error given correctly estimated β/constraints.

‖Σ−Σ1‖F ≤
∥∥∥Σ− Σ̂0

∥∥∥
F

4.2. Regularization

The generated corrected matrix Σβ = Pβ(Σ̂0) and the original approximation Σ̂β are not
necessarily positive semi-definite as we noted above. As final part of each iteration providing
positive semidefinite estimate we use positive semi-definite projection of Σ̂β (nearest PSD
matrix) and denote it as Σ̂+. We use spectral decomposition Σβ = QEQ′, where Q is

The Beta-Adjusted Covariance estimator
11



orthogonal matrix and QQ′ = I, to find Σ̂+:

E+ = diag(max(diag(E), 0))

Σ̂+ = QE+Q
′

where Σ̂+ is diagonal matrix consisting of only positive eigenvalues of Σ̂β .

Property 1 The resulting matrix Σ̂+ is positive semidefinite and it is more precise approx-
imation of Σ̂ than Σ̂β ∥∥∥Σ− Σ̂β

∥∥∥
F
≥
∥∥∥Σ− Σ̂+

∥∥∥
F

and its becomes strong inequality if Σ̂β is not positive semi-definite. For the proof please see

This also improves accuracy of the estimate as distance from Σ̂+ to Σ is less than∥∥∥Σ− Σ̂β

∥∥∥
F
. Let’s represent Σ̂ as a sum of positive and negative definite matrices.

Σ̂β = Σ̂+ + Σ̂−∥∥∥Σ− Σ̂β

∥∥∥2
F

=
∥∥∥Σ− Σ̂+ − Σ̂−

∥∥∥2
F

=
∥∥∥Σ− Σ̂+

∥∥∥2
F

+
∥∥∥Σ̂−∥∥∥2

F
− < Σ− Σ̂+, Σ̂− >

From definition of the inner product in Euclidian space it follows that:

< Σ− Σ̂+, Σ̂− >= tr(Σ′Σ̂−)− tr(Σ̂+, Σ̂−)

It is easy to see that Σ̂+Σ̂− = 0 as Σ̂+Σ̂− = QE+E−Q
′ = 0. And Σ′Σ̂− is a product of

positive semidefinite and negative semidefinte matrices and is negative semidefinite, so the
sum of its eigenvalues is not positive and so tr(Σ′Σ̂−) ≤ 0.∥∥∥Σ− Σ̂β

∥∥∥2
F
≥
∥∥∥Σ− Σ̂+

∥∥∥2
F

+
∥∥∥Σ̂−∥∥∥2

F
≥
∥∥∥Σ− Σ̂+

∥∥∥2
F

4.3. Projection to the intersection of the sets

However now projection to the set of positive semi-definite matrices Σ̂+ doesn’t necessarily
belong to the subspace defined by β-constraints (12). Ideally we have to find projection to
the intercession of β-constrained flat and the convex set of positive semidefinite matrices.
We do it using iterative projections:

do
Σ̂i = PPSD(Pβ(Σ̂i−1))

while
∥∥∥Σ̂i − Σ̂i−1

∥∥∥
F
> ε
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Where Pβ and PPSD operators of projection as defined in 9.1 and 4.2, Σ̂0 is initial approxi-
mation and ε is precision limit.
The sequence Σ̂1, ...Σ̂i, ... converges to the limit belonging to the intersection of β-subspace
and positive semidefinite matrices set∥∥∥Σ− Σ̂i

∥∥∥
F
<
∥∥∥Σ− Σ̂i−1

∥∥∥
F
< ... <

∥∥∥Σ− Σ̂1

∥∥∥
F
.

As in 9.1 and 4.2 ‖∆‖F>0 and ‖Σ−‖F>0 if projections do not belong to the intersection of
the sets. So we have a bounded and decreasing sequence, therefore the sequence of iterations
has a limit

Σ̂ = lim
i→∞

Σ̂i

and it is easy to see it belongs to the intersection of the sets.
We repeat iterations until the improvement of the estimate is below the some limit of pre-
cision. However as we project to the intersection with convex set of positive semidefinite
matrices the limit of the iterations is not necessarily optimal point (nearest to initial esti-
mate) [4, 8]. We have to use Alternating Projections Method with Dykstra correction for
PPSD.

