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Abstract

We propose a simulation-based strategy to estimate and test an asset pricing model that
accounts for rare but severe consumption contractions that can extend over multiple
periods. Our approach expands the scope of prevalent calibration studies and tackles
the inherent sample selection problem faced when empirically assessing the effect of
rare disaster risk on asset prices. The application of this new methodology using
a combination of U.S. and cross-country panel data yields estimates of the investor
preference parameters that are plausible, reasonably precise, and robust with respect
to alternative model specifications. The market equity premium and Sharpe ratio
implied by these parameter estimates are consistent with empirical data, and the timing
premium computed as proposed by Epstein et al.Epstein et al. (20142014) has an economically meaningful
magnitude. These results suggest that the rare disaster hypothesis can help restore the
nexus between the real economy and financial markets when allowing for multi-period
disasters.
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1 Introduction

According to RietzRietz’s (19881988) rare disaster hypothesis (hereafter RDH), the extraordinary

equity premia of U.S. portfolios during the postwar period resulted because investors ex ante

demanded compensation for possibly disastrous but unlikely risks that they never suffered

from. In turn, the RDH holds the promise to resolve the equity premium puzzle and the poor

empirical performance of Hansen and SingletonHansen and Singleton’s (19821982) canonical consumption-based asset

pricing model (C-CAPM). The weakness of the rare disaster explanation is that it is difficult

to assess statistically using data that contain only very few or no disastrous consumption

contractions. Most studies mitigate the sample selection problem by resorting to calibration

methods. Yet, there is a paucity of econometric analyses that test the RDH, and those that

exist question its explanatory power when disastrous consumption contractions can build up

over multiple time periods.

We contribute to this discussion by proposing a novel methodology that aims to resolve

the inherent sample selection problem that hampers the empirical assessment of the RDH.

As suggested by BlanchardBlanchard (20082008), we cast off the straightjacket of a fully parametrized

structural model and instead identify the parameters of interest through moment conditions

implied by the basic asset pricing equation of a disaster-including C-CAPM. By allowing for

multi-period disaster events, which are conceived of as a marked point process (MPP), we

take account of the caveat that the success of the RDH may hinge on the assumption that

consumption disasters unfold within a single period.

The empirical challenges demand a non-standard methodological solution. Inspired by

ideas put forth by Dridi et al.Dridi et al. (20072007), our simulation-based approach combines advantages

of econometric analysis – the appraisal of loss functions and conditions for validity – with

calibration practices, like the use of different data sources for estimation of different parts of a

model. The econometric analysis consists of two consecutive steps: using maximum likelihood

to estimate the parameters of the MPP based on historical cross-country consumption data,

and then a simulation-based estimation of the investor preference parameters using U.S.
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macroeconomic and financial data. HeatonHeaton’s (19951995) simulated method of moments (SMM)

approach can be seen as an early progenitor of our estimation strategy. We establish conditions

for consistency of the estimates of the parameters of interest and employ a bootstrap simulation

to assess the estimation precision. As recommended by Dridi et al.Dridi et al. (20072007), the empirical

assessment focuses on the plausibility of the estimates of the parameters of interest (subjective

discount factor, relative risk aversion, intertemporal substitution elasticity), and the risk and

timing premia implied by the parameter estimates, as well as gauging whether the estimated

model is able to account for salient financial economic facts.

We find that the estimates of the investor preference parameters are economically plausible,

with meaningfully narrow confidence intervals. Specifically, the estimates of the subjective

discount factor are smaller than but close to unity, as would be expected of an investor with

a positive rate of time preference. Depending on the chosen test assets, the relative risk

aversion (RRA) coefficient estimates range between 1.5 and 1.7; generally, values between

0 and 10 describe reasonable risk preferences. CochraneCochrane (20052005) caps the upper bound at

RRA=5, in line with experimental evidence reported by Meyer and MeyerMeyer and Meyer (20052005). For the

present study, the 95% confidence bounds for the RRA estimate also lie within that narrower

range of plausibility. The RRA point estimate is strikingly close to the implied RRA estimate

that one obtains when conceiving the Fama-French three-factor model as an instance of an

intertemporal CAPM (cf. Grammig and JankGrammig and Jank, 20162016). The estimate of the intertemporal

elasticity of substitution (IES) is significantly greater than unity, and of a magnitude that is

frequently chosen for calibrations. Moreover, the difference of the estimated RRA coefficient

and reciprocal of the IES estimate is significantly greater than 0, which implies a preference

for early resolution of uncertainty. Several studies emphasize that an IES > 1 is necessary to

obtain meaningful asset pricing implications (cf. Bansal and YaronBansal and Yaron, 20042004 and Epstein et al.Epstein et al.,

20142014), but, as documented by HavránekHavránek (20152015), IES estimates are notoriously smaller than

unity.

Consequently, the estimates-implied key financial indicators – mean T-Bill return, market
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equity premium and Sharpe ratio – exhibit meaningful magnitudes that are consistent with

the empirically observed counterparts. Moreover, the timing premium, measured as proposed

by Epstein et al.Epstein et al. (20142014), and computed using the parameter estimates, is economically

meaningful. This is a noteworthy result, because most estimated/calibrated C-CAPMs

imply a timing premium that is far too high to be considered economically plausible. These

conclusions are invariant to alternative model specifications (like disaster definition and

simulation procedure). Empirical C-CAPM studies often find implausible and/or imprecise

parameter estimates that entail doubtful asset pricing implications. The results presented

herein suggest instead that accounting for rare disasters within a consumption-based asset

pricing framework can help restore the nexus between financial markets and the real economy

also when allowing for multi-period disasters and when relying on econometric analysis instead

of calibration practices.

The RDH literature, to which this paper contributes and draws inspiration from, and that

has been triggered by Barro’s (20062006) seminal work, is lucidly surveyed by Tsai and WachterTsai and Wachter

(20152015). Amongst the studies that link the RDH to various aspects of finance,11 there are some

that relate closely to the present study. Barro and UrsúaBarro and Ursúa (20082008) collect annual consumption

and GDP data to study the size and frequency of disasters. As used by Barro and JinBarro and Jin (20112011),

these data also enable the authors to fit power law densities to the empirical distribution

of macroeconomic disasters. The estimation strategy proposed herein extends their ideas.

Nakamura et al.Nakamura et al. (20132013) consider a multi-period disaster process within a Bayesian framework.

They show that, when calibrated with a reasonable rate of time preference and IES, the

equity premium can be explained with a plausible RRA coefficient. The frequentist approach

pursued in the present study complements and extends their Bayesian analysis.

In BarroBarro (20062006) and many of the papers surveyed by Tsai and WachterTsai and Wachter (20152015), disas-

1 These include the volatility puzzle (WachterWachter, 20132013), the business cycle (GourioGourio, 20122012), credit
spreads (GourioGourio, 20132013), index options (Backus et al.Backus et al., 20112011), the value premium (Bai et al.Bai et al., 20152015
and Tsai and WachterTsai and Wachter, 20162016), exchange rate puzzles (Farhi and GabaixFarhi and Gabaix, 20162016), the volatility skew
(Seo and WachterSeo and Wachter, 20152015, and the persistence of dividend and consumption growth (Gillman et al.Gillman et al., 20152015
and Barro and JinBarro and Jin, 20162016).
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ters occur as one-period events. This assumption seemingly could be the driving force

behind the success of the RDH, as argued by Julliard and GhoshJulliard and Ghosh (20122012) and suggested by

ConstantinidesConstantinides’s (20082008) comment on Barro and UrsúaBarro and Ursúa’s (20082008) work. Julliard and GhoshJulliard and Ghosh’s

(20122012) is one of the few studies that performs a comprehensive econometric analysis to

empirically assess the RDH. When allowing for multi-period disasters and modeling investor

preferences by time-additive power utility, they conclude that to rationalize the equity pre-

mium puzzle with the help of the RDH, the puzzle itself must be a rare event. Their results

thus attenuate the appeal of the rare disaster explanation. The present study re-emphasizes,

based on econometric analysis, the explanatory power of the RDH even when multi-period

disasters are allowed for. However, to reach this conclusion, one must abandon time-additive

power utility. It is necessary to allow for both IES and RRA to be greater than unity by

adopting a recursive utility specification.

The remainder of this paper is structured as follows: Section 22 details the motivation for

a multi-period disaster-including C-CAPM with recursive preferences and derives moment

restrictions that provide the basis for the simulated method of moments-type estimation

strategy. It also introduces a marked point process to explain the size and duration of and

between disaster events. Section 33 contains the macroeconomic and financial data used in

this study, and Section 44 describes the two-step estimation strategy. After a discussion of the

estimation results and robustness tests in Section 55, Section 66 concludes.

2 Multi-period disasters in a C-CAPM

2.1 Asset pricing implications and moment restrictions

To formulate an empirically estimable asset pricing model that accounts for the possibility of

multi-period disasters, we follow BarroBarro (20062006) and assume that consumption growth evolves

as

Ct+1

Ct
= eut+1evt+1 , (2.1)
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where ut+1 ∼ (µ̃, σ2), vt+1 = ln(1 − bt+1)dt+1, and eut+1 describes consumption growth in non-

disastrous times. The term ln(1 − bt+1) comes into force only if the respective period is

affected by a disaster, that is, if the binary disaster indicator dt+1 equals 1. In this case, the

non-disastrous consumption growth component shrinks by the contraction factor bt+1. Time is

discrete, and the observation frequency is fixed (e.g., quarterly). In BarroBarro’s (20062006) one-period

disaster model, bt+1 ∈ [q,1], where q denotes the disaster threshold that differentiates regular

bad times from disasters.

The definition of the contraction factor bt+1 must be adapted when accounting for multi-

period disasters. Here, a disaster is defined as a succession of contractions that starts in

period s1 and lasts until period s2, where s1 ≤ t + 1 ≤ s2, such that

1 −
s2

∏
j=s1

(1 − bj) ≥ q. (2.2)

In words, we refer to a disaster event as a severe decline in consumption at least of size

q. The decline may accrue over multiple disaster periods or come in the form of one sharp

contraction. Disaster periods are indicated by dt = 1 and associated with a contraction factor

bt ∈ (0, 1]. If dt = 1, asset returns will also contract. Adopting BarroBarro’s (20062006) specification for

returns on treasury bills, we assume, analogous to Equation 2.12.1, that for a gross return of an

asset Ri:

Ri,t+1 = (1 − b̃i,t+1)dt+1Ri,nd,t+1, (2.3)

where Ri,nd denotes the asset’s gross return in non-disastrous periods, and b̃i is the return

equivalent of the consumption contraction factor b.

