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Abstract

For a class of asymmetric multivariate exponential volatility models we es-
tablish the strong consistency and the asymptotic normality of the Whittle
estimator of the parameters under a variety of parameterisations that include
long-range dependence in the volatility dynamics. We contribute to the long-
memory statistical literature by establishing the convergence of quadratic forms
of vector linear processes whose innovations need not be identically distributed
and whose spectral density function might not be factorable.We assess the finite
sample properties of the estimator with a Monte Carlo simulation and compare
them with those of the the maximum likelihood estimator, showing that in some
cases they perform comparably. An empirical application, using three market
indexes (FTSE100, S&P 500 and Nikkei 225) suggests the potential of the model
to capture the joint dynamics of asset returns volatilities.

Keywords:
Multivariate volatility, asymmetry, long memory, signal plus noise, Whittle
estimation, asymptotics
JEL: C32, C51, G12

1. Introduction

The importance of modelling comovements of financial returns has long been
established in financial econometrics and financial applications. The knowledge
of correlation structures is vital for asset pricing, optimal portfolio allocation
and risk management. Moreover, as the volatilities of different assets and mar-
kets move together, modelling volatility in a multivariate framework can lead
to greater statistical efficiency. A number of multivariate specifications has
been proposed in the literature along two main lines of research: conditional
volatility models, where the volatilities are a deterministic function of the past
realizations of the assets, and stochastic volatility models, where they are la-
tent (comprehensive literature reviews can be found in Bauwens, Laurent and
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Rombouts, 2006, Silvennoinen and Terasvirta, 2008 and Asai, McAleer and Yu,
2006). There is a long standing debate on the relative advantages of one class
over the other.

In both classes the exponential specification of individual volatilities has
been found to offer several advantages: the absence of non negative constraints
on the parameters, the

In both classes research has combined the need to ensure positive definitness
of the conditional covariance matrix and parsimony of its parameterization with
the need to capture the complex individual and joint dynamics of asset returns,
synthesized in a well know number of stylized facts.

Despite the innumerable developments of multivariate volatility models, to
our knowledge, no parametrization allowing for long memory autocorrelated
squared returns has been proposed.

In this paper we consider a way of modelling the joint dynamics of asset
volailities by means of a family of multivariate exponential models that nests
conditional and stochastic volatility specifications:

xt = µt + ut, ut = Dtzt, t ∈ Z (1)

with

Dt = diag {exp(0.5ht)} , ht = ω0 +

∞∑
j=0

Ψjεt−j−1

∞∑
j=0

‖Ψj‖2 <∞, (2)

where xt is the n-dimensional vector of asset returns and
Another important property of returns, well documented in empirical find-

ings, is that that power transformations of absolute returns have significant
autocorrelations that decay to zero at a slow rate, consistent with the notion
of long-memory and non-summability of the autocovariances. Since the intro-
duction of the fractionally integrated GARCH (FIGARCH) model of Bollerslev
and Mikklesen (1996), univariate long-memory volatility models have received
a great deal of attention (see Robinson and Zaffaroni 1996, 1997, and Ruiz and
Veiga, 2006 among others). However very few generalizations to multivariate
framework have been proposed so far. In this paper we consider a way to model
the joint dynamics of assets volatilities by means of a family of multivariate
exponential volatility models, that nests conditional and stochastic volatility
specifications.

We consider an n-dimensional observable time-series satisfying

xt = Dtzt, t ∈ Z (1)

Dt = diag {exp(0.5ht)} , (2)

ht = ω0 +

∞∑
j=0

Ψ0jεt−j−1

∞∑
j=0

‖Ψ0j‖2 <∞, a.s., (3)

V ar

(
zt
εt

)
=

( ∑
z

∑
zε∑

zε

∑
ε

)
, (4)
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where Z = {t : t = 0,±1, ...}. The {zt, εt} form a sequence of independent iden-
tically distributed (i.i.d) unobservable zero-mean shocks which can be cross
correlated for some t. The diagonal elements of Σz are set to one, implying that
Σz is a correlation matrix and DtΣzDt is the time-varying conditional variance
matrix of xt. The joint evolution of the log conditional volatilities is driven by
equation (3), where the parameter matrices Ψ0j characterize the memory of the
process. The square summability condition rules out any non-stationary param-
eterizations but is mild enough to allow for exponential or hyperbolic decay in
the coefficients, inducing short or long memory persistence in the volatilities.

Equations (1) to (4) represent in fact a class of multivariate exponential
volatility models that nests one and two-shocks specifications. When zt and
εt are jointly Normal, model (1) to (4) is the multivariate Stochastic Volatility
model with Leverage (SV-L) of Danielsson (1998) and Asai and McAleer (2006),
where asymmetries and leverage effect are introduced via cross correlation of
the mean and the variance equations shocks. On the other hand when εt ≡
ε (zt) for some instantaneous transformation ε (.), (1) to (4) yield an exponential
constant Conditional Correlation model. In this case the level equation shocks
zt drive also the volatilities, which evolve according to different exponential
specifications with various degrees of asymmetry.

Estimation of multivariate volatility models is usually based on the (Pseudo)
Maximum Likelihood estimator (henceforth PMLE). The PML estimator is eas-
ily implementable, at the cost of some distributional assumptions on the inno-
vations, however its asymptotic properties are yet to be established for expo-
nential models. Indeed the recursiveness that characterizes these models makes
extremely difficult to establish their invertibility and hence the uniform con-
vergence of the Hessian matrix in a neighborhood of the true parameter.Some
results on the asymptotics of PMLE for exponential volatility models are avail-
able under highly specific assumptions that cannot readily be verified (see for
example Straumann and Mikosch (2005) and Witenberger (2013)). A further
disadvantage of the PMLE is that the truncation required to compute the ob-
servable log likelihood might induce a non-negligible asymptotic bias in the
presence of long memory parameterisation (Robinson and Zaffaroni 2006).

These arguments do not apply to the Guassian estimator in the sense of
Whittle (1962), partly due to its frequency domain specification. The main
contribution of this paper is to establish the strong consistency and asymptotic
normality of the Whittle estimator for the general class of multivariate expo-
nential volatility models in (1) to (4) , employing the squares of the observables,
under a variety of parametrisations. To this end, denoting yt = log x2

t we have

yt = µ+ ht + ξt (5)

where µ = ω + E
(
log z2

t

)
and ξt = log z2

t −E
(
log z2

t

)
is the i.i.d noise with zero

mean and variance Σξ. Apart from the constant µ, yt takes the form of a vector
signal plus noise process where the signal ht corresponds to the volatility of the
original series and might exhibit short or long memory parameterizations.

The form of the covariance matrix in (4) implies that yt is a correlated signal
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plus noise process with autocovariance function:

Γy(u) = Iu=0Σξ + Σε

∞∑
j=0

ΨjΨ
′

j+u + ΣξεIu6=0Ψ|u|−1, (6)

where Iu=0 = 1 if u = 0 and zero otherwise. The autocovariances of the trans-
formed process capture the indirect spillover effects and asymmetries in the
volatilities of the original multivariate process. As a consequence, the model-
spectrum takes the non-factorable form:

f (λ) =
Σξ(τ)

2π
+

k(eiλ, ζ)Σε(τ)k(eiλ, ζ)∗

2π
+ Σεξ(τ)e−iλk(eiλ, ζ)∗ +

+eiλk(eiλ, ζ)Σ′εξ(τ), −π < λ < π (7)

where k(z, ζ) =
∑∞
j=0 Ψj (ζ) zj , |z| < 1, is the transfer function of the matrix

sequence {Ψj}.
Statistical literature on the Whittle estimator has established its asymptotic

properties under different conditions when the true underlying model is a purely
non deterministic vector linear process with innovations which are either iid (Gi-
raitis and Surgailis, 1990) or satisfy a set of mixing conditions with respect to
their conditional moments (Hosoya, 1997). For such processes, the asymptotic
normality of the estimator is well established under short and long memory pa-
rameterisations. All these results exploit in an essential way the spectral density
factorisation. However when the spectrum of the observables is the sum of two
or more components a non factorable structure might arise. Even if the process
is linearly regular and its spectrum has a factorable representation, it might
not be possible to express the parameters of this representation as closed form
functions of the parameters of the signal and the noise (for a detailed discussion
see Robinson 1978). It turns out that the available asymptotic theory can only
be extended to the case of an independent signal plus noise process with an
autoregressive short memory signal (see Hosoya and Taniguchi 1982 and Dun-
smuir 1979). In practice however correlated signal plus noise processes arise
from the linearisation of exponential volatility models, EGARCH, FIEGARCH
and stochastic volatility models, making asymptotics results for the Whittle
estimator quite desirable. Hurvich, Mouliners and Soulier (2007) consider semi-
parametric estimation of the memory parameter in univariate signal plus noise
processes with potentially correlated noise and long memory signal. They derive
the consistency and asymptotic normality of the local Whittle estimator when
the memory parameter lies in the interval (0, 3/4) . Zaffaroni (2009) extends
Zaffaroni (2003) and establishes the asymptotic properites of the parametric
Whittle estimator in a univariate signal plus noise process. As in Giraitis and
Surgailis and Hosoya, the proof of the asymptotic normality of the estimator
relies on the approximation of the score vector by a different quadratic form
with shorter memory. However while the formers rely on the spectral density
factorisazion to establish this approximation, Zaffaroni employs a truncation
of the signal process. His results are limited to the univariate case and do not
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readily extend to quadratic forms of multivariate processes with possibly varying
weights. In this paper we present a generalisation results for correlated signal
plus noise models

Estimation of model (1) to (4) requires to finitely parametrize the signal
coefficients Ψ0j . We assume that we know a set of functions Ψj (.) of the
p × 1 vector ζ with p < ∞, such that, for some unknown ζ0, Ψj (ζ0) = Ψ0j .
Analogously we parametrize the covariance matrices assuming that we know
functions Σε(.), Σξ(.), Σεξ(.) of the q × 1 vector τ with q < ∞, such that,
for some unknown τ0, Σε(τ0) = Σ0ε = V ar (ε0), Σξ(τ0) = Σ0ξ = V ar (ξ0)
and Σεξ(τ0) = Σ0εξ = Cov (ε0, ξ0). We don’t make any assumption on the
joint density of the innovations εt ≡ {ξ′t, ε′t}, so τ0 contains the n+ n (n− 1) /2
unknown parameters of vech(Σ0εξ), and the n (n− 1) /2 unknown parameters
of respectively Σ0ε and Σ0ξ, yielding q = n+ 3n (n− 1) /2. This specification of
τ0 however can be straightforward extended to models where the joint density
of the innovations is specified up to some unknown parameters. We wish to
estimate the s (≡ p+ q) dimensional vector θ′0 = (ζ ′0, τ

′
0)′ on the basis of a

sample {y1, ...,yT } of observations, the prime denoting transposition. To this
end define:

Q̂T (θ) =
1

2π

∫ π

−π
log det f(λ, θ) + tr

{
f−1(λ, θ)IT (λ)

}
dλ,

Q̄T (θ) =
1

T

T−1∑
t=1

log det f(λt, θ) + tr
{
f−1(λt, θ)IT (λt)

}
dλ,

for λt = 2πt
T . Hereafter IT (λ) denotes the periodogram of the data, IT (λ) =

wT (λ)wT (λ)∗, with wT (λ) = 1√
2πT

T

t=1
yte

iλt. For a prescribed compact subset

of Rs,Θ, we call θ̂ and θ̄ the estimators of θ0 got by maximising the correspond-
ing Whittle objective function. In practical applications the discrete frequency
estimator is preferred over the continuous one since it can be computed effi-
ciently using the fast Fourier transform. Thanks to the invariance properties of
the periodogram at the Fourier frequencies, mean-correction of yt is taken care
of by omission of summands t = 0 and t = T .