Σ̂i = PPSD(Pβ(Σ̂i−1)− Ci−1)),

where Ci is Dykstra’s correction given by:

Ci = Σ̂i − Pβ(Σ̂i−1) + Ci−1,∀i ∈ N | i > 0, C0 = 0

4.4. Weighted BAC

While assigning individual corrections naive BAC considers all elements of the initial es-
timate of the integrated covariance matrix equally significant as a potential source of an
error. A more efficient way is to adjust correction accordingly to the size of a potential
approximation error of the pairwise covariance depending on the variances of the ETF com-
ponents and of course on frequency of their trades. More advanced alternative Weighted
BAC is minimizing the sum of squares of corrections normalized according to corresponding
variances and even adjusted to reflect frequencies of trade.

p∑
i=1

vi ε2i
σ2i σ

2
Y

+

p∑
j=1,j 6=i

δ2ij
σ2i σ

2
j

 ,
where σi and σY are observed standard deviations of the ETF components, such that they
reflect initial model σ and frequencies of trades and serve as confidence weights for the
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projection. Also we add error factors εi to make the model more robust to errors in approx-
imations of ∆i. It relaxes the link between estimated δij and ∆i as the later incorporates
estimation error. ε should have heavy weight multiplier vi as ∆i are estimated with signif-
icantly higher precision. We apply similar Lagrange multipliers optimization method as in
previous BAC case, please see 9.2.
Σ̂1 = Σ̂0 + ∆ is the nearest to Σ̂0 point in the flat defined by β-constraints if norm is
defined as

‖A‖W =
√

tr(A′WAW )

W = diag(
1

σ1
,

1

σ2
, . . . ,

1

σp
)

Σ̂1 = Pβ(Σ̂0)

We assigned confidence weights to the projection to β-flat. Now we have to do the same
with projection to the positive semidefinite matrices convex set. Using the results from [8]

PPSD(A) = W 1 1
2

((
W

1
2AW

1
2

)
+

)
W− 1

2

5. Properties of the estimator

BAC estimator is computed using initial approximation. So its properties will heavily depend
on properties of the initial estimator. We have seen above that it improves MSE of the initial
estimator.

• Consistency
Given that initial estimator Σ̂0 is consistent, BAC Σ̂ is consistent as well.

lim
n→∞

{∥∥∥Σ̂n −Σ
∥∥∥
F
< ε
}

= 1, ∀ε > 0

this follows from
lim
n→∞

{∥∥∥Σ̂0 −Σ
∥∥∥
F
< ε
}

= 1,∀ε > 0∥∥∥Σ̂0 −Σ
∥∥∥
F
≥
∥∥∥Σ̂n −Σ

∥∥∥
F

It can be easily demonstrated that consistency is also preserved on per element basic.

• Asymptotic normality
We need to prove that if initial estimator is asymptotically normal

√
n(Σ̂0 −Σ)

D−→ N(0,Λ0),
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where Λ0 is p × p-sized vector/matrix of individual variances of the elements of the
initial estimate then Σ̂ is also asymptotically normal. In [9] the case of differentiability
properties of the projection to the intersection of the shifted linear subspace of the
space of p × p symmetric matrices and the cone of positive semidefinite matrices are
studied. And such projection is proven to be directionally differentiable and so asymp-
totic normality property is preserved. In order to assess the variance of the adjusted
estimate we can apply Delta method to our projection of the initial estimator

Σ̂ = PS(Σ̂0),

√
n(Σ̂−Σ)

D−→ N(0,∇Σ̂2 ◦Λ),

where ∇Σ̂ is gradient of the projection function. As we don’t have analytical form for
such projection we have to use numerical methods to compute ∇Σ̂.
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6. Simulation

We compare performance of the proposed estimator to conventional pair-wise synchroniza-
tion estimator (PS), where covariance matrix is built by element using covariance of two
synchronized series per element.
One day / 7.5 hours of shares trading is simulated. Minimum trading interval for the ETF
is set at 50 milliseconds, making up to 7.5× 60× 60× 20 = 540000 intervals per day.

N = 540000

T (Y ) = {(M − 1)/N : M ∈ Z |M ∈ [0;N ]}

Asset prices are calculated using generated returns for all ti ∈ T (Y ), index price is calculated
as sum of assets. ETF logreturns are built using asset prices

Yt = log

 p∑
j=1

exp(X
(j)
t )

 .

Precise covariance matrix needed for assessment of the accuracy of the estimators is com-
puted from perfectly synchronized simulated returns

Σ =
N∑
t=1

(X t
N
−X t−1

N
)(X t

N
−X t−1

N
)′.

