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Abstract

We introduce tests for multi-horizon superior predictive ability. Rather than com-
paring forecasts of different models at multiple horizons individually, we propose to
jointly consider all relevant horizons within a forecast path. We define the concepts
of uniform and average superior predictive ability. The former entails superior perfor-
mance at each individual horizon, while the latter allows inferior performance at some
horizons to be compensated by others. We show that the tests lead to more coherent
conclusions, and have greater power to differentiate models than the single-horizon
tests. We provide an extension of the Model Confidence Set to allow for multi-horizon
comparison of more than two models. Simulations demonstrate appropriate size and
high power. An illustration of the tests on a large set of macroeconomic variables
demonstrates the empirical benefits of multi-horizon comparison.
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1 Introduction

Forecasts at multiple horizons should rarely be judged in isolation. The full forecasts

path plays an important role in many policy decisions. For instance, in the context of

typical macro-economic variables such as unemployment and inflation, policymakers require

forecasts at different horizons to make informed decisions; the user does not only care about

the value many periods from now, but the full path the series takes between now and that

time. The importance of the path is not restricted to economics, as evidenced by for

instance the large literature on forecasting climate data. As such, when comparing two

or more different models in terms of their ability to make forecast paths, it is useful to

compare the complete path.

The standard approach is to compare various models at different horizons independently,

potentially leading to incoherent conclusions. For example, we might find that a first

model is significantly better at predicting two and five ahead, while the second model

has significantly better predictions three periods ahead, while the difference in forecasting

performance is insignificant at all other horizons. The fact that either model performed

worse at a single horizon, should not necessarily disqualify the model, and neither should

the fact that the difference between the two models is insignificant at some horizons. When

we compare performance at multiple horizons, we implicitly face a multiple testing problem.

In finite samples we are likely to find that a mis-specified model will outperform even the

population model at one of the many horizons one could consider. Comparing all horizons

jointly guards us against this problem.

We therefore propose a test for multi-horizon superior predictive ability. There are at

least three reasons why one might be interested in such a test. First, it entails a more

robust definition of superior predictive ability. Second, while the hypotheses differ, jointly

considering multiple horizons, allows us to construct a powerful test to disentangle models.

Finally, as stated before, it guards us against spurious results induced by the multiple

testing issues arising from considering multiple horizons individually.

We introduce two bootstrap-based test statistics, which can be used to test for two

alternative definitions of multi-horizon superior predictive ability (SPA). The first statistic

considers uniform multi-horizon SPA, which is defined as a model with lower loss at each
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individual horizon. The second statistic is used to test for average multi-horizon SPA, which

allows poor performance at some horizons to be compensated by superior performance

at other horizons. The first definition is obviously far more stringent, but by properly

controlling the family-wise error rate, equality of the models’ forecast performance may

still be rejected, even if the resulting superior model’s empirical performance is inferior at

some horizons. Importantly, both uniform and average multi-horizon SPA, as well as their

respective tests, are defined in such a way that they reduce to the standard Diebold and

Mariano (1995) test when only considering a single horizon.

In addition to the pairwise tests, we propose a multi-horizon version of the Model

Confidence Set (MCS) of Hansen, Lunde, and Nason (2011), in order to compare more

than two models at once. The multi-horizon MCS contains the set of models that have

the best joint performance across horizons with given probability. Other multiple-model

comparison techniques, such as those of White (2000) and Hansen (2005) can also easily

be adapted to the multi-horizon framework.

In practice, the tests proposed in this paper should be viewed as applicable to a spectrum

of potential hypotheses. On the one extreme, a potential user may be interested in just

a single horizon, in which case the proposed tests reduce to the standard Diebold and

Mariano (1995) test. On the other extreme, the test can be used to show that a new

model has uniform SPA across all horizons, which is strong evidence in favor of a new

specification. However, in many cases, users may have different models for different ranges

of environments, i.e. short-term, mid-term and long-run forecasts. In such a scenario the

tests may equally be applied to subsets of horizons.

There is a large empirical literature that reports forecasts at multiple horizons. Typ-

ically, these forecasts are evaluated and compared based on tests applied to each horizon

separately. Exceptions are the work of Patton and Timmermann (2012), who propose a

test for multi-horizon forecast optimality, and Jordà and Marcellino (2010), who call it

path forecast evaluation. Their tests regard internal consistency of a single model, rather

than comparing the performance of multiple models across horizons.1

1The literature on vector forecasts, concerning multiple variables rather than multiple horizons, faces

similar problems of forecast comparison in the presence of correlated forecast error (e.g. Komunjer and

Owyang, 2012).
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The tests proposed in this paper fall into the framework implicitly defined in Diebold

and Mariano (1995), and explicitly set out in, amongst others, Giacomini and White (2006)

and Hansen (2005). We test for finite-sample multi-horizon predictive ability; the accuracy

of forecasts at estimated values of parameters. This is in contrast to the literature set out

by West (1996) whose aim is to use the forecasts to learn something about population-level

predictive ability; accuracy of forecasts at the population value of the parameters. Clark

and McCracken (2013) provide an excellent overview of the literature. The asymptotic

theory in this setting requires non-vanishing estimation error, and as such a limitation of

our tests is that they do not accommodate forecasts derived from models with recursively

estimated parameters. We do permit the common rolling-window forecasting scheme, and

a situation where parameters are estimated once at the beginning of the forecasting period.

We analyze the finite sample properties of the tests in simulation studies. We consider

the two pairwise tests and the multi-horizon model confidence set. We demonstrate that

the tests have appropriate size and good power, even in moderately sized samples. In

addition, the simulations are used to investigate the conditions under which the multi-

horizon comparison will lead to a more powerful test. This will turn out to be determined

by the relative increases in average loss differentials and the variance of the loss differential

as a function of horizon.

Empirically we consider two different datasets to illustrate the contributions of this

paper. To highlight the pairwise tests, we revisit Marcellino, Stock, and Watson (2006),

who investigate the relative merits of iterated and direct long-horizon forecasts. We test

for both uniform and average SPA using 2 to 24 month horizon forecasts on their dataset

of 170 macroeconomic time-series. By jointly considering all horizons, we find stronger

evidence of iterated forecasts outperforming direct forecasts. When looking at individual

series, we find that many of the incoherent results across horizons can be attributed to the

multiple testing issues and lack of power.2

We proceed as follows. Section 2 sets out our theoretical framework and introduces

the tests. Section 3 provides simulation evidence of size and power of the tests. Section 4

provides the empirical illustrations of the various tests, and finally Section 5 concludes.

2The Supplemental Appendix contains an application of the multi-horizon model confidence set in the

context of Realized Volatility forecasting.
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2 Setup

In this section we discuss the general setup. We consider the problem of comparing fore-

casts for potentially multivariate time series yt over the time-period t = 1, ..., T . We are

interested in point forecasts ŷhi,t at multiple horizons, h = 1, ..., H. The forecasts may come

from econometric models, professional forecasters, or any other alternative. Whenever the

forecasts are derived from models, the forecasts ŷhi,t = ŷhi,t(θ̂
h
i,t) are based on estimated

parameters θ̂. We have two or more competing sets of forecasts, which may be based on

different information sets, they may be based on nested or non-nested models, or come

from any other source. We will use the term ‘model’ loosely to refer to all potential sources

of forecasts.

The main contribution of this paper is to not ‘only’ consider the one-step ahead, or

only at the h-step ahead forecast in isolation, but to jointly compare the quality of the

full path of 1 to H-step ahead forecasts. That is, for model i = 1, ...,M, we have forecasts

ŷi,t = [ŷ1
i,t, ..., ŷ

H
i,t], where ŷhi,t is model i’s forecast of yt based on information up until time

Ft−h. We define a general loss function Li,t = L(yt, ŷi,t), which maps the forecast errors

into a H-dimensional row vector, with elements Lhi,t = L(yt, ŷi,t).

For any loss function, and any two sets of forecasts, we compare models in terms of

their loss differential

dij,t ≡ Li,t −Lj,t, (1)

which is an H-dimensional row vector, with elements dhij,t. Note that dhij,t is implicitly

defined as a function of estimated parameters, and our focus is on finite-sample predictive

ability. Our hypotheses are defined in terms of the expected loss differentials, µhij ≡ E(dhij,t),

and as such we focus on the properties of dij,t, which have some implications on how the

forecasts may be generated.

In particular, we make the following assumption on dij,t.

Assumption 1. The vector of loss differences dij,t is (strictly) stationary and α-mixing

of size −(2 + δ)(r + δ)/(r − 2), for some r > 2 and δ > 0, where E|dt|r+δ < ∞ and

V ar(dhij,t) > 0 for all h = 1, ..., H.

This assumption is needed to ensure that population moments of dij,t are well defined,
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and to justify the bootstrap techniques introduced in Section 2.1.2. Under the stated

assumption a central limit theorem applies (e.g. De Jong, 1997), such that

√
T (d̄ij − µij)→d Nm(0,Ωij), (2)

where Ωij ≡ avar(
√
T (d̄ij − µij)).

The assumption on dij is sufficient for validity of one of the most common tests for

comparing two models’, i and j, forecasting performance at a single horizon h, the Diebold

and Mariano (1995) test. They test the null hypothesis that

HDM : µhij = 0, (3)

using a standard t-test:

thDM =

√
T d̄hij
ω̂hij

, (4)

where d̄hij = 1
T

∑
dhij,t, and ωhij = Ω

1/2
ij,hh, the square root of the diagonal element corre-

sponding to the h−th horizon. In such a setting, the variance can be estimated using a

HAC-type estimator, as in for instance Giacomini and White (2006), or, following Hansen

et al. (2011), it may be obtained using bootstrap methods.