A representative investor, who faces these consumption risks, has recursive preferences; as

Epstein and ZinEpstein and Zin (19891989) show, the basic asset pricing equations for a gross return Ri and an

excess return Re
i = Ri −Rj, respectively, are then given by:

Et [mt+1(β, γ,ψ)Ri,t+1] = 1 and Et [mt+1(β, γ,ψ)Re
i,t+1] = 0, (2.4)

5



where the stochastic discount factor (SDF) reads:

mt+1(β, γ,ψ) = βθ (
Ct+1

Ct
)
− θ
ψ

Rθ−1
a,t+1, with θ = 1 − γ

1 − 1
ψ

. (2.5)

In Equation (2.52.5), β denotes the subjective discount factor, ψ is the IES, and γ represents

the coefficient of relative risk aversion; Ra is the return on aggregate wealth.

By conditioning down the basic asset pricing equation for a gross return, applying the

law of total expectations, and using the consumption growth and return specifications from

Equations (2.12.1) and (2.32.3), we can write:

E [βθ (eutevt)−
θ
ψ Rθ−1

a,t Ri,t] = pE [βθ ((1 − bt)eut)−
θ
ψ Rθ−1

a,d,tRi,d,t∣dt = 1]

+ (1 − p)E [βθ (eut)−
θ
ψ Rθ−1

a,nd,tRi,nd,t∣dt = 0]

= 1,

(2.6)

where p = P(dt = 1) is the unconditional disaster probability, and Ri,d,t = Ri,nd,t(1 − b̃i,t).

Rearranging terms in Equation (2.62.6) yields the following moment restriction:

E [βθ (eut)−
θ
ψ Rθ−1

a,nd,tRi,nd,t∣dt = 0] =
1 − pE [βθ ((1 − bt)eut)−

θ
ψ Rθ−1

a,d,tRi,d,t∣dt = 1]

1 − p
.

(2.7)

The corresponding moment restriction for an excess return Re
i reads:

E [βθ (eut)−
θ
ψ Rθ−1

a,nd,tR
e
i,nd,t∣dt = 0] =

−pE [βθ ((1 − bt)eut)−
θ
ψ Rθ−1

a,d,tR
e
i,d,t∣dt = 1]

1 − p
,

(2.8)

where Re
i,d = Ri,d −Rj,d and Re

i,nd = Ri,nd −Rj,nd.

Equations (2.72.7) and (2.82.8) are of particular interest, because they suggest how theoretical

moments that can be approximated using the available non-disastrous data (left-hand sides)

can be disentangled from expressions that rely on information about disasters (right-hand

sides). In particular, using consumption growth and return data that do not include disasters,
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we can approximate the left-hand side of Equation (2.72.7) as follows:

E [βθ (eut)−
θ
ψ Rθ−1

a,nd,tRi,nd,t∣dt = 0] ≈ 1

T

T

∑
t=1

βθcg
− θ
ψ

nd,tR
θ−1
a,nd,tRi,nd,t, (2.9)

where cgnd,t denotes observable, non-disastrous consumption growth. Similarly,

E [βθ (eut)−
θ
ψ Rθ−1

a,nd,tR
e
i,nd,t∣dt = 0] ≈ 1

T

T

∑
t=1

βθcg
− θ
ψ

nd,tR
θ−1
a,nd,tR

e
i,nd,t. (2.10)

Because U.S. postwar data do not incorporate any disasters, attempting to approximate

the right-hand side moments in Equations (2.72.7) and (2.82.8) using sample means of the available

data would be futile. However, if it were possible to simulate consumption and return processes

that account for the possibility of rare disasters, we could consider an approximation by

simulated moments, such as:

1 − pE [βθ ((1 − bt)eut)−
θ
ψ Rθ−1

a,d,tRi,d,t∣dt = 1]
1 − p

≈
1 − 1

T
T
∑
s=1
βθcg

− θ
ψ

s Rθ−1
a,s Rsds

1 − DT
T

, (2.11)

and

−pE [βθ ((1 − bt)eut)−
θ
ψ Rθ−1

a,d,tR
e
i,d,t∣dt = 1]

1 − p
≈
− 1
T
T
∑
s=1
βθcg

− θ
ψ

s Rθ−1
a,s R

e
sds

1 − DT
T

, (2.12)

where cgs, Ra,s, Rs, and Re
s denote simulated (disaster-including) consumption growth and

(excess) returns, and DT = ∑Ts=1 ds. A large T ensures a good approximation of population

moments by sample means, provided that a uniform law of large numbers holds. In the

same spirit by which Singleton motivates the simulated method of moments (SMM), “more

fully specified models allow experimentation with alternative formulations of economies and,

perhaps, analysis of processes that are more representative of history for which data are not

readily available” (SingletonSingleton, 20062006, p. 254), the simulation should produce consumption and

return data that are representative of history, assuming the RDH is true.

Equations (2.112.11) and (2.122.12) provide the basis for the SMM-type estimation of the preference
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parameters β, γ, and ψ. Before explaining the details of the estimation strategy, it is necessary

to specify the stochastic process that generates the disastrous consumption contractions.

2.2 Multi-period disasters as a marked point process

We introduce a marked point process (MPP) to model the time duration between disastrous

consumption contractions and their size, as well as to account for the duration of the multi-

period disasters. In the present application, the disaster periods are the points of the MPP;

the contraction sizes are the marks.

We draw on Hamilton and JordaHamilton and Jorda’s (20022002) autoregressive conditional hazard (ACH) frame-

work to model the duration between disaster periods. Initially, this approach would set a

threshold q to define a disaster event and thereby establish the respective disaster periods

and their contraction sizes. Suppose that the sequence of consumption disaster events thus

defined is observable at a quarterly frequency. Let M(t) denote the number of disasters that

occurred as of quarter t and let N(t) refer to the respective number of disaster periods. The

probability of quarter t being a disaster period, conditional on the information available in

t − 1, is the discrete-time hazard rate,

ht = P(N(t) ≠ N(t − 1)∣Ft−1). (2.13)

Hamilton and JordaHamilton and Jorda’s (20022002) ACH framework also allows for flexible parametrization of

the hazard rate in Equation (2.132.13). In a parsimonious specification, the hazard rate depends

on just two parameters, µ and µ̃:

ht = [(µ(1 − dt−1) + µ̃dt−1)(1 − d+t−1) + d+t−1]
−1
, (2.14)
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where d+t is a binary indicator, such that

d+t = 1(dt = 1) ⋅ 1 [[1 −
t−1

∏
j=s1

(1 − bj)] < q] , (2.15)

where 1(⋅) is the indicator function. That is, d+t = 1 if quarter t belongs to a disaster that

commenced in period s1 ≤ t, and the accrued contractions up to t do not yet qualify as a

disaster. In this case, quarter t + 1 must be a disaster period too, such that ht+1 = 1. If d+t = 0

and dt = 1, then ht+1 = 1/µ̃. If dt = 0, then ht+1 = 1/µ.

More extensive parametrization of the hazard rate is possible too. For example, we could

include the time durations of and between previous disaster events, the aggregate size of the

previous disaster, and the size of the contraction of the last disaster period to explain the

hazard rate:

ht = [[(µ + ατM(t−1)−1 + δb+M(t−1))(1 − dt−1)

+(µ̃ + α̃τ̃M(t−1)−1 + δ̃bN(t−1))dt−1](1 − d+t−1) + d+t−1]
−1
,

(2.16)

where τm denotes the duration, measured in quarters, between the mth and (m+1)th disaster,

and τ̃m denotes the number of quarters that the mth disaster lasted. Furthermore, bn is the

contraction size of the nth disaster period, and b+m is the aggregate size of the mth disaster.

For the empirical analysis, we consider several special cases of Equation (2.162.16). For example,

the hazard rate specification in Equation (2.142.14) emerges when α = δ = α̃ = δ̃ = 0.

To model disaster size, we adopt an idea from Barro and JinBarro and Jin (20112011) and employ a power

law distribution (PL) to describe the transformed contraction size zc = 1
1−b .

22 We assume that

contractions that contribute to reaching the disaster threshold q (when dt = 1 and d+t = 1)

follow a different PL distribution than those that add to a disaster after q was reached (when

dt = 1, but d+t = 0).

The joint conditional probability density function of the resulting marked point process,

2 Specifically, Barro and JinBarro and Jin (20112011), who implicitly assume single-period disasters, use a double power law
distribution that consists of two power law distributions that morph into each other at a certain threshold
value. It turns out that the flexibility of the double power law distribution is not required when modeling
multi-period disasters.
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which we refer to as an ACH-PL model, can be written as:

f(dt, d+t , zc,t∣Ft−1;θACH , θ
+
PL, θPL) = f(dt, d+t ∣Ft−1) × f(zc,t∣dt, d+t ,Ft−1)

= [ht(θACH)]dt × [1 − ht(θACH)]1−dt

× (fPL(zc,t; θ+PL)d
+

t × fPL(zc,t; θPL)1−d+t )dt ,

(2.17)

where θACH contains the ACH parameters, fPL denotes the power law density, and θ+PL

and θPL are the power law tail coefficients that describe the size of the contractions that

contribute to reaching the disaster threshold and the size of contractions to add on top of q,

respectively. The probability density function in Equation (2.172.17) is an essential ingredient for

the estimation strategy, which entails drawing from that distribution to simulate disaster-

including consumption data.

3 Data

The empirical analysis of the disaster-including C-CAPM relies on two data sources, which we

use in two consecutive estimation steps. The estimation of the ACH-PL parameters relies on

annual cross-country panel data about consumption that Barro and UrsúaBarro and Ursúa (20082008) assembled

for 42 countries and that feature prominently in prior rare disaster literature.33 From these

data, we select the same 35 countries that BarroBarro (20062006) considered. Table 11 lists the countries

and the years for which consumption data are available.

[insert Table 11 here]

To detect disaster events in these data, we rely on BarroBarro’s (20062006) identification scheme,

which implies that any sequence of downturns in consumption growth greater than or equal

to q = 0.145 qualifies as a disaster. The same disaster threshold is used by BarroBarro (20092009) and

Barro and JinBarro and Jin (20112011). A disaster may pan out over multiple periods or occur as one sharp

3 These data are available at http://scholar.harvard.edu/barro/publications/barro-ursua-macroeconomic-
data, accessed 04/24/2015.

10



contraction. Positive intermezzos of consumption growth within a disaster are allowed if (1)

this positive growth is smaller in absolute value than the negative growth in the following

year and (2) the size of the disaster does not decrease by including the intermezzo. Using

this disaster identification scheme, we detect 89 disaster events. Figure 11 depicts their size

and the periods over which they accrue.

[insert Figure 11 here]

As previously mentioned, we assume that the ACH-PL process is observable at a quarterly

frequency. However, Barro and UrsúaBarro and Ursúa’s (20082008) data only permit the computation of annual

contractions. We therefore generate quarterly observations by randomly distributing the

annual contraction. Appendix A.1A.1 contains the details of this procedure.

