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Peter Winker for helpful comments. This research was supported by a travel grant of the International Association
of Applied Econometrics.
†Christian Conrad, Department of Economics, Heidelberg University, Bergheimer Strasse 58, 69115 Heidelberg,

Germany, Email: christian.conrad@awi.uni-heidelberg.de; Phone: +49 6221 54 3173.
‡Onno Kleen, Department of Economics, Heidelberg University, Bergheimer Strasse 58, 69115 Heidelberg, Ger-

many, Email: onno.kleen@awi.uni-heidelberg.de; Phone: +49 6221 54 2930.

1



1 Introduction

The idea to model volatility as consisting of multiple components has a long tradition in financial

econometrics (see, for example, Ding and Granger, 1996, and Engle and Lee, 1999). However, these

early models typically featured additive volatility components and did not allow for explanatory

variables in the conditional variance. More recently, the focus of attention has shifted to multiplica-

tive component models (see, for example, Engle and Rangel, 2008, Engle et al., 2013, Amado and

Teräsvirta, 2013, 2017, and Han and Kristensen, 2015). Specifically, the class of GARCH-MIDAS

models proposed in Engle et al. (2013) has been proven to be extremely useful for analyzing the

link between financial conditions and the macroeconomic environment (see Asgharian et al., 2013,

Conrad and Loch, 2015, and Dorion, 2016). In the GARCH-MIDAS, a unit-variance GARCH

component fluctuates around a smoothly time-varying long-term component that is a function of

(macroeconomic) explanatory variables. By allowing for a mixed-frequency setting, this approach

bridges the gap between daily stock returns and low-frequency (e.g., monthly, quarterly) explana-

tory variables. For further applications of GARCH-MIDAS-type models to financial time series such

as stock price indices, individual stock prices or oil prices see, for example, Conrad et al. (2014),

Opschoor et al. (2014), Dominicy and Vander Elst (2015), Lindblad (2017), Amendola et al. (2017)

and Pan et al. (2017). For a recent survey on multiplicative component models see Amado et

al. (2018).

Our contribution to this recent strand of literature is twofold. First, we analyze some statistical

properties of multiplicative component GARCH models (M-GARCH) that did not receive atten-

tion so far. Assuming a two-component structure with one component being a GJR-GARCH (see

Glosten et al., 1993), we show that the kurtosis of the two-component model is always bigger than

the kurtosis of the nested GJR-GARCH component. The autocorrelation function (ACF) of the

squared returns is shown to be a weighted average of the ACF of the long-term component and the

ACF of the GJR-GARCH component. If the long-term component is sufficiently persistent, it dom-

inates the behavior of the ACF of the overall process and can mimic long-memory type dynamics.

Both findings suggest a multiplicative component structure in the volatility of stock returns as a po-

tential explanation for the common failure of simple one-component GARCH models in adequately

capturing the leptokurticity and extreme volatility persistence in observed returns. It should also

be noted that our results are remarkably similar to the recent findings in Han (2015) on GARCH-X

models, even though Han (2015) considers models with an additive explanatory variable in the

conditional variance and focuses on the asymptotic limit of the sample kurtosis and the sample

ACF. Finally, it is important to highlight that although our results on the kurtosis and the ACF

are presented for a GJR-GARCH(1,1) short-term component, they directly extend to a covariance
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stationary GJR-GARCH(p, q) component.

Further, we analyze the usefulness of the squared error (SE) loss and the QLIKE loss for eval-

uating volatility forecasts. Our insights suggest that the QLIKE is the more appropriate measure

because – in contrast to the SE loss – the QLIKE loss does not depend on the prevalent volatility

regime. We thus complement the arguments put forth in Patton (2011) and Brownlees et al. (2012)

in favor of the QLIKE. Based on the analysis of the SE loss, we derive an upper bound for the pop-

ulation R2 in the k-step ahead Mincer-Zarnowitz regression of the squared return on the volatility

forecast. Our result nests the case of a simple GARCH(1,1) that was discussed in Andersen and

Bollerslev (1998). We derive an explicit expression for the one-step ahead R2 of the GARCH-MIDAS

specification and show that the R2 is increasing in the variability of the long-term component. This

feature leads to the unpleasant property that the R2 is particularly high in situations in which

the SE loss is also high. Clearly, this finding questions the Mincer-Zarnowitz R2 as a reasonable

measure of forecast accuracy. In a Monte-Carlo simulation, we provide further evidence for our

theoretical findings. In addition, the simulation shows that a two-component structure in the data

generating process (DGP) leads to the well known IGARCH effect when a simple one-component

model is applied to the data and the long-term component is of sufficient importance. Finally, we

compare the forecast accuracy of the two-component model with the one of the popular Heteroge-

neous Autoregressive (HAR) model of Corsi (2009) when again the true DGP has a two-component

structure. The HAR model is based on additive components of the realized volatility of the previous

day, the previous week and the previous month and, thus, has a similar motivation as multiplica-

tive models with short- and long-term components. Our results show that the correctly specified

M-GARCH models clearly outperform the HAR model in terms of out-of-sample forecast perfor-

mance. Hence, a direct modeling of the realized variance does not appear to be a good substitute

for a proper identification of the true component structure. The simulations also show that the

power of Diebold-Mariano tests for equal forecast accuracy is higher under the QLIKE loss than

under the SE loss. This effect is particularly strong in high-volatility regimes. Again this findings

supports the arguments in Patton and Sheppard (2009) and Patton (2011) in favor of the QLIKE.

Second, we apply the GARCH-MIDAS model to a long time series of S&P 500 returns combined

with data on U.S. macroeconomic and financial conditions. The empirical application focuses on

certain aspects that have remained unexplored in previous applications of GARCH-MIDAS models.

While previous studies have either used ex-post or first release data for the full (in-)sample period

(see, for example, Engle et al., 2013, and Conrad and Loch, 2015), we base the estimates of our

GARCH-MIDAS model on a rolling window of vintage data that was available in real-time. To

the best of our knowledge, Lindblad (2017) appears to be the only other paper that makes use
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of real-time data when estimating GARCH-MIDAS models. Using real-time data is of particular

importance when employing macroeconomic time series which are often revised substantially after

the first release. For example, we find that for industrial production the average absolute deviation

of the estimate of the long-term component based on final data for the full-sample from the rolling-

window estimate based on real-time data is about 8%. By using real-time data, our study does

not suffer from a ‘look-ahead-bias’ and allows for a realistic evaluation of the true out-of-sample

forecasting ability of the different models. Instead of comparing the GARCH-MIDAS forecasts with

the forecasts from the nested GARCH model (see Asgharian et al., 2013, and Lindblad, 2017) or a

GARCH-MIDAS with realized volatility as the explanatory variable (see Conrad and Loch, 2015),

we consider the empirically ‘hard-to-beat’ HAR model as the main competitor. Further, instead of

comparing each GARCH-MIDAS model separately with a benchmark model, we evaluate all models

at once by constructing model confidence sets (MCS) as introduced in Hansen et al. (2011). Based

on the QLIKE as our favorite measure of forecast accuracy, we find that the MCS for the one-day to

one-month ahead forecasts consists primarily of a GARCH-MIDAS model based on the VIX as the

explanatory variable and the HAR model. For forecast horizons of two- and three-months ahead,

GARCH-MIDAS models based on the National Financial Conditions Index (NFCI) and housing

starts are the preferred specifications. Thus, our empirical results suggest that the best GARCH-

MIDAS specifications are at least as good as the HAR model in short-term forecasting and even

superior in long-term forecasting.

To facilitate the replication of our results, we provide R packages for downloading real-time data

from the ALFRED database of the Federal Reserve Bank of St. Louis (see Kleen, 2017) as well as

for estimating (mixed-frequency) M-GARCH models (see Kleen, 2018).1

Our paper is organized as follows. In Section 2, the model and our theoretical results are

presented. In Section 3, we perform a simulation study and, in Section 4, we apply the M-GARCH

model to S&P 500 return data. Section 5 concludes. All proofs are deferred to Appendix A.

2 The Multiplicative Component GARCH Model

In this section, the M-GARCH model is introduced and its theoretical properties are derived. In

particular, we show that the M-GARCH model inherits certain time series properties that are in

line with stylized facts typically observed for financial return data but that cannot be captured by

simple GARCH models.
1The packages are available at: cran.r-project.org/package=alfred and cran.r-project.org/package=mfGARCH .
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2.1 Model specification

We denote daily returns by εi,t, whereby t refers to a certain period (e.g. a week or a month) and

i = 1, . . . , It to days within that period. Daily (demeaned) returns are given by

εi,t = σi,tZi,t, (1)

where Zi,t is an i.i.d. innovation process with mean zero and variance one. Let Fi,t denote the

information set up to day i in period t and define Ft := FIt,t. As we discuss below, we will assume

that σ2
i,t is measurable with respect to Fi−1,t. Hence, σ2

i,t represents the conditional variance of

returns, i.e. Var(εi,t|Fi−1,t) = σ2
i,t. In the M-GARCH model, we specify the conditional variance as

the product of a short-term and a long-term component. That is, we decompose σ2
i,t as follows:

σ2
i,t = gi,tτt. (2)

We refer to gi,t as the short-term component and to τt as the long-term component. While gi,t
changes at the daily frequency, τt is constant across all days within period t and, instead, changes

at the low frequency only.

The short-term component is intended to describe the well known day-to-day clustering of

volatility and is assumed to follow a mean-reverting unit-variance GJR-GARCH(1,1) process:

gi,t = (1− α− γ/2− β) +
(
α+ γ1{εi−1,t<0}

) ε2
i−1,t
τt

+ βgi−1,t (3)

=
∞∑
j=0

βj
(
(1− α− γ/2− β) + (α+ γ1{εi−j,t<0})Z2

i−1,t

)
,

where the second line makes clear that gi,t can be entirely written in terms of past values of Z2
i,t. We

make the following assumptions regarding the innovation Zi,t and the parameters of the short-term

component.

Assumption 1. Let Zi,t be i.i.d. with E[Zi,t] = 0 and E[Z2
i,t] = 1. Further, Z2

i,t is assumed to have

a nondegenerate distribution and κ = E[Z4
i,t] <∞.

Assumption 2. We assume that α > 0, α + γ > 0, β ≥ 0 and α + γ/2 + β < 1. Moreover, we

assume that (α+ γ/2)2κ+ 2(α+ γ/2)β + β2 < 1.

Note that Assumption 1 implies that κ > 1. Assumptions 1 and 2 imply that εi,t/
√
τt = √gi,tZi,t

is a covariance stationary GJR-GARCH(1,1) process. The first- and second-order moment of gi,t
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are given by E[gi,t] = 1,

E[g2
i,t] = 1− (α+ γ/2 + β)2

1− (α+ γ/2)2κ− 2(α+ γ/2)β − β2 (4)

and the fourth moment of √gi,tZi,t is finite.

The second component, τt, should be thought of as describing smooth movements in the condi-

tional variance. Instead of explicitly specifying τt, we will simply assume that it follows a covariance

stationary process.

Assumption 3. The long-term component τt > 0 is covariance stationary and measurable with

respect to Ft−1. Moreover, we assume that τt and Zi,t−j are independent for all t, i and j.

Assuming independence of τt and Zi,t+j is stronger than what is needed for both estimating

M-GARCH models (see Wang and Ghysels, 2015) as well as testing for an omitted long-term

component in one-component GARCH models (see Conrad and Schienle, 2018). We assume inde-

pendence because it will allow us to obtain simple expressions for the kurtosis of the returns, the

autocorrelation function of the squared returns and for the comparison of alternative measures of

forecast accuracy.2 Alternatively, we could, for example, assume that τt is strictly exogenous with

respect to the first four moments of Zi,t.

Assumptions 1, 2 and 3 imply that the εi,t have mean zero, are uncorrelated and have an

unconditional variance given by Var(εi,t) = E[τt]. Moreover, the unconditional variance of the

squared returns is well-defined, Var(ε2
i,t) = κE[τ2

t ]E[g2
i,t]−E[τt]2.