Importantly, a variety of common forecasting schemes do not satisfy Assumption 1,

and therefore asymptotic normality. In particular, the framework permits parameters that

are estimated on a rolling window, or just once (fixed scheme), but it prohibits the use

of forecasts generated by recursive parameter estimates, as that violates the stationarity

assumption. It can however handle both nested and non-nested models, as nonvanishing

estimation error prevents singularity that may occur in nested models and parameters are

at their probability limits. See Giacomini and White (2006) for a broad discussion of this

framework.

2.1 Multi-Horizon Hypotheses of Interest

The Diebold and Mariano (1995) test can be used to compare model performance at each

horizon individually. This can lead to a number of different conclusions. In an ideal

situation this procedure finds significant evidence that a single model performs best on

each horizon, or at the very least, not significantly worse than the other model. Another
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Figure 1: Diebold-Mariano Tests at different Horizons for Earnings of Production Workers.
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Note: This Figure presents the forecast comparison of the LEHM time-series of Marcellino et al. (2006). It plots the Diebold-

Mariano test statistics as a function of forecast horizon (h = 2, ..., 24), for the loss differential of iterated minus direct forecasts.

Lag lengths of the autoregressive models are selected based on BIC.

potential outcome that tells a consistent story, is that one model works well for short

horizons, while the other model performs better at longer horizon. However, we may also

come across situations in which the individual tests do not lead to coherent results. For

instance, we may encounter a situation in which model i performs better than model j at

most horizons, except for two or three non-consecutive horizons. This lack of coherency is

most likely due to simple sampling error, which may cause even the population model to

be beaten by a mis-specified model at some horizons.

To illustrate such a situation, consider Figure 1, which presents a preview of the em-

pirical analysis in Section 4. We plot the Diebold-Mariano statistics over horizons 2 to 24

of the mean square forecast error comparison between direct and iterated autoregressive

forecasts for a series of earnings of production workers. The statistic at the majority of

horizons is negative indicating that direct forecasts outperform the iterated ones. However,

all but six of the statistics are individually insignificant, and out of the insignificant ones,

six have a positive statistic. Similar results can be found all throughout the forecasting

literature.
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The question arises whether this picture may provide joint evidence to conclude that

either model significantly outperforms across all horizons. The negative point estimates

may simply be due to sampling error, and the insignificance of the remaining horizons

may potentially be attributed to lack of power. Alternatively, perhaps we can at least find

statistical evidence for the claim that the average loss across horizons is either positive or

negative.

We therefore propose the notion of multi-horizon superior predictive ability. The most

natural, and strongest, notion is that a superior model should have better forecasts at each

individual horizon. To that effect, define

µ
(Unif)
ij = min

h
µhij. (5)

We refer to a situation with µ
(Unif)
ij > 0 as uniform superior predictive ability (uSPA) of

model j.

The definition of uSPA is strict, and we may often fail to find evidence for such relative

forecasting performance. Therefore, we present a milder definition of superior predictive

ability which we refer to as average superior predictive ability (aSPA). Here, we compare

models based on their weighted average loss difference3

µ
(Avg)
ij = w′µij =

H∑
h=1

whµ
h
ij, (6)

with weights w = [w1, ..., wH ] summing to one. Obvious candidates for w are equal-

weighted or weights decaying in the horizon. Note that we take the average loss, which is

distinct from the loss of the average, which is just one aspect of the path.

The concepts of uniform and average SPA have clear links to the concepts of first- and

second order forecast dominance respectively, and the tests in the next section also bear

resemblance to tests for stochastic dominance (e.g. Linton, Maasoumi, and Whang, 2005;

Linton, Song, and Whang, 2010). Similar to those concepts, uSPA implies aSPA, while the

reverse is not necessarily true. We may be able to determine a ranking based on aSPA,

even if uSPA fails to do so. However, average SPA requires the user to take a stand on

3Weighting may be of particular importance in the scenario where one makes aggregate h−period ahead

forecasts, i.e.
∑H

h=1 Yt+h, which results in clear scale differences that should be inversely weighted.
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the relative importance of under-performance at one horizon against out-performance at

another. More generally, the tests are closely related to work on multivariate inequality

tests (e.g. Bartholomew, 1961; Wolak, 1987). In particular, Patton and Timmermann

(2010) propose a solution similar to our uSPA test in the context of testing for monotonicity

in asset pricing relationships.

A couple of remarks need to be made regarding testing multiple horizons jointly. First,

increasing the number of horizons will not always result in a more powerful test. The

variance of loss differences typically increases with horizon, and as such adding an additional

horizon may actually decrease power.4 Figure 1 shows however, that the single-horizon

statistics are hardly affected by increasing variance, as the mean loss differential also tends

to increase in horizon. The relative speed of accumulation across horizons will play an

important role in the power of multi-horizon tests, which will be studied in the simulations.

Second, since forecast errors tend to be correlated across both horizon and time, the

increase of information from considering, say, two horizons rather than one, does not provide

a similar increase in information as doubling the out-of-sample period length. The tests

introduced below should therefore mostly be interpreted as a guard against the implicit

multiple testing issue, with the increase of power through H times as many loss observations

being a secondary benefit.

2.1.1 Choice of Test Statistic

First, we consider a test on the minimum loss differential µ
(Unif)
ij . If model j is better than

model i, the minimum loss difference over all h should be greater than zero. Here we test

the null hypothesis

H0,uSPA : µ
(Unif)
ij ≤ 0, (7)

against the alternative that µ
(Unif)
ij > 0. We consider one-sided hypotheses, as models i and

j can easily be switched. In order to test this hypothesis, we simply consider the minimum

over all the individual Diebold-Mariano statistics DMh
t :

4Moreover, forecasts beyond a certain limiting horizon may become uninformative, see Breitung and

Knüppel (2017), which provides a natural stopping point.
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tuSPA,ij = min
h

√
T d̄hij
ω̂hij

. (8)

Note that we take the minimum of the studentized test statistic, rather than studentizing

the minimum. The main advantage of this is that we only require estimates of the diagonal

of the covariance matrix of d̄ij,t rather than the full matrix. This is of particular importance

when H grows too large to obtain a sensible estimate of the covariance matrix. The

downside is that as a result the statistic will be non-pivotal, as its distribution does depend

on the full covariance matrix, which makes Ωij a nuisance parameter. As discussed before,

this nuisance parameter problem is handled by the bootstrap methods, which implicitly

deal with these problems. This feature has previously been used by White (2000), Hansen

(2005), Clark and McCracken (2005) and Hansen et al. (2011).5 For a related discussion

on the relative merits of nonquadratic statistics, see Hansen (2005) in the context of loss

differences between a benchmark model and many alternative competing models.

Next, we consider a simple test for average SPA, based on the weighted-average loss

differential. The associated null is

H0,aSPA : µ
(Avg)
ij ≤ 0, (9)

with alternative µ
(Avg)
ij > 0. A simple studentized statistic takes the form

taSPA,ij =

√
Tw′d̄ij

ζ̂ij
. (10)

Similar to the uSPA statistic, we avoid estimating the full covariance matrix Ωij, and

choose to estimate ζij ≡
√
w′Ωijw, directly based on w′dij,t.

6

5There are some situations in which the joint distribution of competing models may be known. For

instance, between direct and iterated forecasts of the same AR(p) model (Ing, 2003), but general results

cannot be obtained. As such the bootstrap provides a reasonable method to obtain the distribution of the

statistics.
6An unweighted version of the aSPA test statistic was also considered in Capistrán (2006). That test

on asymptotic critical values, while our bootstrap critical values work distinctly better in small samples.

Subsequent research by Martinez (2017) provides a generalization of the unweighted aSPA test in a GFESM

context (Clements and Hendry, 1993), explicitly allowing for differences in covariance dynamics of the

various models. We target the loss-differential directly as a primitive.
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Throughout the paper we will simply use an equal weighted average with wh = 1/H,

for all h. Different weights would correspond to different utility functions of the forecaster.

Alternatively, one could use ‘efficient’ weights to minimize ζij by setting the weights for

each horizon inversely proportional to their variance (ωhij)
2, or more generally the inverse

of an estimate of the full covariance matrix of dij,t, Ωij.

Note that the aSPA test is simply a Diebold-Mariano test on the weighted average

loss-series, w′dij,t. Moreover, the test for uSPA is in fact a special case of aSPA, with

wh = 1 for h equal to the ‘minimum’ horizon, and zero otherwise. Typically, the weighted

averages will converge to a standard normal distribution, such that standard critical values

may be used. Special choices of weights, such as those amounting to quantiles of the

distribution will require non-standard critical values. Obtaining the critical value using

bootstrap techniques may lead to better finite sample properties properties in the equal-

weighted case as well, and as a result we suggest obtaining bootstrapped critical values

regardless of the choice of weights.

2.1.2 Bootstrap Implementation

The minimum over multiple t-statistics will not follow a student distribution, and is depen-

dent on the number of statistics H. Rather than the standard 95% critical value of 1.645,

the appropriate critical value will be lower and may actually be negative for large H. As a

result, depending on the degree of sampling variation, observing a negative statistic at any

of the horizons may not be sufficient evidence to stop us from rejecting the null in favor of

uSPA, and shows the need for appropriate multiple testing techniques.

We obtain the distribution of the statistics under the null using bootstrap techniques.

The chosen method needs to take into account the dependence across horizons and the

likely serial correlation in forecast errors. Throughout the paper we will use the stationary

block bootstrap of Politis and Romano (1994) and Gonçalves and de Jong (2003). We set

the parameter of the stationary bootstrap to q = 0.05 corresponding to an average block

length of 20 observations, and all results are based on B = 999 re-samples.