The paper is organized as follows. The next section lists our assumptions,
with discussion, Section 3 presents the main results, namely the strong consis-
tency and the asymtptotic normality of the Whittle estimator. Section 4 reports
the results of Monte Carlo exercise to compare the finite sample behaviour of the
Whittle and MLE estimators of the parameters. Section 5 presents an empirical
application based on observed time series of three market indices: Nikkei 225,
FTSE 100 and S&P500. Concluding remarks are in Section 6. The results are
formally stated in theorems and propositions, the proofs of which are reported
in the mathematical appendix together with the technical lemmas.
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2. Assumptions.

Hereafter we denote by Ai,j the (i, j) element of the matrix A, and by
xi(t)the ith element of the vector x at time t. We assume that all the ele-
ments of ξt, εt, Ψj (ζ) are real. We define Π ≡ [−π, π] and denote by Lp (Π) the
class of p-integrable functions defined on Π. The symbol ”> 0” denotes strict
positive definiteness when applied to a matrix, and K denotes a generic con-
stant, not always the same. The function Spectral domain regularity conditions
are common in the statistical litterature on Whittle estimation, see for example
Giraitis and Surgailis (1990), Heyde and Gay (1993), and Hosoya (1997). We
impose conditions directly on the model spectrum and its higher order deriva-
tives, defining unambiguously their behavior near the origin, as well as a form
of uniform continuity away from the zero frequency. Our regularity conditions
cover both short and long memory parameterizations of the signal coefficients.

The first assumption we introduce has two versions: the weaker version
(k = 2) will be employed in our proof of consistency of the estimators, the

stronger version (k = 4) in our proof of asymptotic normality.

Assumption 1(k) k ≥ 2. The εt ≡ {ε′t, ξ′t} form a sequence of i.i.d zero mean
unobservable random vectors with finite joint k-order moment.

Assumption 1 together with the square summability of the coefficients in
(3) ensures the strict stationarity and ergodicity of the yt, which are common
assumptions in the statistical literature on Whittle estimation. Robinson (1978)
replaces strict stationarity by a weaker assumption of fourth order stationarity.
Hosoya and Taniguchi (1982) dispense with ergodicity imposing a Lindeberg
type condition. The following assumption is a standard one to ensures that θ0

is an interior point of the compact closure of an open s-dimensional manifold
(see for example Hannah, 1973 and Robinson, 1978). It implies boundedness of
any function of θ ∈ Θ.

Assumption 2. θ0 is an interior point of the compact parameter space Θ ∈ Rs.

Assumption 3 For every θ ∈ Θ whenever θ 6= θ0, f (λ, θ) 6= f (λ, θ0).

Assumption 3 rules out the possibility of two equivalent structures giving
rise to the same spectral density,thus granting identification. Following Hannan
(1973), Dunsmuir and Hannan (1976), and Hosoya and Taniguchi (1982) we
restrict the parameter space to a subset of the parameter space where the
spectrum is positive, with the following assumption:

Assumption 4. For any θ ∈ Θ, f (λ, θ) is a strictly positive definite matrix.

Consistency of the estimators requires regularity conditions defining the be-
havior of the spectrum near the origin, as well as a form of uniform continuity
away from the zero frequency. Hereafter d (θ) denotes the memory parameter
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that charactrizes decay rate of the signal coefficients.For d (θ) = 0 the pro-
cess has short memory and the spectral density is continuous at all frequencies,
when d (θ) ∈ (−1/2, 0) the process has negative memory and f (0) = 0, when
d (θ) ∈ (0, 1/2) the process has long memory and the spectral density is un-
bounded at the origin.

Assumption 5.

(i) f (λ, θ) has elements in L1 (Π), continuous at all (λ, θ) ∈ Π × Θ with λ 6=
0,|fi,j (λ, θ)| ≤ D

(
λ−1, θ

)
|λ|−2d(θ)

λ→ 0+, d (θ) ∈ (−1/2, 1/2) .

(ii) (∂/∂θj) f (λ, θ) has elements in L1 (Π) continuous at all (λ, θ) , λ 6= 0,
and∣∣∣ḟ (a,b)

(j) (λ, θ)
∣∣∣ ≤ D (λ−1, θ

)
|λ|−2d(θ)

λ→ 0+ d (θ) ∈ (−1/2, 1/2) .

(iii) f−1 (λ, θ) has elements in L1 (Π), continuous at all (λ, θ) ∈ Π×Θ,
∣∣f−1
i,j (λ, θ)

∣∣ ≤
D
(
λ−1, θ

)
|λ|2d(θ)

λ→ 0+, d (θ) ∈ (0, 1/2) .

(iv) For all η > 0, the function

ϕη (λ, θ) ≡ f (λ, θ)

(det f (λ, θ) + η)

has elements in L1, continuous at all (λ, θ) ∈ Π×Θ.

Note that Assumption 5 rules out the possibility of multiple singularities in
the process spectrum. The following assumption is required together with As-
sumption 5(ii) to ensure the uniform strong convergence of the Whittle objective
function in the consistency proof.

Assumption 6.
∫ π
−π log det f (λ, θ) dλ is twice differentiable in θ ∈ Θ under the

integral sign.

For the central limit theorem we introduce the following assumptions.

Assumption 7. (i)
(
∂2/∂θi∂θ

′
j

)
f (λ, θ) has elements in L1 (Π) continuous at

all (λ, θ) , λ 6= 0, and∣∣∣̈f (a,b)
(i,j) (λ, θ)

∣∣∣ ≤ D (λ−1, θ
)
|λ|−2d(θ)

λ→ 0+ d (θ) ∈ (−1/2, 1/2) .

(ii)
(
∂3/∂θi∂θ

′
j∂θl

)
f (λ, θ) has elements in L1 (Π) continuous at all (λ, θ) , λ 6=

0, and∣∣∣...f (a,b)
(i,j,l) (λ, θ)

∣∣∣ ≤ D (λ−1, θ
)
|λ|−2d(θ)

λ→ 0+ d (θ) ∈ (0, 1/2) .
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(iii) (∂/∂θj) f−1 (λ, θ) has elements in L1 (Π) continuous at all (λ, θ) ∈ Π×Θ,
and ∣∣∣∣ ∂∂θj f−1

(a,b) (λ, θ)

∣∣∣∣ ≤ D (λ−1, θ
)
|λ|2d(θ)

λ→ 0+ d (θ) ∈ (0, 1/2) .

(iv)
(
∂2/∂θi∂θ

′
j

)
f−1 (λ, θ) has elements in L1 (Π) continuous at all (λ, θ) ∈

Π×Θ and∣∣∣∣∣ ∂2

∂θi∂θ′j
f−1 (λ, θ)

∣∣∣∣∣ ≤ D (λ−1, θ
)
|λ|2d(θ)

λ→ 0+ d (θ) ∈ (0, 1/2) .

Asymptotic normality requires to extend the regularity conditions to the
derivatives of the spectral density up to the third order ensuring the necessary
degree of smoothness on the Hessian matrix. Zaffaroni (2009) assumes a form
of Lipschitz continuity of degree α ≥ min [1, 1− 2d (ζ)] away from the zero

frequency and an exact decay rate of D(j, ζ) |λ|−2d(ζ)
as λ → 0+. We prefer

slightly stronger and more general assumptions that impose a common bound
on the elements of the matrices and uniform continuity away from the zero
frequency rather than Lipschitz continuity.

Assumption 8.

(i) The function

g(j)(λ, θ0) ≡ f−1 (λ, θ0) ḟ(j) (λ, θ0) f−1 (λ, θ0) for all j = 1, ...s.

has elements in L1 (Π) continuous at all (λ, θ), λ 6= 0, and
∣∣∣g(b,a)

(j) (λ, θ0)
∣∣∣ ≤

D
(
λ−1, θ

)
|λ|2d(θ)

λ→ 0+ d (θ) ∈ (0, 1/2) for all j = 1, ...s.

(ii) For 1/2 < γ < 1, for any λ1and λ2 ∈ Π∣∣tr {g(j) (λ1, θ0) f (λ1, θ0)− f (λ1 − λ2, θ0)
}∣∣ ≤ K |λ2|γ for all j = 1, ..., n.

Assumption 8(i) imposes a bound on the weights of the score vector that
has the effect of annulling the singularities of the spectral density at the zero
frequency.Assumption 8(ii) gives a condition for the asymptotic unbiasedness of
the integrated weighted periodogram:

∫
tr
{
g(j) (λ1, θ0) IT (λt)

}
dλ.

3. Main results

We present the asymptotic results for the Whittle estimators.

Lemma 1. Under Assumption 1(2), for −π < λ < π, the spectral density of yt
is

f (λ) =
Σξ(τ0)

2π
+

k(eiλ, ζ0)Σε(τ0)k(eiλ, ζ0)∗

2π
+Σεξ(τ0)e−iλk(eiλ, ζ0)∗+eiλk(eiλ, ζ0)Σ′εξ(τ0).
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Proof. See Appendix A.

In what follows, when f−1 is replaced by φη(λ, θ) defined in Assumption C,
we refer to QT (θ) as QT,η (θ) , and similarly to Q̄T ,η (θ) and Qη (θ) .

Theorem 1 Let Assumptions 1(2),2,3,4,5,6 hold, then

lim
T→∞

θ̂ = lim
T→∞

θ̄T = θ0 a.s..

Proof. The proofs for θ̄T and θ̂T are almost the same. We give the proof for
θ̄T . The result follows, adapting Dunsmuir and Hannan (1976), from the a.s.
uniform continuity in Π × Θ of QT (θ) and QT,η (θ) to respectively Q (θ) and
Qη (θ) established in Lemma 6, from Lemma 7 and the fact that by definition
QT (θ̄) ≤ QT (θ) .

For the asymptotic normality we reinforce Assumption 1 ensuring the finite-
ness of the fourth moments. Our conditions imply that yt has trispectrum
fabcd (λ, ω, v) , for λ, ω, v ∈ (−π, π], given by

fabcd (λ, ω, v) =
1

(2π)
3

∞∑
t1,t2,t3=−∞

exp {−i (λt1 + ωt2 + vt3)} cumabcd (t1, t2, t3) ,

where the final term in the summand is the joint cumulant of y0,yt1 ,yt2 ,yt3 ,
and also that fabcd (λ, ω, v) is square integrable (see Corollary X).

Theorem 2. If Assumptions 1(4), 2, 3, 4, 5, 6, 7, 8 hold, then as T → ∞,√
T (θ̄T − θ0),

√
T (θ̂T − θ0) converge in distribution to Gaussian random vectors

with zero mean and variance covariance matrix equal to H−1(θ0)V (θ0)H
−1

(θ0),where

H (θ0) =
1

2π

∫ π

−π
tr
{

f−1 (λ, θ0) ḟ(i) (λ, θ0) f−1 (λ, θ0) ḟ(j) (λ, θ0)
}
dλ,

and the matrix V (θ0) has elements

V(i,j) =
1

π

∫ π

−π
tr

{
f(λ, θ)

∂

∂θj
f−1(λ, θ0)f(λ, θ)

∂

∂θl
f−1(λ, θ0)

}
dλ

+
1

2π

T

r,t,u,v=1

∫ π

−π

∫ π

−π

{
∂

∂θj
frq(v,θ0)

∂

∂θl
fuv(ω,θ0)

}
frtuv(−v, ω,−ω)dvdω.

Proof. We give the proof for θ̄T . Let

ST (θ) = (∂/∂θ)QT (θ) ,

denote the score vector. Its jth element is

S
(j)
T (θ) =

1

2π

∫ π

−π
tr
{

g(j)(λ, θ) [IT (λ)− f(λ, θ)]
}
dλ,
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where
g(j)(λ, θ) = f−1 (λ, θ) ḟ (j) (λ, θ) f−1 (λ, θ) .