After that some of the time points are randomly eliminated using provided frequency of
trades, such that Ti set of time points for asset i includes only points with trading times
generated by sequential addition of generated exponentially distributed random numbers
corresponding to the intervals of the observed trades:

T (i) = {ti : ti ∈ T (Y ) | i ∈ E}

E = {t1 ∼ Exp(1), . . . , ti = ti−1 + ∆ti | ∆ti ∼ Exp(
p− i+ 1

p
)}

Finally logreturns are recalculated using price data for remaining time points.

6.1. Constant volatility and zero drift returns setup

Under constant volatility and constant drift assumption the model (1) reduces to the Geo-
metric Brownian Motion. Logreturns for p assets are simulated using random normal num-
bers generated with given standard deviations as defined in (1), initial σ0 = 0.01 multiplied
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by uniformly distributed random number U(0, 1), mean µ = 0 and pairwise correlations are
distributed in the interval U(0.5, 1)

X
(i)
t = σi[Wt + φiZ

(i)
t ]

Wt and Z
(i)
t are independent Brownian motions.

φi ∼ U(0, 1)

σ0 = 0.01

σi = σ0 × U(0, 1)

The table below shows the error as the norm of the difference between covariance matrices
estimated using pair-wise and BAC estimators and precise covariance matrix computed from
original high frequency simulated data without artificially created gaps.

Number of assets Simulations Pair-wise estimator BAC estimator BAC/PWE %

100 20 32.82 11.07 33.73%
200 20 60.18 15.08 25.06%
300 20 93.39 22.26 23.83%

6.2. Stochastic volatility

Now we use the same simulation setup as defined in [2]. Simulation interval is set to [0, 1].

dX(i) = µ(i)dt+ dV (i) + dF,

dV (i) = ρ(i)σ(i)dB(i),

dF (i) =

√
1− (ρ(i))

2
σ(i)dW,

where F (i) is common factor,W |= B(i), µ(i) is constant drift and σ(i) is stochastic volatility

σ(i) = exp(β
(i)
0 + β

(i)
1 %(i)),

d%(i) = α(i)%(i)dt+ dB(i).
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The parameters are set as in [2] (µ(i), β
(i)
0 , β

(i)
1 , α(i), ρ(i)) = (0.03, 5/16, 1/8, 1/40, 0.3). The

ETF price is modelled as weighted sum of the prices of the assets

Y = log

 p∑
j=1

exp(X(j))

 .

The availability of prices is adjusted according to the frequency of trading is modelled in a
same way as in 6.1.

Number of assets Simulations Pair-wise estimator BAC estimator BAC/PWE %

100 20 5.84 1.69 28.93%
200 20 11.55 2.43 21.04%
300 20 17.72 3.75 21.16%

BAC estimator is found to be much more (on average 4 times more) accurate than the
pair-wise covariance estimator used for initial estimate generation and as a comparable es-
timator. The results of the simulation confirm our theoretical expectations and prove that
there is potential for practical usage of the ETF quotes data for more precise estimation of
the components cross-covariance.
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Figure 1. Robustness to the data set(frequency of trade) reduction

7. Empirical application

For the real-life data we don’t have fully precise covariance matrix to compare with, however
we can adjust available frequencies of trading by removing some of the data and analyse the
impact of the trading frequency on the quality of the estimate. We use high frequency data
for the SPDR Dow Jones Industrial Average ETF (DIA) imitating Dow Jones Industrial
Average and trades data for its components for the period 7/01/16-14/01/16 and clean
trading data using principles similar to that of [1]. For the initial frequencies please see
9.5. First we estimate covariance matrix using 100% of the available data then at following
steps we randomly reduce quantity of the trades at rates 5%, . . . , 95% so that at the end
only 5% of initial data for the ETF components remains. At each step we also compute the
Frobenius norm of the difference (the distance) between initial estimates and their versions
based on reduced data set. For the results please see Figure 1.
BAC estimator is very robust to small dilution of the trading data and in general more
robust than the pairwise estimator. In the table 7 the norms of the differences between the
full data set estimates (most accurate) and the estimated based on reduced data sets (less
accurate) both for BAC and the pairwise estimator are provided.
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Table 1: The norm of the difference with full data set estimates
Deleted share of time points Pairwise BAC