First, the tuSPA and taSPA statistics require estimates of the variance of individual and

weighted-average loss differentials respectively, ω̂hij and ζ̂ij. The stationary bootstrap vari-
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ance estimator of an average is known in closed form, so our recommendation is to use the

bootstrap population value directly, given by

(ω̂ij)
2 ≡ γ̂0,ij + 2

T−1∑
k=1

κ(T, k)γ̂k,ij, (11)

where γk is the usual autocovariance function applied to dhij or w′dij,t, and kernel weights

(under the stationary bootstrap) are given by κ(T, k) ≡ T−k
T

(1− q)k + k
T

(1− q)T−k (Politis

and Romano, 1994). Using the formula prevents the need for a double bootstrap.

Next, we use a bootstrap to obtain the critical values of the test for uSPA and aSPA

under the null:

Algorithm 1 (Multi-Horizon SPA Bootstrap).

For bootstrap sample b = 1, ..., B:

1. Re-sample centered dij,t − d̄ij with replacement, using a stationary bootstrap with

parameter q, to obtain dbij,t, with elements dhbij,t.

2. uSPA: Compute d̄hbij = 1
T

∑T
t=1 d

hb
ij,t for each h.

uSPA: Compute ω̂hbij for each h using (11).

uSPA: Compute the uSPA statistic: tbuSPA,ij = minh[
√
T d̄hbij /ω̂

hb
ij ]

aSPA: Compute d̄bij = 1
T

∑T
t=1w

′dbij,t.

aSPA: Compute ζ̂bij using (11).

aSPA: Compute the aSPA statistic: tbaSPA,ij =
√
T d̄bij/ζ̂

b
ij.

Finally, obtain an appropriate critical value cα•SPA,ij as the α-quantile of the bootstrap dis-

tribution of either of the two tb•SPA,ij. Rejection occurs if t•SPA,ij > cα•SPA,ij. Alternatively,

a p-value may be computed as
∑B

b=1 1{tb•SPA,ij>t•SPA,ij}/B.

The following Theorem provides the foundation for the validity of the bootstrap algo-

rithm for both the test for uSPA and aSPA.

Theorem 1 (Bootstrap Validity Studentized Statistics). Let D ≡ diag(ω1, ..., ωH) and D̂,

Db analogously defined using ω̂h and ω̂hb. Let Assumption 1 hold, and moreover, assume

that qT = q satisfies qT → 0 and Tq2
T →∞ as T →∞, then

sup
x∈RH

∣∣∣P b
[√

T (Db)−1(d̄b − d̄) ≤ x
]
− P

[√
TD̂−1(d̄− µ) ≤ x

]∣∣∣→p 0, (12)
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P b denotes the bootstrap probability measure.

The proof is provided in Appendix A. From Theorem 1 we obtain the following Corollary.

Corollary 1. Let the Assumptions from Theorem 1 hold. Then,

sup
z

∣∣∣∣∣P b

[
min
h

√
T
d̄hbij − d̄hij
ω̂hbij

≤ z

]
− P

[
min
h

√
T
d̄hij − µij
ω̂hij

≤ z

]∣∣∣∣∣→p 0, (13)

and

sup
z

∣∣∣∣∣P b

[
√
T
w′d̄bij −w′d̄ij

ζ̂bij
≤ z

]
− P

[
√
T
w′d̄ij −w′µij

ζ̂ij
≤ z

]∣∣∣∣∣→p 0. (14)

The Corollary demonstrates that the bootstrap may be used to obtain the critical values

for both the uSPA, (13), and aSPA, (14), test statistics. If follows directly from Theorem 1

and the continuous mapping theorem combined with the fact that the average and minimum

are smooth functions of the elements of the vector dij,t. Weighted averages are obviously

smooth functions, and, as shown in Proposition 2.2 of White (2000), the minimum of a

vector of differences is a continuous function of the elements of the vector.

2.2 The Multi-Horizon Model Confidence Set

The two tests introduced in the previous section can only be used for a pairwise comparison

of models. In this section we extend this to a general M -dimensional set of models M,

by adapting the Model Confidence Set (MCS) approach of Hansen et al. (2011) to allow

for joint multi-horizon testing. They propose an algorithm that selects a subset ofM that

contains the set of best models with a given probability, which we denote α̃. The standard

MCS can broadly be interpreted as a sequential Diebold-Mariano test, and as such it readily

extends to the case with either the tuSPA,ij or taSPA,ij statistics.

For the uSPA multi-horizon MCS, analogous to Hansen et al. (2011), we define the

MCS as the set of models for which we find no statistical support to differentiate the

models within the set:

M∗
uSPA ≡ {i ∈M0 : min

h
µhij ≤ 0,∀j ∈M0} (15)

M∗
aSPA ≡ {i ∈M0 : w′d̄ij ≤ 0,∀j ∈M0} (16)
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The associated null hypothesis are

HM,uSPA : min
h
µhij ≤ 0, for all i, j ∈M (17)

HM,aSPA : w′d̄ij ≤ 0, for all i, j ∈M (18)

with M⊆M0.

The multi-horizon model confidence set is obtained sequentially as

1. Set M =M0.

2. Test HM,•SPA using an equivalence test at level α̃.

3. If HM,•SPA is not rejected, define M̂•SPA,1−α̃ =M.

If the null is rejected, use the elimination rule to remove a model from M, and go

back to Step 2.

The equivalence test has to be adapted to the multi-horizon setting. Hansen et al. (2011)

propose the maximum of all pairwise tDM statistics to test for equivalence, but since the

critical value of the t•SPA statistics are not necessarily the same for all pairs {i, j}, we

cannot simply consider the maximum of the t•SPA,ij. Due to the fact that the critical

values can be both positive and negative, we instead consider the maximum of the centered

statistics maxi,j∈M[t•SPA−cα•SPA]. Unfortunately, we require the use of a double bootstrap to

obtain its distribution. The computational cost is high, but feasible as we simply bootstrap

studentized means, and require no re-estimation of models.

Algorithm 2 (Multi-Horizon MCS Bootstrap).

1. For each pair {i, j} ∈ M, compute the statistic t•SPA,ij and use Algorithm 1 to obtain

an estimate of the associated critical value cα•SPA,ij.

2. Define tMax,uSPA ≡ maxi,j∈M
[
t•SPA,ij − cα•SPA,ij

]
, i.e. the test statistic furthest from

its critical value.

3. For each of the bootstrap samples dbij,t, b = 1, ..., B, in Step 1:

a. For each pair {i, j} ∈ M, apply Algorithm 1 to the bootstrap sample dbij,t directly,

to obtain cαb•SPA,ij.
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b. Compute the bootstrapped tbMax,uSPA ≡ maxi,j∈M
[
tbuSPA,ij − cαbij

]
4. Obtain the appropriate critical value as the α̃-quantile of the bootstrap distribution

tbMax,uSPA, or define the p-value as p ≡ 1
B

∑B
b=1 I{tMax,uSPA<t

b
Max,uSPA}

.

The combination of equivalence test and elimination rule adhere to the definition of

coherency of Hansen et al. (2011). To obtain reasonable p-values we follow Hansen et al.

(2011) in imposing that a p-value for a model can not be lower than any previously elim-

inated model, and follow the convention that the last remaining model obtains a p-value

of one. Also note that the level of the critical values of the pairwise tests, α, and the one

for the MCS α̃, may differ. In large samples, the choice of α is of little importance as

all t•SPA,ij are approximately normally distributed with unit variance. However, in small

samples, the choice of α may impact the ordering of the different models.

3 Simulations

In this section we report the results of Monte Carlo experiments to demonstrate appropriate

size and good power of the single tests, as well as desirable properties of the Multi-Horizon

Model Confidence Set.7

3.1 Data Generating Process

First we describe how we generate ‘losses’ of a given model i. Our design closely resembles

that of the simulation section of Hansen et al. (2011), where losses are simulated directly,

rather than obtained indirectly through the forecasting performance of various models

on generated data. This allows us to easily increase the number of models, to control

their relative performance directly, and to impose the notions of uniform and average SPA.

However, in contrast to Hansen et al. (2011) who simulate one-step-ahead losses, we need to

simulate forecast-path losses, which requires a certain dependence structure. We calibrate

7All results reported in this paper are based on programs written in Ox version 7.0 (Doornik, 2012).

Example code detailing the implementation of the various tests and simulations is available on Quaedvlieg’s

website.
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our DGP to obtain similar properties to the loss differential between an AR(1) and AR(2)

when the true model is the latter.8

We consider simulation set-ups with two and ten models. For the ten-model setup, the

average loss of each model is proportional to the H−dimensional vector θ, which governs

the loss differentials. We will consider two different definitions pertaining to the uSPA and

aSPA below. Each model i has average loss equal to θi = (i−1)
9
θ, with i = 1, ..., 10, and

therefore µij = θi − θj. For the two-model setting we will only consider θ1 and θ2, such

that the population difference between the models equals µ12 = θ/9.

The elements of θ = [θ1, ..., θh], determine how loss varies across horizons. A mis-

specified model is expected to lead to greater divergence at longer horizons, and as such

we assume loss is increasing in horizon. We consider two different definitions in order to

highlight the tests for uSPA and aSPA. First, we set

θh(Unif) = (1 + φ
√
h− 1)λ/

√
T . (19)

The loss differential is non-negative at all horizons, implying that the superior model

has both uniform and average superior predictive ability. λ governs the size of the loss-

differential, while φ governs how fast the average loss increases as a function of horizon.

When φ = 0 the loss is equal at all horizons, while for φ > 0 loss is increasing in horizon.