The estimation of the preference parameters is based on quarterly U.S. real personal

consumption expenditures per capita on services and nondurable goods in chained 2009

U.S. dollars, as provided by the Federal Reserve Bank of Saint Louis.44 These data span the

period 1947:Q2–2014:Q4. Financial data, at a monthly frequency, come from CRSP and

Kenneth French’s data library.55 The data used for the empirical analysis are (1) the CRSP

market portfolio, comprised of NYSE, AMEX, and NASDAQ traded stocks (mkt); (2) ten

size-sorted portfolios (size dec); and (3) ten industry portfolios (industry). All portfolios are

value-weighted. The gross return of the CRSP market portfolio serves as the proxy for Ra.66

Nominal monthly returns are converted to real returns at a quarterly frequency, using the

growth of the consumer price index of all urban consumers.77 In line with Beeler and CampbellBeeler and Campbell

4 For services, see http://research.stlouisfed.org/fred2/series/A797RX0Q048SBEA. For nondurable goods,
see http://research.stlouisfed.org/fred2/series/A796RX0Q048SBEA. Both accessed 03/09/2016.

5 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/f-f factors.html, accessed
03/09/2016. Due to the frequent changes in the underlying CRSP data, newer or older downloads may
results in different series.

6 The approximation of the return of the wealth portfolio by the return of the portfolio of financial assets
is also employed by WeberWeber (20002000), Stock and WrightStock and Wright (20002000), and YogoYogo (20062006). Thimme and VölkertThimme and Völkert
(20152015) offer a critique of this approach, arguing that a large fraction of the wealth portfolio is comprised
of non-financial wealth. They propose an alternative proxy based on Lettau and LudvigsonLettau and Ludvigson’s (20012001)
cay-variable that accounts for the return on human capital.

7 These data are provided by the Federal Reserve Bank of Saint Louis:
http:/ / research.stlouisfed.org/fred2/series/CPIAUCSL, accessed 03/09/2016.
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(20122012), we approximate the ex ante non-disastrous T-bill return Rb,nd (i.e., the “risk-free rate”

proxy) by forecasting ex post Rb,nd on the basis of the quarterly T-bill yield and the average

of quarterly log inflation across the past year. The three-month nominal T-bill yield comes

from the CRSP database. Table 22 contains the descriptive statistics for these data.

[insert Table 22 about here]

4 Estimation strategy

4.1 ACH-PL maximum likelihood estimation

The parameter estimation of the disaster-including C-CAPM involves two consecutive steps.

We first compute maximum likelihood estimates of the ACH-PL parameters θACH , θ+PL, and

θPL. Using these estimates, it is possible to simulate disaster-including data, which are

required for the simulation-based estimation of the preference parameters β, γ, and ψ in the

second stage. Consider the maximum likelihood estimation step. Equation (2.172.17) implies the

following conditional ACH-PL log likelihood function:

L(θACH , θ+PL, θPL) =
T

∑
t=1

(dt lnht(θACH) + (1 − dt) ln[1 − ht(θACH)])

+
T

∑
t=1

dt (d+t ln fPL(zc,t; θ+PL) + (1 − d+t ) ln fPL(zc,t; θPL)) .
(4.1)

The parameters in Equation (4.14.1) are variation-free, so it is possible to perform the estimation

of θ̂ACH , θ+PL, and θPL separately. In particular, the maximization of

L(θACH) =
T

∑
t=1

(dt lnht(θACH) + (1 − dt) ln[1 − ht(θACH)]) (4.2)

yields θ̂ACH , whereas estimates of θ+PL and θPL can be obtained by maximizing

L(θPL) =
T

∑
t=1

dt (d+t ln fPL(zc,t; θ+PL) + (1 − d+t ) ln fPL(zc,t; θPL)) . (4.3)
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To perform the maximization of the log-likelihood function in Equation (4.24.2), the cross-

country panel data are represented as event time data. For that purpose, sequences of

the disaster indicators dt and d+t are computed for every country. Counting the number of

quarters between disaster events gives τm, which equals the time duration between the mth

and (m + 1)th disaster. Moreover, τ̃m is obtained by counting the number of quarters over

which the respective disaster lasted. These data are needed to compute the hazard rate in

Equation (2.162.16)

The maximum likelihood estimation of the ACH parameters θACH is then performed on

the concatenated country-specific event time data series. During the maximization of the

log-likelihood function in Equation (4.24.2), the disaster event and period counters M(t) and

N(t) are reset to zero whenever a country change occurs in the concatenated data. If the

hazard rate specification in Equation (2.162.16) is used, τ0 must be re-initialized to the average

duration between disasters (179.7 quarters), τ̃0 is reset to equal the average disaster length

(13.1 quarters), and b+0 is reset to equal the average contraction size (0.268). These values are

also the initial values for the maximum likelihood estimation. They correspond to q = 0.145;

different disaster thresholds use different initial values. The re-initialization procedure is

adopted from Engle and RussellEngle and Russell (19981998).88

4.2 Financial moment restrictions and data simulation

An SMM-type estimation of the preference parameters entails exploiting the moment restric-

tions in Equations (2.72.7) and (2.82.8). In particular, we rely on matching between empirical and

simulated moments, as is implied by the moment restriction in Equation (2.72.7), that uses the

sample moments in Equations (2.92.9) and (2.112.11). Applied to the T-bill return Rb

gr(ϑ) =
⎡⎢⎢⎢⎢⎢⎣

1
T ∑

T
t=1 β

θcg
− θ
ψ

nd,tR
θ−1
a,nd,tRb,nd,t −

⎡⎢⎢⎢⎢⎢⎣

1− 1
T

T

∑
s=1

βθcg
−
θ
ψ

s Rθ−1a,s Rb,sds

1−DT
T

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦
, (4.4)

8 They consider an ACH-like dynamic duration model for the time interval between intraday trading events.
In this framework, the re-initialization accounts for overnight interruptions of the trading process.
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where ϑ = (β, γ,ψ)′. Similarly, we exploit the moment restriction in Equation (2.82.8) applied

to an excess return Re
i = Ri −Rb, which suggests the following matching of empirical and

simulated moments:

ge(ϑ) =
⎡⎢⎢⎢⎢⎢⎣

1
T ∑

T
t=1 β

θcg
− θ
ψ

nd,tR
θ−1
a,nd,tR

e
i,nd,t −

⎡⎢⎢⎢⎢⎢⎣

− 1
T

T

∑
s=1

βθcg
−
θ
ψ

s Rθ−1a,s R
e
i,sds

1−DT
T

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦
. (4.5)

Combining Equation (4.44.4) with Equation (4.54.5), and applied to the excess returns of N test

assets, we obtain:

G(ϑ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
T ∑

T
t=1 β

θcg
− θ
ψ

nd,tR
θ−1
a,nd,tRb,nd,t −

⎡⎢⎢⎢⎢⎢⎣

1− 1
T

T

∑
s=1

βθcg
−
θ
ψ

s Rθ−1a,s Rb,sds

1−DT
T

⎤⎥⎥⎥⎥⎥⎦
1
T ∑

T
t=1 β

θcg
− θ
ψ

nd,tR
θ−1
a,nd,tR

e
nd,t −

⎡⎢⎢⎢⎢⎢⎣

− 1
T

T

∑
s=1

βθcg
−
θ
ψ

s Rθ−1a,s Re
sds

1−DT
T

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.6)

where Re = [Re
1, . . . ,R

e
N]′. Choosing N ≥ 2, SMM-type estimation of the preference parameters

can then be attempted by:

ϑ̂ = arg min
ϑ∈Θ

G(ϑ)′WG(ϑ), (4.7)

where Θ denotes the admissible parameter space and W is a symmetric and positive semi-

definite weighting matrix.

To evaluate G(ϑ) within such an optimization, it is necessary to compute the moments of

simulated disaster-including data. For that purpose, we use the first-step ACH-PL estimates

θ̂ACH , θ̂+PL, and θ̂PL and simulate a series of hazard rates {hs(θ̂ACH , θ̂+PL, θ̂PL)}Ts=1. The

resulting conditional disaster probabilities then can generate a sequence of disaster indicators

{ds}Ts=1 and {d+s}Ts=1.

We obtain simulated series of non-disastrous consumption growth and returns, {cgnd,s,Ra,nd,s,

Rb,nd,s,Ri,nd,s}Ts=1 by block-bootstrapping from the non-disastrous U.S. postwar data. For

that purpose, we rely on the automatic block-length selection procedure proposed by

Politis and WhitePolitis and White (20042004) and corrected by Politis et al.Politis et al. (20092009), in combination with the
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stationary bootstrap of Politis and RomanoPolitis and Romano (19941994), in which the respective block-length gets

drawn from a geometric distribution. The draws from the consumption and return data are

simultaneous, to retain the contemporaneous covariance structure.

Because the cross-country consumption panel data collected by Barro and UrsúaBarro and Ursúa (20082008)

do not include information on asset prices, further assumptions are needed to simulate

disaster returns. In particular, we assume that the transformed contractions zc = 1/(1 − b)

and zR = 1/(1 − b̃) have the same marginal distribution,99

f(zc; θ+PL, θPL) = f(zR; θ+PL, θPL), (4.8)

where

f(z; θ+PL, θPL) = fPL(z; θ+PL)d
+ × fPL(z; θPL)1−d+ , (4.9)

and write their joint cumulative distribution function (cdf) using a copula function that links

the two marginal distributions:

F (zc, zR; θ+PL, θPL,θC) = C(F (zc; θ+PL, θPL), F (zR; θ+PL, θPL);θC), (4.10)

where F (zC ; θ+PL, θPL) and F (zR; θ+PL, θPL) denote the marginal cdfs. The vector θC collects

the coefficients that determine the dependence of zc and zR. Using the Gaussian copula

CG, these dependencies can be measured by a single parameter, the copula correlation ρ.

Equation (4.104.10) then becomes:

F (zc, zR; θ+PL, θPL, ρ) = CG(uc, uR;ρ), (4.11)

where uc = F (zc; θ+PL, θPL) and uR = F (zR; θ+PL, θPL).

We consider three choices for the copula correlation. First, ρi may be estimated by the

empirical correlation between non-disastrous consumption growth and gross return. Second,

9 The asset index i is omitted for brevity.
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we consider the extreme case that ρ = 0.99, motivated by the finding that the correlations

between financial returns increase in the tails of their joint distribution (see Longin and SolnikLongin and Solnik

(20012001)). Third, we address the case when ρ = 0, which implies drawing bs and b̃s independently

from the same distribution.