0.05 0.000846 0.000227
0.10 0.001262 0.000383
0.15 0.002409 0.000720
0.20 0.002522 0.000853
0.25 0.002912 0.001005
0.30 0.003107 0.001318
0.35 0.004370 0.001614
0.40 0.004604 0.001900
0.45 0.004821 0.002258
0.50 0.005734 0.002480
0.55 0.006086 0.003018
0.60 0.006561 0.003476
0.65 0.007047 0.003717
0.70 0.007813 0.004367
0.75 0.008710 0.005001
0.80 0.008821 0.005568
0.85 0.009550 0.006438
0.90 0.010120 0.007521
0.95 0.010648 0.008533

8. Conclusion

We propose the Beta Adjusted Covariance (BAC) estimator designed to use information
from ETF stock prices to improve efficiency of any given original estimator based on stock
prices only. The BAC effectively utilizes information contained in covariance of ETF proces
and its components preserving and improving most of the original estimator properties
such as consistency and asymptotic normality while reducing MSE. The simulations for
both constant and stochastic volatility models have confirmed significant reduction of the
error (4-5 times in terms of Frobenius norm of the difference of the matrices in our setup -
square root of the sum of the squared error per element). Real high frequency data oriented
empirical application demonstrated increased robustness of BAC to dilution of the trading
observations (artificial trade frequency decrease) comparing to the original estimator.

The Beta-Adjusted Covariance estimator
20



9. Appendix

9.1. Solving for projection

We solve (13) by the method of Lagrange multipliers looking for a maximum of the Lagrange
function:

L = −
p∑
i=1

i−1∑
j=1

δ2ij −
p∑
i=1

λi

 i−1∑
j=1

w̄jδji +

p∑
j=i+1

w̄jδij −∆i


under the constraint that

∇
∑p

i=1

∑i−1
j=1 δ

2
ij +

∑p
i=1∇λi

[∑i−1
j=1 w̄jδji +

∑p
j=i+1 w̄jδij −∆i

]
= 0∑p

j=2 w̄jδj1 −∆1 = 0

...∑i−1
j=1 w̄jδji +

∑p
j=i+1 w̄jδij −∆i = 0

...∑p−1
j=1 w̄jδpj −∆p = 0

,

where ∇ is gradient with respect to variables σ21, . . . , σp,p−1, λ1, . . . , λp. Taking partial
derivatives with respect to δij and λi and solving for p(p+ 1)/2 variables gives us correction
matrix: 

2δ21 + λ1w̄2 + λ2w̄1 = 0

...

2δij + λiw̄i + λjw̄j = 0

...

2δp,p−1 + λpw̄p + λp−1w̄p−1 = 0∑p
j=2 w̄jδj1 = ∆1

...∑i−1
j=1 w̄jδji +

∑p
j=i+1 w̄jδij = ∆i

...∑p−1
j=1 w̄jδpj = ∆p

Efficient way to solve the system of the equations is to express δij in terms of λi and
substitute the former in last p equations of the system. This way we get p equations of p
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unknown λi. Solving for λi and computing δij gives the resulting correction.

Pβ(Σ̂0) = Σ̂0 + ∆

9.2. Solving for projection - Weighted BAC case

We apply similar Lagrange multipliers optimization method as in previous BAC case. La-
grange function:

L = −
p∑
i=1

vi ε2i
σ2i σ

2
Y

+

p∑
j=1,j 6=i

δ2ij
σ2i σ

2
j

− p∑
i=1

λi

 i−1∑
j=1

w̄jδji +

p∑
j=i+1

w̄jδij + εi −∆i


σi and σY are observed standard deviations of the ETF components, such that they reflect
initial model σ and frequencies of trades and serve as confidence weights for the projection.

∇
∑p

i=1

[
vi

ε2i
σiσY

+
∑p

j=1,j 6=i
δ2ij
σiσj

]
+
∑p

i=1∇λi
[∑i−1

j=1 w̄jδji +
∑p

j=i+1 w̄jδij + εi −∆i

]
= 0∑p

j=2 w̄jδj1 + ε1 −∆1 = 0

...∑i−1
j=1 w̄jδji +

∑p
j=i+1 w̄jδij + εi −∆i = 0

...∑p−1
j=1 w̄jδpj + εp −∆p = 0

Taking partial derivatives with respect to δij and εi and solving for p(p+ 3)/2 variables
gives us correction matrix:
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

2 δ21
σ2
2σ

2
1

+ λ1w̄2 + λ2w̄1 = 0

...