Next, we set

θh(NonUnif) =

−λ/
√
T if h = 1

c(1 + φ
√
h− 1)λ/

√
T if h > 1,

, (20)

with c = 1+2/
∑H

h=2(1+φ
√
h− 1), such that

∑H
h=1 θ

h(NonUnif) =
∑H

h=1 θ
h(Unif). We impose

non-uniformity through the first horizon, to ensure that the single negative differential is

included in all multi-horizon tests. Note that under this definition, the first model does

have aSPA for H > 1, but no uniform SPA for any horizon.

We generate the losses as follows:

Li,t ≡ θi + Yi,t

Yi,t = % ◦ Yi,t−1 + Σ1/2εt,
(21)

8A visual illustration which highlights the properties of the DGP is available in the supplemental

appendix.
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where εt ∼ i.i.d. NH(0, I) and ◦ denotes the Hadamard product. The losses are serially

correlated through % and correlated across horizons through Σ. While for h = 1, a case can

be made that forecast errors will be uncorrelated over time if the model is well-specified,

long horizon forecasts are likely to be strongly autocorrelated, even for a perfectly specified

model. We set the first order autocorrelation to %h = 0.2
√
h− 1, which ranges between 0

for h = 1 and 0.87 for h = 20.

The forecast errors at different horizons are not independent. First, we define the

covariance structure across horizons, at a single point in time. Since most models will

converge to the unconditional mean when h becomes large, the correlations should be close

to one for adjacent horizons when h is large, and smaller for short-horizons. We define the

correlation matrix R, with elements ρg,h:

ρg,h =

1 if g = h

exp(−0.4 + 0.025 max(g, h)− 0.125|g − h|) if g 6= h.
(22)

Our simulations will use H = 20, so the corner points of the correlation matrix are ρ1,2 =

0.60, ρ1,20 = 0.10 and ρ19,20 = 0.95. Next, the variance should be increasing in horizon.

For simplicity we set it to σh = 1 + ψ
√
h− 1. The variance plays a crucial role in the

multi-horizon tests. If the variance is increasing too quickly, adding additional horizons

may actually decrease the power of the test, rather than increasing it. We combine the

variance and correlation to Σ = diag(σ)R diag(σ).

Note that in our simulation set-up Cov(Lhi,t, L
g
j,t) = 0, for all models i and j and all

horizons g and h. A positive correlation, holding individual variances fixed, would decrease

the variance of the loss-difference and make it easier to differentiate models. A negative

correlation would conversely increase the variance of the difference, but is unlikely to occur

in this particular setting. The results below can thus be interpreted as a lower bound.

3.2 Pairwise Tests

In this section we investigate the properties of tests for the comparison of two models.

The main goals of this section are to analyze the power and size of the newly introduced

tests based on tuSPA and taSPA. We report results over S = 1000 simulations, and vary
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the parameters of the DGP. We take three sample sizes T = 250, 500, 1000. In order

to investigate the trade-off of adding additional horizons, we analyze the effect of the

parameters that govern how average loss (φ) and its variance (ψ) depend on horizon h. We

set φ = 0, 1, 2 and ψ = 0, 0.125, 0.25. The parameter that governs the magnitude of the loss

differential is set to λ = 0, 5, 10, 20, 40. Throughout, we consider one-sided tests µ12 < 0 at

the 5% level, i.e. we test whether model one outperforms model two at multiple individual

horizons, in uSPA, or in aSPA. We report results for different horizons H = 1, 5, 10 and 20.

The DM test uses that specific horizon only, while the uniform and average SPA tests use

all horizons up to and including H.

We start by establishing appropriate size and good power of the three tests in Table

1. We vary T and λ, and keep φ = 1 and ψ = 0.125 fixed at their middle levels. We

consider both loss differentials θ(Unif) and θ(NonUnif), referred to as Uniform and Non-

Uniform alternative, displayed in the top and bottom panel respectively.

First consider the top panel, which is based on θ(Unif). When λ = 0, we are under the

null, as the average loss of the two models is identical. We see that all three tests have size

close to the nominal 5%. The small size distortions appear to be most severe for the basic

Diebold-Mariano test, are typically increasing in H, and decreasing in T .

When λ > 0, the loss differential at each horizon is positive. First consider the standard

Diebold-Mariano test. We see that power is increasing in λ, while the influence of the sample

size T is minimal. It is evident that the horizon also plays a significant role in the power

of the test. Given our choice of φ the loss differential is increasing in h, which leads to

higher power. On the other hand, the variance of the loss differential is also increasing in h,

decreasing the ability to differentiate models. In this case this results in the highest power

at h = 5 for the single-horizon test, with slightly lower power for longer horizons.

Under the alternative in the top panel, Model 1 has both uniform and average superior

predictive ability, and as such both tests should reject. For h = 1, all three tests are

identical, and the slight differences in rejection frequencies are simulation noise. For h = 5

and upwards, all tests are different. The tests for uSPA and aSPA use the loss-differential

at all horizons, which results in typically slightly higher rejection frequencies at the same

DGP. While the DM test has most power at H = 5, the tests for uSPA and aSPA become
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Table 1: Univariate Simulation Results: Size and Power
Diebold-Mariano Test Test for uSPA Test for aSPA

H 1 5 10 20 1 5 10 20 1 5 10 20

T λ Uniform Alternative

250 0 0.083 0.067 0.082 0.085 0.076 0.066 0.058 0.051 0.076 0.065 0.060 0.072

250 5 0.154 0.239 0.217 0.193 0.137 0.203 0.234 0.238 0.135 0.241 0.273 0.278

250 10 0.235 0.537 0.488 0.416 0.218 0.434 0.522 0.558 0.211 0.533 0.606 0.631

250 20 0.548 0.944 0.905 0.843 0.500 0.825 0.899 0.936 0.490 0.952 0.973 0.972

250 40 0.946 1.000 1.000 0.999 0.901 0.996 0.999 0.999 0.902 1.000 1.000 1.000

500 0 0.054 0.055 0.053 0.055 0.054 0.055 0.060 0.044 0.051 0.052 0.055 0.056

500 5 0.111 0.220 0.189 0.173 0.110 0.192 0.224 0.232 0.107 0.217 0.254 0.255

500 10 0.222 0.498 0.464 0.398 0.199 0.429 0.501 0.541 0.206 0.520 0.598 0.608

500 20 0.498 0.940 0.911 0.833 0.473 0.810 0.893 0.929 0.468 0.955 0.982 0.987

500 40 0.936 1.000 1.000 1.000 0.919 0.993 0.996 0.999 0.925 1.000 1.000 1.000

1000 0 0.063 0.072 0.055 0.052 0.056 0.058 0.063 0.072 0.060 0.068 0.061 0.063

1000 5 0.115 0.187 0.203 0.155 0.115 0.186 0.206 0.201 0.109 0.206 0.247 0.215

1000 10 0.217 0.481 0.478 0.366 0.213 0.441 0.513 0.566 0.216 0.548 0.621 0.631

1000 20 0.463 0.925 0.920 0.821 0.454 0.804 0.879 0.926 0.449 0.955 0.981 0.983

1000 40 0.936 1.000 1.000 0.998 0.925 0.994 0.997 0.998 0.930 1.000 1.000 1.000

Non-Uniform Alternative

250 0 0.062 0.069 0.079 0.087 0.053 0.069 0.066 0.052 0.053 0.067 0.072 0.077

250 5 0.034 0.256 0.247 0.206 0.030 0.114 0.154 0.189 0.029 0.210 0.263 0.291

250 10 0.011 0.548 0.500 0.410 0.013 0.070 0.125 0.172 0.014 0.406 0.571 0.599

250 20 0.000 0.942 0.939 0.851 0.001 0.014 0.032 0.067 0.000 0.878 0.973 0.990

250 40 0.000 1.000 1.000 1.000 0.000 0.000 0.000 0.002 0.000 1.000 1.000 1.000

500 0 0.072 0.054 0.055 0.059 0.066 0.050 0.047 0.058 0.073 0.060 0.045 0.057

500 5 0.025 0.237 0.221 0.184 0.019 0.108 0.146 0.164 0.020 0.200 0.253 0.264

500 10 0.011 0.526 0.491 0.397 0.010 0.077 0.148 0.204 0.010 0.437 0.597 0.639

500 20 0.000 0.958 0.936 0.853 0.000 0.011 0.038 0.073 0.000 0.899 0.979 0.981

500 40 0.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000

1000 0 0.051 0.055 0.054 0.047 0.049 0.048 0.051 0.057 0.048 0.051 0.048 0.056

1000 5 0.026 0.232 0.217 0.147 0.027 0.107 0.133 0.154 0.027 0.189 0.252 0.264

1000 10 0.011 0.516 0.459 0.341 0.010 0.074 0.118 0.197 0.012 0.450 0.593 0.596

1000 20 0.001 0.949 0.934 0.830 0.001 0.022 0.042 0.072 0.001 0.908 0.983 0.990

1000 40 0.000 1.000 1.000 0.999 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000

Note: This table provides rejection frequencies over S = 1000 simulations according to the DGP outlined in Section

3.1. The parameters φ and ψ are fixed at 1 and 0.125 respectively, while the other parameters vary as indicated. In the

panel denoted Uniform Alternative, the losses are generated according to θ(Unif), while the Non-Uniform Alternative panel

results are generated using θ(NonUnif).
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increasingly more powerful when the number of horizons increases.

Now consider the bottom panel, which is based on θ(NonUnif). Under this alternative,

Model 2 has lower loss than Model 1 at h = 1, but higher loss for all horizons h ≥ 2. As a

result, Model 1 has average SPA for horizons h > 1, but never uniform SPA.

First again consider the Diebold-Mariano test. For h = 1, the number of rejections

when λ = 0 shows appropriate size, but when λ > 0, the number of rejections of our one-

sided test appropriately converge to 0, as the second model is actually superior to the first.