Drawing bs and b̃s in case of ds=1 proceeds as follows: We draw yc,s and yR,s from a

bivariate standard normal distribution with correlation ρ, then compute uc,s = Φ(yc,s) and

uR,s = Φ(yR,s), where Φ denotes the standard normal cdf. Consumption growth and return

contraction factors then can be obtained by

bs = 1 − 1

F −1(uc,s; θ̂+PL, θ̂PL)
and b̃s = 1 − 1

F −1(uR,s; θ̂+PL, θ̂PL)
, (4.12)

where

F −1(u; θ+PL, θPL) = (F −1
PL(u; θ+PL))

d+ × (F −1
PL(u; θPL))

1−d+
. (4.13)

In this case, F −1
PL denotes the quantile function of the PL distribution. The combination

of the contraction factors with the bootstrapped non-disastrous series allows simulating

disaster-including series for consumption growth, cgs = (1 − bs)dscgnd,s; test asset returns,

Ri,s = (1 − b̃i,s)dsRi,nd,s, i = 1, . . . ,N ; and the return of the wealth portfolio proxy Ra,s =

(1 − b̃a,s)dsRa,nd,s.

For the simulation of the T-bill return Rb,s, we draw on BarroBarro (20062006), who identifies partial

government default in 42% of the disasters that he finds in the GDP series of 35 countries.

Using this result, at the beginning of each disaster (that is, ds = 1 but ds−1 = 0), we draw a

government default indicator db,s from a Bernoulli distribution with a success probability

P(db,s = 1∣ds = 1, ds−1 = 0) = 0.42, which decides whether the T-bill return is affected by the

disaster. If db,s = 0, the T-bill will not contract. If db,s = 1, a contraction factor b̃b,s is drawn

in the same way as for the returns of the test assets, such that Rb,s = (1 − b̃b,s)db,sRb,nd,s. The

simulated excess returns then can be computed as Re
i,s = Ri,s −Rb,s, such that it becomes

possible to evaluate G(ϑ) in Equation (4.64.6).
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4.3 Identifying the IES

ThimmeThimme (20172017) points out that a joint estimation of the investor preference parameters that

relies exclusively on moment restrictions obtained from conditioning down the basic asset

pricing equations in (2.42.4) yields rather imprecise estimates of the IES. Although the moment

restrictions used in the present paper account for the possibility of disasters, they still conform

to the basic asset pricing equation with an Epstein-Zin SDF, and the caveat applies. We

therefore find it useful to identify and estimate the IES separately from β and γ, and through

moment restrictions that can be derived from a (second-order) log-linearization of the Euler

Equation (2.42.4) with the SDF in Equation (2.52.5). YogoYogo (20042004) shows that this procedure leads

to the following regression equation

ri,t+1 = µi +
1

ψ
∆ct+1 + ηi,t+1, (4.14)

where ri,t+1 = lnRi,t+1, and ∆ct+1 = lnCt+1 − lnCt. In addition, µi is a constant, and ηi,t+1 is a

zero mean disturbance term. The derivation implies that ηi,t+1 is correlated with ∆ct+1, such

that a linear projection of ri,t+1 on ∆ct+1 and a constant would not identify the IES. Instead,

the IES is identified according to the orthogonality conditions,

E((ri,t+1 − µi −
1

ψ
∆ct+1)zt) = 0, (4.15)

where zt consists of variables known at t (instrumental variables), which are correlated with

∆ct+1.1010

We adopt the instrumental variables approach to estimate the IES and use the log T-bill

return rb,t+1 = lnRb,t+1 in Equation (4.144.14), the twice-lagged log T-bill return, log consumption

growth, and a constant as instruments. The estimation is performed on the simulated

disaster-including data. Using a linear GMM with an identity weighting matrix, the IES

10 Estimation of the IES by GMM or two-stage least squares based on Equation (4.144.14) (or its reciprocal)
and the moment restrictions in Equation (4.154.15) began with Hansen and SingletonHansen and Singleton (19831983), was surveyed
by CampbellCampbell (20032003), and is critically discussed by YogoYogo (20042004).
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estimate ψ̂ must fulfill the first-order conditions:

⎡⎢⎢⎢⎢⎢⎣

−1 −ET (∆cs) −ET (rb,s)
ET (∆cs)

ψ̂2

ET (∆cs∆cs−2)
ψ̂2

ET (∆csrb,s−2)
ψ̂2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ET (rb,s) − µ̂b − 1

ψ̂
ET (∆cs)

ET (rb,s∆cs−2) − µ̂bET (∆cs−2) − 1

ψ̂
ET (∆cs∆cs−2)

ET (rb,srb,s−2) − µ̂bET (rb,s−2) − 1

ψ̂
ET (∆csrb,s−2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

(4.16)

which reflect HansenHansen’s (19821982) notation ET (⋅) = 1
T ∑

T
s=1(⋅). The estimation of the IES is

appropriate when performed separately from that of the subjective discount factor and the

RRA coefficient, which are estimated using Equation (4.74.7) with ψ̂ held fixed, but it also is

possible to augment Equation (4.64.6) with the IES-identifying moment matches of Equation

(4.164.16) to obtain:

G+(ϑ̃) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
T ∑

T
t=1 β

θcg
− θ
ψ

nd,tR
θ−1
a,nd,tRb,nd,t −

⎡⎢⎢⎢⎢⎢⎢⎣

1−ET
⎛
⎝
βθcg

−
θ
ψ

s Rθ−1a,s Rb,sds
⎞
⎠

1−DT
T

⎤⎥⎥⎥⎥⎥⎥⎦

1
T ∑

T
t=1 β

θcg
− θ
ψ

nd,tR
θ−1
a,nd,tR

e
nd,t −

⎡⎢⎢⎢⎢⎢⎢⎣

−ET
⎛
⎝
βθcg

−
θ
ψ

s Rθ−1a,s Re
sds
⎞
⎠

1−DT
T

⎤⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣

−1 −ET (∆cs) −ET (rb,s)
ET (∆cs)

ψ2
ET (∆cs∆cs−2)

ψ2

ET (∆csrb,s−2)
ψ2

⎤⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ET (rb,s) − µb − 1
ψET (∆cs)

ET (rb,s∆cs−2) − µbET (∆cs−2) − 1
ψET (∆cs∆cs−2)

ET (rb,srb,s−2) − µbET (rb,s−2) − 1
ψET (∆csrb,s−2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.17)

where ϑ̃ = (β, γ,ψ,µb)′. The SMM-type estimates of the preference parameters are then

obtained by:

ˆ̃ϑ = arg min
ϑ̃∈Θ̃

G+(ϑ̃)′WG+(ϑ̃). (4.18)

Choosing W such that a large weight is placed on the last two moment matches in Equation

18



(4.174.17) ensures that the IES will be identified by Equation (4.164.16). In particular, we use

W =

⎡⎢⎢⎢⎢⎢⎢⎣

IN+1 0

0 106 × I2

⎤⎥⎥⎥⎥⎥⎥⎦

. (4.19)

Because of the two-step approach, standard inference is not available for the second-step

estimates, though we could rely on asymptotic maximum likelihood inference about the first-

step ACH-PL estimates. Therefore, we combine a parametric and non-parametric bootstrap

to obtain the standard errors and confidence intervals of the preference parameter estimates.

The bootstrap procedure is detailed in Section A.2A.2 of the Appendix.

5 Empirical results

5.1 First-step estimation results

Table 33 reports the maximum likelihood estimates of the ACH-PL parameters and the

Akaike (AIC) and Schwarz-Bayes (SBC) information criteria for various ACH specifications

that emerge as special cases of the hazard rate specification in Equation (2.162.16). The most

comprehensive alternative, referred to as ACH1, estimates all parameters in Equation (2.162.16).

The most parsimonious parametrization, referred to as ACH0, corresponds to the hazard rate

in Equation (2.142.14), such that only the baseline hazard parameters µ and µ̃ are estimated

(while δ = δ̃ = α = α̃ = 0). The ACH2 specification allows (only) for an effect of the durations

between disasters and the disaster length on the hazard rate (while δ = δ̃ = 0), and the ACH3

allows (only) the magnitude of the previous disaster and the size of the contraction of the

previous disaster period to affect the hazard rate (while α = α̃ = 0). In the ACH4 specification,

the aggregate size of the previous disaster has an effect on the hazard rate, but the contraction

of the previous disaster period does not (i.e., δ̃ = α = α̃ = 0).

[insert Table 33 about here]
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Table 33 shows that the AIC favors the ACH4, but the SBC prefers the ACH0, for which the

baseline hazard parameter estimates µ̂ and ˆ̃µ are highly significant. The estimates of µ̃ and δ

in the ACH4 specification are significant at the 5% level, but the baseline hazard parameter µ

is reduced in size and significance. Moreover, the likelihood-ratio statistics reported in Table

33 indicate that the constraints implied by the SBC-preferred ACH0, at the 1% significance

level, are only rejected in the case of the AIC-preferred ACH4. Therefore, the subsequent

analysis is confined to ACH0 and ACH4.

We obtain maximum likelihood estimates of the ACH0 parameters equal to ˆ̃µ = 178.3 and

µ̂ = 1.2. These estimates imply a probability of entering a disaster from a non-disaster period

of about 0.56%, and a probability of remaining in a disaster that is equal to 83%. Because

we use these estimates as a foundation for the second estimation step, it is prudent to check

their economic plausibility in advance. Accordingly, we use the ACH0 and ACH4 estimates

to simulate disaster-including consumption time series with a number of observations that

corresponds to the sample period, 1947:Q2-2014:Q4. The simulation is repeated 10k times,

and we count the number of replications for which no disastrous consumption contraction

occurs. The ACH0 specification yields 21.9%, the ACH4 14.1% disaster-free replications. The

estimated disaster-including consumption process thus implies that U.S. postwar history

represents a lucky but not unlikely path, and the model-implied disaster probabilities are not

implausibly large.

[insert Figure 22 about here]

Table 33 also shows that the estimates of the power law coefficients θPL and θ+PL are similar,

so the distribution of contractions that occur before reaching the disaster threshold q is

not very different from the distribution of contractions that occur after q is reached. The

estimates θ̂PL and θ̂+PL have encouragingly small standard errors. Figure 22 depicts the cdf of

the power law distribution and the empirical cdf of quarterly contractions. Figure 2a2a uses the

estimate θ̂+PL and illustrates the fit for contractions that contribute to reaching the disaster
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threshold; Figure 2b2b uses θ̂PL and refers to contractions that add on top of the disaster

threshold. In both cases, the fit is quite good.

5.2 Second-step estimation results

Table 44 reports the second-step estimation results based on the SBC-preferred ACH0-PL and

the AIC-preferred ACH4-PL first-step estimates. The estimation uses different sets of test

assets and copula correlation coefficients. It is based on the moment matches in Equation

(4.174.17), using the weighting matrix in Equation (4.194.19), and T =107. The table contains the

point estimates of the preference parameters β, γ, and ψ and their bootstrap standard errors,

as well as the associated 95% confidence bounds. These bounds are computed using the

percentile method, meaning that they accord with the 0.025 and 0.975 quantiles of the

respective bootstrap distribution.1111 Furthermore, the Table 44 shows the p-values of Hansen’s

(19821982) J-statistic,

J = G(ϑ̂)′Âvar(G[ϑ̂])+G(ϑ̂), (5.1)

where + denotes the Moore-Penrose inverse, which is approximately χ2(N + 1) under the null

hypothesis that the financial moment restrictions are correct. The root mean squared errors

(RMSEs; reported in Table 44) are computed as

R =
√

1

N + 1
G(ϑ̂)′G(ϑ̂) × 104. (5.2)

When using only the market portfolio and the T-bill return as test assets, the number

of moment restrictions is equal to the number of estimated parameters, so empirical and

simulated moments are perfectly matched.1212

[insert Table 44 about here]

11 More formally, for a parameter ϑ, the α-quantile is computed as Ĝ−1(α), where Ĝ(ϑ̂) = ∑
K
k=1 1(ϑ̂(k)<ϑ̂)

K
.