2.2 Related specifications

The model described in Section 2.1 nests the GARCH-MIDAS of Engle et al. (2013). In the

GARCH-MIDAS the long-term component is specified as a function of lagged values of an exogenous

explanatory variable Xt. That is, τt may be written as τt = f(Xt−1, Xt−2, . . . , Xt−K) with f(·) > 0.3

The most common specification of the long-term component expresses the natural logarithm of τt
as a weighted sum of the K ≥ 1 lagged values of Xt,

log τt = m+ θ
K∑
l=1

ϕl(w1, w2)Xt−l, (5)

2Essentially, Han and Kristensen (2015) make the same independence assumption in their multiplicative GARCH
model.

3While we focus on multiplicative GARCH models, Han and Park (2014) and Han (2015) analyze the properties of
a GARCH-X specification with an explanatory variable that enters additively into the conditional variance equation.
See also Han and Kristensen (2014) and Francq and Thieu (2015).
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where the weights have a Beta polynomial structure,

ϕl(w1, w2) = (l/(K + 1))w1−1 · (1− l/(K + 1))w2−1∑K
j=1(j/(K + 1))w1−1 · (1− j/(K + 1))w2−1

. (6)

By construction, the weights sum up to one, i.e.
∑K
l=1 ϕl(w1, w2) = 1.

A measure that is often used to quantify the relative importance of the long-term component is

the following variance ratio:

V R = Var(log(τt))
Var(log(τtgt))

, (7)

where gt =
∑It
i=1 gi,t. The ratio measures how much of the total variation in the (log) conditional

variance can be explained by the variation in the (log) long-term component.

Although the model described in Section 2.1 involves mixed-frequency data, we can rewrite the

returns as εs = εi,t, where the new daily index s is defined as s = s(i, t) =
∑t−1
l=0 Il + i with I0 = 0.

If the length of period t is simply one day, both components vary at the same frequency and our

model coincides with the specification discussed in Conrad and Schienle (2018). The latter model

nests the component specification considered in Wang and Ghysels (2015) when f(·) is linear in the

lagged realized variances.

Finally, note that by multiplying eq. (3) by τt, we obtain

σ2
i,t = τt(1− α− γ/2− β) +

(
α+ γ1{εi−1,t<0}

)
ε2
i−1,t + βσ2

i−1,t. (8)

Thus, eq. (1) and (8) can be viewed an asymmetric GARCH process with time-varying intercept.

In a similar manner, Baillie and Morana (2009) introduced the adaptive FIGARCH model which

assumes that σ2
i,t follows a FIGARCH with time-varying intercept. However, in their model the

time-varying intercept purely depends on time. If τt = ω/(1− α− γ/2− β) is constant, our model

reduces to the GJR-GARCH with intercept ω.

2.3 Kurtosis

Financial returns are often found to be leptokurtic. As usual, we measure leptokurticity by means

of the kurtosis coefficient. Under Assumptions 1, 2 and 3, the kurtosis of the returns defined in

eq. (1) is given by

KMG =
E[ε4

i,t]
(E[ε2

i,t])2 =
E[σ4

i,t]
(E[σ2

i,t])2κ > κ.

Thus, the kurtosis of the M-GARCH process is larger than the kurtosis of the innovation Zi,t. This

is a well known feature of GARCH-type processes. The following proposition relates the kurtosis
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KMG of the M-GARCH to the kurtosis KGA of the nested GARCH(1,1).

Proposition 1. Under Assumptions 1, 2 and 3, the kurtosis KMG of an M-GARCH process is

given by

KMG = E[τ2
t ]

E[τt]2
· KGA ≥ KGA,

where KGA = κ ·E[g2
i,t] is the kurtosis of the nested GARCH process and where the equality holds if

and only if τt is constant.

Hence, for non-constant τt the kurtosis KMG is the product of KGA and the ratio E[τ2
t ]/E[τt]2 >

1. When τt = ω/(1− α− γ/2− β) is constant, Proposition 1 nests the kurtosis of the asymmetric

GARCH model. Thus, for highly volatile long-term components the kurtosis of an M-GARCH

process is much larger than the kurtosis of the nested GARCH model.4 Moreover, when estimating

a GARCH model, it is often assumed that Zi,t is standard normal so that κ = 3. Our result

may explain why in empirical applications the ‘deGARCHed’ residuals, εi,t/
√
gi,t, often still exhibit

excess kurtosis. In the multiplicative model the kurtosis of εi,t/
√
gi,t is given by 3 ·E[τ2

t ]/E[τt]2 > 3.

2.4 Autocorrelation function

Empirically, the ACF of squared returns is often found to decay more slowly than the exponentially

decaying ACF implied by the simple GARCH(1,1) model. In the literature on GARCH models, this

is usually interpreted as either evidence for long-memory (see, e.g., Baillie et al., 1996), structural

breaks (see, e.g., Hillebrand, 2005) or an omitted persistent covariate (see Han and Park, 2014) in

the conditional variance.

The following proposition shows that the theoretical ACF of the M-GARCH process has a

much slower decay than the ACF of the nested GARCH component if the long-term component

is sufficiently persistent. Hence, the multiplicative structure provides an alternative explanation

for the empirical observation of highly persistent ACFs of squared returns. For simplicity in the

notation, we consider the case that both components are varying at the same frequency, i.e the

length of the period t is one day.

Proposition 2. If the long-term component is observed at the daily frequency and Assumptions 1,

2 and 3 are satisfied, the ACF, ρMG
k , of an M-GARCH process is given by

ρMG
k = Corr(ε2

s, ε
2
s−k) = ρτk

Var(τs)
Var(r2

s)
+ ρGAk

(
ρτkVar(τs) + E[τs]2

)
Var(gsZ2

s )
Var(r2

s)
(9)

4Han (2015) obtains a similar result for the sample kurtosis of the returns from a GARCH-X model with a covariate
that can be either stationary or non-stationary.
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with ρτk = Corr(τs, τs−k) and

ρGAk = Corr(gsZ2
s , gs−kZ

2
s−k) = (α+ γ/2 + β)k−1 (α+ γ/2)(1− (α+ γ/2)β − β2)

1− 2(α+ γ/2)β − β2

being the ACF of the GJR-GARCH component.5

Proposition 2 shows that the ACF of the M-GARCH model is given by the sum of two terms:

The first term is given by the ACF of the long-term component ρτk times a constant, whereas the

second term equals the exponentially decaying ACF of the nested GARCH model ρGAk times a ratio

that depends again on ρτk. Hence, if τs is sufficiently persistent, ρMG
k will essentially behave as ρτk

for k large.6 For τs being constant, the first term in eq. (9) is equal to zero and the second term

reduces to the ACF of an asymmetric GARCH(1,1). Also, note that the ratio Var(τs)/Var(r2
s) is

closely related to the variance ratio defined in eq. (7) and essentially measures the importance of

the long-term component.

The implications of Proposition 2 are depicted in Figure 1. Due to the additive structure of

the correlation function, a highly persistent exogenous covariate causes the ACF of the M-GARCH

model (solid line) to have a decay pattern that is quite different from the ACF of the nested GARCH

component (dashed line). The ACF of the M-GARCH behaves like the ACF typically observed for

squared returns, i.e. it decreases exponentially at first but remains larger than zero for high lags.

Figure 1 shows that the second term (i.e. the ACF of the GARCH component) in eq. (9) determines

the decay behavior of ρMG
k when k is small, while the first term dominates when k is large.

[Figure 1 here]

As for the kurtosis, our result may explain why in empirical applications the squared de-

GARCHed residuals, ε2
s/gs, are still substantially autocorrelated. In the multiplicative model, the

ACF of these residuals is given by ρτk ·Var(τs)/(κE[τ2
s ]−E[τs]2), which follows the rate of decay of

the long-term component.

2.5 Forecast evaluation and Mincer-Zarnowitz regression

In this section, we discuss the properties of the expected squared error (SE) loss, the QLIKE loss as

well as the Mincer-Zarnowitz R2 as measures of forecast accuracy when forecasts from M-GARCH

models are evaluated against squared returns as a proxy for the true but latent volatility.
5Note that ρGAk reduces to the ACF of a (symmetric) GARCH(1,1) when γ = 0 (see Karanasos, 1999).
6Again, Han (2015) also obtains a two component structure for the sample ACF of the squared returns from a

GARCH-X model with a fractionally integrated covariate.
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We assume that forecasts are produced at the last day It of period t. For the time being, we

consider the k-step ahead volatility forecast coming from some volatility model (not necessarily

from the component GARCH model) and denote it by hk,t+1|t with k ≤ It+1. If the model under

consideration is the multiplicative component model then hk,t+1|t = τt+1gk,t+1|t, where gk,t+1|t =

E[gk,t+1|Ft] = 1 + (α + γ/2 + β)k−1(g1,t+1|t − 1). When evaluating the volatility forecast, one has

to deal with the problem that the true conditional variance, σ2
k,t+1, is unobservable. Patton (2011)

discusses the situation in which the forecast evaluation is based on some conditionally unbiased

volatility proxy σ̂2
k,t+1 instead. He defines a loss function L(σ2

k,t+1, hk,t+1|t) as robust if the expected

loss ranking of two competing forecasts is preserved when replacing σ2
k,t+1 by σ̂2

k,t+1. As shown in

Patton (2011), the SE loss function,

SE(σ2
k,t+1, hk,t+1|t) = (σ2

k,t+1 − hk,t+1|t)2 (10)

as well as the QLIKE loss,

QLIKE
(
σ2
k,t+1, hk,t+1|t

)
=

σ2
k,t+1

hk,t+1|t
− ln

(
σ2
k,t+1

hk,t+1|t

)
− 1, (11)

belong to the class of robust loss functions. A necessary condition for a loss function to be robust is

that the optimal forecast is the conditional mean of the variable to be forecasted. This rules out, for

example, the mean absolute error loss. Further, the SE is the only robust loss function that depends

solely on the forecast error, σ2
k,t+1 − hk,t+1|t, while the QLIKE is the only robust loss function that

depends solely on the standardized forecast error, σ2
k,t+1/hk,t+1|t (see Patton, 2011). Comparing the

conditional variance of the forecast error and the standardized forecast error suggests that the SE is

much more sensitive with respect to extreme observations in the sample. Similarly, it can be shown

that the moment conditions required for Diebold and Mariano (1995) tests are much stronger under

SE loss than under QLIKE loss (see Patton, 2006).

Finally, note that the ranking obtained from the SE and the QLIKE for two competing models

should be the same as long as the two models are “correctly specified, free from estimation error,

and when the information sets of one of the forecasters nests the other” (Patton, 2016). However, if

one of these conditions is violated, the SE and QLIKE can lead to differing model rankings. In this

case, it is up to the researcher to decide which loss function to prefer. As the subsequent discussion

of the SE loss and the QLIKE loss shows, the QLIKE loss might be the more appropriate choice in

our setting.
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2.5.1 Squared error loss

Consider the model given by eq. (1) and the corresponding expected SE from evaluating a variance

forecast hk,t+1|t against the noisy but conditionally unbiased proxy σ̂2
k,t+1 = ε2

k,t+1.7 Using that

E[ε2
k,t+1|Fk−1,t+1] = σ2

k,t+1, it is straightforward to show that

E[SE(ε2
k,t+1, hk,t+1|t)] = E[SE(σ2

k,t+1, hk,t+1|t)] + (κ− 1)E[σ4
k,t+1]. (12)

That is, the expected SE based on the noisy proxy equals the expected SE based on the latent

volatility plus a term that depends on the fourth moment, κ, of Zi,t and the expected value of

the squared conditional variance. Hence, using a noisy proxy for forecast evaluation can lead to a

substantially higher expected SE than based on the latent volatility. Patton (2011, p.248) basically

made the same point by arguing that “although the ranking obtained from a robust loss function

will be invariant to noise in the proxy, the actual level of expected loss obtained using a proxy will

be larger than that which would be obtained when using the true conditional variance”. For further

illustration, consider the case of a one-day ahead forecast. In this case, h1,t+1|t = τt+1g1,t+1|t and

thus E[SE(σ2
1,t+1, h1,t+1|t)] = 0. Nevertheless, eq. (12) implies that the expected SE is still non-zero:

E[SE(ε2
1,t+1, h1,t+1|t)] = (κ− 1)E[σ4

1,t+1] = (κ− 1)E[τ2
t+1]E[g2

1,t+1]. (13)

That is, although the forecaster is using the correct model, the expected SE can be large when Zi,t
is leptokurtic or E[σ4

i,t] is large. Brownlees et al. (2012) have made a similar point by arguing that

the bias of E[SE(ε2
1,t+1, h1,t+1|t)] is proportional to the square of the true variance which makes it

difficult to compare losses across different volatility regimes.
Next, we consider the expected SE conditional on the information available at time t. If the

conditional variance forecast is correctly specified, i.e. hk,t+1|t = τt+1gk,t+1|t, a conditional version of
the first term in eq. (12) can be written as

E[SE(σ2
k,t+1, hk,t+1|t)|Ft] = E[τ2

t+1(gk,t+1 − gk,t+1|t)2|Ft]

= τ2
t+1 ·E

(α k−1∑
i=1

(α+ γ/2 + β)i−1vk−i,t+1

)2

|Ft


= τ2

t+1 · (κ− 1)α2
k−1∑
i=1

(α+ γ/2 + β)2(i−1)E[g2
k−i,t+1|Ft] (14)

where vk−i,t+1 = gk−i,t+1(Z2
k−i,t+1−1). Equation (14) is given by the squared long-term component

7To illustrate the severeness of the noise, consider an example with Zk,t+1 ∼ N (0, 1). Then ε2
k,t+1 will either over-

or underestimate the true σ2
k,t+1 by more than 50% with a probability of about 74%. In Section 3, we will consider

the case that realized variance is used as a proxy for σ2
k,t+1.
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times the conditional mean squared error of the k-step ahead volatility prediction of a GARCH(1,1)

(see, Baillie and Bollerslev, 1992). That is, although τt+1 is a function of information available at

t and, hence, does not need to be forecasted itself, it strongly affects the conditional SE loss. This

observation illustrates that – even in the absence of noise on the volatility proxy – the level of the

SE strongly depends on the volatility regime. Thus, even when we use precise volatility proxies such

as realized volatility based on high-frequency intra-day data, we should expect that the outcome of

tests for forecast accuracy is sensitive with respect to the volatility regime.