Recall that θ(NonUnif) is chosen such that over the 20 horizons, the average θ(NonUnif) is

equal to θ(Unif). As a result, relative to the top panel, for h > 1 we see that the univariate

tests have higher power in the bottom panel, as the loss differential is slightly larger to

compensate the negative differential at H = 1. We observe similar results for the aSPA

test, which converges to zero rejections at H = 1 when λ > 0. For H = 5 and H = 10

is has slightly lower power than under the uniform alternative, as indeed the average loss

differential is only equal at H = 20. At H = 20 the power is the same as under the uniform

alternative, up to simulation noise.

The test for uSPA however shows very different results, as under this alternative, no

model has uSPA. This is clearly reflected in the rejection frequencies, as the results show

that the test indeed does not reject the null in most cases. For small λ the single negative

loss differential is sometimes deemed within the range of random variation, and we see

rejections of up to 20% when λ = 10. However, when λ increases the test rightfully fails to

reject in almost all iterations.

In Table 1 we analyzed the properties of the tests keeping φ and ψ fixed. Next, Table

2 reports on the performance of the test for average SPA, under the uniform alternative,

whilst varying φ and ψ, keeping T = 500 fixed. The aim of this simulation is to demonstrate

that the test may not always become more powerful as the number of horizons increases.

In particular, their properties depend on the degree to which the average loss differential

and its variance evolve as a function of horizon.

The middle quadrant is equivalent to the set-up in Table 1, and for this table we

mainly discuss the four extreme quadrants. When φ = ψ = 0, the average and variance

of the loss differentials are constant across horizons. Here we see that without exception,
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Table 2: Univariate Simulation Results: Varying loss properties at different horizons

ψ = 0 ψ = 0.125 ψ = 0.25

H 1 5 10 20 1 5 10 20 1 5 10 20

λ φ Uniform Alternative

250 0 0.050 0.054 0.054 0.053 0.066 0.052 0.068 0.053 0.053 0.050 0.046 0.047

250 5 0.125 0.133 0.137 0.165 0.117 0.121 0.096 0.089 0.126 0.109 0.094 0.095

250 10 0.216 0.256 0.274 0.295 0.220 0.206 0.168 0.156 0.202 0.157 0.138 0.120

250 20 0.487 0.592 0.628 0.659 0.475 0.425 0.370 0.297 0.467 0.349 0.259 0.200

250 40 0.904 0.968 0.980 0.991 0.929 0.865 0.774 0.608 0.941 0.737 0.579 0.418

500 0 0.051 0.061 0.054 0.055 0.054 0.055 0.060 0.044 0.051 0.060 0.061 0.053

500 5 0.104 0.233 0.317 0.457 0.110 0.192 0.224 0.232 0.117 0.166 0.156 0.162

500 10 0.210 0.491 0.635 0.777 0.199 0.429 0.501 0.541 0.221 0.373 0.389 0.390

500 20 0.481 0.819 0.888 0.941 0.473 0.810 0.893 0.929 0.465 0.760 0.789 0.771

500 40 0.934 0.998 1.000 1.000 0.919 0.993 0.996 0.999 0.917 0.992 0.998 0.997

1000 0 0.058 0.056 0.080 0.067 0.060 0.053 0.055 0.061 0.061 0.053 0.052 0.052

1000 5 0.105 0.337 0.484 0.636 0.093 0.265 0.349 0.415 0.109 0.238 0.267 0.283

1000 10 0.190 0.535 0.671 0.795 0.187 0.552 0.683 0.789 0.182 0.487 0.591 0.621

1000 20 0.476 0.814 0.889 0.946 0.477 0.810 0.897 0.951 0.482 0.818 0.894 0.930

1000 40 0.918 0.995 0.998 0.999 0.926 0.997 0.999 1.000 0.931 0.994 0.997 0.999

Note: This table provides rejection frequencies for the test for uniform superior predictive ability over S = 1000 simulations

according to the DGP outlined in Section 3.1. The losses are generated according to θ(Unif), and the sample size T = 500

for all results.

power is increasing in h, as we simply add more information on the model’s performance.

When φ = 0 but ψ = 0.25, the average loss differential remains fixed, but its variance is

increasing. As a result, adding more horizons decreases power drastically, such that the

number of rejections at h = 20 is less then half those at h = 1. When φ = 2 and ψ = 0, the

mean loss differential is increasing, while the variance is fixed, and power is large. Even

with λ = 5, the test using all 20 horizons rejects in over 60% of samples. Finally, when

φ = 2 and ψ = 0.25, for h > 1, the power of the test is only marginally increasing across

horizons. As such it presents a setting in which adding more or fewer horizons mainly adds

in terms of interpretation and robustness of conclusions, but not in terms of increasing

power.
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Table 3: Multivariate Simulation Results: Potency and Gauge

Potency Gauge

H 1 5 10 20 1 5 10 20

T λ

250 0 0.788 0.692 0.631 0.552

250 5 0.963 0.963 0.963 0.962 4.198 1.516 1.284 1.202

250 10 0.977 0.990 0.990 0.994 1.671 0.413 0.323 0.292

250 20 0.994 1.000 1.000 1.000 0.452 0.026 0.010 0.005

250 40 1.000 1.000 1.000 1.000 0.031 0.000 0.000 0.000

500 0 0.870 0.827 0.797 0.781

500 5 0.978 0.980 0.981 0.985 3.997 1.401 1.183 1.080

500 10 0.983 0.991 0.997 0.999 1.501 0.377 0.323 0.262

500 20 0.997 0.999 0.999 1.000 0.449 0.012 0.004 0.003

500 40 1.000 1.000 1.000 1.000 0.038 0.000 0.000 0.000

1000 0 0.903 0.883 0.871 0.858

1000 5 0.975 0.987 0.989 0.988 3.562 1.269 1.017 0.866

1000 10 0.987 0.996 0.996 0.997 1.458 0.317 0.236 0.185

1000 20 0.996 0.999 1.000 1.000 0.382 0.016 0.007 0.004

1000 40 1.000 1.000 1.000 1.000 0.021 0.000 0.000 0.000

Note: This table provides the potency and gauge of the multi-horizon MCS over

S = 1000 simulations according to the DGP outlined in Section 3.1. The potency is

defined as the fraction of correct superior models in the MCS. The gauge is defined

as the number of models incorrectly included in the MCS. The parameters φ and ψ

are fixed at 1 and 0.125 respectively, while the other parameters vary as indicated.

The losses are generated based on the uniform alternative θ(Unif).

3.3 Model Confidence Sets

In this section we evaluate the ability of the Multi-Horizon Model Confidence Set to dis-

tinguish models. We base our conclusions on the ten-model scenario. We use θh(Unif) to

generate the loss differentials. Recall this means that the average loss of model i equals

θi = (i−1)
9
θ. As such there is a single superior model, and the loss differential between the

first and the ith model increases linearly for the remaining nine models.

As in Table 1, we investigate the effect of T and λ, and use the middle scenarios, φ = 1

and ψ = 0.125 throughout the analysis. The effects of changing φ and ψ on the ability of

the Multi-Horizon MCS to differentiate models is similar to the gain and loss of power in

the pairwise setting.
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We summarize the Multi-Horizon MCS performance by two simple measures, potency

and gauge. These concepts were used by Hendry and Doornik (2014) in the setting of model

selection. The notions are similar, but distinct, from the usual size and power. Potency is

defined as the fraction of appropriately selected models in the MCS. For λ = 0, all models

are equal, and therefore defined as average fraction of models in the MCS. For λ > 0,

Model 1 is the single best model, and hence the reported number is the fraction of times

this model is in the MCS. The MCS is defined in such a way that the potency should at

least equal one minus the level of the MCS, which we set at α̃ = 0.20. Gauge is the number

of inferior models wrongly included in the MCS. For obvious reasons, we only report the

gauge for λ > 0. Ideally, the MCS should remove the remaining nine models, and identify

Model 1 as the unique best model. Of course, potency and gauge are strongly interlinked,

through the level of the MCS. A higher level will make the procedure more potent, but will

worsen the gauge.

Results are reported in Table 3. First consider λ = 0 for the various T . Recall that

when λ = 0, all models are identical. In this case, the MCS procedure should not remove

any model. This is a very stringent test, especially for the multi-horizon MCS. When

H = 1, we see that the potency is close to the 80% for all T . The potency is even higher

than nominal for the larger sample sizes. However, for larger H we see that potency is

reduced significantly. For T = 250 with H = 20 it even reduces to 55%. The decrease

in potency can be explained by the increase in loss variance and the strong correlation

structure we generate. If by pure chance a model does have slightly higher average loss,

it will have higher loss across all horizons. As a result the multi-horizon tests accumulate

this information and removes the models. Importantly, it is completely in line with the

standard potency-gauge trade-off.

Indeed, when looking at λ > 0, the MCS is a single model, and potency is well above

the required 80% for all T and H. The gauge is decreasing in all parameters H, T and λ.

That is, the MCS is better able to remove inferior models the more horizons we consider,

the more time-series observation we have, and the greater the loss differentials between

the models. Note that the effect of the number of horizons is large. The decrease in

gauge of going from H = 1 to H = 5 is of an entirely different magnitude than increasing
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the number of observations from T = 250 to T = 1000. As such, when a model truly

has superior multi-horizon SPA, using multiple horizons is a powerful, and almost always

feasible, way to differentiate the models.

4 Multi-Horizon Comparison of Direct and Iterated

Forecasts

In this section we revisit the results of Marcellino et al. (2006), who investigate the per-

formance of iterated versus direct forecasts using 170 monthly U.S. macroeconomic time

series spanning 1959 to 2002.9 They find that iterated forecasts tend to outperform direct

forecasts, and the relative performance improves with the forecast of horizon. In their

empirical analysis, they only consider four different horizons, h = 3, 6, 12 and 24. Based on

the example in Figure 1, it is clear that picking just four out of all possible horizons may

lead to unrepresentative, and potentially wrong, conclusions.