By the mean value theorem,

0 = ST (θ) = ST (θ0) + HT (θ̇)
(
θ̄ − θ0

)
, (8)

where HT (θ) =
(
∂2/∂θi∂θj

)
QT (θ) is evaluated at a θ = θ̇ such that

∥∥∥θ̇T − θ0

∥∥∥ ≤∥∥θ̄T − θ0

∥∥, where we define ‖A‖ = {tr (A′A)}1/2 for any matrix A. By Lemma

2 and Theorem 1, HT

(
θ̇
)
a.s→ H (θ0). Finally by Lemma 3, E(ST (θ0)) → 0,

and by Lemma 4
√
T (ST (θ0)− E(ST (θ0)))

d→ N (0,V(θ0)) , whence the proof
is completed in standard fashion.

The proof of Lemma 4 is of considerable lenght as a result of a central limit
theorem that we establish for quadratic forms of signal plus noise processes, thus
we defer it to the next section. Meanwhile we discuss implications of Theorems
1 and 2.

Remark 3.1 The proof of Theorem 1 follows as in Theorem 4 of Dunsmuir and
Hannan (1976) with some differences. Dunsmuir and Hannan consider a
stationary vector linear process yt =

∑
Aj (θ) et−j with short memory

Aj (θ), satisfying
∫ π
−π log det f(λ, θ)dλ = 0 at all θ, so that the error vari-

ance matrix, functionally independent from θ, is the variance of the best
linear predictor of the process. They prove the consistency of the Whit-
tle estimator minimizing a slightly different objective function from ours
L (θ) = log det Σe (φ) + 1

2π

∫ π
−π tr

{
f−1(λ, θ)IT (λ)

}
dλ. Finding that there

are cases where the innovations variance depends upon θ, Hosoya (1974)
and Hosoya and Taniguchi (1982, 1997) propose the objective function
Q(θ) = log det f(λ, θ) + 1

2π

∫ π
−π tr

{
f−1(λ, θ)IT (λ)

}
dλ, but they do not of-

fer an explicit proof of the consistency. Robinson (1978) considers a class
of univariate processes with spectral density non easily factored and estab-
lishes the strong consistency of the Whittle estimator minimizing Q̄T (θ)
under regularity conditions that rule out long memory.

Remark 3.2 The vector of mean parameters ω0 cannot be identified by the
Whittle function since its elements enter linearly in log x2

it and are lost
when computing the empirical autocovariances of the process. However
it can be estimated using the sample mean of the vector yT . Since
ŷT = 1/T

∑T
t=1 yt is a

√
T -consistent estimate of Eyt = ω0 + Eξt under

Assumptions 1 to 6, we obtain a
√
T -consistent estimate of ω0 subtracting

the Whittle estimate of Eξt from ŷT .

Remark 3.3 The only available results on the asymptotics of the Whittle
estimator for signal plus noise processes are for an autoregressive signal
and indipendent signal and noise (see Hosoya and Taniguchi (1982) and
Dunsmuir (1979)). The signal ht is generated by a finite autoregressive
process

∑q
j=1 bjht−j = ηt, where the ηt have zero mean, finite variance
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and are independent from the noise ξs for every t and s; the spectral
density function of the process

fθ (λ) =
1

2π

σ2
η∣∣∣∑q

j=1 bje
iλj
∣∣∣ +

σ2
ξ

2π
,

is factorable and representable as

fϑ (λ) =
σ2

2π

∣∣∣∣∣
∑q
j=1 ψje

iλj∑q
j=1 bje

iλj

∣∣∣∣∣
2

,

the parameter ϑ is a closed form function of θ′=
(
b1, ..., bq, σ

2
η, σ

2
ξ

)′
, since

σ2 and the ψj can be expressed as closed form functions of θ, and the
bjs are unchanged. In this restrictive case the limiting distribution of the
estimator follows from standard results for linear processes.

Remark 3.4 Hourvich, Moliners and Souliers (2006) discuss semiparametric
estimation of the memory parameter in the univariate equivalent of model
(1)-(4). They show that the local Whittle estimator is consistent for d
∈ (0, 1) and asymptotically normal for d ∈ (0, 3/4), and essentially recov-
ers the optimal semiparametric rate of convergence for this problem. In
particular if the spectral density of the short memory component of the
signal is sufficiently smooth, they obtain a convergence rate of n2/5−∂ for
d ∈ (0, 3/4), where n is the sample size and ∂ > 0 is arbitrarily small.

Remark 3.5 The Gaussian frequency domain estimator has been widely used
in estimation of long-range dependent models thanks to its technical prop-
erties. The Whittle function naturally takes into account the asymptotic
behavior of the autocovariances as the sample size goes to infinity, so it is
very sensitive to the degree of dependence of the process in second-order
sense. Moreover, by construction, it automatically compensates for the
possible lack of square integrability of the model spectral density that oc-
curs when the memory parameter is between 1/2 and 1/4. This implies
that the estimator has a rate of convergence and an asymptotic distribu-
tion that do not depend on whether long-memory holds or not.

Remark 3.6 Empirical evidences suggest that the assumption d ∈ (−1/2, 1/2)
might be over restrictive. Generalization of model (1)- (4) to non sta-
tionarity is desirable to take into account the strong degree of persistence
found in many financial dateset. If d ≥ 1/2 the square summability of
the coefficients in (3) does not hold and the limiting distribution of The-
orem 2 is no longer valid. Zaffaroni (2009) suggests to differentiate yt
to achieve stationarity: differentation implies that the Whittle estimator
is still strongly consistent and asymptotically Normal, however it likely
brings an efficiency loss. Semiparametric estimation of non stationary
time series, based on the log periodogram and local Whittle estimators

11



has been exhaustively examined (Hourvich, Moliners and Soulier 2006,
Abadir, Distaso and Giraitis, 2006). In the context of parametric estima-
tion of linear time series models, Velasco and Robinson (2000) suggest a ta-
pered version of Hannan’s (1973) discrete Whittle estimator and establish
its consistency for d < 1 and its asymptotic Normality for d < 3/4, find-
ing the same asymptotic variance formula as for stationary series. As in

Hannan, they assume separate parameterization, i.e.
π∫
−π

log f(λ, θ)dλ = 0

at all θ, where f(λ, θ) is the pseudo spectral density; their results cover
standard parameterisations of fractional ARIMA and FEXP models. One
could consider extending data tapering to non separately parametrized
linear processes and account for non stationarity arising in signal plus
noise processes.

Remark 3.7 As noted in Hosoya and Taniguchi (1982), the non separate pa-
rameterisation implies that trispectrum of the process appears in the
asymptotic covariance matrix. For practical use of the asymptotic results,
a consistent estimator of the asymptotic covariance matrix is required. As
suggested in Zaffaroni (2009) for H (θ) such estimate can be obtained by
substituting θ̂ into HT (θ). For V (θ) one can conjecture that the estimates
provided by Hosoya and Taniguchi (1982, Section 5) will be consistent un-
der the assumption of short range dependence.

4. Asymptotic Normality of the integrated weighted periodogram.

The limiting distribution of the Whittle estimator is obtained via that of
any linear combination of the integrated weighted periodograms:

√
T

2π

∫ π

−π
tr
{

g(j) (λ, θ0) (IT (λ)−EIT (λ))
}
dλ (9)

=

√
T

2π

N∑
a,b=1

(∫ π

−π
g

(j)
(b,a)(λ, θ0)

(
I(a,b) (λ)−EI(a,b)(λ)

))
dλ j = 1, ..., s.

Denote by

h
(j)
(b,a)(u) =

∫ π

−π
g

(j)
(b,a) (λ, θ0) eiuλdλ u ∈ Z

the Fourier coefficient of the (b, a)element of the weights matrix g(j) (λ, θ0) ,
then (9) is equivalent to T−1/2Qn, where

Qn =
1

2π

N∑
a,b=1

(
T∑
t=1

T∑
s=1

h
(j)
(b,a) (|t− s|)

(
X

(a)
t X(b)

s − E
(
X

(a)
t X(b)

s

)))
j = 1, ..., s,

where Xt = yt − µ. From (5) ,Xt =
∞∑
i=1

Ψiεt−1−i + ξt = zt +ξt, writing zt =

12



∞∑
i=1

Ψiεt−1−i. Put Qn = Q
(1)
n +Q

(2)
n +Q

(3)
n , where

Q(1)
n =

1

(2π)
2

N∑
a,b=1

(
T∑
t=1

T∑
s=1

h
(j)
(b,a) (|t− s|)

(
ξ

(a)
t ξ(b)

s − E
(
ξ

(a)
t ξ(b)

s

)))
,

Q(2)
n =

1

(2π)
2

N∑
a,b=1

(
T∑
t=1

T∑
s=1

h
(j)
(b,a) (|t− s|)

(
z

(a)
t ξ(b)

s − E
(
z

(a)
t ξ(b)

s

)))
,

Q(3)
n =

1

(2π)
2

N∑
a,b=1

(
T∑
t=1

T∑
s=1

h
(j)
(b,a) (|t− s|)

(
z

(a)
t z(b)

s − E
(
z

(a)
t z(b)

s

)))
.

The proof of Lemma 4 now follows immediately from Lemma 5 and Lemma
6 which appear subsequently.

Lemma 5. Let Assumptions 1-8 hold. Then as T →∞, the vectors

(i) T−1/2(Q(1)
n − EQ(1)

n ) j = 1, .., n

(ii) T−1/2(Q(2)
n − EQ(2)

n ) j = 1, .., n

(iii) T−1/2(Q(3)
n − EQ(3)

n ) j = 1, .., n

have a joint Normal distributionwith zero mean vector and covariance matrix
whose (j,L) element is

1

π

∫ π

−π
tr
{

g(j)(λ, θ0)fξ(λ, θ0)g(l)(λ, θ0)fξ(λ, θ0)
}
dλ

+
1

2π

T

r,t,u,v=1

∫ π

−π

∫ π

−π

{
g(j)
rq (λ1,θ0)g(l)

uv(λ2,θ0)
}
Kξ
rtuv(−λ1,λ2,−λ2)dλ1dλ2.

Proof. The proof of (iii) and (ii) follows from a straightforward application
of Theorem 7.3 of Giraitis and Taqqu (1999, page 14). Giraitis and Taqqu
derive the joint asymptotic normality of quadratic form of multivariate Appell
polynomials for linear sequences with i.i.d innovations and possibly different
weights and linear coefficients. The results follow taking in their notation a

multivariate Appell polynomial, Pm,n

(
X

(i,1)
t , X

(i,2)
s

)
of degree equal to one.

(i) is a quadratic form in iid variates with zero mean and constant variance

and the h
(j)
(b,a) (|t− s|) are entries of a real symmetric matrix with non vanishing

diagonal . Let

Tn =

T∑
t=1

T∑
s=1

h
(j)
(b,a) (|t− s|) ξ(a)

t ξ(b)
s

For each j = 1, ..., s and for a, b = 1, ..., k the quantities

(V ar(Tn))−1/2(Tn − ETn)→ N(0, 1)
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converge to a Gaussian random variable by Theorem 2.2 of Bhansali Giraitis

Kokoszka (2007) on verifying that the entry of the Toepliz matrix h
(j)
(b,a) (|t− s|)

where we suppress the dependence on n for notation simplicity

Lemma 5.Let Assumptions 1-8 hold. Then

T−1/2(Q(1)
n − EQ(1)

n )

have, asymptotically, a joint Normal distribution with zero mean vector and
covariance matrix whose (j,l) element is

1

π

∫ π

−π
tr
{

g(j)(λ, θ0)fξ(λ, θ0)g(l)(λ, θ0)fξ(λ, θ0)
}
dλ

+
1

2π

T

r,t,u,v=1

∫ π

−π

∫ π

−π

{
g(j)
rq (λ1,θ0)g(l)

uv(λ2,θ0)
}
Kξ
rtuv(−λ1,λ2,−λ2)dλ1dλ2.