This property of the SE also applies when considering cumulative volatility forecasts. Again,

we assume that forecasts are constructed at the last day of month t. The k-step ahead cumulative

forecast is then given by

h1:k,t+1|t = τt+1

k∑
i=1

gi,t+1|t = τt+1

(
k + (g1,t+1 − 1)1− (α+ β + γ/2)k

1− α− β − γ/2

)
. (15)

As a proxy for the latent volatility during the first k days of period t+1, we use σ̂2
1:k,t+1 =

∑k
i=1 ε

2
i,t+1.

Again, it follows directly that

E
[
SE
(
σ̂2

1:k,t+1, h1:k,t+1|t
)∣∣∣Ft] = τ2

t+1 ·E
[

SE
(

k∑
i=1

gi,t+1Z
2
i,t+1,

k∑
i=1

gi,t+1|t

)∣∣∣∣∣Ft
]

(16)

depends on the squared long-term component.

2.5.2 QLIKE loss

Next, we turn to the QLIKE loss given in eq. (11). For simplicity, we directly consider the conditional
expected QLIKE of the cumulative k-day ahead forecast which is given by

E
[
QLIKE

(
σ̂2

1:k,t+1, h1:k,t+1|t
)
Ft
]

= E
[

QLIKE
(

k∑
i=1

ε2
i,t+1, τt+1

k∑
i=1

gi,t+1|t

)∣∣∣∣Ft
]

= E
[
τt+1

∑k
i=1 gi,t+1

τt+1
∑k
i=1 gi,t+1|t

− ln
(
τt+1

∑k
i=1 gi,t+1Z

2
i,t+1

τt+1
∑k
i=1 gi,t+1|t

)
− 1
∣∣∣∣Ft
]

= E
[∑k

i=1 gi,t+1Z
2
i,t+1∑k

i=1 gi,t+1|t
− ln

(∑k
i=1 gi,t+1Z

2
i,t+1∑k

i=1 gi,t+1|t

)
− 1
∣∣∣∣Ft
]

= E
[

QLIKE
(

k∑
i=1

gi,t+1Z
2
i,t+1,

k∑
i=1

gi,t+1|t

)∣∣∣∣Ft
]
.

In contrast to the conditional expected SE, see eq. (16), we find that the conditional expected

QLIKE loss does not depend on τt+1. Indeed, the conditional expected QLIKE of the M-GARCH

volatility forecast reduces to the conditional expected QLIKE of the nested GARCH component.
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Of course, when calculating the QLIKE based on estimated quantities, the actual QLIKE will

depend on the ratio τt+1/τ̂t+1. Nevertheless, we should expect that the outcome of tests for forecast

accuracy based on the QLIKE are less sensitive with respect to the volatility regime than tests

based on the SE.

2.5.3 Mincer-Zarnowitz regression

Finally, we consider the problem of evaluating the k-step ahead volatility forecast by means of the

coefficient of determination, R2
k, of the following Mincer-Zarnowitz regression:

ε2
k,t+1 = δ0 + δ1hk,t+1|t + ηk,t+1. (17)

As shown in Hansen and Lunde (2006), the ranking of competing one-step-ahead volatility

forecasts based on the R2
1 of the Mincer-Zarnowitz regression is robust to using the proxy ε2

1,t+1

instead of the latent conditional variance σ2
1,t+1 as the dependent variable. We consider the situation

in which hk,t+1|t is chosen optimally given available information, i.e. hk,t+1|t = E[σ2
k,t+1|Ft]. In this

case, the population parameters of the Mincer-Zarnowitz regression are given by δ0 = 0 and δ1 = 1

and, hence, the population R2
k can be written as:

R2
k = 1− Var(ηk,t+1)

Var(ε2
k,t+1)

= 1−
E[SE(ε2

k,t+1, hk,t+1|t)]
Var(ε2

k,t)

≤ 1−
(κ− 1)E[σ4

k,t]
κE[σ4

k,t]− (E[σ2
k,t])2 =

1− (E[σ2
k,t])

2

E[σ4
k,t

]

κ−
(E[σ2

k,t
])2

E[σ4
k,t

]

<
1
κ
. (18)

In the first line, we use that the variance of ηk,t+1 equals the expected squared error loss given in

eq. (12). The first inequality in the second line is due to the insight that the expected squared error

loss based on the noisy proxy is at least (κ − 1)E[σ4
k,t]. The upper bound for R2

k that is given by

equation (18) nicely illustrates that a low R2
k is not necessarily evidence for model misspecification

but can simply be due to using a noisy volatility proxy. This point has been made before by Andersen

and Bollerslev (1998), but for the special case of a one-step ahead forecast from a GARCH(1,1).8

Note that the result in eq. (18) does not depend on the two-component structure of the model but

is true for any conditionally heteroscedastic process.

Next, we derive an explicit expression for the Mincer-Zarnowitz R2
k of the M-GARCH model.

Proposition 3. If σ2
k,t+1 follows an M-GARCH process, Assumptions 1, 2 and 3 are satisfied and

8See Andersen et al. (2005) for a model-free adjustment procedure for the predictive R2.
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hk,t+1|t = τt+1gk,t+1|t, the population R2
k of the Mincer-Zarnowitz regression is given by

R2
k =

Var(hk,t+1|t)
Var(ε2

k,t+1) =
E[g2

k,t+1|t]E[τ2
t+1]−E[τt+1]2

E[g2
k,t+1]E[τ2

t+1]κ−E[τt+1]2 (19)

with E[g2
k,t+1] as given by eq. (4) and where we use that E[gk,t+1|t] = E[gk,t+1] = 1. We obtain the following

two properties:

1. R2
k decreases monotonically with increasing forecast horizon k and, in the limit, converges to

R2
∞ =

E[τ2
t+1]−E[τt+1]2

E[g2
k,t+1]E[τ2

t+1]κ−E[τt+1]2 , (20)

where we use that limk→∞E[g2
k,t+1|t] = 1.9

2. As E[τ2
τ+1] increases to infinity, R2

k increases monotonically to E[g2
k,t+1|t]/(E[g2

k,t+1]κ) ≤ 1/κ for all k.

The first property rests on the insight that the forecast of the GARCH component converges

to one (as k → ∞) and, hence, the Mincer-Zarnowitz regression reduces to a regression of ε2
k,t+1

on a constant and τt+1. Thus, the R2
∞ can be interpreted as the fraction of the total variation in

daily returns that can be attributed to the variation in the long-term component. This measure is

directly related to the variance ratio statistic discussed in Section 2.2, eq. (7), which we will use for

measuring the relative importance of the long-term component.

Second, the result that R2
k increases when τt+1 gets more volatile may be puzzling at first but is

due to the fact that the variance of ε2
k,t+1 increases more than the variance of hk,t+1|t. Again, this

implies that for the very same model the R2
k will be higher in high volatility regimes than in low

volatility regimes, which can be misleading when calculating the R2
k for different subsamples.

For illustration purpose, we consider a one-step ahead forecast and present R2
1 directly as a

function of the model parameters:

Lemma 1. If σ2
k,t+1 follows an M-GARCH, Assumptions 1, 2 and 3 are satisfied and h1,t+1|t =

τt+1g1,t+1, the population R2
1 of the Mincer-Zarnowitz regression is given by

R2
1 =

(1− (α+ γ/2 + β)2)E[τ2
t+1]− (1− (α+ γ/2)2κ− 2(α+ γ/2)β − β2)E[τt+1]2

(1− (α+ γ/2 + β)2)E[τ2
τ+1]κ− (1− (α+ γ/2)2κ− 2(α+ γ/2)β − β2)E[τt+1]2 . (21)

Moreover, the limit of R2
1 in E[τ2

τ+1] is
lim

E[τ2
τ+1]→∞

R2
1 = 1/κ.

For ττ+1 being constant and γ = 0, eq. (21) reduces to the expression in Andersen and Bollerslev

(1998, p. 892) for the symmetric GARCH(1,1), i.e. R2
1 = α2/(1−2αβ−β2). Lemma 1 shows that R2

1
9Although by assumption k ≤ It in our setting, we can think of, for example, a biannual period and daily volatility

forecasts. In this case k can be at most 132 (= 6 · 22). For such a large k and under reasonable assumptions on the
GARCH parameters, we have E[g2

132,t+1|t] ≈ 1.
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reaches the upper bound when τt+1 is getting more volatile. When τt+1 gets more volatile, we find

that the expected SE, E[SE(ε2
1,t+1, τt+1g1,t+1)] = (κ−1)E[τ2

t+1]E[g2
1,t+1] is increasing. Although this

observation is correct, the variance of the squared returns, Var(ε2
1,t+1) = κE[g2

1,t+1]E[τ2
t+1]−E[τt+1]2,

is increasing even faster due to the constant κ compared to κ− 1, which leads to an overall increase

in the R2
1.

The effect of the long-term component on R2
1 is depicted in Figure 2 which shows the population

R2
1 as a function of E[τ2

t+1] for different values of α and β. For τt+1 being constant, the M-GARCH

model reduces to a GARCH(1,1). As can be seen, even a small increase in E[τ2
t+1] can cause a steep

increase in the population R2
1. Also, for a given level of E[τ2

t+1], the population R2
1 is the higher the

more persistent (as measured by α+ γ/2 + β) the GARCH component is.

[Figure 2 here]

Finally, we consider cumulative volatility forecasts. The Mincer-Zarnowitz regression for evalu-

ating the cumulative k-day volatility forecast is given by

R̃V 1:k,t+1 = δ̃0 + δ̃1h1:k,t+1|t + η1:k,t+1,

where the latent variance is replaced by the realized variance R̃V 1:k,t+1 =
∑k
i=1 ε

2
i,t+1 (purely based

on daily data). The corresponding R2
1:k is given by

R2
1:k =

Var(h1:k,t+1|t)
Var(R̃V 1:k,t+1)

=
E[τ2

t+1]E[(
∑k
i=1 gi,t+1|t)2]− k2E[τt+1]2

E[τ2
t+1]E[(

∑k
i=1 gi,tZ

2
i,t)2]− k2E[τt+1]2

. (22)

As before, one can show that R2
1:k increases monotonically in E[τ2

t+1].

3 Simulation

Next, we turn to a Monte-Carlo simulation for evaluating the forecast performance of the M-GARCH

model and to empirically illustrate our theoretical results. In addition, we examine what kind of

losses in forecast performance can be expected when the true data generating process is indeed a M-

GARCH model but misspecified models (in terms of lag length), a simple one-component GARCH

model or the HAR model of Corsi (2009) are employed instead.
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3.1 Data generating process

We simulate an intra-day version of the two component GARCH model as

εn,i,t = √gi,tτt
Zn,i,t√
N
, (23)

where the index n = 1, . . . , N denotes the intra-day frequency and Zn,i,t
iid∼ N (0, 1). We generate

N = 288 intra-day returns. Note that gi,t still fluctuates at the daily and τt at the low-frequency.