Here we test for significant superior predictive ability using the two tests developed in

this paper. We test for uniform and average SPA across horizons h = 2, ..., 24. We exclude

the first horizon since iterated and direct forecasts are equivalent for h = 1. For the sake

of comparison, we also report the single-horizon Diebold-Mariano results.

We use the data provided on Mark Watson’s website. The data consists of 170 series

divided up into five different categories. We apply their suggested data transformation to

deal with the non-stationary nature of some of the series, such that models are estimated

in levels, log-levels, differences or log-differences. Forecasts are similarly evaluated on the

transformed series. The number of observations per series varies between 412 and 528, with

an average of 510 observations. For more details, we refer to Marcellino et al. (2006).

We mostly follow the forecasting methodology of Marcellino et al. (2006). We perform

direct and iterated AR(p) forecasts, with four different choices of lag orders. First, we

set p equal to either 4 or 12. Second, every period, we choose the optimal lag-length

9The supplemental appendix contains an additional application of the the multi-horizon MCS to evaluate

a wide range of realized volatility forecasting models on multiple horizons jointly, using the dataset of

Bollerslev, Patton, and Quaedvlieg (2016).
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between 1 and 12, based on either AIC or BIC using the estimation sample. Note that it

is entirely possible that on any given period the lag selection based on AIC or BIC results

in different lag-lengths for the direct and iterated models. We then compare the direct

and iterated forecasts per lag selection procedure. Our parameter estimates are based on a

rolling window of 120 observations, rather than the expanding window used in Marcellino

et al. (2006), since our framework requires non-vanishing estimation error.

For the iterated forecasts, we estimate the parameters of the following model using OLS.

yt+1 = θ0 +

p∑
i=1

θiyt+1−i + εt+1. (23)

The iterated h−step ahead forecasts are constructed recursively as

ŷItt+h|t = θ̂0 +

p∑
i=1

θ̂iyt+h−i|t. (24)

For the direct forecasts, we estimate a model on the h−step ahead observation,

yt+h = φ0 +

p∑
i=1

φiyt+1−i + εt+h. (25)

To remain strictly out-of-sample, we only use data from the 120 observations of our rolling

window, i.e. the last observation on the left-hand side is part of those 120 observations.

Note that this does reduce the actual number of observations used for parameter estimation.

We then obtain direct h−step ahead forecasts as

ŷDirt+h|t = φ̂0 +

p∑
i=1

φ̂iyt+1−i. (26)

The forecasts are evaluated using the mean square forecasting error (MSFE)

LMSFE(ŷt+h|t, yt+h) = (ŷt+h|t − yt+h)2. (27)

4.1 Aggregate Results

Throughout this section we will report results of the multi-horizon tests for the range of

maximum horizons H = 2, ..., 24. This should be interpreted as illustration of the tests,

while in practice it is recommended to choose a single long-term horizon H, which includes

all relevant horizons h.
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Figure 2: Rejection Frequencies equal forecasting performance across horizons.

DM It 
DM Dir 

uSPA It 
uSPA Dir 

aSPA It 
aSPA Dir 

4 8 12 16 20 24

0.0

0.2

0.4

0.6

AR(4)
DM It 
DM Dir 

uSPA It 
uSPA Dir 

aSPA It 
aSPA Dir 

4 8 12 16 20 24

0.0

0.2

0.4

0.6
AR(12)

4 8 12 16 20 24

0.0

0.2

0.4

0.6
AR(AIC)

4 8 12 16 20 24

0.0

0.2

0.4

0.6
AR(BIC)

Note: This figure plots fraction of rejections out of 170 series, as a function of horizon. The tests in either direction

are performed at the 2.5% significance level. Positive, solid lines plot the rejections in favor of Iterated forecasts, while

the negative, dotted lines plot rejections in favor of Direct forecasts. The different plots depict the fractions for different

lag-selection methods.

We formally test for superior predictive ability using the Diebold-Mariano, uSPA and

aSPA tests on each of the 170 series and each of the 23 horizons. Figure 2 summarizes the

rejection frequencies for one-sided tests in either direction at 2.5% level. Each of the four

panels corresponds to one of the lag selections. The positive solid lines are the rejection

frequencies in favor of iterated forecasts, while the negative dotted lines are the negative

of the rejection frequencies in favor of direct forecasts.

The significance tests are mostly in line the results of Marcellino et al. (2006). Across the

three tests, we find convincing evidence in favor of iterated forecasts. Rejection frequencies

in favor of direct forecasts are typically at, or below, the level of the test, suggesting that

iterated forecasts are no worse than direct forecasts. Only for lag-selection based on BIC,

which tends to select the smallest models, we find rejection frequencies higher than the
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level of the tests for small H. Interestingly, these higher rejection frequencies converge to

close to zero when H grows.

Of course none of the three tests are directly comparable, but the rejection frequencies

at different horizons serve to highlight the merits of joint multi-horizon tests. The Diebold-

Mariano test hardly ever rejects for short horizons, which rises to about 20% for the two-

year ahead forecast. Importantly, the number of rejections is unstable across horizons. For

instance, based on AR(12), looking at just horizon h = 11 we would reject for over 40% of

the series, while horizon h = 13 would reject less than 30%.

Naturally, we typically find fewer rejections based on the test for uSPA, settling at

about 20% of the series for H = 24. The total amount of rejections is however naturally

increasing in the number of horizons under consideration H, suggesting coherent conclu-

sions irrespective of number of the actual chosen horizon. In contrast to the DM-test, the

rejection rates are also mostly stable across the four panels.

Of course, even if the test for uSPA fails to differentiate models, the test for aSPA

still may, as it is the weaker hypothesis. We find that the rejection fractions of the test

for aSPA are indeed higher than those of uSPA, but also consistently higher than those

of the single-horizon Diebold-Mariano tests. Similar to the test for uSPA, the rejection

frequencies are almost monotonically increasing in the horizon H. We find that the across

the 23 horizons, iterated forecasts provide average superior predictive ability relative to

direct forecasts for between 40% and 60% of the series. The contrast with the DM test

is easy to understand. Mechanically, a small loss differential at a single horizon results in

a failure to reject for the univariate test, while the multi-horizon test may find that the

evidence at shorter horizons is sufficient to compensate.

4.2 Individual Results

To better illustrate the relative merits of the various hypotheses and tests, we zoom in on

a number of individual series in Figure 3. Each column corresponds to one of the three

tests, Diebold-Mariano, uSPA and aSPA. The red cross denotes the test-statistic at, or up

to, horizon h. The blue line provides the one-sided critical value at 5%. For the DM-test

this is based on the Gaussian quantiles, while for the •SPA tests we report c5%
ij based on
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Figure 3: Individual Test Results
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Note: This figure plots test statistics with critical values for the univariate, uniform and average SPA tests as a function of

horizon. We highlight four series from the Marcellino et al. (2006) dataset. IVSRRQ is log-difference of the Inventory over

Sales Ratio of retail trade. FYGM6 is the log of the 6 month US treasury bill interest rate. LHNAG is the log-difference of

non-agricultural employed civilian labor force. FYAAC is the log of bond yield on AAA securities.

Bootstrap Algorithm 1. Each row corresponds to a different time-series, chosen to highlight

various facets of the tests.

We observe a number of different patterns. For instance, IVSRRQ has a positive

Diebold-Mariano test-statistic at each horizons but h = 24. The single-horizon test is

only significant at a small number of horizons and insignificant at all others. The test

for aSPA however, aggregates the information over multiple horizons, which are all pos-

itive, and finds sufficient evidence at all horizons to conclude that the iterated forecasts

outperform the direct forecasts. The statistics are actually increasing in horizon, due to

reduced variance ζij. The single negative loss differential at h = 24 clearly does not provide

sufficient evidence to reject aSPA. Moreover, it does not even provide sufficient evidence to

reject uSPA of the iterated forecasts. As the bootstrapped critical values clearly illustrate,
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when we consider more than a single horizon, we might reasonable expect to observe a

negative differential, even if the true loss differential µhij is positive for all h. As a result, we

conclude that iterated forecast provide both uSPA and aSPA, despite only finding signif-

icant evidence of superior predictive ability at a four horizons using the Diebold-Mariano

test.

FYGM6 shows a similar picture, but with more consistent relative performance. The

iterated forecasts perform better at every horizon, and the single-horizon test find significant

evidence for most horizons. Again, we find evidence for aSPA at all horizons, although this

time the test statistics hardly increase for longer horizons H. More interesting is that

we are now in a situation where limited variability in loss-differentials results in a case

where the critical value of uSPA remains positive, even at H = 24. Due to the consistent

performance of the iterated forecasts we still find evidence for uSPA.

The third series, LHNAG, has no clear winner at short horizons, but iterated forecasts

appear to dominate direct forecasts at longer horizons. The single-horizon statistic picks

up on this, with significant differentials at twelve, non-consecutive horizons. The test for

aSPA combines the joint evidence and rejects the null from H ≥ 16. The test for uSPA is

severely impacted by the negative statistic at h = 2. However, this negative statistic was

small, and is not surpassed at higher horizons. As a result, starting from H = 18 and up,

we conclude that the negative short-horizon statistic was likely sampling error, and find

support for uSPA of iterated forecasts.

The final example, FYAAAC is a series where the direct forecasts appear to mostly

outperform the iterated ones. All forecast differentials are negative but small. Their level

results in a situation in which the univariate and average statistic are insignificant at all

horizons. However, its consistently negative values results in the fact that the uniform

statistic does reject at all horizons H ≥ 8. Hence, we find evidence for uSPA, but not for

aSPA. While the definition of uSPA implies aSPA, in any given sample, the tests may of

course not reach this conclusion. A result like this occurs rarely though, and across the

170 series we perform both these tests, we only find evidence for uSPA and not for aSPA

a negligible two times, while the reverse is pervasive throughout.