All that remains is to evaluate is their asymptotic covariances. Lemma
6.Let Assumptions 1-8 hold. Then

lim
T→∞

Cov

(√
T

2π

∫ π

−π
tr
{
g(j)(λ, θ0) [IT (λ)−EIT (λ)]

}
dλ,

√
T

2π

∫ π

−π
tr
{
g(l)(λ, θ0) [IT (λ)−EIT (λ)]

}
dλ

)

= 2π

∫ π

−π
g

(b,a)
(j) (λ, θ0) ḡ

(d,c)
(l) (λ, θ0) f (a,b) (λ, θ0) f̄ (c,d) (λ, θ0) dλ

+2π

∫ π

−π
g

(b,a)
(j) (λ, θ0) ḡ

(d,c)
(l) (−λ, θ0) f (a,d) (λ, θ0) f̄ (b,c) (λ, θ0) dλ

+2π

∫ π

−π

∫ π

−π
g(j) (λ1, θ0) g(l) (λ2, θ0)Cumabcd (λ1, λ2,−λ2) dλ1dλ2.

Proof. See appendix.

Remark 4.1 Statistical literature on the Whittle estimator has establshed the
asymptotic normality of the integrated weighted periodogram for linear
processes under a variety of assumptions. In the short memory case, the
results follows from the asymptotic normality of linear combinations of
the sample serial covariances

√
T
(
I(a,b) (λ)−EI(a,b) (λ)

)
(10)

=
√
T

(
1

T

T−m∑
t=1

y
(a)
t y

(b)
t+m − Γ(a,b)

m

)
. (11)

For an ergodic and strictly stationary process, Hannan (1976) assumes

that the innovations satisfy almost surely (i)E {et|Ft−1} = 0, (ii)E
{
e

(a)
t e

(b)
t |Ft−1

}
=
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δ(a,b), (iii)E
{
e

(a)
t e

(b)
t e

(c)
t |Ft−1

}
= δ(a,b,c), (iv)E

(
e

(a)
t e

(b)
t e

(c)
t e

(d)
t

)
< ∞,

and shows that the diagonal elements of f (λ, θ) being square integrable is
a necessary and sufficient condition for the convergence of ( 10). Hosoya
and Taniguchi (1982, Theorem 2.2) derive an analogous results replac-
ing strict stationarity with second order stationarity, ergodicity with a
Lindeberg-type condition and the strongly mixing conditions on the in-
novations with more natural ones with respect to the second and fourth
conditional moments. Robinson (1978) directly assumes asymptotic Nor-
mality of the sample covariance for a fourth order stationary process.
Robinson (1978), Dunsmuir (1979), Hosoya and Taniguchi (1982) rely on
the convergence of ( 10) to show the convergence of (9), approximating
(9) by √

T

2π

∫ π

−π
tr
{

g
(j)
M (λ, θ0) (IT (λ)−EIT (λ))

}
dλ

where g
(j)
M (λ, θ0) is the Cesaro sum of the weight function to a finite number

of terms, M. The approximation relies on the assumption that the spec-
tral density satisfies a Lipschitz continuity of order ζ > 1\2.In the long
memory case, the model spectrum might not be Lipschitz continuous of
the requested degree nor square integrable. The asymptotic distribution
of the integrated weighted periodogram is derived via approximation by
another quadratic form which shares the same asymptotic distribution
but has shorter memory. The main idea of the approximation is to im-
pose conditions on the weight function that have the effect of annihilating
the singularities of the spectral density in the frequency domain. To es-
tablish the validity of the approximation Fox and Taqqu (1987) rely on
Gaussianity in an essential way, employing the exact expression for the
cumulants of a quadratic form in Gaussian variates. Giraitis and Surgailis
(1990), Giraitis and Taqqu (1999) and Hosoya (1997) relax the Guassian-
ity assumption, and exploit the factorization of the spectrum. However
because the spectral density is not easily factored in correlated signal plus
noise processes, we cannot exploit its factorization to establish a shorter
memory approximation of the score vector. Instead we extend Zaffaroni
(2003) and truncate the original process at some finite t = N and estab-
lish the validity of the approximation relying on certain results on the
asymptotic behavior of the trace of Toeplitz matrices (Theorem 1, Fox
and Taqqu, 1987).

5. Monte-Carlo simulations and efficiency comparison with MLE.

The Whittle estimator is bound to be more inefficient than the maximum
likelihood estimator. For our purposes it is of great interest to know the extent
of this efficiency loss. This section presents the results of a series of Monte
Carlo experiments to compare the finite sample behavior of both methods. We
consider the performance of the estimators in short and long memory bivariate
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one-shock specifications. To carry on the experiments we must choose a finite
parametric specification of the coefficients and the joint distribution of the mean
equation shocks. We set:

xt = Dtzt,

Dt = diag {exp(0.5h1t), exp(0.5h2t)}

ht =

(
ω1

ω2

)
+

(
a1(L)
b1(L) (1− L)

−d1 0

0 a2(L)
b2(L) (1− L)

−d2

)
g(zt−1), G(12)

where ai (L) and bi (L) are univariate polynomials in the lag operator of
known degree

ai (L) = 1 +

p∑
k=1

aikL
k ai (zi) 6= 0, |zi| ≤ 1

bi (L) = 1−
q∑
j=1

bijL
j bi (zi) 6= 0, |zi| ≤ 1,

that for each i = 1, 2 have no common zeros, and (1− L)
−d

is the univariate
fractional operator which has binomial expansion

(1− L)
−di =

∞∑
k=0

Γ (k − di) Γ (k + 1)
−1

Γ (−di)−1
Lk,

where Γ is the gamma function. The function g(.) follows Nelson (1991) original
specification, i.e. for each assets we set

gi(zit) = ϑi + δi
(
|z|it − µ|zi|

)
for constant parameters ϑ, δ with ϑδ 6= 0, where µ|zi| = E |zi| . When di = 0,
the volatility of asset i follows an EGARCH specification, for non zero values
of di < 1/2, a FIEGARCH one. We presents results for a bivariate models
with FIEGARCH(1,d,1) specifications for both assets. In all the experiments
we set ω = 0. With respect to the distribution of the innovations, we consider a
Normal(0,1) distribution, a Student t with v = 7 degrees of freedom and a GED
distribution with thickness parameter v = 1. The vector of parameters to be
estimated is θ = (a1, a2, b1, b2, ϑ1, ϑ2, δ1, δ2, v, d1, d2)′, where ϑi and δi are the
parameters of the news impact curve of asset i, v is the common tail thickness
parameter and di is the memory parameter of asset i. We simulate samples of
length T = {500, 1500, 2500} with 1000 Monte Carlo iterations. We report the
bias and the root mean squared error of the estimates across the 1000 replicates.
All the computations are carried out in Matlab and codes are available upon
request from the authors.Table 1.1 reports the reuslts for the MLE estimator
and Table 1.2 reports the results for the Whittle. Each table has three panels
corresponding to the different innovations. The simulation results suggest that
for long memory specifications the Whittle estimator of the MEV-FIEGARCH
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model performs comparably with respect to the MLE in terms of estimates bias.
The MLE estimator is in general superior in terms of root mean squared error
but it is over performed by the Whittle with respect to the long memory and
and the asymmetry parameters.
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Table 1.1.: Monte Carlo results from MLE estimation
T= 500 1500 3000
parameter value mean rmse mean rmse mean rmse

MEV-FIEGARCH(1,d,1)-N(0,1)

a1 0.5 0.496 0.367 0.511 0.225 0.508 0.194
b1 0.5 0.508 0.341 0.501 0.300 0.500 0.217
ϑ1 0.3 0.309 0.057 0.304 0.042 0.301 0.036
δ1 0.5 0.572 0.295 0.550 0.250 0.535 0.157
d1 0.25 0.165 0.194 0.140 0.158 0.163 0.126
a2 0.7 0.639 0.473 0.732 0.371 0.703 0.273
b2 0.6 0.503 0.453 0.524 0.298 0.603 0.223
ϑ2 -0.1 -0.18 0.051 -0.15 0.043 -0.013 0.040
δ2 0.15 0.009 0.086 0.011 0.074 0.017 0.040
d2 0.45 0.355 0.196 0.399 0.094 0.406 0.071
ρ 0.6 0.562 0.456 0.630 0.341 0.610 0.176

MEV-FIEGARCH(1,d,1)-GED

a1 0.5 0.482 0.404 0.519 0.371 0.510 0.226
b1 0.5 0.506 0.226 0.498 0.178 0.500 0.135
ϑ1 0.3 0.243 0.266 0.252 0.227 0.244 0.192
δ1 0.5 0.465 0.259 0.478 0.187 0.480 0.130
d1 0.25 0.133 0.202 0.098 0.193 0.050 0.142
a2 0.7 0.732 0.363 0.711 0.341 0.701 0.269
b2 0.6 0.578 0.285 0.552 0.251 0.060 0.202
ϑ2 -0.1 -0.143 0.231 -0.132 0.186 -0.115 0.150
δ2 0.15 0.058 0.293 0.095 0.207 0.120 0.133
d2 0.45 0.363 0.178 0.407 0.123 0.437 0.070
v 1 1.103 0.296 1.047 0.133 1.021 0.085
ρ 0.6 0.571 0.223 0.615 0.187 0.605 0.143

MEV-FIEGARCH(1,d,1)-t7

a1 0.5 0.587 0.304 0.552 0.222 0.501 0.157
b1 0.5 0.445 0.300 0.468 0.176 0.501 0.115
ϑ1 0.3 0.355 0.063 0.305 0.045 0.302 0.035
δ1 0.5 0.495 0.086 0.499 0.059 0.499 0.046
d1 0.25 0.154 0.168 0.184 0.121 0.205 0.070
a2 0.7 0.708 0.256 0.705 0.156 0.700 0.114
b2 0.6 0.553 0.331 0.582 0.243 0.593 0.116
ϑ2 -0.1 -0.133 0.198 -0.120 0.152 -0.115 0.096
δ2 0.15 0.184 0.106 0.166 0.098 0.153 0.095
d2 0.45 0.371 0.177 0.417 0.110 0.443 0.059
v 7 7.301 2.970 7.367 2.759 7.306 2.488
ρ 0.6 0.553 0.205 0.621 0.146 0.603 0.086
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Table 1.2.: Monte Carlo results from Whittle estimation
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T= 500 1500 3000
parameter value mean rmse mean rmse mean rmse

MEV-FIEGARCH(1,d,1)-N(0,1)

a1 0.5 0.598 0.364 0.562 0.306 0.515 0.287
b1 0.5 0.435 0.323 0.442 0.300 0.468 0.211
ϑ1 0.3 0.309 0.116 0.304 0.095 0.301 0.057
δ1 0.5 0.541 0.365 0.462 0.291 0.487 0.195
d1 0.25 0.22 0.133 0.18 0.101 0.22 0.078
a2 0.7 0.763 0.296 0.752 0.198 0.715 0.144
b2 0.6 0.556 0.321 0.582 0.253 0.599 0.156
ϑ2 -0.1 -0.105 0.135 -0.102 0.095 -0.101 0.048
δ2 0.15 0.180 0.164 0.162 0.098 0.152 0.073
d2 0.45 0.415 0.125 0.457 0.118 0.45 0.065
ρ 0.6 0.632 0.343 0.611 0.257 0.608 0.186