Hence, by aggregating returns to a daily frequency εi,t =
∑N
n=1 εn,i,t the model in eq. (23) is

consistent with our daily model. Simulating intra-day data allows us to calculate the daily realized

variance, RVi,t =
∑N
n=1 ε

2
n,i,t, as a precise measure of the daily conditional variance. Similarly, we

obtain the realized variance over the first k days of month t as RV1:k,t =
∑k
i=1RVi,t. We simulate

data for a period of 40 years of intra-daily returns (from which we construct 10560 daily return

and realized variance observations). For each model specification, we perform 2000 Monte-Carlo

replications. The alternative model specifications are described in the following:

Specification 1: The first specification assumes that τt fluctuates at a monthly frequency. We

assume that each month consists of It = 22 days. Thus, we consider a truly mixed-frequency

setting. The long-term component is defined as in eq. (5) and (6) with m = 0.1, θ = 0.3, w1 = 1,

w2 = 5 and K = 36. The choice of three years as MIDAS lag length follows Conrad and Loch

(2015). Setting w2 = 5 implies a monotonically decaying weighting scheme with weights close to

zero for lags greater than two-thirds of K. The explanatory variable Xt is assumed to follow an

AR(1) process, Xt = φXt−1 + ξt, ξt
i.i.d.∼ N (0, σ2

ξ ), with ψ = 0.95 and σ2
ξ = 0.22. Using these

parameter values leads to a variance ratio (VR) of 20.40% when averaged over the 2000 Monte-

Carlo simulations (recall that the VR was defined in eq. (7)). This size of the VR is comparable to

the VRs typically found im empirical applications in mixed-frequency settings with daily returns

and monthly macroeconomic variables (see, e.g., Conrad and Loch, 2015).

Specification 2: The second specification assumes that both components fluctuate at a daily

frequency (i.e. It = 1). The parameters of the long-term component are chosen as m = −0.1,

θ = 0.3 with K = 264. The weighting parameters w1 = 1 and w2 = 5 are chosen as above.

Choosing a lag length of roughly one year is motivated by our empirical results in Section 4 when

estimating an M-GARCH model using RVi,t as the explanatory variable. In addition, we choose

ψ = 0.98 and either σ2
ξ = 0.22 or σ2

ξ = 0.52. In our simulations, the former choice leads to an

average variance ratio of 32.50% (low VR) and the latter to a variance ratio of 74.80% (high VR).

In both cases, the parameters of the GARCH-component, gi,t, are given by α = 0.06, β = 0.91

and γ = 0.
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3.2 Parameter estimates

We use the first twenty years of the simulated data to produce in-sample estimates of the M-GARCH

model. For each specification, we estimate three variants of the M-GARCH model. While in all

three variants the structure of the short- and long-term component is correctly specified, only in

one specification the lag length K corresponds to the true one while in the other two specifications

K is chosen too small.10 In addition, we estimate a simple (but misspecified) GARCH model that is

obtained when restricting τt to be constant. The M-GARCH models as well as the simple GARCH

are estimated by quasi-maximum likelihood (QML).

Table 1 reports the median and the interquartile range of the estimates for each parameter

across the 2000 Monte-Carlo simulations. We observe that the median parameter estimates for the

correctly specified M-GARCH models with K = 36 (monthly) and K = 264 (daily) are very close

to the true parameter values. Choosing a lag length that is way too small K = 12 (monthly) or

K = 66 (daily) leads to an estimate of θ which is considerably smaller than the true value. At

the same time, the M-GARCH models with misspecified lag length lead to estimates of w2 that

are considerably smaller than w2 = 5. By doing so, the model estimates try to offset the effect of

misspecifying K. Figure 3 shows the estimated weighting schemes. While a modest misspecification

of K still leads to an acceptable weighting scheme, the model with K = 12 (monthly) and the model

with K = 66 (daily) lead to severely biased weighting schemes.

[Table 1 here]

Table 1 also shows that the GARCH parameter estimates are close to the true parameter values

for the specifications with monthly τt and daily τt with low VR, but not for the one with daily τt and

high VR. For this latter specification, the simple GARCH is severely misspecified and the estimate

of α is considerable above 0.06. For this model the estimated persistence as measured by α̂ + β̂ is

above 0.99 so that the estimated parameters clearly suffer from the so-called IGARCH effect (see

Baillie et al., 1996, or Hillebrand, 2005).11

[Figure 3 here]

The second last column shows the average excess kurtosis of the fitted standardized residuals.

Those residuals are given by εi,t/
√
τ̂tĝi,t for the M-GARCH models and by εi,t/

√
ĝi,t for the GARCH

10We do not report results for K being chosen too large as the beta-weighting scheme is flexible enough to set
uninformative lags to almost zero. For an illustration see Figure 3.

11Recall from eq. (8) that the M-GARCH can be rewritten as a GARCH with time-varying intercept. For this type
of process, Hillebrand (2005) shows that the sum of the estimated α and β parameters is biased towards one when
the existing parameter change is not accounted for.
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model. The only model for which the interquartile range does not cover the zero, is the GARCH

model in the scenario with daily τt and high VR. This confirms our conjecture from Section 2.3

that the deGARCHed residuals from a misspecified GARCH model may still exhibit excess kurtosis

if the true data generating process is an M-GARCH and the long-term component is sufficiently

relevant.

Finally, the last column shows the average VRs that are implied by the estimated parameter

values. Clearly, the estimated VRs are close to the actual ones when the lag order is correctly

chosen, but are too low for choices of K that are too small (i.e. when K = 12 for monthly τt and

K = 66 for daily τt).

3.3 Forecast evaluation

Next, we use the in-sample parameter estimates from the previous section and construct out-of-

sample volatility forecasts for the remaining twenty years to evaluate the forecast performance of

the different specifications. Recall that in our simulation, each month consists of 22 trading days.

For each model, we construct k-step ahead volatility forecasts as well as the corresponding k-period

cumulative volatility forecasts with k = 1, . . . , 22. Based on the information available at the last

day of the current month, forecasts are constructed for the following month. Thus, the simulation

scenario with a monthly τt is perfectly in line the setting introduced in Section 2.5. In the simulation

variant with daily τt, the optimal forecast would require a prediction of the long-term component.

Instead, we simply fix the long-term component at its current level. This approach is commonly

taken in the literature when the forecast horizon is beyond It.12 Note that by construction we

obtain only non-overlapping volatility forecasts. As before, the forecast performance is evaluated

over the 2000 Monte-Carlo replications.

For each model, we present the average SE and the average QLIKE for the k-period cumulative

volatility forecast as well as the R2 of the Mincer-Zarnowitz regression. When evaluating the

volatility forecasts, we employ RV1:k,t as our proxy for the latent volatility.13

In addition to the M-GARCH models and the GARCH model, we also consider a HAR speci-

fication that directly models the realized variances (see Corsi, 2009). We specify the HAR model

in terms of the log of the realized variances. Using the notation RVs = RVi,t with s = s(i, t) =
12Holding τt constant when forecasting is reasonable if τt changes smoothly and the forecast horizon is not “too

large”. Otherwise, one may use predictions of Xt, e.g., survey or time series forecasts, for calculating predictions of τt
(see Conrad and Loch, 2015).

13Results based on the squared returns as the volatility proxy are available upon request.
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22 · (t− 1) + i the model for forecasting the k-period cumulative variance is given by

log
(
RV s+1:s+k

k

)
= b0 + b1 logRVs + b2 log

(
RVs−4:s

5

)
+ b3 log

(
RVs−21:s

22

)
+ ζs,k (24)

with RVs+1:s+k =
∑k
i=1RVs+i. The HAR model is estimated by OLS. Realized variance forecasts

are obtained as follows:

RVs+1:s+k|s = k · exp
(
b0 + b1 logRVs + b2 log

(
RVs−4:s

5

)
+ b3 log

(
RVs−21:s

22

)
+ 1

2Var(ζs,k)
)
,

assuming the residuals ζs,k to be normally distributed. Note that there are two major differences

between the forecasts from M-GARCH models and the HAR model. First, the HAR exploits the

high-frequency information from the intra-day returns while the M-GARCH models are purely

based on daily returns and the explanatory variable Xt. Second, the volatility forecasts of the HAR

model are tailored to the forecast horizon (which requires the estimation of the HAR model for each

forecast horizon) and, hence, are direct forecasts, while the M-GARCH forecasts are iterated.

3.3.1 Squared error loss

The upper four panels of Figure 4 and Figure 5 show the average SE for the cumulative k-step

forecasts for the monthly- and daily-varying long-term component with a high variance ratio.14

The upper left panel shows the average SE for the full out-of-sample period. In the three remaining

panels, we distinguish between three different volatility regimes: low, normal and high. An obser-

vation is falling in the low/normal/high volatility regime, if the level of volatility on the day the

forecast has been issued is below the 25%-quantile, between the 25%- and 75%-quantile or above

the 75%-quantile of the distribution of historical volatility.

In the full sample, all M-GARCH models outperform the HAR model. Interestingly, misspec-

ifying K does hardly appear to affect forecast performance. While the GARCH model performs

reasonably well for the monthly τt with low VR, it clearly produces the worst forecasts for the daily

τt with high VR. In line with our theoretical results for the expected SE error, eq. (16), we observe

substantially higher values for the SE loss in the high volatility regime compared to the SE loss in

the low volatility regime. This holds for both the monthly and daily long-term components. Thus,

our simulations suggest that the ability of tests for comparing the predictive accuracy of two com-

peting models based on the SE loss difference may be sensitive with respect to the current volatility

regime.
14Figure 15 in Appendix E displays the case of a daily-varying τt with a low variance ratio.
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[Figure 4 & 5 here]

3.3.2 QLIKE loss

The lower panels of Figure 4 and Figure 5 show the average QLIKE for cumulative k-period forecasts.

In sharp contrast to the evaluation based on the SE, it becomes evident that the QLIKE loss is robust

with respect to the volatility regime, i.e. for each model the size of the loss is roughly the same across

the three volatility regimes. We further investigate this issue by conducting Diebold and Mariano

(1995) tests on the loss differences between the correctly specified M-GARCH and the HAR model

for forecast horizons of k ∈ {1, 5, 10, 20} days. We focus on the case of a daily τt in combination

with a high VR. For each of the 2000 Monte-Carlo simulations, we perform a Diebold-Mariano test

based on the full sample as well as on the low/normal/high volatility regime. In Table 7, Panel A

summarizes the results for the Diebold-Mariano tests when the SE loss is employed and Panel B

when the QLIKE loss is employed.15 The table reports the empirical rejection rates of the Diebold-

Mariano test at the 5% nominal level. For example, the number 0.814 indicates that in 81.4% of

the 2000 tests based on the SE and the full sample, the null hypothesis of equal forecast accuracy

was rejected in favor of the M-GARCH model.16 As expected, the Diebold-Mariano tests are most

powerful for k = 1 and have decreasing power with increasing forecast horizon. Also, note that

among the three volatility regimes for both loss functions the power of the Diebold-Mariano test

is the highest in the normal regime.17 Most importantly, the Diebold-Mariano tests based on the

QLIKE in Panel B are always more powerful than tests based on the SE. This effect is the strongest

in the high volatility regime. For example, for k = 1 the difference in the empirical power is 20.2

percentage points in the high volatility regime. This difference in the power stays roughly constant

when increasing the forecast horizon. Based on these power comparisons, again the QLIKE loss

appears to be the preferred choice.

[Table 2 here]

3.3.3 Mincer-Zarnowitz regression

Similarly, Figure 6 shows the R2
1:k of the Mincer-Zarnowitz regressions for the k-period ahead

forecasts for the full out-of-sample period as well as the three volatility regimes. Panel (a) shows

the results for monthly τt and Panel (B) the results for daily τt with a high variance ratio.18 The
15Equivalent DM test results for monthly τt and daily τt with low VR can be found in Appendix D, Tables 7 and 8.
16There is also a small number of rejections in favor of the HAR model. We do not report those numbers.
17However, the tests in the normal regime are – by construction – based on twice as many observations as in the

low/high volatility regime, which may affect this finding.
18The case of a daily τt and a low VR can be found in Appendix E, Figure 16.
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R2
1:k’s for the M-GARCH models are clearly higher than for the HAR model and decrease for all

models with the forecast horizon. In line with our theoretical considerations, among the three

volatility regimes we observe the highest R2
1:k’s in the high volatility regime. Clearly, these high

R2
1:k’s do not reflect improved forecast performance but are an artefact due to the construction of

the R2
1:k. Even more misleading, the R2

1:k in the full sample is higher than in each subsample.