12 In this case, the RMSE is 0, and R and the J-statistic are not reported.
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Table 44 shows that all variants for estimating a disaster-including C-CAPM yield eco-

nomically plausible estimates for the preference parameters. The subjective discount factor

estimates are smaller but close to 1, as would be expected of an investor with a plausible

positive rate of time preference. The estimates of the subjective discount factor range between

0.9915 and 0.9948. The RRA estimates are between 1.50 and 1.65, well within the plausibility

interval mentioned by CochraneCochrane (20052005). The estimated IES is larger than 1, ranging between

1.50 and 1.68. The inverse of the estimated IES is always smaller than the RRA estimate,

which indicates a preference for an early resolution of uncertainty. Previous literature has

pointed out that the inequality γ > 1/ψ is crucial for obtaining meaningful asset pricing

implications (as detailed subsequently).1313

The choice of the test assets, the copula correlation, and the first-step ACH-PL specification

exert only minor effects on the size of the preference parameter estimates. The IES estimates

based on ACH4-PL are slightly bigger than those implied by ACH0-PL. Using only the market

portfolio and the T-bill return as test assets, the RRA coefficient and IES estimates tend

to be a bit smaller than the estimates based on industry and size-sorted portfolios. Using

the ACH0-PL first-step estimates yields a slightly smaller RMSE than using the ACH4-PL

estimates.

In all instances, the estimation precision is more than satisfactory, as indicated by the

small bootstrap standard errors and the narrow confidence bounds. It is noteworthy that the

confidence bounds for the RRA estimates also fall within the stricter plausibility range, and

the lower bound of the 95% confidence interval for the IES is above unity too. Regarding

the subjective discount factor estimate β̂, the upper confidence bound is sometimes larger

than 1, but given that quarterly time preferences should to be very close to 1, this finding is

not surprising. The p-values of the J-statistic indicate that the disaster-including C-CAPM

cannot be rejected at conventional significance levels.

13 It is worth noting that the estimation of ψ by reversing the regression in Equation (4.144.14) also yields an IES
estimate greater than 1. As noted by YogoYogo (20042004), such robustness cannot be expected when disaster-free
data are used for IES estimation.
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Compared with other prominent studies that assess empirical support for the C-CAPM

paradigm, these results are certainly encouraging. Julliard and ParkerJulliard and Parker (20052005), for example,

aggregate consumption over multiple periods and obtain an RRA estimate of plausible

magnitude (γ̂=9.1) but only moderate estimation precision (s.e.=17.2). By measuring

consumption with waste, SavovSavov (20112011) obtains an RRA estimate of γ̂=17.0 with a rather large

standard error (s.e.=9.0). In both studies, the subjective discount factor is calibrated, with

an assumption of additive power utility (such that γ = 1/ψ). YogoYogo (20062006) splits consumption

into a durable and a non-durable component and assumes Epstein-Zin preferences, as in the

present study. His smallest RRA estimate is γ̂=174.5 (s.e.=23.3), and the IES estimates

reach ψ̂=0.024 (s.e.=0.009) at most.

5.3 Asset pricing implications

When assessing whether an empirical C-CAPM implies meaningful asset pricing implications,

the magnitude and relative size of the subjective discount factor, relative risk aversion, and

the IES all play important roles. The relative size of the RRA coefficient and the IES reflected

in the parameter θ = 1−γ
1− 1

ψ

, which shows up in the Epstein-Zin SDF in Equation (2.52.5), is

particularly important. If γ = 1
ψ , then θ = 1, the investor is indifferent to an early or late

resolution of uncertainty, and the case of standard expected utility obtains. If γ > 1
ψ , the

agent has a preference for an early resolution of uncertainty, which is intuitively appealing,

unless we were to resort to behavioral explanations (e.g. hope, fear).

The C-CAPM literature, and in particular the branch concerned with long-run risk,

argues that an IES greater than unity combined with a preference for early resolution of

uncertainty are necessary to explain the key features of asset prices (e.g., Bansal and YaronBansal and Yaron

(20042004); Huang and ShaliastovichHuang and Shaliastovich (20152015)). When risk aversion is greater than unity, θ should

be negative.1414 Therefore, calibration studies tend to combine moderate risk aversion with an

IES>1 to illustrate the explanatory power of the asset pricing model (e.g. Bansal and YaronBansal and Yaron

14 An alternative interpretation of θ is given by Hansen and SargentHansen and Sargent (20102010), where a θ < 0 captures the
agent’s aversion to model mis-specification.
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(20042004) assume γ=10 and ψ=1.5), yet none of the previously cited empirical C-CAPM studies

reports conforming RRA and IES estimates. Rather, the IES point estimate in most empirical

studies is smaller than 1 (see the meta-analysis by HavránekHavránek (20152015); survey by ThimmeThimme

(20172017)).

Table 55 reports the ACH0-PL-based, model-implied estimates of θ. We observe that

for the alternative sets of test assets and choices of the copula correlation, θ̂ is always

negative. Moreover, the confidence bounds reveal that the hypothesis that θ > 0 can be

rejected at conventional significance levels, so there is empirical evidence for early resolution

of uncertainty, along with an IES greater than 1. According to the previous reasoning, the

empirical disaster-including C-CAPM thus should yield meaningful asset pricing implications.

We test whether the model-implied mean market portfolio and T-bill return, the equity

premium, and the market Sharpe ratio are economically plausible. To estimate the model-

implied mean T-bill return and mean market return, we approximate the population moments

by averaging over the T simulated observations, such that

Ê(Rb) =
1 − covT (m(β̂, γ̂, ψ̂),Rb)

ET (m(β̂, γ̂, ψ̂))
, (5.3)

and

Ê(Ra) =
1 − covT (m(β̂, γ̂, ψ̂),Ra)

ET (m(β̂, γ̂, ψ̂))
, (5.4)

where m(β̂, γ̂, ψ̂) is the Epstein-Zin SDF in Equation (2.52.5) evaluated according to the

parameter estimates presented in Table 44, and covT (x, y) = ET (xy) − ET (x)ET (y). The

model-implied equity premium can be estimated by Ê(Ra) − Ê(Rb), and the model-implied

Sharpe ratio by

Ê(Ra) − Ê(Rb)
σT (Ra −Rb)

, (5.5)

where σT =
√
ET (x2) −ET (x)2. Performing the computation for each of the bootstrap

replications accounts for parameter estimation uncertainty.
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Table 55 contains the estimates of these model-implied financial indicators along with the

95% confidence interval bounds obtained by the percentile method. The panels break down

the results by choice of the copula correlation parameter; each panel reports the estimates for

the three sets of test assets. The column labeled data reports the values of the indicators in

the sample period 1947:Q2-2014:Q4.

[insert Table 55 about here]

Table 55 shows that the magnitude of the model-implied equity premium, mean T-bill

return, and the market Sharpe ratio are perfectly plausible and comparable to their sample

equivalents. This finding is robust with respect to the choice of the copula correlation

coefficient and the set of test assets. The model-implied Ê(Rb) and Ê(Ra) are somewhat

smaller than the average T-bill return and the market return in the empirical data, because

the model-implied indicators account for the possibility of consumption disasters that affect

the simulated moments, whereas the empirical data do not contain any disaster observation.

However, the observed mean T-bill, mean market return, and equity premium lie within the

95% confidence interval bounds, which account for the first- and second-step estimation error.

When using only the market portfolio and the T-bill as test assets, the model is exactly

identified, which seemingly could drive the favorable results. However, exact identification

does not imply that the empirical mean market return and mean T-bill return must be

matched by their model-implied counterparts. When using the size dec or industry portfolios,

the market portfolio is not even among the set of test assets. These specifications serve as

an out-of-sample plausibility test. In these instances, Ê(Ra) and the model-implied equity

premium are still perfectly plausible and comparable to their empirical counterparts. In all

instances, the confidence intervals overlap the empirically observed values.

The meaningful asset pricing implications of the estimated disaster-including C-CAPM

show that the model can explain the considerable postwar equity premium and the relatively

low T-bill return with plausible investor preferences. Unlike in previous studies of the rare

disaster hypothesis, risk aversion, time preferences, and IES are not calibrated, i.e. conveniently
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chosen, but rather are obtained from the application of an econometric estimation strategy.

These results thus provide new empirical evidence that the rare disaster hypothesis offers a

solution to the equity premium puzzle.

5.4 Implied timing premium

The aforementioned inequality γ > 1
ψ holds for the parameter selections in many calibration

exercises of popular asset pricing models, such as Bansal and YaronBansal and Yaron’s (20042004) long-run risk

model or BarroBarro’s (20092009) rare disaster model, which require ψ > 1 to ensure plausible model

implications.1515 Using the calibrated parameters and the dynamics of the respective consump-

tion process, Epstein et al.Epstein et al. (20142014) provide an empirical assessment of the fraction of lifetime

consumption that investors would be willing to give up in order for all risk to be resolved in

the next period.

[insert Table 66 about here]

Table 66 contains these timing premia (π∗) for varying asset pricing models and parameter

specifications. In the example of BarroBarro’s (20092009) single-period disaster model calibrated with

γ = 4 and ψ = 2, investors would be willing to renounce 18% of their lifetime consumption

to suspend uncertainty. For models that feature a higher persistence of the consumption

process, the timing premia even increase (23% for Bansal and YaronBansal and Yaron’s (20042004) long-run risk

model and 42% for the persistent rare disaster model of WachterWachter (20132013)). These premia are

surprisingly high considering the fact that Epstein et al.Epstein et al.’s (20142014) study focuses on consumption

uncertainty. When considering consumption uncertainty, as opposed to income uncertainty,

there is no immediate planning advantage for the investor to be taken from knowing her

future consumption in advance. Epstein et al.Epstein et al. (20142014) argue that the timing premium could

be lowered to a plausible level by calibrating ψ close to the inverse of γ, which in turn would

imply ψ < 1.