MEV-FIEGARCH(1,d,1)-GED

a1 0.5 0.482 0.404 0.519 0.371 0.532 0.254
b1 0.5 0.536 0.356 0.476 0.253 0.556 0.202
ϑ1 0.3 0.302 0.193 0.304 0.115 0.299 0.068
δ1 0.5 0.435 0.353 0.450 0.201 0.495 0.194
d1 0.25 0.198 0.198 0.263 0.086 0.026 0.058
a2 0.7 0.682 0.353 0.658 0.296 0.695 0.185
b2 0.6 0.555 0.291 0.568 0.263 0.583 0.253
ϑ2 -0.1 -0.121 0.176 -0.111 0.134 -0.100 0.125
δ2 0.15 0.159 0.227 0.151 0.188 0.158 0.141
d2 0.45 0.41 0.182 0.49 0.132 0.448 0.085
v 1 1.103 0.296 1.047 0.133 1.0132 0.093
ρ 0.6 0.571 0.223 0.615 0.187 0.605 0.143

MEV-FIEGARCH(1,d,1)-t7

a1 0.5 0.482 0.404 0.519 0.371 0.532 0.254
b1 0.5 0.536 0.356 0.476 0.253 0.556 0.202
ϑ1 0.3 0.302 0.193 0.304 0.115 0.299 0.068
δ1 0.5 0.435 0.353 0.450 0.201 0.495 0.194
d1 0.25 0.198 0.198 0.263 0.086 0.026 0.058
a2 0.7 0.682 0.353 0.658 0.296 0.695 0.185
b2 0.6 0.555 0.291 0.568 0.263 0.583 0.253
ϑ2 -0.1 -0.121 0.176 -0.111 0.134 -0.100 0.125
δ2 0.15 0.159 0.227 0.151 0.188 0.158 0.141
d2 0.45 0.41 0.182 0.49 0.132 0.448 0.085
v 7 7.245 0.332 7.168 0.256 7.115 0.157
ρ 0.6 0.571 0.223 0.615 0.187 0.605 0.143
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6. Empirical application

In this section we assess the performance of the model to fit time series of
observed returns. We fit a trivariate MEV to daily returns from three market
indices: FTSE 100 (UK), S&P 500 (US) and NIkkei 225 (JP) (source: Datas-
tream). The data cover the period from 01-January-1984 to 31-August-2015 for
a total of 8246 observations. The daily return is computed as the log difference of
the daily closing price. For all the series, we notice a marked difference between
the ACF in the levels and in the squares, the latter exhibiting an approximate
hyperbolic behavior as the lag increases.

6.1. Specification

For this data set we fit a GARCH-MEV specification, choosing a one-shock
specification of the model and finitely parameterizing the Ψj

xt = µ+ ηt,

ηt = diag {exp {0.5h1t} , exp {0.5h2t} , exp {0.5h2t}} zt

with

hit = ωi +
ai (L)

bi (L)
(1− L)

−d
gi (zit−1) ,

where ai (L) and bi (L) are univariate polynomials in the lag operator of known
degree

ai (L) = 1 +

p∑
k=1

aikL
k a (zi) 6= 0, |zi| ≤ 1

bi (L) = 1−
q∑
j=1

bijLj b (zi) 6= 0, |zi| ≤ 1,

that for each i = 1, 2, 3, ai (L) and bi (L) have no common zeros . The function
gi (zit−1) follows the EGARCH specification of Nelson (1991)

gi (zit) = θi + δi
(
|z|it − µ|zi|

)
allowing for asymmetries and leverage effects and (1− L)

−d
is the univariate

fractional operator which has binomial expansion2

(1− L)
−d

=

∞∑
k=0

Γ (k − d) Γ (k + 1)
−1

Γ (−d)
−1
Lk,

where Γ is the gamma function. For all the three series we set p = q = 1 and
for the mean specification we simply set

ηt = xt − µ,

keeping it as simple as possible for parsimony reasons.

2We follow Baillie et al (1996) and truncate k at k = 1000
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6.2. Estimation results

As a preliminary exercise we estimate semiparametrically for each series the
long-memory parameter d using the local Whittle estimator of Robinson (1995).
The results in Table 2.1 clearly support the hypothesis of long-memory for all
the series.

TABLE 2.1.

S&P FTSE NIKKEI

Semiparametric 0.12 0.15 0.17
GARCH-MEV 0.33

(0.007)
0.43
(0.01)

0.26
(0.08)

Local Whittle and MEV-Whittle estimates for the memory paramer d

Next we estimate the MEV-CCC model with the Whittle estimator using
analytic scores in the numerical maximization, imposing invertibility conditions
on the ai (L) and bi (L) , and |d| < 1\2. The second row of Table 2.1 reports
the Whittle estimates of d (asymptotic standard errors are based on Taniguchi
(1982)). Estimation results are reported in Table 2.2. For all the series of
returns there is clear evidence that shock to volatility decay with time but very
slowly, agreement with previous studies. Moreover the conditional correlations
appear to be significantly high for the period under study.

TABLE 2.2

S&P FTSE NIKKEI

µ 0.0001
(0.0005)

0.0003
(0.0002)

0.0001
(0.0003)

ai 0.51
(0.007)

0.45
(0.042)

0.63
(0.003)

bi −0.42
(0.004)

0.40
(0.0072)

−0.51
(0.004)

|θ| 0.1567
(0.009)

0.0981
(0.001)

0.1755
(0.007)

δ 0.891
(0.0003)

0.675
(0.006)

0.904
(0.0012)

ρs&p 1.00
(−)

- -

ρftse 0.765
(0.0013)

1.00
(−)

-

ρnikkei 0.854
(0.017)

0.854
(0.017)

1.00
(−)

Whittle estimates of the EGARCH-MEV model parameters

7. Conclusions

We have established the asymptotic distribution theory of the Whittle es-
timator in a class of multivariate exponential volatility models that nests both
one shock and two-shocks models under a variety of parameterizations including
short and long memory.The most notable elements of this class are the CCC-
EGARCH and CCC-FIEGARCH and the LM stochastic volatility model. We
find the the rate of convergence and the limiting distribution of the estimator
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do not depend on the range of decay of the volatility. Efficiency comparison
with the MLE estimator for the two-shocks specification show that the Whit-
tle is over performed in terms of RMSE but stands out with respect to the
parameters driving the long-memory and the asymmetry of the processes. An
interesting development would be to allow the memory parameter to lie in the
nonstationary region. Hualde and Robinson (2011) investigate fractionally in-
tegrated, possibly non stationary, linear processes and establish the asymptotic
normality of a one-step estimator based on an initial

√
T consistent estimate of

the parameters. Extensions of their results to signal plus noise processes would
allow to test for non stationarity in the fractionally integrated multivariate ex-
ponential volatility model, thus providing a general framework for testing for
non stationarity.
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APPENDIX A
In this appendix we establish a number of properties of the model mainly in

terms of its spectral density f(λ, θ) and its derivatives. Recall that ∼ denotes
asymptotic equivalence, tr is the trace operator, det is the determinant operator
and ‖.‖ is the Euclidean norm. Constants (not always the same) are denoted
by K. Almost sure convergence and convergence in distribution are denoted
respectively by →a.s. and →d . We denote a positive integer number as r. The
class of p-integrable functions on the set Π is denoted as Lp (Π).

Lemma A1.1 Under Assumption A1 and (3 ), the yt are ergodic and strictly
stationary.
Proof The ergodicity and strict stationarity of the xt follows from Nelson
(1991, Theorem 2.1, page 251) and implies the ergodicity and strict stationarity
of the yt. The yt are covariance stationary if and only if (3) holds.

Lemma A1.2 Under Assumption A3, f(λ, θ) has elements in L2 (Π) , bounded
and continuous at all (λ, θ) ∈ Π×Θ.
Proof Assumption A3 implies that as j →∞

∞∑
j=0

|tr {Ψj (ζ)}| <∞.

However by (7)

tr
{

Γ̃u(θ)
}

= I(u=0)tr {Σξ (τ)}+tr

Σε (τ)

∞∑
j=0

Ψj (ζ) Ψ
′

j+u (ζ)

+I(m6=0)tr
{

Ψ|u|−1 (ζ) Σξε (τ)
}
,

then Assumption A3 implies the uniquness of the spectral density and its square
integrability, and continuity at all (λ, θ) ∈ Π × Θ (see Giraitis et al., 2012,
Chapter 2, Proposition 2.2.1, page 11). Uniform continuity and compactness of
the parameter space (see Assumption A2) imply that the element of f(λ, θ) are
bounded at all (λ, θ).

Lemma A1.3 Under Assumption A’ 7, (∂/∂θ) f (λ, θ) has elements in L2 (Π)
which are bounded and continuous at all (λ, θ) ∈ Π×Θ.
Proof For any j = 1, ..., s,

∂

∂θj
f (λ, θ) =

∂

∂θj

[
Σξ (τ)

2π

]
+

∂

∂θj

[
k
(
eiλ, ζ

)
Σε (τ) k

(
eiλ, ζ

)∗
2π

]

+
∂

∂θj

[
Σεξ (τ) e−iλk

(
eiλ, ζ

)∗
+ eiλk

(
eiλ, ζ

)
Σ
′

εξ (τ)

2π

]
.

Assumption A3 implies that for any j = 1, ..., s,

∞∑
u=0

∣∣∣∣tr{ ∂

∂θj
Γ̃u(θ)

}∣∣∣∣ <∞,
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which is sufficient condition for the existence of the first derivative of f (λ, θ).
Moreover it implies that (∂/∂θ) f (λ, θ) has elements in L2 (Π) which are contin-
uous at all (λ, θ) ∈ Π×Θ (see Giraitis et al, 2012, Proposition 2.2.1., page 11).
By compactness of the parameter space, the uniform continuity implies that the
elements of (∂/∂θ) f (λ, θ) are bounded at all (λ, θ) ∈ Π×Θ.

Lemma A1.4 Under Assumption A4, f(λ, θ) is a strictly positive definite matrix
for all θ ∈ Θ, λ ∈ Π.
Proof The autocovariance function of the process is

Γ̃(θ, u) = I(u=0)Σξ (τ) + Σε (τ)

∞∑
j=0

Ψj (ζ) Ψ
′

j+u (ζ) + I(m6=0)Ψ|u|−1 (ζ) Σξε (τ) .

Under Assumption A5, Σε (τ) is positive definite for every value of τ in the
parameter space. Since by definition Σξ (τ) and Σξε (τ) are positive semidefinite

covariance matrices, Γ̃(θ, u) is expressed as the sum of two positive semidefinite
matrices and one positive definite matrix. Therefore it is positive definite. By
definition the spectrum is the unique Fourier transform of the autocovariance
matrix and its positive definiteness is implied by the positive definiteness of
Γ̃(θ, u).

Lemma A.5 Under Assumption A1, yt is purely non deterministic with Wold
decomposition

yt =

∞∑
l=0

Al (θ) et−l,

∞∑
l=0

‖Al (θ)‖2 <∞,

where the et are n dimensional white noise vectors.
Proof Since yt is a stationary zero mean process, the result follows once we
establish that ∫ π

−π
log det f (λ, θ) > −∞,

(see Giraitis et al, 2012, Theorem 3.2.1, page 38). By the logarithm inequality∣∣1− det f−1 (λ, θ)
∣∣ ≤ |log det f (λ, θ)| ≤ |det f (λ, θ)− 1|

and the result follows from the continuity of f−1 (λ, θ) at all (λ, θ) by Assumption
A7 and Lemma A1.4.