[Figure 6 here]

In summary, the M-GARCH models clearly outperform the misspecified GARCH model and the

HAR model in terms of forecast performance. That is, a direct modeling of the realized variance is

no substitute for a proper identification of the underlying component structure. Moreover, in line

with our considerations in Section 2.5, the simulation results suggest that the QLIKE should be the

preferred loss function when comparing forecast performance of two competing volatility models.

4 Empirical Analysis

Last, we turn to an empirical application of the M-GARCH models to S&P 500 return data. Specif-

ically, we will focus on model forecast performance conditional on the volatility regime in which

the forecasts are produced. Making use of our flexible setup, we employ explanatory variables at

different frequencies in a real-time forecast evaluation. In Section 4.1 we first introduce our data

set and full-sample estimation results for various M-GARCH models are reported in Section 4.2.

Thereafter, in Section 4.3 we explain how real-time volatility forecasts can be constructed when

taking into account the release schedule of the macroeconomic explanatory variables. The forecast

comparison is carried out in Section 4.4.

4.1 Data

Stock market data. We consider daily log-returns on the S&P 500, calculated as ri,t = 100·(log(pi,t)−

log(pi−1,t)), for the 1971:M1 to 2017:M2 period. For the evaluation of the volatility forecasts, we

employ daily realized variances, RVi,t, based on five-minute intra-day returns obtained from the Re-

alized Library of the Oxford-Man Institute of Quantitative Finance (see Heber et al., 2009). Daily

realized variances are available from the year 2000 onwards.

Explanatory variables. As explanatory variables in the τt component, we use either financial or

macroeconomic variables. As financial variables we employ a rolling window of the average realized

volatility during the past 22 days based on squared daily returns,
√

R̃Vi,t(22) =
√

1/22
∑21
j=0 r

2
i−j,t,
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the VIX index (converted to a daily level), VIXi,t/
√

252, as a forward-looking market-based measure

of the next month’s volatility and the NFCI. Being a measure for the tightness of financial conditions

in the US, the NFCI is a weighted average of 105 standardized financial indicators of risk, credit

and leverage derived by dynamic factor analysis. Constituents are, among others, loan spreads of

financial institutions, equity and bond price measures, as well as figures derived from the Senior

Loan Officer Opinion Survey on Bank Lending Practices.19 As an example, weights for tightening

standards on various loans being positive implies an increase in the NFCI whenever banks become

more conservative in lending. The NFCI is released on a weekly frequency. The methodological

construction of the NFCI is similar to the Aruoba-Diebold-Scotti Business Conditions Index (Arouba

et al., 2009).

Macroeconomic conditions are measured by the Chicago Fed national activity index (NAI) and

growth rates of industrial production and housing starts, both calculated as ∆Xt = 100 · (ln(Xt)−

ln(Xt−1)). The three macroeconomic variables are available at a monthly frequency. More detailed

information on the data set is provided in Appendix F.

Table 3 provides summary statistics for the stock returns as well as the six explanatory variables.

While the macroeconomic variables are included from 1971 onwards, the NCFI series begins in 1973

and the VIX is available from 1990 onwards. In order to facilitate comparison between VIXi,t/
√

252

and
√

R̃Vi,t(22), the summary statistics for the latter cover the 1990:M1 to 2017:M2 period. Figure 7

shows the evolution of the corresponding time series.

[Table 3 & Figure 7 here]

Before we estimate M-GARCH models, we employ the Conrad and Schienle (2018) Lagrange

multiplier (LM) test for an omitted multiplicative component in simple one-component GARCH

models. This test checks whether a simple GJR-GARCH(1,1) is misspecified in the sense of ne-

glecting an omitted component which is driven by the explanatory variable Xt. Since the test is

of the LM type, it requires the estimation of the model under the null hypothesis only. Assuming

that under the alternative there is a second component which is driven by K lags of the variable

Xt, the test statistic can be shown to be χ2 with K degrees of freedom. An appealing property

of the test is that it can be applied in settings where Xt is observed at the same frequency as the

returns but also when Xt is observed at a lower frequency. Intuitively, the test checks whether the

squared standardized residuals from the GJR-GARCH that is estimated under H0 are predictable

using (functions of) past values of Xt. Table 4 shows the outcome of the test when applied to each

of our explanatory variables. When either choosing K = 1 or K = 2, the test results clearly suggest
19https://www.federalreserve.gov/data/sloos/sloos.htm
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that for all variables but housing starts we can reject the null hypothesis that a GJR-GARCH is

correctly specified. Thus, the LM test results justify the usage of the M-GARCH models using our

Xt variables. Estimating an M-GARCH model for housing starts will also reveal why the test does

not reject for this variable when K = 1 or K = 2.

[Table 4 here]

4.2 Full sample parameter estimates

We first estimate an M-GARCH model for each explanatory variable for the full sample, whereby we

include a constant in the mean equation, i.e. we model returns as ri,t = µ+ εi,t. The corresponding

QML estimates are reported in Table 5. For the monthly macroeconomic variables, we follow Conrad

and Loch (2015) and choose K = 36. Based on the Bayesian information criterion (BIC) and visual

inspection of the estimated weighting schemes for alternative choices of K, we select K = 52 for

the NFCI, K = 3 for the VIX and K = 264 for
√

R̃Vi,t(22). Thus, for the forward-looking VIX

only the most recent information appears to drive long-term volatility, while the backward-looking√
R̃Vi,t(22) is smoothed over many lags.20 For all variables but housing starts, we find that a

restricted Beta weighting scheme with w1 = 1 is the best choice, i.e. the optimal weights are declining

from the beginning. For housing starts, an unrestricted weighting scheme which allows for ‘hump-

shaped’ weights is required. This confirms the finding in Conrad and Loch (2015) that housing

starts is leading with respect to long-term volatility.21 Figure 8 shows the estimated weighting

schemes. Note that the M-GARCH models based on the NFCI and the three macroeconomic

variables employ return data for the 1974:M1 to 2017:M2 period, while the models with daily τt

employ data for 1990:M1 to 2017:M2 only. Hence, it is not possible to compare the log-likelihood

function (LLF) and the BIC for models based on daily τt with models based on weekly/monthly τt.

[Table 5 here]

Concerning the QML estimates, it is interesting to observe that the M-GARCH models with

daily τt lead to lower estimates of β than the models with weekly/monthly τt. Also, the models with

daily τt are characterized by estimates of α that are basically zero. These parameter estimates imply

that the deviations of the short-term component from the long-term component are more short-lived

for the M-GARCH models with daily τt. This behavior is also evident from Figure 9 which shows

the evolution of the annualized long- and short-term components.22 The signs of the estimated θ’s
20A more detailed comparison for different values of K is available upon request.
21Because of this leading property the LM test did not reject the null hypothesis for K = 1 or K = 2. However,

choosing K = 10 leads to a rejection of the null.
22To ensure comparability across the six M-GARCH models, all figures start in 2000.
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for realized volatility, the VIX and the macroeconomic variables are in line with the findings in the

previous literature. Higher levels of financial volatility tend to increase long-term volatility, while

an improvement of macroeconomic conditions decreases long-term volatility. This counter-cyclical

behavior of financial volatility has been previously documented. The finding that tighter financial

conditions (i.e. an increase in the NCFI) predict higher volatility is new. While the positive relation

between realized volatility and long-term volatility might be viewed as ‘mechanical’, the NCFI as

well as the macroeconomic variables can be considered as fundamental drivers of financial volatility.

[Figure 8 & 9 here]

Again, we gauge the importance of the variation in the long-term component for the overall

expected variation in return volatility by the variance ratio introduced in eq. (7). To facilitate

comparison across models, we focus on the monthly variation of volatility. That is, for all models

we denote by σXM the monthly aggregate volatility. For models with monthly long-term component,

we have that τXM = τXt . For models with daily or weekly long-term component, τXM refers to monthly

aggregates of the daily/weekly τXt . We then calculate VR(X) = Var(log(τXM )/Var(log(σXM )), where

the X indicates that the variance ratio is based on a specific explanatory variable. As Table 5 shows,

the models with daily τt achieve much higher variance ratios than the models with weekly/monthly

τt. For example, the variance ratio of 75.31% for the model based on the VIX implies that two-thirds

of the expected variation in return volatility can be traced back to variation in the VIX. Naturally,

the models based on monthly macroeconomic variables attain lower variance ratios of about 15%.

This value is comparable to the figures reported in Conrad and Loch (2015) for quarterly and

monthly data.

4.3 Real-time estimates

In the following, we make use of vintage data. This allows for a realistic evaluation of the GARCH-

MIDAS models’ ability to describe the behavior of long-term financial volatility in real time. For

a comparison of the full sample estimate of the long-term component with the real-time estimates,

we reestimate all six GARCH-MIDAS models presented in Table 5 on a monthly basis. Estimation

is performed on a rolling window of observations whereby the window size is chosen as the length

of the first estimation period ending in 2010:M12. The period 2010:M01 to 2017:M2 will also be

used as the out-of-sample period for the forecast evaluation in Section 4.4. In order to ensure that

our estimates of the long-term component are feasible in real-time, we employ vintage data that is

available for the NFCI, the NAI, IP and housing starts from the ALFRED database hosted by the
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St. Louis Fed.23 For the three financial variables, parameter reestimation is carried out at the end

of each month. When employing macroeconomic variables, we reestimate the models on the days

on which new releases of Xt become available.

For example, the real-time figures of industrial production for the current month are unavailable

until (roughly) the second week of the following month. This type of release schedule is illustrated

in Figure 10. In theory, in our model the value of the long-term component in March, τMar, depends

on the explanatory variable of February, XFeb, and previous months. However, in the beginning

of March, XFeb is not available until the midst of the month, e.g. March 15. Hence, between

March 1 and 14, we are unable to calculate τMar and fix the value of the long-term component at

τ̂March = τFeb instead. Once XFeb is released, we update τMar by incorporating XFeb.

[Figure 10 here]

Figure 11 shows the estimated long-term components based on the full-sample estimates (as

reported in Table 5, dotted lines) and based on the rolling window real-time estimates (solid lines).

For
√

R̃V(22) as well as VIX/
√

252 the full-sample and rolling window long-term components might

differ, because they are based on distinct sample periods. For the NFCI, the NAI, IP and housing

starts, the two long-term components are not only based on distinct sample periods but also on

different real-time vintages.24 Although Figure 11 might suggest that there are only mild differences

between the full-sample and real-time estimates of the long-term component, the average absolute

differences are quite sizable. For example, the average absolute difference between the full-sample

and real-time estimates based on industrial production is 8.28% which is huge compared to the

2.18% mentioned in footnote 24. Similar numbers are obtained for the other variables: 6.94% for

housing starts, 3.6% for the NAI, 5.18% for the NFCI, 5.18% for the VIX and 9.98% for realized

volatility. In summary, these figures highlight to importance of using real-time vintage data instead

of final data releases for a meaningful evaluation of the M-GARCH models forecast accuracy.

[Figure 11 here]

4.4 Forecast evaluation

We now evaluate the forecasting performance of the different M-GARCH models out-of-sample.

Volatility forecasts are based on the models that have been estimated in real-time. In order to gen-

erate a sufficient number of out-of-sample predictions, we construct cumulative volatility forecasts
23For more details on real-time availability see Appendix F.
24For example, according to Croushore (2011) the mean absolute revision from the initial release to the latest

available data was 2.18% for industrial production during the 1965:Q3 to 2006:Q4 period. Among the variables
considered in Croushore (2011) this is the highest value (even higher than for GDP).
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for the next 22 trading days on a daily basis (and not only at the beginning of each month). When

calculating the forecasts, we always keep the long-term component fixed at its current level.