2
δij
σ2
i σ

2
j

+ λiw̄i + λjw̄j = 0

...

2
δp,p−1

σ2
pσ

2
p−1

+ λpw̄p + λp−1w̄p−1 = 0

2v1
ε1

σ2
1σ

2
Y

+ λ1w̄1 = 0

...

2vi
εi

σ2
i σ

2
Y

+ λiw̄i = 0

...

2vp
εp

σ2
pσ

2
Y

+ λpw̄p = 0∑p
j=2 w̄jδj1 + ε1 = ∆1

...∑i−1
j=1 w̄jδji +

∑p
j=i+1 w̄jδij + εi = ∆i

...∑p−1
j=1 w̄jδpj + εp = ∆p

Efficient way to solve the system of the equations is to express δij and εi in terms of λi
and substitute the former in last p equations of the system. This way we get p equations of
p unknown λi. Solving for λi and computing δij gives the resulting correction.

9.3. Orthogonality of projection to the β-constraints subspace

In we use the fact that projection of the distance between initial approximation Σ̂0 and
exact value Σ to the subset defined by β-constraints is less or equal that original distance:∥∥∥Σ− Σ̂0

∥∥∥
F
≤
∥∥∥Σ− Σ̂1

∥∥∥
F∥∥∥Σ− Σ̂1

∥∥∥2 =
∥∥∥Σ− Σ̂1 −∆ + ∆

∥∥∥2 =
∥∥∥Σ− Σ̂0

∥∥∥2 + ‖∆‖2+ < Σ− Σ̂0 −∆,∆ >

We need to prove that < Σ− Σ̂0 −∆,∆ >= 0. Where elements of ∆ are equal to:

δ21 =
λ1w̄2 + λ2w̄1

2
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and sij and s̃ij belong to subspace defined by constraints (12)

< Σ− Σ̂0 −∆,∆ >=

p∑
i=1

i∑
j=1,j 6=i

(sij − s̃ij) ∗
λiw̄j + λjw̄i

2
=

p∑
i=1

λi

i∑
j=1,j 6=i

(sij − s̃ij) ∗
w̄j
2

+

p∑
j=1

λj

i∑
i=1,i 6=j

(sij − s̃ij) ∗
w̄i
2

=

p∑
i=1

λi

i∑
j=1,j 6=i

∆i −∆i

2
+

p∑
j=1

λj

i∑
i=1,i 6=j

∆j −∆j

2
= 0

9.4. Properties of the projection to the positive semidefinite set

Let’s represent Σ̂ as a sum of positive and negative definite matrices.

Σ̂β = Σ̂+ + Σ̂−∥∥∥Σ− Σ̂β

∥∥∥2 =
∥∥∥Σ− Σ̂+ − Σ̂−

∥∥∥2 =
∥∥∥Σ− Σ̂+

∥∥∥2 +
∥∥∥Σ̂−∥∥∥2− < Σ− Σ̂+, Σ̂− >

From the definition of the inner product in Euclidian space it follows that:

< Σ− Σ̂+, Σ̂− >= tr(Σ′Σ̂−)− tr(Σ̂+, Σ̂−)

It is easy to see that Σ̂+Σ̂− = 0 as Σ̂+Σ̂− = QE+E−Q
′ = 0. And Σ′Σ̂− is a product of

positive semidefinite and negative semidefinte matrices and is negative semidefinite, so the
sum of its eigenvalues is not positive and so tr(Σ′Σ̂−) ≤ 0.∥∥∥Σ− Σ̂β

∥∥∥2 ≥ ∥∥∥Σ− Σ̂+

∥∥∥2 +
∥∥∥Σ̂−∥∥∥2 ≥ ∥∥∥Σ− Σ̂+

∥∥∥2
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9.5. Trading frequencies of stocks used in empirical application

Ticker Number of cleaned trades during the observation period

DIA 394454
GE 297100
PFE 229496
XOM 211304
AAPL 194469
JPM 190271
VZ 148996
CVX 127747
MRK 123085
KO 122298
WMT 121489
DIS 118406
V 98584
PG 95128
HD 94126
NKE 91871
JNJ 78631
CAT 75404
UTX 72679
AXP 70750
BA 67239
MCD 62476
IBM 60357
GS 56165
DD 55032
UNH 46475
MSFT 45332
MMM 36368
TRV 26028
CSCO 21171
INTC 21134
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