15 E.g., ψ < 1 would result in a high level and volatility of the risk-free rate in Bansal and YaronBansal and Yaron (20042004) and
imply a positive correlation between economic uncertainty and price-dividend ratios in BarroBarro (20092009).
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We replicate Epstein et al.Epstein et al.’s (20142014) study using the multi-period disaster consumption

process described previously and the preference parameter estimates presented in Table 44.1616

The resulting timing premium of 0.9% is obtained with both γ̂ and ψ̂ larger than but relatively

close to unity, thereby reconciling plausible estimates of the preference parameters with a high

model-implied equity premium (see Table 55) and a small timing premium. As a comparison,

we reconsider BarroBarro’s (20092009) single-period disaster model with our RRA coefficient and IES

estimates, which reduce π∗ from 18% to 1.9%. Thus, it is possible to unify γ and ψ both

being larger than 1 with a small timing premium if the RRA coefficient is sufficiently small.

This level of risk aversion, however, does not suffice to explain the size of the equity premium

in BarroBarro’s (20092009) calibrations.

5.5 Robustness checks

As robustness check, we perform bias corrections on the parameter estimates and confidence

bounds, and report the results in Table 77. Following Efron and TibshiraniEfron and Tibshirani (19861986), we compute

bias-corrected estimates of a parameter ϑ as ϑ̂BC = 2ϑ̂ − 1
K ∑

K
k=1 ϑ̂

(k). The lower and upper

bounds of the bias-corrected 1−α confidence interval are computed as ϑlBC(α) = Ĝ−1[Φ(zα/2 +

2Φ−1[Ĝ(ϑ̂)])] and ϑuBC(α) = Ĝ−1[Φ(z1−α/2 + 2Φ−1[Ĝ(ϑ̂)])], respectively, where Φ denotes the

cdf, Φ−1 is the quantile function, and zα̃ is the α̃-quantile of the standard normal distribution.1717

Comparing the results in Table 77 with those in Table 44, we find that in all instances, the

corrections are rather benign. The similarity of the the bias-corrected estimates and confidence

intervals to the uncorrected counterparts offers a sign of robustness.

[insert Table 77 about here]

A second robustness check investigates the effect of varying the disaster threshold q.

Panel A of Table 88 uses q=0.095, and Panel B reports the results for q=0.195. These

16 We thank the authors for making their code available.
17 According to this notation, the uncorrected confidence bounds in Table 44 are computed as ϑl(α) =
Ĝ−1[Φ(zα/2)] and ϑu(α) = Ĝ−1[Φ(z1−α/2)].
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values are chosen in accordance with Barro and JinBarro and Jin (20112011) and feature prominently in rare

disaster literature. The results in Table 88 convey that the choice of q barely affects the

parameter estimates; this finding may seem surprising at first, but it is a consequence of

the multi-period character of the disasters. The effects of different choices of q enter the

data simulation procedure through the ACH-PL estimates θ̂ACH and θ+PL, θPL, obtained

from quarterly (contraction) data that have been computed from annual (disaster) periods.

Because θ+PL and θPL contain information about the distribution of quarterly contractions,

they could vary strongly with q only if the distribution of the annual contraction sizes of

disasters detected with a threshold of 0.095 were pronouncedly different from that of disasters

that had been detected with q=0.195. This was not the case.

[insert Table 88 about here]

Therefore, the estimation results are robust with respect to alternative data simulation

procedures, test assets, and disaster thresholds. The fact that they are also quite unbiased

serves as a further recommendation.

6 Conclusion

Empirical tests of Hansen and SingletonHansen and Singleton’s (19821982) canonical C-CAPM have been notoriously

disappointing. Yet the model approach cannot be easily discarded, because it represents

a rational link between the real economy and financial markets, such that many attempts

have been made to vindicate the C-CAPM paradigm. Within the canonical time-additive

power-utility C-CAPM, scaled factors have been constructed to account for time-varying risk

aversion (Lettau and LudvigsonLettau and Ludvigson (20012001)) and alternative measures for the errors-in-variables-

prone consumption data have been employed (e.g., Julliard and ParkerJulliard and Parker (20052005); YogoYogo (20062006);

SavovSavov (20112011)). The main theoretical extensions of the canonical C-CAPM focus on investor

heterogeneity (Constantinides and DuffieConstantinides and Duffie (19961996)), habit formation (Campbell and CochraneCampbell and Cochrane

(19991999)), and long-run-risks (Bansal and YaronBansal and Yaron (20042004)). Although these efforts can claim some
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empirical success, the problem of implausible and imprecise preference parameter estimates

and problematic asset pricing implications of the estimated model (e.g. too low model-implied

equity premium, too high risk-free rate) has been mitigated at best.

RietzRietz (19881988) has offered another explanation for the model’s poor empirical performance:

the rare disaster hypothesis, according to which the apparent failure of the C-CAPM is a

consequence of the positive path that the U.S. economy took after World War II. However,

this path may not be representative of the potentially disastrous future consumption that

investors in the 1950s to 1980s had in mind. In the middle of the Cold War, the benign U.S.

consumption path was just one among multiple more unfavorable histories.

This study adopts BarroBarro’s (20062006) specification of a disaster-including consumption process

and derives moment restrictions that facilitate the estimation of a disaster-including C-CAPM

by an SMM-type strategy. The approach presented herein takes into account three main

drawbacks of previous studies that aim to test the rare disaster hypothesis empirically. First,

we allow for multi-period disasters. It has been argued that the success of the rare disaster

hypothesis in calibration studies relies on the assumption that the entire disastrous contraction

occurs in one period (see Julliard and GhoshJulliard and Ghosh (20122012); Constantinides (20082008)). Second, we use

Epstein-Zin preferences instead of a power utility to acknowledge preferences for an early

resolution of uncertainty. Third, we allow for the possibility of a partial government default.

Accounting for these three issues is crucial for finding empirical support for the RDH.

For an SMM-type estimation, we simulate disaster-including consumption growth and

return series by means of a discrete-time marked point process that models the time duration of

and between disasters, as well as the magnitude of contractions using a power law distribution.

Parameter estimates of the MPP model are obtained through maximum likelihood, using

chained country-panel data. Neither the choice of test assets nor the disaster thresholds

change the results qualitatively: The magnitude of the estimated preference parameters is

economically plausible, and the estimation precision is much higher than in previous C-CAPM

studies. The subjective discount factor estimate is about 0.99 in all specifications; the RRA
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estimates (and 95% confidence bounds) fall within a strict plausibility range, and the IES

parameter estimates are significantly greater than unity. The relative magnitude of the

estimated IES and RRA indicate a preference for early resolution of uncertainty, which, in

conjunction with an IES greater than unity, is an important condition for obtaining meaningful

asset pricing implications. Computing the model-implied mean market return, T-bill rate,

and market Sharpe ratio reveals that the disaster-including C-CAPM can explain these key

financial indicators based on economically meaningful preference parameter estimates.

To the best of our knowledge, the present study is the first research to estimate all the

preference parameters of a C-CAPM with Epstein-Zin preferences and multi-period disasters.

It corroborates the notion that the rare disaster hypothesis can provide a solution to the

equity premium puzzle, even when disasters do not shrink to one-period events. The nexus

between finance and the real economy postulated by the C-CAPM is, after all, empirically

not refuted.
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A Appendix

A.1 Transformation of annual into quarterly consumption contrac-

tions

The ACH-PL model assumes a quarterly observation frequency. To obtain four quarterly

contractions from an annual observation, we draw from a standard uniform distribution and

determine the fraction of the annual contraction that is assigned to the first quarter. How

much of the remaining contraction is allocated to the second quarter is determined by another

standard uniform draw. The contraction assigned to the third quarter is determined the

same way. The last quarter takes what is left. This procedure implies that the contraction in

the first (last) quarter will be the largest (smallest), on average. To avoid such a seasonal

pattern, we re-shuffle the four quarterly contractions randomly. This procedure applies to a

year that is not the first or the last of a disaster. When dealing with the first (last) year of a

disaster, or if the disaster consists of only one annual contraction, we determine the quarter

when the contraction begins (ends) by a draw from a discrete uniform distribution, such that

each quarter has a 1/4 probability of becoming the quarter when the disaster begins (ends).

The annual contraction is then distributed across the disaster quarters in a way analogous to

the method used for a “within” disaster year.

A.2 Bootstrap inference

Bootstrap inference for the second-step preference parameter estimates is based on a mix of

parametric and non-parametric bootstraps. Using the first-step maximum likelihood estimates

θ̂ACH , θ̂PL, and θ̂+PL, we simulate a series of hazard rates, consumption contractions, and

disaster indicators ds and d+s as described in Section 4.24.2. The length of the simulated series

is equal to the number of observations in the concatenated country data. Next, θACH and

θPL are re-estimated on the simulated series. These steps are repeated K times, and the

estimates are collected in {θ̂
(k)
ACH , θ̂

(k)
PL, θ̂

+(k)
PL }Kk=1. Because we draw from the parametric ACH-
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PL distribution using the maximum likelihood estimates, this procedure can be characterized

as a parametric bootstrap. It complements the asymptotic inference that is available for the

first estimation step, but it is also crucial input for inference about the second-step SMM

estimates of the preference parameters.

For each of the K replications, we perform a block-bootstrap to obtain series of non-

disastrous consumption growth {cg(k)nd,l}Tl=1, market and T-bill returns {R(k)nd,a,l}Tl=1, {R(k)nd,b,l}Tl=1,

and test asset returns {R(k)nd,i,l}Tl=1 . As described previously, we determine the mean of the

geometric distribution, from which the block-lengths are drawn using Politis et al.Politis et al.’s (20092009)

automatic block-length selection algorithm. The length of the bootstrap data series (T ) is

the same as in the original financial and macro data. Draws from the series are exerted

simultaneously to retain their contemporaneous dependence (see Maio and Santa-ClaraMaio and Santa-Clara (20122012)

for a similar approach).

To compute the simulated moments for each replication, we proceed as described in

Section 4.24.2 and generate disaster-including data of length T , {cg(k)s }Ts=1, {R(k)i,s }Ts=1, {R(k)b,s }Ts=1,

and {R(k)a,s }Ts=1. For that purpose, we use the parametric bootstrap estimates θ̂
(k)
ACH , θ̂

(k)
PL, and

θ̂
+(k)
PL obtained from the maximum likelihood estimation on the simulated data (instead of the

original data). The block-bootstrap from non-disastrous data that is required to compute

the simulated moments is performed on {cg(k)nd,l}Tl=1, {R(k)nd,a,l}Tl=1, {R(k)nd,b,l}Tl=1, and {R(k)nd,i,l}Tl=1

(instead of the original data). Then the SMM-type estimation of the preference parameters

β, γ, and ψ proceeds as described in Section 2.12.1 . Performing these steps for each of the K

replications yields {β̂(k), γ̂(k), ψ̂(k)}Kk=1, for which standard deviations and confidence intervals

using the percentile method can be computed.
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Tables and Figures

Table 1: Country panel data used for the first-step estimation
This table lists the 35 countries and time periods with available data that provide the basis for the ACH-
PL estimation. The second column reports the time periods for which consumption data assembled by
Barro and UrsúaBarro and Ursúa (20082008) are available (beginning with 1800 onwards).