As natural competitors, we consider the nested GARCH model as well as the HAR model

described in eq. (24). Figure 12 shows the one-day ahead volatility forecasts of the HAR model

based on the full sample along with realized volatilities (left panel) as well as the parameter estimates

for b1, b2 and b3 when the forecast horizon is either 1-, 5- or 22-days (right panel). As the right

panel shows, most weight is given to the most recent daily realized volatility when the forecast

horizon is one day. On the other hand, for a forecasting horizon of 22 days the highest weight

is attached to the monthly realized volatility. For the forecast evaluation, both the GARCH and

the HAR model are reestimated on a monthly basis using a rolling window of past observations.

Finally, we consider a no-change volatility forecast which simply scales today’s realized variance to

the appropriate horizon: hs+1:s+k|s = k ·RVs.

[Figure 12 here]

We provide a comparison of the forecast performance of the different models based on the SE

loss function, SE
(
RVs+1:s+k, ĥ

(j)
s+1:s+k|s

)
, as well as the QLIKE loss, QLIKE

(
RVs+1:s+k, ĥ

(j)
s+1:s+k|s

)
,

where RVs+1:s+k denotes the realized variance over the s + 1 to s + k period and ĥ
(j)
s+1:s+k|s is the

corresponding forecast based on model j. In addition to the discussion in Section 2.5, it is important

to highlight that the QLIKE loss is an asymmetric loss function in the sense that it punishes

underestimation more heavily than overestimation, while the SE loss function is symmetric. A

preliminary check of the forecasts from the different models suggests that this distinction might be

important. Table 6 shows the average absolute forecast error as well as the average standardized

forecast error for all models and horizons of 1-, 8- and 15-days / 1-, 2- and 3-months ahead. While

the HAR appears to generate forecast errors that are the smallest in absolute value, the average

standardized forecast error is smaller than one for all M-GARCH models but bigger than one for

the HAR model. Thus, we might expect that the SE should favor the HAR model but the QLIKE

an M-GARCH specification.

[Table 6 here]

For testing whether there is one or several models that significantly outperform the others, we

follow the Model Confidence Set (MCS) approach introduced by Hansen et al. (2011). We denote

by M the set of all competing models, i.e. the various M-GARCH models, the HAR model, as

well as the simple GARCH and the no-change model. We define ds,i,j = L(RVs+1:s+k, ĥ
(i)
s+1:s+k|s)−

L(RVs+1:s+k, ĥ
(j)
s+1:s+k|s) as the difference in the loss of model i and model j for the forecast based
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on period s. The loss function L is either the SE or the QLIKE loss. Next, we construct the average

loss difference, di,j , and calculate the test statistic

tij = di,j√
V̂ar

(
di,j
) for all i, j ∈M. (25)

The MCS test statistic is then given by TM = max
i,j∈M

|ti,j | and has the null hypothesis that all models

have the same expected loss. Under the alternative, there is some model i that has an expected

loss that exceeds the expected loss of all other models j ∈ M \ i. If the null is rejected, the worst

performing model is eliminated. The test is performed iteratively, until no further model can be

eliminated. We denote the final set of surviving models byMMCS . This final set contains the best

forecasting model with confidence level 1− ν. In the empirical application, we set ν = 0.1.

Since the asymptotic distribution of the test statistic TM is nonstandard, we approximate it

by block-bootstrapping as proposed by Hansen et al. (2011), where the block length is determined

by fitting an AR(p) process on the series of loss differences. In our analysis, 40.000 bootstrap

replications at each stage were sufficient in order to obtain stable results. For implementing the

MCS procedure, we use the R-package MCS (see Bernardi and Catania, 2015).

4.4.1 Forecasting cumulative 1- to 22-days ahead volatility

Figure 13 presents the outcome of the MCS procedure when applied to cumulative 1- to 22-days

ahead volatility forecasts. In each panel the solid lines correspond to the different models, whereby

the lowest line corresponds to the best model (rank 1) and the highest line to the worst model (rank

9). For a given forecast horizon, all models that are included in the final set,MMCS , are indicated

by a dot. For both loss functions, we provide a forecast evaluation based on the full out-of-sample

period, but also on subsamples of low, normal and high volatility. We define these regimes based

on the level of realized volatility on the day at which the forecast is issued. That is, a forecast

belongs to a low, normal or high volatility regime if the realized volatility on the day the forecast

is produced was below its historical 25% quantile, in between the 25% and 75% quantile or above

its 75% quantile. In total, we have 599 observations in the low, 868 in the normal, and 267 in the

high regime.

[Figure 13 here]

We begin with discussing the results for our favorite measure of forecast performance. The upper

four panels of Figure 13 show the forecast evaluation based on the QLIKE loss. First, note that

in the low volatility regime, the model based on the VIX and the HAR are included in the MCS,
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whereby the VIX-based model is almost always ranked first. The same two models are the only

models that are included in the MCS for all forecast horizons during the normal volatility regime.

In the high volatility regime the QLIKE essentially is not able to distinguish between the different

models, so that basically all of them are included in the model confidence set. The latter finding

may be driven by the fact that forecast performance of all models substantially deteriorates during

the high volatility regime such that distinguishing between models is impossible. Finally, the full

sample results for the QLIKE appear to be driven by the low/normal volatility level and clearly

favor the VIX-based M-GARCH model and, to a lesser extent, the HAR.

The lower four panels of Figure 13 show the forecast evaluation based on the SE loss. While

for the low and normal volatility regime the VIX-based M-GARCH as well as the HAR are almost

always included in the MCS, the HAR model appears to significantly outperform all other models in

the high volatility regime (for essentially all horizons).25 In contrast to our finding for the QLIKE,

it appears that the MCS based on the SE for the full sample is entirely driven by the results for

the high-volatility regime. However, the strong evidence in favor of the HAR in the high volatility

regime is driven by a few extreme observations. This again questions the results based on the SE.

Thus, we consider the QLIKE-based results as being more credible.

4.4.2 Forecasting volatility 2- and 3-months ahead.

Finally, we forecast volatility for 1-, 2-, and 3-months ahead, i.e. 1–22, 23–44 and 45–66-days ahead.

Figure 14 shows the corresponding MCS rankings. Note that the ranking for one-month ahead is

exactly the same as the one obtained for 22-days in Figure 13 and is only included to simplify the

comparison across horizons. In the full sample, the rankings based on the QLIKE loss function

favor the model based on housing starts at the 2- und 3-months horizon. For 3-months ahead, die

QLIKE favors the VIX-based model in the low volatility regime and the NFCI-based model in the

high-volatility regime. Based on the SE and for the full sample, the best model in the MCS for 2-

and 3-months ahead is the M-GARCH based on the NCFI. Again, the full sample outcome for the

SE appears to be driven by the high volatility sample which produces a similar ranking.

In summary, when forecasting volatility 2- or 3-months ahead and based on the model rankings,

the M-GARCH models based on the NCFI or the VIX improve upon the HAR model independently

of the loss function under consideration. Moreover, the M-GARCH model based on housing starts

is the only model based on a macroeconomic variable that is repeatedly included in the MCS. Thus,

our empirical results confirm previous findings that macroeconomic and financial conditions are
25At least for some periods, the no-change forecast is included in the MCS of the normal regime. The relatively

good performance of the no-change forecast in the normal regime might be explained by the mean-reverting behavior
of volatility. If volatility is at its long-term average, the no-change forecast is a good prediction.
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useful predictors for longer-term financial volatility (see, for example, Christiansen et al., 2012, and

Paye, 2012).

[Figure 14 here]

5 Conclusions

We derive and discuss the properties of the kurtosis of the returns and the ACF of the squared

returns generated by a multiplicative two-component GARCH model. It is shown that a mul-

tiplicative GARCH model leads to returns with higher kurtosis than the nested one-component

GARCH specification and that the ACF of the squared returns can be much more persistent than

in the nested GARCH model. If the long-term component is sufficiently persistent, the ACF shows

long-memory type behavior.

In addition, we show that the SE loss has several shortcomings when used to evaluate the preci-

sion of volatility forecasts generated from a mixed-frequency two-component model. In particular,

the expected SE loss will vary with the volatility regime. When using the R2 of a Mincer-Zarnowitz

regression as a measure of the goodness of the forecast, this leads to the unpleasant property that

the R2 will be the highest in the regime with the highest volatility. In contrast, the QLIKE loss is

shown to be independent of the volatility regime and, hence, is our preferred measure of forecast

accuracy.

By means of a Monte-Carlo simulation we illustrate that the QLIKE is indeed better suited for

distinguishing between competing models. In particular, we show that Diebold-Mariano tests based

on the QLIKE are more powerful than tests based on the SE loss. These findings complement the

arguments in Patton and Sheppard (2009) and Patton (2011).

In an empirical application to S&P 500 stock returns and U.S. macroeconomic and financial

data, we compare the forecast performance of the M-GARCH models with the popular HAR model

for several forecast horizons. To allow for a realistic forecast comparison, we estimate all models

based on a rolling window of observations and employ real-time vintage data. Following Hansen

(2011), we base the model comparison on model confidence sets. Under the QLIKE loss and for

short-term forecasts (up to one month), an M-GARCH model based on the VIX and the HAR

model are the preferred specifications according to the MCS. When forecasting 2- to 3-months

ahead, lower-frequency financial and macroeconomic variables (housing starts and the NFCI) are

the most relevant predictors of financial volatility. For these forecast horizons and based on the

model rankings, the M-GARCH models outperform the HAR model
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A Proofs

Proof of Proposition 1. The proof follows directly by applying the mutual independence of gi,t, τt
and Zi,t and by noting that Assumption 3 implies that E[τ2

t ]/E[τt]2 > 1 if τt is non-constant.

Proof of Proposition 2. First, note that under Assumptions 1, 2 and 3 the covariance Cov(r2
s , r

2
s−k)

exists for every k ∈ N and is time-invariant. In the proof, we use that τs and gs are independent

covariance stationary processes and that Zs are i.i.d. innovations.

ρMG
k =

Cov(r2
s , r

2
s−k)√

Var(r2
s)
√

Var(r2
s−k)

=
E[τsτs−k]E[gsZ2

s gs−kZ
2
s−k]−E[τs]E[τs−k]

Var(r2
s)

=
E[τsτs−k]E[gsZ2

s gs−kZ
2
s−k]−E[τsτs−k] + E[τsτs−k]−E[τs]E[τs−k]

Var(r2
s)

= E[τsτs−k]−E[τs]2

Var(r2
s)

+

(
E[gsZ2

s gs−kZ
2
s−k]−E[gs]E[gs−k]

)
E[τsτs−k]

Var(r2
s)

= Cov(τs, τs−k)
Var(r2

s)
+

Cov(gsZ2
s , gs−kZ

2
s−k)(Cov(τs, τs−k) + E[τ2

s ])
Var(r2

s)

= ρτk
Var(τs)
Var(r2

s)
+ ρGAk

(
ρτkVar(τs) + E[τs]2

)
Var(gtZ2

t )
Var(r2

t )

Proof of Proposition 3. The expression for R2
k and its limit in E[τ2

t+1] are derived by using the

independence of gk,t+1|t and τt+1. As k →∞, Var(g2
k,t+1|t) decreases monotonically to zero implying

that E[g2
k,t+1|t] decreases monotonically towards one because E[gk,t+1|t] = 1. This implies eq. (20).

The limit with respect to E[τ2
t+1] follows from rewriting

R2
k =

Var(hk,t+1|t)
Var(r2

k,t+1)
=

E[g2
k,t+1|t]−

E[τt+1]2
E[τ2

t+1]

E[g2
k,t+1]κ− E[τt+1]2

E[τ2
t+1]

.

Hence, R2
k →

E[g2
k,t+1|t]

E[g2
k,t+1]κ as E[τ2

t+1]→∞.

Proof of Lemma 1. Using eq. (4), we obtain

R2
1 = Var(gtτt)

Var(r2
t )

= E[g2
t ]E[τ2

t ]−E[τt]2

E[g2
t ]E[τ2

t ]κ−E[τt]2
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= (1− (α+ γ/2 + β)2)E[τ2
t ]− (1− (α+ γ/2)2κ− 2(α+ γ/2)β − β2)E[τt]2

(1− (α+ γ/2 + β)2)E[τ2
t ]κ− (1− (α+ γ/2)2κ− 2(α+ γ/2)β − β2)E[τt]2

.