Overall, Figure 3 makes it clear that comparing forecast path accuracy by looking
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at individual horizons is often insufficient to understand whether a model has superior

predictive ability or not. The joint performance over multiple horizons provides a clearer

and more consistent picture then the single-horizon statistics.

5 Conclusion

We introduce the notion of multi-horizon forecast comparison. We propose to jointly eval-

uate multiple horizons when testing for superior predictive ability, rather than considering

multiple horizons individually. We argue this has three advantages. First, multi-horizon

superior predictive ability provides a more complete definition of a model’s superior perfor-

mance. Second, tests that involve multiple horizons are generally more powerful than tests

that only consider a single horizon, allowing us to disentangle models more easily. Finally,

it guards us against the implicit multiple testing issue arising from picking and choosing

(potentially multiple) individual horizons.

We propose two bootstrap-based tests that evaluate different hypotheses of multi-

horizon forecasting performance. The first tests for uniform superior predictive ability,

which is defined as superior forecasts at each individual horizon. The second tests the

weaker hypothesis that the average loss across horizons is lower. Both tests reduce to

the standard Diebold-Mariano test when only considering a single horizon. We demon-

strate that the ability to differentiate models empirically increases with the number of

horizons under consideration. While forecast error variance increases in horizon, model

mis-specification also tends to increase the average forecast loss as a function of horizon,

which is the main driver of the increased power.

The basic tests allow the statistical comparison of two models. In addition, in order

to compare a greater number of models directly, we extend the Model Confidence Set

methodology to allow for multiple-horizon evaluation. The procedure allows us to find the

set of models that contains the model with multi-horizon superior predictive ability with a

certain confidence level. Both the pairwise tests and the Model Confidence Set are shown

to be properly sized and powerful in simulations.

The pairwise comparison is illustrated on the comparison of direct and iterated of

macro-economic variables, based on the data in Marcellino et al. (2006). We find that
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despite conflicting evidence when looking at individual horizons, we are often able to find

statistical evidence for either average SPA or uniform SPA, or both, when considering

multiple horizons jointly. This suggests that the conflicting evidence is typically the results

from the implicit multiple-testing issue of picking and choosing a few horizons.

While there are situations in which we may not be interested in a single model for

all horizons, many forecasting problems are expected to have a unique best model at all

horizons; the model that best approximates the data generating process. The tests for

uniform and average superior predictive ability therefore have wide applicability in many

fields. In these situations, the tests provide a more consistent, more reliable and more

powerful method of distinguishing models.
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Gonçalves, S., de Jong, R., 2003. Consistency of the stationary bootstrap under weak

moment conditions. Economics Letters 81 (2), 273–278.
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A Bootstrap Validity

Proof Theorem 1: Under either null hypothesisD−1d̄→d N(0,R), whereR = D−1ΩD−1.

First, to prevent the need for a double bootstrap, we use the closed-form expression for
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the stationary bootstrap variance of the mean, presented in Equation (11), to estimate D̂.

Under the stated assumptions on qT , and assumptions slightly weaker than those presented

in 1, Theorem 1 of Gonçalves and de Jong (2003) proves that D̂ is consistent for D. As a

result, by standard arguments we have that D̂−1d̄→ N(0,R).

Next, we show that the bootstrap consistently estimates the distribution of D̂−1d̄. From

Theorem 2 of Gonçalves and de Jong (2003) it follows that

sup
x∈RH

|P b(d̄b − d̄ ≤ x)− P (d̄− µ ≤ x)| →p 0, (28)

where P b denotes the bootstrap distribution. This demonstrates that the bootstrap dis-

tribution can be used to approximate the distribution of (d̄ − µ). It however does not

immediately justify the validity of the bootstrap for the studentized statistics (see e.g.

Gonçalves and White, 2005).

For

sup
x∈RH

|P b(Db)−1(d̄b − d̄) ≤ x)− P (D̂−1(d̄− µ) ≤ x)| →p 0, (29)

to hold, we need thatDb →p D, which follows from Gonćalves and White’s (2002) Corollary

2.1.
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1 Volatility Forecasting

To illustrate the comparison of more than two models, we consider volatility forecasting.

The widespread availability of intraday returns has resulted in a large and well-developed

literature in reduced form volatility modeling. While the latent volatility historically needed

to be filtered from data using for instance GARCH-type models, the sum of squared intra-

day data can be used to obtain accurate daily estimates of volatility. As a result, volatility

essentially becomes observable. This means that we can model volatility directly in reduced

form, making forecasting and evaluation simple.

We use the dataset of Bollerslev et al. (2016), which provides Realized Volatility esti-

mates based on five-minute returns, as well as related measures for, the S&P500 futures

and 27 individual Dow Jones stocks. The sample period is between April 1997 to December

2013, such that we obtain between 3096 and 3202 daily observations.

The literature on forecasting realized volatility is large, and we could not hope to cover

every important contender. We therefore stick to eleven of the most prominent models,

provided in Table S.1. We use six models that produce direct forecasts: the pure AR(1)

and AR(22) models, as well as the four HAR-type specifications.

HAR models were first advocated in Corsi (2009) as a simple approximation of the

long-memory ARFIMA models. The model is essentially a restricted AR(22) model which

imposes common parameters for the weekly and monthly lags. The model has wide appeal

and can be estimated simply using OLS. As a result the literature has built on the HAR

model and many extension were proposed. Here we consider three of these extensions. First,

we consider the HARQ of Bollerslev et al. (2016), who propose to let the autoregressive



Table S.1: Overview of Volatility Models

Model Name Specification

Direct Forecasts

AR(1) RVt+h−1|t = φ0 + φ1RVt−1 + εt

AR(22) RVt+h−1|t = φ0 +
∑22

i=1 φiRVt−i + εt

HAR RVt+h−1|t = φ0 + φ1RVt−1 + φ2RVt−1|t−5 + φ3RVt−1|t−22 + εt

HARQ RVt+h−1|t = φ0 + (φ1 + φ1QRQ
1/2
t−1)RVt−1 + φ2RVt−1|t−5 + φ3RVt−1|t−22 + εt

CHAR RVt+h−1|t = φ0 + φ1BPVt−1 + φ2BPVt−1|t−5 + φ3BPVt−1|t−22 + εt

SHAR RVt+h−1|t = φ0 + φ1+RS
+
t−1 + φ1−RS

−
t−1 + φ2RVt−1|t−5 + φ3RVt−1|t−22 + εt

Iterated Forecasts

AR(1) RVt = φ0 + φ1RVt−1 + εt

AR(22) RVt = φ0 +
∑22

i=1 φiRVt−i + εt

ARMA(1,1) RVt = φ0 + φ1RVt−1 + εt + θ1εt−1

ARFIMA(0, d, 0) (1− L)dRVt = φ0 + εt

ARFIMA(1, d, 0) (1− L)dRVt = φ0 + φ1RVt−1 + εt

Note: This table provides the models used for the Volatility Forecasting Multi-Horizon MCS. The multi-period average

is defined as RVt−1|t−k = 1
k

∑k
i=1RVt−i. RQ is the realized Quarticity, BPV is the Bi-Power Variation introduced in

Barndorff-Nielsen and Shephard (2004), and RS+ and RS− are the semi-variances of Barndorff-Neilsen, Kinnebrouk, and

Shephard (2010). Estimates and forecasts of the ARFIMA models are obtained using the ARFIMA package for Ox (Doornik

and Ooms, 2012).

parameters vary over time as a function of the measurement error variance in the realized

volatility estimates. The C(ontinuous-)HAR model decomposes Realized Volatility in a

predictable continuous variation part, bi-power variation (BPV), and an unpredictable

part due to jumps. Finally, we consider the S(emi-variance)HAR of Patton and Sheppard

(2015). They decompose realized volatility into two semi-variances stemming from positive

and negative returns (RS+ and RS−). The negative semi-variance has greater predictive

power than the positive one, and as a result the decomposition leads to improved forecasts.

All these measures are available in the dataset provided by Bollerslev et al. (2016).

Next, we use five models that provide iterated forecasts. We again take the pure au-

toregressive models, AR(1) and AR(22). We also consider an ARMA(1,1), which would,



similar to the HARQ, account for measurement error in RV if it were homoskedastic.

Finally, we consider two ARFIMA models that account for the long-memory in realized

volatility, which was documented in, amongst others, Andersen, Bollerslev, Diebold, and

Labys (2003). Both the pure ARFIMA(0,d,0) and the augmented ARFIMA(1,d,0) are used

in the volatility literature (e.g. Asai, McAleer, and Medeiros, 2012).

In contrast to the literature, we compute h-step ahead forecasts, RVt+h, rather than

cumulative forecasts, RVt+h|t+1. The reason is that we already jointly consider all horizons,

and using cumulative forecasts would strongly overweight short-term forecasts. We use

rolling window parameter estimates based on 1000 observations. The maximum horizon

we consider is H = 20, which corresponds to volatility for roughly the next month.

We consider two loss-functions. Based on the results of Patton (2011), we have to

be careful in choosing the loss function, since we are evaluating the forecasts based on

estimated RVt, rather than the true, still latent, volatility. Therefore we use the consistent

loss function MSFE:

LMSFE(R̂V t+h, RVt+h) = (R̂V t+h −RVt+h)2 (1.30)

as in the previous section, as well as the QLIKE:

LQLIKE(R̂V t+h, RVt+h) =
RVt+h

R̂V t+h

− log

(
RVt+h

R̂V t+h

)
− 1, (1.31)

where R̂V t+h denotes the h−step ahead forecast and RVt+h the ex-post estimate.