Lemma A.6 Under Assumption A’ 7, log det f (λ, θ) is differentiable in θ ∈ Θ
under the integral sign.
Proof Denoting the jth unit vector in Rs by ij , we have

1

ε

[
1

2π

∫ π

−π
log det f (λ, θ + ijε) dλ−

1

2π

∫ π

−π
log det f (λ, θ) dλ

]
=

1

ε

1

2π

∫ π

−π
log det f (λ, θ + ijε)− log det f (λ, θ) dλ.
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By the mean value theorem the integrand is bounded by∣∣∣∣∣ ∂∂θ∗j log det f (λ, θ∗)

∣∣∣∣∣ =

∣∣∣∣∣tr
{

f−1 (λ, θ∗)
∂

∂θ∗j
f (λ, θ∗)

}∣∣∣∣∣ ,
where |θ∗ (λ)− θ| < |ε| . By Assumption A’7, Lemma A1.4 and compactness of
the parameter space ∣∣∣∣∣tr

{
f−1 (λ, θ∗)

∂

∂θ∗j
f (λ, θ∗)

}∣∣∣∣∣ < K,

where K is a positive constant that does not depend on θ. Then∫ π

−π

∣∣∣∣∣tr
{

f−1 (λ, θ∗)
∂

∂θ∗j
f (λ, θ∗)

}∣∣∣∣∣ dλ <∞,
and the dominated convergence theorem implies that

∫ π
−π log det f (λ, θ) can be

differentiated under the integral sign.

Lemma A1.7 Under assumption A’ 7, for r = 1, 2, 3, (∂r/∂θj1 ...θjr ) f (λ, θ) has
elements in L2 (Π) which are bounded and continuous at all (λ, θ) ∈ Π×Θ.
Proof For any jh = 1, ..., s, with h = 1, ..., r and r = 1, 2, 3,

∂r

∂θj1 ...∂θjr
f (λ, θ) =

∂r

∂θj1 ...∂θjr

[
Σξ (τ)

2π

]
+

∂r

∂θj1 ...∂θjr

[
k
(
eiλ, ζ

)
Σε (τ) k

(
eiλ, ζ

)∗
2π

]

+
∂r

∂θj1 ...∂θjr

[
Σεξ (τ) e−iλk

(
eiλ, ζ

)∗
+ eiλk

(
eiλ, ζ

)
Σ
′

εξ (τ)

2π

]
.

Assumption A4 implies that for any jh = 1, ..., s, with h = 1, ..., r and r = 1, 2, 3

∞∑
u=0

∣∣∣∣tr{ ∂r

∂θj1 ...θjr
Γu(θ)

}∣∣∣∣ <∞,

which is sufficient condition for the existence of the rth derivative of f (λ, θ).
Moreover it implies that (∂r/∂θj1 ...θjr ) f (λ, θ) has elements in L2 (Π) which are
continuous at all (λ, θ) ∈ Π×Θ (see Giraitis et al, 2012, Proposition 2.2.1, page
11). By compactness of the parameter space (see Assumption A2), the uniform
continuity implies that the elements of (∂r/∂θj1 ...θjr ) f (λ, θ) are bounded at all
(λ, θ) ∈ Π×Θ.

Lemma A1.8 Under Assumption A1-A7, g (λ, θ) ≡ f−1 (λ, θ) ḟ (λ, θ) is uni-
formly continuous in (λ, θ) .
Proof The uniform continuity of g (λ, θ) follows once we establish

sup
θ∗∈Θ

∥∥∥∥ ∂

∂θ∗
g (λ, θ∗)

∥∥∥∥ <∞,
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where |θ∗ (λ)− θ| < |ε|, (see Davidson, 1994, Theorem 21.10, page 339). How-
ever

∂

∂θ∗
g (λ, θ∗) = f−1 (λ, θ∗) f̈ (λ, θ) +

(
∂

∂θ∗
f−1 (λ, θ∗)

)
ḟ (λ, θ) ,

which by Assumption A7, Lemma A1.8 and compactness of the parameter space
is bounded by a positive constant K for all θ∗ ∈ Θ.

Lemma A1.9 Under Assumption A7,
∫ π
−π log det f (λ, θ) dλ can be differentiated

twice under the integral sign.
Proof By the same argument used in Lemma B1.7, the result follows from
Assumption A7 and Lemma A1.9.

Lemma A1.10 Under Assumption A’ 1 and A’ 7, for 1 ≤ a, b, c, d ≤ n.

∞∑
t1,t2,t3,t4=−∞

|Ky
abcd (t1, t2, t3, t4)| <∞.

Proof Denote as Kabcd (xt,yt, zt,ut) the fourth order cumulant of elements

a, b, c, d of random vectors xt,yt, zt,ut. SetKε
abcd = cumulant(ε

(a)
0 , ε

(b)
0 , ε

(c)
0 , ε

(d)
0 )

and set Kξ
abcd = cumulant(ξ

(a)
0 , ξ

(b)
0 , ξ

(c)
0 , ξ

(d)
0 ). Then Ky

abcd (t1, t2, t3, t4) is made
by the sum of the following terms:

n∑
a,b,c,d=1

(
Kξ
abcd1 (t1 = t2 = t3 = t4)

)
(14)

∑
r=a,b,c,d

 n∑
a,b,c,d=1

Kabcd (ξ0, ξ0, ξ0, ε0) Ψ
(r)
t4−t1−11 (t1 = t2 = t3)


∑

u,v=a,b,c,d

 n∑
a,b,c,d=1

Kabcd (ξ0, ξ0, ε0, ε0) Ψ
(u,u)
t3−t2−1Ψ

(v)
t4−t1−11 (t1 = t2)


∑

u,v,z=a,b,c,d

 n∑
a,b,c,d=1

Kabcd (ξ0, ε0, ε0, ε0) Ψ
(u)
t2−t1−1Ψ

(v)
t3−t1−1Ψ

(z)
t4−t2−1


n∑

a,b,c,d=1

Kε
abcd

∞∑
j=0

Ψ
(a)
j Ψ

(b)
j+t2−t1Ψ

(c)
j+t3−t1Ψ

(d)
j+t4−t1

 .

The absolute summability of the cumulants follows from the absolute summa-
bility of the last term in (14), which is implied by Assumption A3.

Lemma A1.11 Under Assumption A’ 1- A’ 7 the trispectrum of yt,

K̃y
abcd (λ1, λ2, λ3) =

1

(2π)
3

∞∑
t1,t2,t3=−∞

exp {−i (λ1t1 + λ2t2 + λ3t3)}Ky
abcd (t1, t2, t3)

is square integrable.
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Proof Follows from the square summability of the Fourier coefficients of K̃y
abcd,

implied by Lemma A1.10 (see Giraitis et al., 2012, (2.1.4))

APPENDIX B: Consistency Lemmas
This section contains the proof of Lemma 6 and Lemma 7 in the short and

long memory cases. We state two preliminary results. In Lemma B.1 we recall a
fundamental result of Hannan (1970) on matrix functions approximation and in
Lemma B.2, we establish the uniform almost sure convergence of some discrete
functions of the periodogram under minimal condition on the underlying model,
generalizing Lemma 1 of Hannan (1973) to matrix functions. In what follows,
for any matrix function h (λ, θ), we denote by

hu (θ) =

∫ π

−π
eiuλh (λ, θ) dλ, u = 0,±1,±2, ...

its Fourier coefficients, and we denote by

qM (λ, θ) =

M∑
u=−M

(
1− |u|

M

)
hu (θ) e−iuλ,

the Cesaro sum of its Fourier coefficients up to M terms.

Lemma B.1 Let h (λ, θ) be a n× n matrix function, continuous in λ ∈ Π and
such that h (−π, θ) = h (π, θ) in [−π, π]. Then h (λ, θ) may be approximated
uniformly in λ by qM (λ, θ),

sup
λ∈Π
‖h (λ, θ)− qM (λ, θ)‖ → 0 as M →∞.

If in addition h (λ, θ) is continuous in λ uniformly in θ, the approximation may
be made uniformly in θ also,

sup
λ,θ
‖h (λ, θ)− qM (λ, θ)‖ → 0 as M →∞.

Proof A detailed proof of this lemma for matrix functions can be found in
Hannan (1970, Mathematical Appendix, Section 3).

Lemma B.2 Let yt be a stationary, ergodic and purely non deterministic vector
process, with n×n spectral density matrix f (λ, θ0). Let h (λ, θ) be a n×n matrix
function, continuous in (λ, θ) ∈ Π×Θ and such that h (λ, θ) = h (−λ, θ). Then,
uniformly in θ ∈ Θ and λ ∈ Π,

(a)
1

2π

∫ π

−π
tr {h(λ, θ)IT (λ)} dλ → 1

2π

∫ π

−π
tr {h(λ, θ) f(λ, θ0)} dλ a.s.

(b)
1

T

T−1∑
t=1

tr {h(λ, θ)IT (λt)} →
1

2π

∫ π

−π
tr {h(λ, θ) f(λ, θ0)} dλ a.s.
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Proof : (a) By Lemma B.1, for every η > 0 we may find M large enough such
that:

sup
λ,θ
‖h(λ, θ)− qM (λ, θ)‖ ≤ η.

Let η > 0. For sufficiently large M , uniformly in θ :

1

2π

∣∣∣∣∫ π

−π
tr {h(λ, θ)IT (λ)} dλ−

∫ π

−π
tr {qM (λt, θ)IT (λ)} dλ

∣∣∣∣
=

1

2π

∣∣∣∣∫ π

−π
tr {(h(λ, θ)− qM (λ, θ)) IT (λ)} dλ

∣∣∣∣
≤ η

2π

∫ π

−π
tr {IT (λ)} dλ =

η

2π
tr

{
1

T

T∑
t=1

T−1∑
u=−T+1

C (u) e−iuλ

}
=

η

2π
tr {C (0)} ,

where C (0) is the sample autocovariance function. Since the process is ergodic,
by the Ergodic Theorem (see Giraitis et al., Chapter 2, Section 2.5) C (0) con-
verges almost surely to its population analogue Γ (0) as T → ∞. Thus for all
sufficiently large t, uniformly in θ ∈ Θ:∣∣∣∣∫ π

−π
tr {h(λ, θ)IT (λ)} dλ−

∫ π

−π
tr {qM (λ, θ)IT (λ)} dλ

∣∣∣∣ ≤ η tr {Γ (0)} a.s.

Moreover,∫ π

−π
tr {qM (λ, θ)IT (λ)} dλ =

∫ π

−π
tr

[
M∑

u=−M

(
1− |u|

M

)
hu (θ) e−iuλIT (λ)

]
dλ

= tr

[
M∑

u=−M

(
1− |u|

M

)
hu (θ) C (u)

]
.

By the Ergodic Theorem for each |u| ≤ M , as T →∞, C (u) converges almost
surely to Γ (u) =

∫ π
−π f (λ, θ) e−iλudλ. Therefore the above expression tends

almost surely to:

tr

[
M∑

u=−M

(
1− |u|

M

)
hu (θ) Γ (u)

]

= tr

[
M∑

u=−M

(
1− |u|

M

)
hu (θ)

(
1

2π

∫ π

−π
f(λ, θ0)e−iuλdλ

)]

=
1

2π

∫ π

−π
tr [qM (λ, θ)f(λ, θ0)] dλ→ 1

2π

∫ π

−π
tr [h(λ, θ)f(λ, θ0)] dλ

on letting η → 0, which completes the proof.
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(b): the proof follows as in part (a) using the fact that∣∣∣∣∣ 1

T

T−1∑
t=1

tr {(h(λ, θ)− qM (λ, θ)) IT (λt)}

∣∣∣∣∣ ≤ η

T

T−1∑
t=1

IT (λt) = ηtr {C (0)}

and that

1

T

T−1∑
t=1

tr {qM (λt, θ)IT (λt)} = tr

{
M∑

u=−M

(
1− |u|

M

)
hu (θ) C (u)

}
.