The limit of R2
1 follows from the proof of Proposition 3, when noting that E[g2

k,t+1|t] = E[g2
k,t+1].
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B Tables

Table 1: Monte-Carlo parameter estimates.

α β m θ w2 K κ− 3 VR(X)

Monthly τt M-GARCH 0.060 0.907 0.092 0.326 4.791 36 -0.009 21.96
[0.055,0.065] [0.897,0.915] [0.043,0.144] [0.246,0.402] [2.629,9.624] [-0.059,0.040]

0.060 0.907 0.091 0.316 3.194 24 -0.009 21.84
[0.054,0.065] [0.897,0.915] [0.044,0.143] [0.236,0.390] [1.708,6.677] [-0.059,0.040]

0.060 0.907 0.091 0.292 1.571 12 -0.008 21.08
[0.055,0.065] [0.898,0.916] [0.044,0.142] [0.218,0.363] [1.000,3.729] [-0.059,0.041]

GARCH 0.060 0.914 0.110 — — — 0.002 —
[0.055,0.066] [0.905,0.922] [0.043,0.182] [-0.047,0.053]

Daily τt (low VR) M-GARCH 0.060 0.908 -0.105 0.306 4.965 264 -0.012 34.16
[0.055,0.065] [0.899,0.916] [-0.144,-0.059] [0.258,0.360] [3.685,6.817] [-0.055,0.035]

0.060 0.908 -0.104 0.290 2.366 132 -0.012 33.85
[0.055,0.065] [0.899,0.917] [-0.144,-0.059] [0.245,0.337] [1.744,3.311] [-0.055,0.035]

0.060 0.909 -0.100 0.247 1.237 66 -0.010 30.08
[0.055,0.065] [0.900,0.917] [-0.140,-0.058] [0.210,0.284] [1.000,1.830] [-0.053,0.037]

GARCH 0.063 0.914 -0.065 — — — 0.013 —
[0.058,0.068] [0.906,0.921] [-0.118,-0.014] [-0.035,0.061]

Daily τt (high VR) M-GARCH 0.060 0.908 -0.105 0.301 4.980 264 -0.011 74.93
[0.054,0.065] [0.898,0.917] [-0.147,-0.059] [0.281,0.323] [4.430,5.584] [-0.057,0.035]

0.060 0.908 -0.104 0.286 2.383 132 -0.010 74.12
[0.054,0.066] [0.899,0.917] [-0.146,-0.059] [0.268,0.306] [2.097,2.688] [-0.056,0.037]

0.062 0.908 -0.095 0.246 1.231 66 -0.002 67.38
[0.056,0.067] [0.899,0.917] [-0.139,-0.051] [0.229,0.261] [1.067,1.435] [-0.047,0.047]

GARCH 0.076 0.915 0.135 — — — 0.086 —
[0.072,0.081] [0.909,0.920] [0.024,0.258] [0.036,0.143]

Notes: The table reports the median parameter estimates and the corresponding inter-quartile ranges across the 2000 Monte-
Carlo simulations. We provide results for both daily- and monthly long-term components. The parameter estimates are based
on (the first) 20 years of observations (i.e. the in-sample period). In both long-term components, see eq. (5), we choose θ = 0.3,
w1 = 1 and w2 = 5. We use m = 0.1 in the monthly τt and m = −0.1 in the daily τt. The long-term component is assumed
to depend on the recent 36 monthly observations or 264 daily ones. The covariate Xt is modeled as an AR(1)-process, i.e.
Xs = ψXs−1 + ξs, ξs

i.i.d.∼ N (0, σ2
ξ ), in which we choose ψ = 0.95, σ2

ε = 0.22 for a monthly-, and ψ = 0.98, σ2
ξ = 0.22 (low VR)

or σ2
ξ = 0.52 (high VR) for a daily-varying τt. The parameters of the short-term component are in both cases given by α = 0.06,

β = 0.91, γ = 0 and Zi,t ∼ N (0, 1). K denotes the lag length imposed when estimating the different specifications. The column
‘κ−3’ presents the average excess kurtosis of the standardized residuals from each model. VR(X) = Var(log(τs))/Var(log(σ2

s)).
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Table 2: DM tests for daily τt (high VR).

SE

k = 1 k = 5 k = 10 k = 20

Full sample 0.814 0.771 0.650 0.514
Low regime sample 0.762 0.692 0.565 0.434
Normal regime 0.930 0.890 0.798 0.664
High regime 0.614 0.578 0.427 0.291

QLIKE

Full sample 0.983 0.970 0.923 0.840
Low regime sample 0.789 0.727 0.608 0.443
Normal regime 0.964 0.929 0.850 0.725
High regime 0.816 0.761 0.613 0.442

Notes: The numbers are empirical rejection frequencies of
the Diebold-Mariano test for equal predictive accuracy in
favor of the M-GARCH model at the nominal 5% level.
k denotes the forecast horizon. Diebold-Mariano tests in
the low- and high-volatility regime are based on 60 non-
overlapping observations and on 120 observations in the
normal regime. The tests are based on 2000 Monte-Carlo
replications.

Table 3: Summary statistics.

Variable Freq. Start Obs. Min. Max. Mean Median Sd. Skew. Kurt. AC(1)

Stock market data
S&P 500 returns d 1971 11644 -22.90 10.96 0.03 0.04 1.07 -1.03 28.72 0.00
RV d 2000 4287 0.02 77.48 1.19 0.55 2.59 11.14 225.61 0.67

Explanatory variables√
R̃V(22) d 1988 7349 0.29 5.54 0.97 0.82 0.56 3.00 17.60 0.99

VIX/
√

252 d 1990 6841 0.59 5.09 1.24 1.12 0.49 2.11 10.74 0.98
NFCI w 1973 2305 -1.03 4.71 0.00 -0.37 1.00 1.92 6.48 0.99
NAI m 1971 554 -5.09 2.72 -0.00 0.07 1.00 -1.22 6.88 0.67
∆ IP m 1971 554 -4.40 2.38 0.18 0.22 0.72 -1.24 8.85 0.36
∆ Housing m 1971 554 -30.67 25.67 -0.07 -0.13 8.05 -0.03 3.78 -0.32

Notes: The table presents summary statistics for the different variables, whereby the column Start indicates the year of the
first observation for each variable. The data ends in 2017:M2. The column frequency (Freq.) indicates whether the data is
observed on a daily (d), weekly (w) or monthly (m) basis. The reported statistics include the number of observations (Obs.),
the minimum (Min.) and maximum (Max.), the mean and median, standard deviation (Sd.), Skewness (Skew.), Kurtosis
(Kurt.) and the first-order autocorrelation coefficient (AC(1)). We define R̃V i,t(22) = 1/22

∑21
j=0 r

2
i−j,t. Changes in industrial

production and housing starts are measured in month-over-month log differences, i.e. ∆Xt = 100 · (ln(Xt)− ln(Xt−1)).
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Table 4: LM-Test for misspecification of GJR-GARCH(1,1).

Xt VIX/
√

252
√

R̃V(22) NFCI NAI ∆ IP ∆ Hous

K = 1 70.62
[<0.01]

2.44
[0.12]

17.64
[<0.01]

18.52
[<0.01]

10.18
[<0.01]

0.43
[0.51]

K = 2 78.40
[<0.01]

6.06
[0.05]

19.05
[<0.01]

20.80
[<0.01]

12.98
[<0.01]

0.64
[0.73]

Notes: The table reports the test statistics and the corresponding p-values of
the Conrad and Schienle (2018) misspecification test for one-component GJR-
GARCH(1,1) models. The test is implemented using either one (K = 1) or two
(K = 2) lags of the explanatory variable Xt. For VIX/

√
252 and

√
R̃V(22) the test

is based on daily data from 1990 onwards, for NFCI, NAI, ∆ IP, and ∆ Housing
starts the test is based on weekly/monthly data from 1973 onwards.

Table 5: Full sample estimation results for M-GARCH models.

µ α β γ m θ w1 w2 K LLF BIC VR(X)

Daily τt√
R̃V(22) 0.028*** 0.000 0.843*** 0.184*** −1.202*** 1.124*** 1 3.240*** 264 −9288 18638 42.88

(0.009) (0.010) (0.020) (0.024) (0.115) (0.084) (0.767)

VIX/
√

252 0.018* 0.000 0.858*** 0.091*** −2.034*** 0.430*** 1 3.443*** 3 −8883 17827 75.31
(0.009) (0.012) (0.028) (0.018) (0.097) (0.021) (0.743)

Weekly τt

NFCI 0.027*** 0.013** 0.898*** 0.122*** −0.062 0.301*** 1 2.314*** 52 −14252 28570 16.39
(0.008) (0.005) (0.017) (0.024) (0.104) (0.041) (0.720)

Monthly τt

NAI 0.028*** 0.017*** 0.901*** 0.115*** −0.054 −0.360*** 1 8.580** 36 −14299 28663 14.75
(0.008) (0.005) (0.016) (0.022) (0.118) (0.069) (3.744)

∆ IP 0.028*** 0.017*** 0.904*** 0.114*** 0.082 −0.703*** 1 4.689*** 36 −14302 28669 12.19
(0.008) (0.005) (0.015) (0.022) (0.123) (0.154) (1.090)

∆ Housing 0.028*** 0.018*** 0.898*** 0.117*** −0.072 −0.229*** 1.645* 2.616** 36 −14290 28655 19.66
(0.008) (0.005) (0.017) (0.023) (0.110) (0.042) (0.858) (1.251)

GARCH 0.029*** 0.019*** 0.912*** 0.103*** −0.066 — — — — −15088 30222 —
(0.007) (0.005) (0.014) (0.020) (0.133)

Notes: Estimation results for M-GARCH models are reported for four different covariates varying at different frequencies. The
estimates are based on daily return data stretching from 1971:M1 to 2017:M2. Estimation using NFCI, NAI, IP and housing
starts begins in 1974:M1 and when using realized variance or VIX in 1990:M1. For all covariates except housing starts a
restricted weighting scheme is chosen (w1 = 1). Bollerslev-Wooldridge robust standard errors are reported in parenthesis where
significance at the 1, 5, 10 % level is indicated by ***, ** and *. LLF is the value of the maximized log-likelihood function and
BIC is the Bayesian Information Criterion. The variance ratio VR(X) = Var(log(τXM ))/Var(log(σXM )) is calculated on monthly
aggregates.
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Table 6: Forecast error statistics.

Days Model
∣∣σ̂2

(·) − ĥ(·)

∣∣ σ̂2
(·)
ĥ

(·)

1
√

R̃V(22) 0.63 0.65
VIX/

√
252 0.54 0.78

NFCI 0.55 0.79
NAI 0.58 0.75
∆ IP 0.59 0.76
∆ Housing 0.57 0.78
GARCH 0.58 0.74
HAR 0.41 1.22
No-change 0.50 1.35

8
√

R̃V(22) 4.54 0.69
VIX/

√
252 3.79 0.89

NFCI 3.68 0.85
NAI 4.10 0.80
∆ IP 3.92 0.81
∆ Housing 3.80 0.84
GARCH 3.93 0.80
HAR 2.79 1.19
No-change 4.05 1.63

15
√

R̃V(22) 8.69 0.69
VIX/

√
252 7.07 0.94

NFCI 6.92 0.88
NAI 7.83 0.82
∆ IP 7.46 0.82
∆ Housing 7.23 0.86
GARCH 7.48 0.82
HAR 5.25 1.20
No-change 7.99 1.78

Month Model
∣∣σ̂2

(·) − ĥ(·)

∣∣ σ̂2
(·)
ĥ

(·)

1
√

R̃V(22) 13.03 0.69
VIX/

√
252 10.33 0.97

NFCI 10.19 0.89
NAI 11.66 0.82
∆ IP 11.17 0.83
∆ Housing 10.71 0.87
GARCH 11.19 0.82
HAR 7.82 1.20
No-change 11.99 1.87

2
√

R̃V(22) 16.04 0.67
VIX/

√
252 12.18 1.06

NFCI 11.95 0.89
NAI 13.91 0.79
∆ IP 13.65 0.81
∆ Housing 12.49 0.86
GARCH 13.94 0.79
HAR 10.78 1.14
No-change 14.86 2.27

3
√

R̃V(22) 17.27 0.67
VIX/

√
252 13.36 1.10

NFCI 12.47 0.89
NAI 14.66 0.77
∆ IP 14.49 0.81
∆ Housing 12.67 0.84
GARCH 15.07 0.77
HAR 12.08 1.08
No-change 16.24 2.28

Notes: In this table the average absolute forecast errors and the average standardized forecast errors are reported. The left side
displays figures for cumulative 1-, 5- and 15-days ahead forecasts. The right side presents forecast errors for 1-, 2- and 3-month
ahead. Note that the one-month ahead forecast corresponds to a cumulative 22-days ahead forecast. The out-of-sample period
spreads 2010:M1 - 2017:M2.
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C Figures

Figure 1: Autocorrelation function.
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Notes: We depict the ACF of a multiplicative GARCH model (green, solid), the first (blue, dot-dashed) and second term
(purple, dotted) in eq. (9), as well as the ACF of the nested GARCH(1,1) model (red, dashed). The long-term component
is defined as in eq. (5) with m = −0.1, θ = 0.3, w1 = 1, w2 = 6 and K = 264 smoothing an exogenous covariate Xs =
ψXs−1 + ξs, ξs

i.i.d.∼ N (0, σ2
ξ ), where ψ = 0.98 and σ2

ξ = 0.352. The GARCH(1,1) parameters are α = 0.06, β = 0.9 and γ = 0.
Moreover, we set κ = 3. Bars in light gray display the empirical autocorrelation of squared S&P 500 returns in between 1971:M1
and 2017:M2, for details see Section 4.