Country Barro and UrsúaBarro and Ursúa

Argentina 1875 − 2009
Australia 1901 − 2009
Austria 1913 − 1918, 1924 − 1944, 1947 − 2009
Belgium 1913 − 2009
Brazil 1901 − 2009
Canada 1871 − 2009
Chile 1900 − 2009
Colombia 1925 − 2009
Denmark 1844 − 2009
Finland 1860 − 2009
France 1824 − 2009
Germany 1851 − 2009
Greece 1938 − 2009
India 1919 − 2009
Indonesia 1960 − 2009
Italy 1861 − 2009
Japan 1874 − 2009
Malaysia 1900 − 1939, 1947 − 2009
Mexico 1900 − 2009
the Netherlands 1807 − 1809, 1814 − 2009
New Zealand 1878 − 2009
Norway 1830 − 2009
the Philippines 1946 − 2009
Peru 1896 − 2009
Portugal 1910 − 2009
South Korea 1911 − 2009
Spain 1850 − 2009
Sri Lanka 1960 − 2009
Sweden 1800 − 2009
Switzerland 1851 − 2009
Taiwan 1901 − 2009
UK 1830 − 2009
USA 1834 − 2009
Uruguay 1960 − 2009
Venezuela 1923 − 2009
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Table 2: Descriptive statistics: Consumption and test asset returns 1947:Q2–2014:Q4
This table contains the descriptive statistics of consumption growth and gross returns of the three sets of
test assets. Panel A: CRSP value-weighted market portfolio Ra and T-bill return Rb (mkt); Panel B: ten
size-sorted portfolios and Rb (size dec); Panel C: ten industry portfolios and Rb (industry). The data range is
1947:Q2–2014:Q4. In Panel B, 1st, 2nd, and so on refer to the deciles of the the ten size-sorted portfolios. The
ten industry portfolios in Panel C are: non-durables (NoDur : food, textiles, tobacco, apparel, leather, toys),
durables (Durbl : cars, TVs, furniture, household appliances), manufacturing (Manuf : machinery, trucks,
planes, chemicals, paper, office furniture), energy (Engry : oil, gas, coal extraction and products), business
equipment (HiTec: computers, software, and electronic equipment), telecommunication (Telcm: telephone
and television transmission), shops (Shops: wholesale, retail, laundries, and repair shops), health (Hlth:
healthcare, medical equipment, and drugs), utilities (Utils), and others (Other : transportation, entertainment,
finance, and hotels). The column labeled ac gives the first-order autocorrelation, and std is the standard
deviation.

Panel A: mkt
mean std ac correlations

Ct+1
Ct

Rb

market 1.0211 0.0816 0.084 0.175 0.026

Rb 1.0017 0.0045 0.857 0.204
Ct+1
Ct

1.0048 0.0051 0.311

Panel B: size dec
mean std ac correlations

Ct+1
Ct

Rb 10th 9th 8th 7th 6th 5th 4th 3rd 2nd

1st 1.0290 0.1251 0.061 0.178 -0.015 0.711 0.818 0.857 0.884 0.895 0.912 0.931 0.949 0.964

2nd 1.0271 0.1177 -0.001 0.172 0.005 0.781 0.871 0.915 0.933 0.947 0.961 0.974 0.982

3rd 1.0287 0.1115 -0.024 0.165 -0.001 0.818 0.907 0.943 0.956 0.968 0.976 0.985

4th 1.0270 0.1072 -0.018 0.165 0.002 0.830 0.914 0.948 0.962 0.976 0.983

5th 1.0274 0.1036 0.013 0.167 0.019 0.855 0.936 0.967 0.972 0.982

6th 1.0262 0.0971 0.019 0.143 0.001 0.868 0.946 0.970 0.977

7th 1.0262 0.0964 0.042 0.157 0.009 0.892 0.965 0.982

8th 1.0249 0.0923 0.022 0.145 0.019 0.906 0.975

9th 1.0237 0.0841 0.068 0.148 0.021 0.935

10th 1.0198 0.0767 0.119 0.178 0.043

Panel C: industry

mean std ac correlations

Ct+1
Ct

Rb Other Utils Hlth Shops Telcm HiTec Engry Manuf Durbl

NoDur 1.0238 0.0811 0.047 0.090 0.105 0.838 0.674 0.800 0.871 0.656 0.642 0.445 0.829 0.685

Durbl 1.0236 0.1156 0.103 0.190 0.009 0.801 0.484 0.520 0.773 0.581 0.690 0.490 0.832

Manuf 1.0229 0.0899 0.082 0.173 0.014 0.901 0.580 0.745 0.825 0.647 0.807 0.635

Engry 1.0253 0.0888 0.041 0.163 -0.039 0.592 0.534 0.423 0.422 0.432 0.497

HiTec 1.0258 0.1159 0.070 0.167 -0.000 0.758 0.470 0.663 0.733 0.659

Telcm 1.0187 0.0805 0.148 0.099 0.104 0.695 0.627 0.568 0.668

Shops 1.0238 0.0957 0.039 0.158 0.044 0.837 0.557 0.704

Hlth 1.0271 0.0909 0.054 0.092 0.085 0.726 0.542

Utils 1.0195 0.0711 0.080 0.069 0.071 0.655

Other 1.0217 0.0982 0.078 0.159 0.034
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Table 3: Estimation results for the ACH-PL model
This table reports the ACH-PL maximum likelihood estimates. Here, L is the log-likelihood value at the
maximum; AIC = 2k − 2 ln(L) and SBC = −2 lnL+ k ln(T ), where k is the number of ACH model parameters,
denote the Akaike and Schwarz-Bayes information criteria, respectively. Furthermore, LR gives the p-values
(in percent) of the likelihood ratio tests of the null hypothesis that the parameter restrictions implied by
the ACH0 specification are correct. The respective alternative is the ACH1, the ACH2, the ACH3, or the
ACH4 model. The estimation results are based on the updated country panel data originally assembled
by Barro and UrsúaBarro and Ursúa (20082008), using the concatenated event data representation described in Section 33 and
q = 0.145. Asymptotic standard errors are reported in parentheses.

θ+PL θPL µ µ̃ α α̃ δ δ̃ L AIC SBC LR

ACH0 178.3 1.201 -790.3 1584.7 1600.1
(18.8) (0.023)

ACH4 64.9 1.201 441.1 -787.0 1580.0 1603.2 <1.0
(49.3) (0.023) (211.5)

ACH3 64.9 1.214 441.1 -0.375 -786.8 1581.5 1612.5 2.9
(49.3) (0.032) (211.5) (0.537)

ACH2 198.7 1.221 -0.145 -0.002 -789.9 1587.7 1618.7 63.5
(30.9) (0.052) (0.153) (0.004)

ACH1 71.4 1.237 -0.030 -0.002 431.0 -0.399 -786.6 1585.3 1631.7 11.8
(55.0) (0.058) (0.161) (0.004) (120.4) (0.542)

PL 37.255 35.687
(1.478) (1.696)
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Table 4: SMM estimates of the C-CAPM preference parameters
This table reports the estimates of the subjective discount factor β, the coefficient of relative risk aversion γ, and the IES ψ using the moment matches
in Equation (4.174.17), T =107, and the weighting matrix in Equation (4.194.19). The second-step SMM-type estimates are based on the first-step ACH4-PL
and ACH0-PL estimates, reported in Table 33. The numbers in parentheses are bootstrap standard errors. The numbers in brackets are the upper and
lower bounds of the 95% confidence intervals computed as the α=0.025 and α=0.975 quantiles of the bootstrap distribution (percentile method). The
table also reports the p-values (in percent) of Hansen’s (19821982) J-statistic (see Equation (5.15.1)) and root mean squared errors (R), computed according
to Equation (5.25.2). Panels A-C break down the results by the copula correlation assumed in the data simulation procedure. Each panel reports the
results by the set of test assets, namely, the excess returns of mkt, size dec, and industry, each augmented by the T-bill return.

Panel A: ρ =Corr(cgnd,t,Rnd,t)
mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ J R β̂ γ̂ ψ̂ J R

ACH0 0.9917 (0.0022) 1.51 (0.30) 1.50 (0.15) 0.9939 (0.0047) 1.60 (0.29) 1.50 (0.15) 83.5 9 0.9944 (0.0038) 1.62 (0.32) 1.50 (0.15) 11.7 39
[0.9872 0.9957] [1.10 2.29] [1.31 1.88] [0.9864 1.0052] [1.24 2.34] [1.29 1.88] [0.9887 1.0032] [1.20 2.44] [1.29 1.88]

ACH4 0.9920 (0.0023) 1.54 (0.30) 1.67 (0.15) 0.9945 (0.0052) 1.63 (0.29) 1.65 (0.16) 68.7 11 0.9947 (0.0071) 1.64 (0.31) 1.65 (0.16) 7.2 40
[0.9872 0.9960] [1.08 2.33] [1.31 1.87] [0.9862 1.0057] [1.22 2.40] [1.28 1.87] [0.9891 1.0035] [1.17 2.40] [1.28 1.86]

Panel B: ρ = 0.99

mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ J R β̂ γ̂ ψ̂ J R

ACH0 0.9915 (0.0022) 1.51 (0.30) 1.51 (0.15) 0.9938 (0.0047) 1.61 (0.29) 1.51 (0.15) 83.3 9 0.9942 (0.0038) 1.62 (0.32) 1.51 (0.15) 11.9 39
[0.9870 0.9957] [1.09 2.26] [1.31 1.88] [0.9861 1.0051] [1.24 2.34] [1.29 1.87] [0.9885 1.0031] [1.20 2.43] [1.29 1.87]

ACH4 0.9917 (0.0023) 1.54 (0.31) 1.68 (0.15) 0.9942 (0.0067) 1.64 (0.29) 1.67 (0.15) 68.2 11 0.9944 (0.0053) 1.65 (0.32) 1.67 (0.16) 7.6 40
[0.9869 0.9959] [1.05 2.32] [1.30 1.87] [0.9864 1.0061] [1.19 2.33] [1.29 1.87] [0.9883 1.0035] [1.17 2.46] [1.28 1.87]

Panel C: ρ = 0

mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ J R β̂ γ̂ ψ̂ J R

ACH0 0.9917 (0.0022) 1.51 (0.30) 1.50 (0.15) 0.9939 (0.0047) 1.60 (0.29) 1.50 (0.15) 83.5 9 0.9944 (0.0038) 1.62 (0.32) 1.50 (0.15) 11.7 39
[0.9871 0.9959] [1.10 2.28] [1.31 1.88] [0.9863 1.0052] [1.24 2.34] [1.29 1.88] [0.9887 1.0032] [1.20 2.44] [1.29 1.88]

ACH4 0.9920 (0.0024) 1.54 (0.30) 1.66 (0.15) 0.9945 (0.0050) 1.63 (0.28) 1.64 (0.16) 68.7 11 0.9948 (0.0069) 1.64 (0.31) 1.64 (0.15) 7.2 40
[0.9872 0.9963] [1.07 2.26] [1.33 1.87] [0.9863 1.0055] [1.22 2.34] [1.28 1.86] [0.9889 1.0026] [1.18 2.39] [1.28 1.87]
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Table 5: Model-implied key financial indicators
The table presents estimates of the mean T-bill return, mean market return, equity premium, and market
Sharpe ratio implied by the disaster-including C-CAPM and computed according to Equations (5.35.3)-(5.55.5).
The computation uses the SMM-type estimates of β, γ, and ψ based on the ACH0 first-step estimates (see
Table 44). The numbers in brackets are the lower and upper bounds of the 95% confidence intervals computed
using the percentile method. Panels A-C break down the results by the copula correlation coefficient used
in the data simulation procedure, and each panel reports the results by the set of test assets. The column
labeled data reports the values of the indicators in the empirical data, 1947:Q2–2014:Q4.