Lemma 3. If Assumptions A,B,C,D,E,F hold, for any η > 0 uniformly in
θ ∈ Θ

(a) lim
T→∞

QT (θ) = Q (θ) a.s.

(b) lim
T→∞

QT,η (θ) = Qη (θ) a.s.

Proof. (a) The almost sure uniform convergence of

1

2π

∫ π

−π
tr
(
f−1(λt, θ)IT (λt)

)
to

1

2π

∫ π

−π
tr
(
f−1(λ, θ)f(λ, θ0)

)
dλ

follows from Lemma B.2(a), taking h (λ, θ) ≡ f−1 (λ, θ). By Assumption C(ii),
f−1 (λ, θ) is uniformly continuous at all (λ, θ) and by definition f−1 (−π, θ) =
f−1 (π, θ). By Lemma A.5, yt is a linearly regular process and the conditions of
Lemma B.2 are satisfied.

Consider the first term of QT (θ),

1

2π

∫ π

−π
log det f(λ, θ)dλ.

This term is non stochastic and its uniform convergence follows once with es-
tablish the equicontinuity property

lim
ε→0

sup
θ̃:‖θ̃−θ‖≤ε

∣∣∣∣∫ π

−π
log det f

(
λ, θ̃
)
dλ− 1

2π

∫ π

−π
log det f (λ, θ) dλ

∣∣∣∣→ 0. (15)

(15) is implied by

sup
θ∗∈Θ

∣∣∣∣ ∂∂θ 1

2π

∫ π

−π
log det f (λ, θ∗) dλ

∣∣∣∣ <∞,
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where |θ∗ (λ)− θ| < |ε| , (see Davidson, 1994, Theorem 21.10, page 339). By
Lemma A.6 ,

∂

∂θ

1

2π

∫ π

−π
log det f (λ, θ∗) dλ

=
1

2π

∫ π

−π

∂

∂θ
log det f (λ, θ∗) dλ

=
1

2π

∫ π

−π
tr

{
f−1 (λ, θ∗)

∂

∂θ
f (λ, θ∗)

}
. (16)

We need to distinguish two cases.
1) If d = 0, (16) is bounded by some positive constant by Assumptions B,

C(ii) and G(i); the use of the dominated convergence theorem allows to conclude
that

sup
θ∗∈Θ

∣∣∣∣ 1

2π

∫ π

−π
tr

{
f−1 (λ, θ∗)

∂

∂θ
f (λ, θ∗)

}∣∣∣∣ < K,

which concludes the proof. OPPURE If d = 0, f (λ, θ) is continuous at all
(λ, θ) . Compactness of the parameter space by Assumption B, strict positivity
of the spectral density and continuity of the determinant and of the logarithmic
function (see Magnus, Capter 1) imply that it converges uniformly.

2) If d ∈ (0, 1/2) , by Assumptions B, C(ii) and G(i) (16) is at most, ignoring
constant terms, ∫ π

−π
|λ|2(dl−du)−δ

dλ <∞,

where we take dl = infΘ d (θ) and du = supΘ d (θ) and so (dl − du) > −1/2 and
δ can be taken arbitrarily small. Then we choose δ such that∫ π

−π
|λ|2(dl−du)−δ

dλ <∞,

and the use of the dominated convergence theorem concludes.
(b) The almost sure uniform convergence of

1

2π

∫ π

−π
tr (φη(λt, θ)IT (λt))

to
1

2π

∫ π

−π
tr (φη(λ, θ)f(λ, θ0)) dλ

follows from Lemma B.2, taking h (λ, θ) ≡ φη (λ, θ) since by Assumption C,
φη (λ, θ) is uniformly continuous in (λ, θ), and satisfies φη (λ, θ) = φη (−λ, θ) for
all λ ∈ Π.

Lemma 4. If Assumptions D and E hold, then for all θ ∈ Θ,

inf
θ∈Θ

Q (θ) = Q (θ0) =

∫ π

−π
log det f (λ, θ0) dλ+

1

2π

∫ π

−π
tr
{
f−1(λ, θ0)f(λ, θ0)

}
dλ

=

∫ π

−π
log det f (λ, θ0) dλ+ T.
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Proof.

Q(θ) =
1

2π

∫ π

−π
log det f(λ, θ)dλ+

1

2π

∫ π

−π
tr
[
f−1(λ, θ) f(λ, θ0

]
dλ, (17)

adding and subtracting 1/2π
∫ π
−π log det f (λ, θ0) dλ, (17) is equal to

1

2π

∫ π

−π
log det f(λ, θ0)dλ+

1

2π

∫ π

−π
tr
[
f−1(λ, θ) f(λ, θ0

]
dλ− 1

2π

∫ π

−π
log

det f(λ, θ0)

det f(λ, θ)
dλ,

because for any non-singular matrix A, det−1 (A) = det
(
A−1

)
(Luktepohl, 1996,

Section 3.4.4, Result (f)), (17) is equal to

Q(θ0)−T+
1

2π

∫ π

−π
tr
[
f−1(λ, θ) f(λ, θ0

]
dλ− 1

2π

∫ π

−π
log
(
det
(
f−1(λ, θ)

)
det (f(λ, θ0))

)
dλ,

because for any non singular matrix A and B, det (A) × det (B) = det (AB)
(Luktepohl, 1996, Section 4.2.1, Result (4)), (17) is equal to

Q(θ0)+

{
1

2π

∫ π

−π
tr
[
f−1(λ, θ) f(λ, θ0

]
dλ− T

}
− 1

2π

∫ π

−π
log
(
det
(
f−1(λ, θ)f(λ, θ0)

))
dλ > Q (θ0) ,

where the strict inequality follows, in view of Lemma B1.5, because log det (A) ≤
tr (A) − T for any positive definite matrix A with equality holding if and only
if A = In (Luktepohl, 1996, Section 4.1.2, Result (10)).

Lemma 5. If Assumptions A,B,C,D,E,F hold, for any η > 0 uniformly in
θ ∈ Θ

(a) lim
T→∞

Q̄T (θ) = Q (θ) a.s.

(b) lim
T→∞

Q̄T,η (θ) = Qη (θ) a.s.

Proof. (a) The almost sure uniform convergence of the second term of Q̄T (θ)
follows as in Lemma 6 from Lemma B.2(b), Assumptions A,B,C and Lemma
A.5. For the first, non-stochastic, term of Q̄T (θ) we distinguish two cases

1) When d = 0 (short memory) f (λ, θ) is continuous at all (λ, θ) . Compact-
ness of the parameter space by Assumption B, strict positivity of the spectral
density and continuity of the determinant and of the logarithmic function (see
Magnus, Capter 1) imply that uniformly in (λ, θ)

1

T

T−1∑
t=1

log det f (λ, θ)→
∫ π

−π
log det f (λ, θ) dλ.

2) When d ∈ (0, 1/2), we adapt Robinson
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Consider that by Lemma ( quello in cui rappresenti il processo come vector
linear)

f (λ, θ) = k
(
θ, eiλj

)
Gk
(
θ, eiλj

)
k(eiλ, ζ) = I +

∑∞
j=0 Ψj (ζ) eiλj

detf (λ, θ) = det k
(
θ, eiλj

)
detGdet k

(
θ, eiλj

)
(lukthepol) , logdetf (λ, θ) =

log det k
(
θ, eiλj

)
+ log detG+ log det k

(
θ, eiλj

)
APPENDIX C
This section contains the proof of the lemmas used to establish the asymp-

totic normality of the estimator.

Lemma C1.1 The asymptotic covariance between τ̃(a,b) (m) and τ̃(c,d) (u) is
given as

2π

∫ π

−π

{
f(a,c) (λ, θ) f̄(b,d) (λ, θ) e−i(m−u)λ + f(a,d) (λ, θ) f̄(b,c) (λ, θ) ei(m+u)λ

}
dλ

+2π

∫ π

−π

∫ π

−π
e(imλ1+iuλ2)K̃y

abcd(−λ1,λ2,−λ2)dλ1dλ2.

Proof The covariance between τ̃(a,b) (m) and τ̃(c,d) (n) is

1

T

T−1∑
u=1−T

(
1− |u|

T

){
Γ̃(a,c) (n) Γ̃(b,d) (u+ n−m) + Γ̃(a,d) (u+ n) Γ̃(b,c) (u−m)

}

+

T−1∑
u=1−T

(
1− |u|

T

)
Ky
a,b,c,d (m,u, u+ n) , (18)

(see Hannan, 1979, page 209-211 ). The term

1

T

T−1∑
u=1−T

(
1− |u|

T

)
Γ̃(a,c) (n) Γ̃(b,d) (u+ n−m) , (19)

is the Cesaro sum, evaluated at the origin, of (4π)
2

the uth Fourier coefficient
of the convolution of f(a,c) (λ) with f(b,d) (λ) e−i(m−n)λ. By Lemma B1.3, f (λ)
has elements in L2, so their convolution is continuous. Then (19) converges to

2π

∫ π

−π
f(a,c) (λ, θ) f̄(b,d) (λ, θ) e−i(n−m)λdλ.

The same argument applies to

1

T

T−1∑
u=1−T

(
1− |u|

T

)
Γ̃(a,d) (u+ n) Γ̃(b,c) (u−m) ,

which converges to

2π

∫ π

−π
f(a,d) (λ, θ) f̄(b,c) (λ, θ) ei(m+u)λdλ.
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(18) is the Cesaro sum, evaluated at the zero frequency, of the Fourier coef-
ficients of the function K̃y

abcd (λ1, λ2, λ3) e−i(nλ1+mλ2). By Lemma B1.11, the
trispectrum of the process is square integrable, implying the convergence of (18)
to

2π

∫ π

−π

∫ π

−π
e(inλ1+imλ2)K̃y

abcd (−λ1, λ2,−λ2) dλ1dλ2.

Lemma 6. Under Assumptions A(4), B, C, D, E, F, G, H as T → ∞,
uniformly in θ ∈ Θ,

H̃T (θ)
a.s→ H (θ)

almost surely, where H (θ) is a positive definite matrix with (i, j) element,

H(i,j) (θ) =
1

2π

∫ π

−π
tr
{

f−1 (λ, θ) f̈(i,j) (λ, θ)
}
dλ

− 1

2π

∫ π

−π
tr
{

f−1 (λ, θ) ḟ(i) (λ, θ) f−1 (λ, θ) ḟ(j) (λ, θ)
}
dλ

− 1

2π

∫ π

−π
tr

{(
∂2

∂θi∂θ′j
f−1 (λ, θ)

)
f (λ, θ0) dλ

}
.

Proof. Proof. We establish the uniform convergence of Q̈T (θ) to M(θ) point-

wise. The (i, j) element of Q̈T (θ), Q̈
(i,j)
T (θ) is

1

2π

∫ π

−π
tr
{

f−1 (λ, θ) f̈(i,j) (λ, θ)
}
dλ (20)

− 1

2π

∫ π

−π
tr
{

f−1 (λ, θ) ḟ(i) (λ, θ) f−1 (λ, θ) ḟ(j) (λ, θ)
}
dλ (21)

+
1

2π

∫ π

−π
tr

{(
∂2

∂θi∂θ′j
f−1(λ, θ)

)
IT (λ)

}
dλ. (22)

The last term converges almost surely uniformly in (λ, θ) ∈ Π×Θ to

1

2π

∫
tr

{(
∂2

∂θi∂θ′j
f−1(λ, θ)

)
f(λ, θ0)

}
dλ

by Lemma 4, taking h (λ, θ) ≡
(
∂2/∂θi∂θ

′
j

)
f−1(λ, θ), which is continuos at all

(λ, θ) ∈ Π × Θ by Assumption A7 and symmetric around zero in [−π, π] .The
first two terms of (20) are non stochastic. Their uniform convergence in θ follows
once with establish their equicontinuity property. Consider the first term. We
want to show that

sup
θ̃:‖θ̃−θ‖≤ε

∣∣∣∣ 1

2π

∫ π

−π

[
tr
{

f−1
(
λ, θ̃
)

f̈(i,j)

(
λ, θ̃
)}
− tr

{
f−1 (λ, θ) f̈(i,j) (λ, θ)

}]
dλ

∣∣∣∣→ 0 a.s..