We summarize the results of this empirical test by looking at four horizons, H =

1, 5, 10, 20. First, we report the forecasting loss at the these individual horizons in Table

S.2. We present the results for the S&P500 separately, as well as the average loss over

the remaining Dow Jones stocks. The forecasting performance of the various models varies

widely, both within a single horizon and across horizons. Across all stocks and both loss

functions, at H = 1 the ARFIMA models appear to perform best, closely followed by the

HARQ model. For the market the SHAR model has lowest loss. The AR(22) performs

very poorly in terms of MSFE loss, but has better relative performance in terms of QLIKE,

where the AR(1) model is kept at distance.

For longer horizons, some of the relative model performance is shifted around, but the

most striking feature is that the distance between the losses of the ARFIMA model and



all other specifications increases in h. While the approximate long-memory provided by

the HAR-type models provides a reasonable approximation at short horizons, it appears

that the actual long-memory provided by the fractionally integrated becomes important at

longer horizons.

In order to determine whether the differences in loss are statistically significant, we

compute the Multi-Horizon MCS based on forecasts up to these same four horizons. The

H = 1 case corresponds to the standard MCS for one-step ahead forecasts, while the longer

horizons are based on the contributions in this paper, and use the forecasts from horizons

1 to H. The results are reported in Table S.3. For the S&P500 we report the p-values,

relating to the probability that the respective model is in the multi-horizon MCS. In the

bottom panel we report the fraction of stocks where each respective model was in the 80%

multi-horizon MCS. That is, the models that p-values greater than 0.2. First consider the

top panel.

As has often been noted, the more volatile nature of MSFE makes it more difficult to

distinguish models. Indeed, for the S&P500 at H = 1, the forecasting performance of all

eleven models is statistically equivalent, which also largely holds for the individual stocks.

For larger H, the MSFE-based MCS quickly shrinks to include only the two ARFIMA

models at H = 20. Based on QLIKE, the HAR, HARQ and SHAR can keep up with

the ARFIMA models up until horizon H = 10, with HARQ being the single best model

at H = 5. However, when considering the full forecasting path over the next month, the

ARFIMA models jointly provide the best forecasts for both loss-functions.

For the individual stocks we see a similar picture, although the multi-horizon MCS

appears to have more gauge for small H, and less for large H, compared to the S&P500

results. Based on MSFE, the ARFIMA models again dominate, as one of the two models is

included in the MCS for all stocks at all horizons. While gauge is clearly increasing in H,

with the average size of the MCS almost halving, the MCS has more difficulty eliminating

candidate models for individual stocks. For instance, both the HARQ and SHAR remain

in over half the MCS at H = 20. The QLIKE results are similar to the MSFE results, in

that the ARFIMA models are in the MCS for almost all the series. Across H, we again

observe that out of the HAR-type specifications, HARQ and SHAR appear to be the best



models, and remain in the MCS for over half the series, even at H = 20. Between the two

ARFIMA specifications, adding the AR component does appear to give the slight edge,

especially when we consider longer horizons forecast paths.



Table S.2: Realized Volatility: Forecast Loss

h = 1 h = 5 h = 10 h = 20

MSFE QLIKE MSFE QLIKE MSFE QLIKE MSFE QLIKE

S&P500

Direct

AR(1) 2.982 0.215 3.946 0.331 5.102 0.410 6.027 0.537

AR(22) 5.884 0.191 6.550 0.340 6.268 0.403 7.207 0.570

HAR 3.628 0.148 6.157 0.248 7.900 0.346 7.976 0.488

HARQ 2.911 0.138 6.111 0.248 8.438 0.365 9.123 0.538

CHAR 3.589 0.150 6.053 0.256 8.299 0.377 8.285 0.498

SHAR 2.719 0.132 5.273 0.260 6.615 0.349 7.040 0.483

Iterated

AR(1) 2.982 0.215 5.608 0.552 6.303 0.740 6.463 0.832

AR(22) 5.884 0.191 6.050 0.350 6.913 0.427 6.904 0.533

ARFIMA(0, d, 0) 2.686 0.135 3.585 0.237 4.183 0.309 4.957 0.408

ARFIMA(1, d, 0) 2.759 0.135 3.565 0.230 4.150 0.304 4.887 0.406

ARMA(1,1) 2.878 0.147 3.933 0.276 4.597 0.406 5.667 0.591

Average across stocks

Direct

AR(1) 19.784 0.233 25.424 0.324 27.031 0.369 29.467 0.441

AR(22) 24.602 0.190 32.010 0.262 35.004 0.323 36.813 0.386

HAR 18.093 0.168 26.282 0.242 30.593 0.296 31.227 0.376

HARQ 16.299 0.160 24.946 0.237 30.068 0.301 30.764 0.377

CHAR 18.305 0.168 26.768 0.242 30.997 0.297 31.220 0.379

SHAR 17.568 0.160 25.023 0.235 28.816 0.290 30.812 0.371

Iterated

AR(1) 19.784 0.233 30.538 0.477 32.642 0.563 33.875 0.605

AR(22) 24.602 0.190 32.140 0.264 34.714 0.323 35.675 0.405

ARFIMA(0, d, 0) 15.669 0.156 20.457 0.229 22.328 0.272 25.264 0.333

ARFIMA(1, d, 0) 16.071 0.156 20.738 0.224 22.501 0.268 25.320 0.328

ARMA(1,1) 16.857 0.169 24.191 0.262 27.012 0.343 30.986 0.448

Note: This table provides the empirical forecasting loss for the various volatility forecasting models. The

top panel presents results for the realized volatility of S&P500 futures, while the bottom panel provides

the average loss across 27 DJIA stocks.



Table S.3: Realized Volatility: Multi-Horizon Model Confidence Set Results

H = 1 H = 5 H = 10 H = 20

MSFE QLIKE MSFE QLIKE MSFE QLIKE MSFE QLIKE

S&P500 Multi-Horizon MCS p-values

Direct

AR(1) 0.385 0.000 0.093 0.000 0.097 0.000 0.088 0.001

AR(22) 0.385 0.000 0.093 0.001 0.097 0.003 0.194 0.002

HAR 0.385 0.424 0.093 0.592 0.097 0.435 0.194 0.182

HARQ 0.437 0.547 0.118 1.000 0.097 0.435 0.143 0.182

CHAR 0.437 0.000 0.118 0.002 0.097 0.006 0.143 0.003

SHAR 0.676 1.000 0.789 0.629 0.441 0.435 0.194 0.182

Iterated

AR(1) 0.437 0.000 0.789 0.000 0.080 0.000 0.063 0.001

AR(22) 0.385 0.000 0.093 0.000 0.080 0.004 0.194 0.030

AFRIMA(0, d, 0) 1.000 0.547 0.789 0.629 0.441 1.000 0.257 1.000

ARFIMA(1, d, 0) 0.676 0.547 1.000 0.629 1.000 0.435 1.000 0.328

ARMA(1,1) 0.466 0.001 0.093 0.000 0.080 0.000 0.063 0.001

Fraction of stocks included in 80% Multi-Horizon MCS

Direct

AR(1) 0.556 0.000 0.111 0.000 0.111 0.000 0.037 0.000

AR(22) 0.630 0.111 0.185 0.296 0.222 0.333 0.148 0.185

HAR 0.852 0.667 0.852 0.593 0.519 0.481 0.407 0.259

HARQ 0.889 0.741 0.889 0.741 0.852 0.815 0.556 0.519

CHAR 0.815 0.148 0.667 0.037 0.593 0.259 0.296 0.111

SHAR 0.704 0.407 0.815 0.630 0.778 0.593 0.519 0.519

Iterated

AR(1) 0.556 0.000 0.148 0.000 0.148 0.000 0.185 0.000

AR(22) 0.556 0.000 0.185 0.000 0.259 0.037 0.259 0.000

AFRIMA(0, d, 0) 1.000 0.889 1.000 0.741 1.000 0.704 0.963 0.704

ARFIMA(1, d, 0) 0.926 0.852 1.000 0.889 1.000 0.926 1.000 0.926

ARMA(1,1) 0.778 0.148 0.593 0.037 0.556 0.074 0.519 0.037

Average size M̂0.2 8.259 3.963 6.444 3.963 6.037 4.222 4.889 3.259

Note: This table provides the multi-horizon Model Confidence Set results. The top panel provides p-values

for the S&P500 Realized Variance forecasts. Boldface denotes the model is part of the 80% multi-horizon

MCS. The bottom panel presents the fraction of the 27 firms for which the model was included in the 80%

multi-horizon MCS. The final row provides the average number of models in the 80% multi-horizon MCS.



2 Illustration Data Generating Process Simulation

In order to visualize the choice of DGP in Section 3 we plot several loss differentials dhij,t

across 100 time periods in Figure S.1. The losses are generated based on θ(Unif), and

averaged across 10,000 simulations to reduce the variance. We plot the loss at three pairs

of adjacent horizons, h = 1, 2, 9, 10, 19 and 20. The figure illustrates all the major facets

of the data generating process. First, driven by φ, the increase in loss differential between

horizons h = 1 and 2 is greater than that between the other two adjacent pairs. Next, as

governed by ψ, the variance of the loss differential increases with h. Third, due to Equation

(22), the correlation between adjacent pairs is increasing with h, as evidenced by the clearly

stronger correlation between h = 19 and 20, compared to the other two pairs.

Figure S.1: Illustration of Simulation Data Generating Process
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Note: This figure plots average simulated loss differential across 10,000 simulations. The simulations are based on parameter

choices φ = 1, ψ = 0.125 and λ = 10, which is the median parameter choice for the remainder of the simulations.
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