Panel A: ρ =Corr(cgnd,Rnd)

data mkt size dec industry

θ̂ = (1 − γ̂)/(1 − 1

ψ̂
) -1.54 -1.81 -1.86

[-3.55 -0.21] [-3.77 -0.64] [-4.07 -0.48]

mean T-bill return 0.17 0.10 0.12 0.14
(% per qtr) [-0.13 0.29] [-0.18 0.33] [-0.17 0.36]

equity premium 1.94 1.85 2.06 2.11
(% per qtr) [0.98 2.76] [1.36 2.83] [1.23 3.08]

mean market return 2.11 1.95 2.19 2.25
(% per qtr) [1.13 2.80] [1.51 2.89] [1.38 3.09]

Sharpe ratio 0.237 0.226 0.252 0.257
(market) [0.111 0.378] [0.154 0.394] [0.139 0.427]

Panel B: ρ = 0.99

mkt size dec industry

θ̂ = (1 − γ̂)/(1 − 1

ψ̂
) -1.53 -1.80 -1.85

[-3.51 -0.20] [-3.75 -0.63] [-4.05 -0.47]

mean T-bill return 0.10 0.13 0.14
(% per qtr) [-0.12 0.29] [-0.18 0.33] [-0.16 0.36]

equity premium 1.85 2.06 2.11
(% per qtr) [0.97 2.72] [1.36 2.83] [1.23 3.08]

mean market return 1.95 2.19 2.25
(% per qtr) [1.13 2.78] [1.50 2.89] [1.38 3.09]

Sharpe ratio 0.226 0.252 0.257
(market) [0.111 0.370] [0.153 0.394] [0.139 0.427]

Panel C: ρ = 0

mkt size dec industry

θ̂ = (1 − γ̂)/(1 − 1

ψ̂
) -1.54 -1.80 -1.86

[-3.50 -0.21] [-3.76 -0.64] [-4.07 -0.48]

mean T-bill return 0.10 0.13 0.14
(% per qtr) [-0.12 0.29] [-0.18 0.34] [-0.16 0.36]

equity premium 1.84 2.05 2.09
(% per qtr) [0.97 2.71] [1.35 2.79] [1.22 3.05]

mean market return 1.94 2.18 2.23
(% per qtr) [1.12 2.76] [1.50 2.87] [1.37 3.07]

Sharpe ratio 0.225 0.251 0.256
(market) [0.110 0.368] [0.153 0.391] [0.139 0.423]
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Table 6: Timing premia
The table contains the timing premia (π∗) that are simulated for a variety of popular asset pricing models.
Columns 2-5 list the preference parameters used for the simulations. For WachterWachter (20132013), BarroBarro (20092009), and
Bansal and YaronBansal and Yaron (20042004), these parameter values are used in their calibration exercises. The specification
labeled Barro II uses BarroBarro’s (20092009) single-period disaster consumption process in combination with the RRA
and IES parameters obtained from our estimation approach. The premia reported for WachterWachter (20132013) and
Bansal and YaronBansal and Yaron (20042004) are taken from Epstein et al.Epstein et al. (20142014). We obtain premia for the remaining model
specifications from Epstein et al.Epstein et al.’s (20142014) programs when basing the simulation on 100,000 consumption
growth series of length 200 (for BarroBarro (20092009), Barro II, and the i.i.d. process) or 1000 (for this study),
respectively.

γ ψ β π∗(%)

This study 1.51 1.50 0.992 0.9

Wachter (2013) 3.00 1.00 0.988 42

Barro (2009) 4.00 2.00 0.951 18

Barro II 1.51 1.50 0.951 1.9

Bansal and Yaron (2004) 7.50 1.50 0.998 23

i.i.d. 1.51 1.50 0.951 0.2
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Table 7: Bias-corrected C-CAPM preference parameter estimates and confidence intervals
This table presents bias-corrected estimates (bold) and 95% confidence bounds (in brackets) of the subjective discount factor β, the coefficient of
relative risk aversion γ, and the IES ψ. The bias correction of the point estimates and confidence bounds in Table 44 follows the method proposed by
Efron and TibshiraniEfron and Tibshirani (19861986).

Panel A: ρ =Corr(cgnd,Rnd)
mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ β̂ γ̂ ψ̂

ACH0 0.9918 1.44 1.40 0.9938 1.50 1.40 0.9942 1.52 1.40
[0.9877 0.9963] [1.01 2.11] [1.13 1.69] [0.9871 1.0068] [1.19 2.18] [1.08 1.72] [0.9893 1.0043] [1.12 2.26] [1.08 1.72]

ACH4 0.9924 1.49 1.73 0.9947 1.59 1.70 0.9948 1.61 1.69
[0.9881 0.9972] [1.05 2.29] [1.41 1.93] [0.9871 1.0088] [1.21 2.34] [1.36 1.93] [0.9894 1.0050] [1.16 2.38] [1.33 1.91]

Panel B: ρ = 0.99

mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ β̂ γ̂ ψ̂

ACH0 0.9916 1.46 1.41 0.9937 1.51 1.42 0.9940 1.53 1.42
[0.9875 0.9961] [1.03 2.13] [1.14 1.70] [0.9869 1.0068] [1.19 2.19] [1.09 1.72] [0.9891 1.0043] [1.12 2.27] [1.09 1.72]

ACH4 0.9918 1.50 1.75 0.9940 1.59 1.74 0.9944 1.60 1.74
[0.9873 0.9963] [1.06 2.33] [1.44 1.93] [0.9876 1.0090] [1.17 2.28] [1.41 1.95] [0.9887 1.0050] [1.16 2.44] [1.42 1.94]

Panel C: ρ = 0

mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ β̂ γ̂ ψ̂

ACH0 0.9918 1.45 1.39 0.9938 1.50 1.40 0.9942 1.51 1.40
[0.9877 0.9965] [1.00 2.12] [1.13 1.68] [0.9871 1.0068] [1.19 2.18] [1.08 1.71] [0.9894 1.0045] [1.12 2.26] [1.08 1.71]

ACH4 0.9923 1.50 1.73 0.9949 1.57 1.69 0.9950 1.59 1.69
[0.9878 0.9968] [1.07 2.25] [1.39 1.92] [0.9877 1.0104] [1.17 2.27] [1.35 1.90] [0.9896 1.0041] [1.16 2.36] [1.38 1.93]

44



Table 8: C-CAPM preference parameters with varying disaster thresholds
This table presents the SMM-type estimates of the preference parameters β, γ, and ψ using ρ = 0.99. Panel A relies on q = 0.095, and Panel B contains
results for q = 0.195. Other estimation settings and the reported statistics correspond to Table 44.

Panel A: q = 0.095/ρ =Corr(cgnd,Rnd)
mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ J R β̂ γ̂ ψ̂ J R

ACH0 0.9918 (0.0047) 1.49 (0.29) 1.48 (0.14) 0.9938 (0.0050) 1.56 (0.26) 1.49 (0.14) 78.9 10 0.9942 (0.0090) 1.57 (0.32) 1.49 (0.14) 11.5 39
[0.9878 0.9960] [1.03 2.15] [1.33 1.86] [0.9864 1.0050] [1.24 2.24] [1.34 1.87] [0.9891 1.0047] [1.14 2.41] [1.34 1.87]

ACH4 0.9919 (0.0023) 1.51 (0.30) 1.58 (0.14) 0.9941 (0.0051) 1.56 (0.29) 1.58 (0.14) 67.0 11 0.9942 (0.0089) 1.57 (0.32) 1.58 (0.14) 8.9 39
[0.9874 0.9962] [1.07 2.23] [1.34 1.87] [0.9868 1.0053] [1.22 2.33] [1.31 1.86] [0.9893 1.0037] [1.14 2.39] [1.31 1.86]

Panel B: q = 0.195/ρ =Corr(cgnd,Rnd)
mkt size dec industry

β̂ γ̂ ψ̂ β̂ γ̂ ψ̂ J R β̂ γ̂ ψ̂ J R

ACH0 0.9917 (0.0023) 1.51 (0.30) 1.49 (0.16) 0.9938 (0.0044) 1.58 (0.27) 1.47 (0.16) 84.9 9 0.9943 (0.0034) 1.60 (0.31) 1.47 (0.16) 13.1 39
[0.9869 0.9958] [1.08 2.25] [1.26 1.86] [0.9863 1.0044] [1.24 2.28] [1.27 1.86] [0.9893 1.0021] [1.21 2.34] [1.27 1.86]

ACH4 0.9917 (0.0023) 1.57 (0.30) 1.63 (0.17) 0.9940 (0.0061) 1.66 (0.36) 1.63 (0.19) 80.2 9 0.9943 (0.0087) 1.68 (0.48) 1.63 (0.20) 11.4 39
[0.9869 0.9959] [1.08 2.22] [1.26 1.89] [0.9862 1.0063] [1.15 2.32] [1.19 1.88] [0.9886 1.0040] [1.08 2.44] [1.17 1.88]
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Figure 1: Consumption disasters
This figure depicts the 89 consumption disasters identified from Barro and UrsúaBarro and Ursúa’s (20082008) country panel data
(updated). The sampling period is 1800–2009. The disaster threshold q=0.145. Black lines denote European
countries, red lines South American countries and Mexico, golden lines Western offshores (Australia, Canada,
New Zealand, and U.S.A.), and blue lines represent Asian countries. The dotted horizontal line depicts the
average contraction size.
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Figure 2: Fitted power law vs. empirical cdf
This figure illustrates the empirical cdfs (solid lines) and the fitted cdf (dotted lines) of the contractions
identified in Barro and UrsúaBarro and Ursúa’s (20082008) data using a disaster threshold of q=0.145. Panel (a) captures the
distribution of contractions that occur at the beginning of a disaster and contribute to reaching the disaster
threshold. Panel (b) refers to contractions that add on top of the disaster threshold. The fitted cdfs use the
PL parameter estimates from Table 33.
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