Figure 2: R2
1 as a function of E[τ2

t+1].
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Notes: We depict the population R2
1 of a Mincer-Zarnowitz regression as a function of E[τ2

t+1]. In the left plot, β equals 0.92.
In the right plot, we choose α = 0.05. In all cases, we set E[τt+1] = 1, γ = 0 and κ = 3.

40



Figure 3: Weighting schemes implied by median parameter estimates.
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Notes: Estimated Beta weighting schemes (see eq. (6)) as implied by the median parameter estimates reported in Table 1.
The blue (solid) line corresponds to the case of a correctly specified model whereas the green (dotted) and red (dashed) line
correspond to models with K being too small. The true weighting scheme is depicted in dark gray (barely visible behind blue
line).

Figure 4: Monthly τt - SE and QLIKE loss across regimes.
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Notes: Average SE and QLIKE loss evaluated at different regimes in the case of a monthly-varying τt. In each simulation, we
calculate out-of-sample SE and QLIKE loss as well as losses depending on three volatility regimes for 1–22 days ahead; forecasts
being issued at a day for which the daily realized volatility is below the empirical 25% quantile (low regime), between the 25%
and 75% quantile (normal regime) or above the 75% quantile (high regime). Averages are taken across 2000 simulations.
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Figure 5: Daily τt (high VR) - SE and QLIKE loss across regimes.
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Notes: Average SE and QLIKE loss evaluated at different regimes in the case of a daily-varying τt with a high variance ratio.
In each simulation, we calculate out-of-sample SE and QLIKE loss as well as losses depending on three volatility regimes for
1–22 days ahead; forecasts being issued at a day for which the daily realized volatility is below the empirical 25% quantile (low
regime), between the 25% and 75% quantile (normal regime) or above the 75% quantile (high regime). Averages are taken across
2000 simulations.

Figure 6: Mincer-Zarnowitz R2
1:k.

(a) Monthly τt
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(b) Daily τt (high VR)
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Notes: Average coefficients of determination of Minzer-Zarnowitz regressions for different volatility regimes. Hereby, we regress
the cumulative realized variance on the cumulative forecast. The upper panel displays the case of the monthly-varying long-term
component and the lower panel the case of a daily-varying long-term component with a high variance ratio. In each simulation,
we calculate out-of-sample R2

1:ks depending on three volatility regimes; forecasts being issued at a day for which the daily
realized volatility is below the empirical 25% quantile (low regime), between the 25% and 75% quantile (normal regime) or
above the 75% quantile (high regime). Averages are taken across 2000 simulations.
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Figure 7: Time series of explanatory variables.
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Notes: Daily financial data for the 1990:M1 to 2017:M2 period and macroeconomic data for the 1971:M1 to 2017:M2 period.
See Table 3 for definition and descriptive statistics of those variables.

Figure 8: Weighting schemes for different explanatory variables.
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Notes: For each explanatory variable, the estimated Beta weighting schemes (see eq. (6)) based on full-sample estimates are
depicted. For all variables except housing starts, we impose the restriction w1 = 1. The corresponding parameters are reported
in Table 5.
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Figure 9: Monthly conditional volatility components.
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Notes: The figure shows the monthly long-run volatility components √τM (blue, solid) and the monthly conditional volatilities√
gM τM (red, dash-dotted) for all GARCH-MIDAS models in between 2000:M1 and 2017:M2. Circles correspond to realized

volatilities. Volatility is measured on an annualized scale.

Figure 10: Real-time forecasting with macroeconomic releases.
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Figure 11: Comparison of rolling window and full-sample long-term components.
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Notes: For each explanatory variable, the long-term volatility components, √τt, are depicted for the period 2010:M1 to 2017:M2.
The long-term component obtained from the full-sample estimates is given in green (dotted) along the real-time estimates of√
τt in red (solid). Volatilities are presented on an annualized scale.

Figure 12: HAR model.
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Notes: On the left side, monthly aggregates of one-day ahead volatility predictions from the HAR model (red, solid) along with
monthly realized volatilities (green, circles) are depicted. Both volatilities are presented on an annualized scale. On the right
side, the parameter estimates for the HAR model, see eq. (24), are reported based on the full-sample. Red bars correspond to
a HAR forecasting one day ahead, the green bars to forecasting cumulative realized variances five days ahead and the blue bars
to predicting cumulative 22-days ahead. Values for RV are used in between 2000:M1 – 2017:M2.
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Figure 13: MCS ranking for SE and QLIKE loss. Cumulative 1- to 22-days ahead forecasts.
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Notes: Model Confidence Set rankings for conditional variance forecasts aiming at periods of 1- to 22-days ahead are depicted.
Models that are included in the MCS are indicated by a dot. The ranking is based on the average loss in the particular regime.
We consider two loss functions, SE and QLIKE loss and three different volatility regimes; forecasts being issued at a day for
which the daily realized volatility is below the empirical 25% quantile (low regime), between the 25% and 75% quantile (normal
regime) or above the 75% quantile (high regime). The out-of-sample evaluation period spreads 2010:M1 to 2017:M2.

Figure 14: MCS ranking for SE and QLIKE loss, 1-, 2-, 3-months ahead forecasts.
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Notes: Model Confidence Set rankings for 1, 2 and 3 month ahead conditional variance forecasts are depicted. Models that are
included in the MCS are indicated by a dot. The ranking is based on the average loss in the particular regime. We consider
two loss functions, SE and QLIKE loss and three different volatility regimes; forecasts being issued at a day for which the daily
realized volatility is below the empirical 25% quantile (low regime), between the 25% and 75% quantile (normal regime) or above
the 75% quantile (high regime). The out-of-sample evaluation period spreads 2010:M1 to 2017:M2.
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D Additional Tables

Table 7: DM tests for monthly τt.

SE

k = 1 k = 5 k = 10 k = 20

Full sample 0.874 0.819 0.660 0.447
Low regime sample 0.650 0.490 0.298 0.177
Normal regime 0.862 0.774 0.579 0.347
High regime 0.680 0.581 0.380 0.234

QLIKE

Full sample 0.925 0.865 0.744 0.526
Low regime sample 0.659 0.483 0.307 0.186
Normal regime 0.872 0.780 0.579 0.363
High regime 0.788 0.698 0.482 0.294

Notes: The numbers are empirical rejection frequencies of
the Diebold-Mariano test for equal predictive accuracy in
favor of the M-GARCH model at the nominal 5% level.
k denotes the forecast horizon. Diebold-Mariano tests in
the low- and high-volatility regime are based on 60 non-
overlapping observations and on 120 observations in the
normal regime. The tests are based on 2000 Monte-Carlo
replications.

Table 8: DM tests for daily τt (low VR).

SE

k = 1 k = 5 k = 10 k = 20

Full sample 0.922 0.868 0.745 0.536
Low regime sample 0.737 0.618 0.413 0.278
Normal regime 0.920 0.844 0.673 0.463
High regime 0.696 0.618 0.413 0.240

QLIKE

Full sample 0.977 0.946 0.872 0.694
Low regime sample 0.744 0.627 0.424 0.290
Normal regime 0.939 0.877 0.709 0.518
High regime 0.834 0.753 0.540 0.338

Notes: The numbers are empirical rejection frequencies of
the Diebold-Mariano test for equal predictive accuracy in
favor of the M-GARCH model at the nominal 5% level.
k denotes the forecast horizon. Diebold-Mariano tests in
the low- and high-volatility regime are based on 60 non-
overlapping observations and on 120 observations in the
normal regime. The tests are based on 2000 Monte-Carlo
replications.
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E Additional Figures

Figure 15: Daily τt (low VR) - SE and QLIKE loss across regimes.
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Notes: Average SE and QLIKE loss evaluated at different regimes in the case of a daily-varying τt with a low variance ratio.
In each simulation, we calculate out-of-sample SE and QLIKE loss as well as losses depending on three volatility regimes for
1–22 days ahead; forecasts being issued at a day for which the daily realized volatility is below the empirical 25% quantile (low
regime), between the 25% and 75% quantile (normal regime) or above the 75% quantile (high regime). Averages are taken across
2000 simulations.
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Figure 16: Mincer-Zarnowitz R2 - daily τt (low VR).
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Notes: Average coefficients of determination of Minzer-Zarnowitz regressions for different volatility regimes. Hereby, we regress
the cumulative realized variance on the cumulative forecast. The panel displays the case of a daily-varying long-term component.
In each simulation, we calculate out-of-sample R2s depending on three volatility regimes; forecasts being issued at a day for
which the daily realized volatility is below the empirical 25% quantile (low regime), between the 25% and 75% quantile (normal
regime) or above the 75% quantile (high regime). Averages are taken across 2000 simulations.
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F Data

In this section, we provide detailed information on the data sources as well as on the data vin-

tages that have been used. Whenever possible, we use real-time vintage data sets as available in

ALFRED.26 For downloading the respective data sources, we have written the R-package alfred

(Kleen, 2017).27 We make use of the following time series:

• Realized volatility based on 5-minutes intra-day returns which are provided by the Realized

Library of the Oxford-Man Institute of Quantitative Finance (Heber et al., 2009).28

• The VIX index as a measure of option-implied volatility of S&P 500 returns (published by

the Chicago Board Options Exchange).29

• The Chicago Fed’s National Financial Conditions Index (NFCI),30 measuring the risk, liquidity

and leverage of money markets, debt and equity markets, and the traditional and shadow

banking system. The NFCI takes positive/negative values whenever financial conditions are

tighter/looser than on average.

• The Chicago Fed National Activity Index (NAI) is a weighted average of 85 filtered and

standardized economic indicators.31 Whereas positive NAI values indicate an expanding US-

economy above its historical trend rate, negative values indicate the opposite.

• Industrial Production Index (IP), which is released by the Board of Governors of the Federal

Reserve System.32

• New Privately Owned Housing Units Started (HOUST), which is published by the U.S. Bureau

of the Census.33

For the macroeconomic variables, we report the real-time data availability in Table 9. Estima-

tions have been carried out using QMLE, see Engle et al. (2013), and can be replicated using the

R-package mfGARCH (Kleen, 2018).34 The covariates are depicted in Figure 7.

26https://alfred.stlouisfed.org
27https://cran.r-project.org/package=alfred
28http://realized.oxford-man.ox.ac.uk/data/download/
29http://www.cboe.com/micro/vix/historical.aspx
30https://alfred.stlouisfed.org/series?seid=NFCI
31https://alfred.stlouisfed.org/series?seid=CFNAI
32https://alfred.stlouisfed.org/series?seid=INDPRO
33https://alfred.stlouisfed.org/series?seid=HOUST
34https://cran.r-project.org/package=mfGARCH
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Table 9: Real-time data availability.

Varibale Frequency ALFRED ID First Vintage Release

NFCI weekly NFCI 2011-05-25
NAI monthly CFNAI 2011-05-23

Industrial production monthly INDPRO 1973-12-14
Housing starts monthly HOUST 1973-12-18

Notes: For each macroeconomic variable, we report the real-time data availabil-
ity in the ALFRED data base.
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