(23)
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(23) is implied by

sup
θ∈Θ

∣∣∣∣ ∂∂θ
∫ π

−π
tr
{

f−1 (λ, θ) f̈(i,j) (λ, θ)
}
dλ

∣∣∣∣ <∞, (24)

(see Davidson, 1994, Theorem 21.10, page 339). We must establish that
∫ π
−π tr

{
f−1 (λ, θ) f̈(i,j) (λ, θ)

}
dλ

is differentiable under the integral sign. Denote the jth unit vector in Rs by ij ,
and consider

1

2π

∫ π

−π

1

ε
tr
{

f−1 (λ, θ + ijε) f̈(i,j) (λ, θ + ijε)− f−1 (λ, θ) f̈(i,j) (λ, θ)
}
dλ.

By the mean value theorem the integrand is dominated for each λ by∣∣∣∣ ∂∂θl tr
{

f−1 (λ, θ∗ (λ)) f̈(i,j) (λ, θ∗ (λ))
}∣∣∣∣ , (25)

where |θ∗ (λ)− θ| < |ε|. Taking derivatives (25) is equal to∣∣∣∣tr{f−1 (λ, θ∗ (λ))

(
∂

∂θl
f̈(i,j) (λ, θ∗ (λ))

)
+

(
∂

∂θl
f−1 (λ, θ∗ (λ))

)
f̈(i,j) (λ, θ∗ (λ))

}∣∣∣∣ .
(26)

By Assumption A’7(ii) and (iii), Lemma B1.8 and compactness of the parameter
space, (26) is at most K, where K denotes a generic positive constant. The use
of the dominated convergence theorem allows to conclude that∣∣∣∣ ∂∂θ

∫ π

−π
tr
{

f−1 (λ, θ) f̈(i,j) (λ, θ)
}
dλ

∣∣∣∣ <∞,
which completes the proof of (23). The equicontinuity property of the second
term of (20) is implied by

sup
θ∈Θ

∣∣∣∣ ∂∂θl 1

2π

∫ π

−π
tr
{

f−1 (λ, θ) ḟ(i) (λ, θ) f−1 (λ, θ) ḟ(j) (λ, θ)
}
dλ

∣∣∣∣ <∞, (27)

(see Davidson, 1994, Theorem 21.10, page 339). The left hand side of (27) is
differentiable under the integral sign because for |θ∗ (λ)− θ| < |ε|∣∣∣∣ ∂∂θl tr

{
f−1 (λ, θ∗) ḟ(i) (λ, θ∗) f−1 (λ, θ∗) ḟ(j) (λ, θ∗)

}∣∣∣∣
= |tr

{
f−1 (λ, θ∗) ḟ(i) (λ, θ∗) f−1 (λ, θ∗) f̈(j,l) (λ, θ∗)

}
+tr

{
f−1 (λ, θ∗) ḟ(i) (λ, θ∗)

(
∂

∂θl
f−1 (λ, θ∗)

)
ḟ(j) (λ, θ∗)

}
+tr

{
f−1 (λ, θ∗) f̈(i,l) (λ, θ∗) f−1 (λ, θ∗) ḟ(j) (λ, θ∗)

}
+tr

{(
∂

∂θl
f−1 (λ, θ∗)

)
ḟ(i) (λ, θ∗) f−1 (λ, θ∗) ḟ(j) (λ, θ∗)

}
|,
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which by Assumption A’7, Lemma B1.8, and compactness of the parameter
space is bonded at all θ ∈ Θ. Then the use of the dominated convergence
theorem completes the proof.

Lemma 4Under Assumptions A(4), B, C, D, E, F, G, H as T →∞,

√
T [ST (θ0)− EST (θ0)]→d N(0,V (θ0)), (28)

where V (θ) is a positive definite matrix with (j, l) element,

V(j,l) (θ0) =
1

π

∫ π

−π
tr

[
f(λ, θ0)

(
∂

∂θj
f−1(λ, θ0)

)
f(λ, θ)

(
∂

∂θl
f−1(λ, θ0)

)]
dλ

+
1

2π

T

a,b,c,d=1

∫ π

−π

∫ π

−π

{
ḟ

(a,b)
(j) (λ1,θ0)ḟ

(c,d)
(l) (λ2,θ0)

}
K̃a,b,c,d(−λ1,λ2,−λ2, θ0)dλ1dλ2.

Proof : The j-th element of the lhs of (28) is:

√
T
[
S

(j)
T (θ0)− ES

(j)
T (θ0)

]
=

√
T

2π

∫ π

−π
tr
{

g(j) (λ, θ0) (IT (λ)−EIT (λ))
}
dλ

(91)
and the proof of the rhd of 91 is in Section 4.

Proof of Lemma 6 Set

h̃1 (u) =
1

2π

∫ π

−π
h1 (λ) eiuλdλ,

h̃2 (u) =
1

2π

∫ π

−π
h2 (λ) eiuλdλ.

Then

TCov

{∫ π

−π
h1 (λ) Iab (λ) dλ,

∫ π

−π
h2 (λ) Icd (λ) dλ

}
(29)

=
1

T

T∑
u1,u2,u3,u4=1

h̃1 (u1 − u2) h̃2 (u3 − u4) Γ̃(a,c) (u3 − u1) Γ̃(b,d) (u4 − u2)(30)

+
1

T

T∑
u1,u2,u3,u4=1

h̃1 (u1 − u2) h̃2 (u3 − u4) Γ̃(a,d) (u4 − u1) Γ̃(b,c) (u3 − u2)(31)

+
1

T

T∑
u1u2u3u4=1

h̃1 (u1 − u2) h̃2 (u3 − u4) Ky
abcd (u2 − u1, u3 − u1, u4 − u1) .(32)

The convergence of (30) and (31) follows from Hannan (1976, Theorem 1, page
398). For example (30)(

T+1∑
l=1−T

(
1− |l1|

T

)
h̃1 (l1) Γ̃(b,d) (u4 − u2)

)
×

(
T+1∑

k=1−T

(
1− |l2|

T

)
h̃2 (l2) Γ̃(a,c) (u3 − u1)

)
,
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which is the product of the Cesaro sums, evaluated at the origin, of the Fourier
coefficients of the convolution of h1 (λ) with f(b,d) (λ) and of the convolution
of h2 (λ) with f(a,c) (λ). Because f (λ) and h (λ) are square integrable their
convolution is continuous in λ ∈ [−π, π]. Then (30) converges to

2π

∫ π

−π
h1 (λ) (λ) f̄(b,d) (λ) h̄2 (λ) f(a,c)dλ.

An analogous result holds for (31). Set l1 = u1, l2 = u2 − u1, l3 = u3 − u1,
l4 = u4 − u1, (32) can be expressed as

1

T

T+1∑
l2,l3,l4=1−T

(T − S (l2, l3, l4)) h̃1 (−l2) h̃2 (l3 − l4)Ky
abcd (l2, l3, l4) , (33)

where

S (l2, l3, l4) = max (|l2| , |l3| , |l4|) I (sign l2 = sign l3 = sign l4)

+ max (|li| , |lj |) + |lk| I (sign li = sign lj = −sign lk) .

As T →∞, (33) converges to

+∞∑
l2,l3,l4=−∞

h̃1 (−l2) h̃2 (l3 − l4)Ky
abcd (l2, l3, l4) (34)

− lim
T→∞

1

T

N+1∑
l2,l3,l4=1−N

S (l2, l3, l4) h̃1 (−l2) h̃2 (l3 − l4)Ky
abcd (l2, l3, l4) .(35)

However, since the functions h1 and h2 are square integrable in [−π, π], for a
certain positive constant K,

1

T

T+1∑
l2,l3,l4=1−T

S (l2, l3, l4) h̃1 (−l2) h̃2 (l3 − l4)Ky
abcd (l2, l3, l4)

≤ K2

N

∣∣∣∣∣∣
T+1∑

l2,l3,l4=1−T

max (|l2|+ |l3|+ |l4|) h̃1 (−l2)Ky
abcd (l2, l3, l4)

∣∣∣∣∣∣ ,
and the terms

T+1∑
l2,l3,l4=1−T

|lj |
T
|Ky

abcd (l2, l3, l4)|

for j = 1, 2, 3 converge to 0 as T → ∞ using Lemma B1.10. Then as T → ∞,
(32) converges to (34). Then, by repeated application of the Parseval equality,
(33) converges to∫ π

−π

∫ π

π

h1 (λ1)h2 (−λ2) K̃y
abcd (λ1, λ2,−λ2) .
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By Lemma A1.9 g(j)(λ, θ0) is continuous at all λ, moreover it is symmetric in
[−π, π]. Thus, by Lemma B2.1, for any η > 0, and all a, b = 1, ...n, we can
always choose M large enough such that

max
a,b=1,....,n

sup
λ∈Π

∣∣∣g(j)
M(a,b)

(λ, θ0)− g(j)

(a,b)(λ, θ0)
∣∣∣ ≤ η.

Consider that

V ar

(√
T

2π

∫ π

−π
tr
{
δ

(j)
M (λ, θ0) [IT(λ)−EI(λ)]

}
dλ

)

= V ar

(√
T

2π

n

a,b=1

π
−π
[
I(a,b)(λ)−EI(a,b)(λ)

]
δM(b,a)(λ)dλ

)
.

As T →∞, this is dominated by

2

π
n2
−π

π
∣∣δM(b,a)(λ)

∣∣2 f(a,a) (λ) f̄(b,b) (λ) dλ

+
2

π
n2
−π

πδM(b,a)(λ)δ̄M(a,b)(−λ)f(a,b) (λ) f̄(b,a) (λ) dλ

+
2

π
n2
−π

π
−π

πδM(b,a)(λ1)δ̄M(d,c)(−λ2)K̃abcd (λ1, λ2,−λ2) dλ1dλ2.

By compactness of the parameter space, δM(a,b)(λ) is square integrable in
λ,which tends to zero as M →∞, because the elements of the spectral density
matrix and the trispectrum are integrable by Lemma B1.3 and Lemma B1.12.

Lemma 3

Proof. The jth element of
√
TES

(j)
T (θ0), can be written as

√
T

2π

∫ π

−π
tr {g(j)(λ, θ0) [EI(λ)− f(λ, θ0)]} dλ.

Note that EI (λ) is the Cesaro sum of the Fourier coefficients of f (λ, θ0). As-
sumption A’7(i) implies

sup
λ∈Π

n∑
a,b=1

∣∣∣EI
(a,b)
T (λ)− f (a,b) (λ, θ0)

∣∣∣ = O
(
T−α

)
uniformly in θ (see Hannan, 1970, page 513). Then

√
TEQ̇T (j) (θ) =

√
T

2π

∫ π

−π
tr {g(j)(λ, θ0) [EI (λ)− f(λ, θ0)]} dλ

≤ 1

2π

∫ π

−π
max
(a,b)

sup
λ∈Π

∣∣∣g(a,b)
(j) (λ, θ0)

∣∣∣ n∑
a,b=1

{√
T
∣∣EI(a,b) (λ)− f(a,b) (λ, θ0)

∣∣} dλ
= O

(
T 1/2−α

)
,

which converges to zero as T →∞, since by Assumption A’7(i), α > 1/2.
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