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1 Introduction

This introduction is just for Asger. There will be a better one by the end of the day tomorrow, but I didn’t

want to screw you over any more. This paper does the following:

• Defines a direct forecast from a GARCH model

• Contrasts this with both forecast from indirect and “aggregated” GARCH models, where the ag-

gregated GARCH model is one which uses standard low frequency data to forecast. For example,

when forecasting volatility over 22 day use the 22 day return.

• Describes two methods to estimate direct forecasts, one which uses returns (like a standard GARCH)

and one which uses realized-variance-type shocks (like a multiplicative error model).

• Uses a set of 25 asset return series spanning equities, bonds, foreign exchange and commodities

to study the performance of these alternatives

• Also studies the effect of using longer or shorter windows

• The conclusion is better written and tells you what I found, so you might want to start there

• I hope is the a very easy paper to discuss :-)

• There will be more tomorrow, and I’ll send updates as they roll off the presses. I won’t hold you

to any expectation of discussing them.

• It is probably somewhat badly written, but I’m working on it

• Looking forward to Brazil
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2 Volatility Models

Standard GARCH models describe volatility dynamics using past returns

rt = µt +εt

σ2
t = ω+αε2

t−1+βσ
2
t−1

εt = σt et

e ∼ F (0, 1) ,

where F is some known distribution – often assumed to be the Normal – with mean 0 and variance

1 and the conditional mean, µt has been left unspecified. Forecasting at any horizon from a GARCH

model is straight-forward using the simple recursion
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where θ =α+β .

GARCH models with more complex lag structures can also be considered, and the component GARCH

of Engle & Lee (1999) is a particularly interesting case.
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where all parameters are positive, α+β < ρ < 1 and φ < β . σ2
l ,t is more persistent than σ2

s ,t and so

is known as the long run (or trend) component, while σ2
s ,t is the short run (or cyclic) component. The

component GARCH model is a restricted GARCH(2,2),
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and so can easily be use to produce multi-period forecasts.

An increasingly popular model is the Heterogeneous Autoregressive model of Corsi (2009) which

is a highly restricted, long-lag ARCH model. The typical specification uses 1, 5 and 22-day averages of

volatility shocks to model the conditional variance,
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whereφ j =α1+α5/5+α22/22 when j = 1, α5/5+α22/22 for j ∈ [2, 5] and α22/22 for j ∈ [6, 22]. Since this is just

a restricted ARCH model, multi-step forecasts follow the usual recursive form
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Both the common 22-lag HAR and a “quarterly” HAR which also includes a 66-day lag will be included.

MIDAS volatility models Ghysels, Santa-Clara & Valkanov (2002) provide an alternative method to

parameterize long-lag ARCH-type models. MIDAS volatility models use parameterized weight func-

tions to limit the number of that must be estimated while providing more flexibility in the manner

weights decay than in standard GARCH models. The generic form of the conditional variance in a MI-

DAS model is

σ2
t =ω+α

m
∑

j=1

φ j (θ )ε
2
t− j .
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The weighting function, φ j (θ ) is non-negative, sums to 1 and is determined by a small-dimensional

parameter vector θ ; m is the maximum lag used. When θ is known (or can be estimated) then the

structure of a MIDAS volatility model is identical to that of a HAR, only using a different set of weights. A

number of weighting functions have been considered including ones base off of exponential functions,

the Beta distribution, and gamma functions. The latter produces weights with hyperbolic-like decay.

Here I consider specifications. The first is the Beta distribution-based weighting function,

φ j (θ )∝
( j/m)θ1−1

�

1− ( j/m)θ2−1
�

Γ (θ1)Γ (θ2)/Γ (θ1+θ2)

which depends on a two-dimensional positive parameter θ . The second is the the single parameter

hypergeometric version,

φ j (θ )∝
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�

j +θ
� ,

where θ > 0. The final is the exponential-based weighting function,

φ j (θ )∝ exp
�

θ1 j +θ2 j 2
�

,

where θ2 < 0 ensures that long-lag weights will converge to 0. Both the Beta distribution-based and

the hypergeometric weight function are truncated at a finite number of lags, m . Two version of these

specifications will be used, one with m = 22 and the other with m = 66.

2.1 Estimation

Estimation of the models used to produce iterative forecasts will be performed using Gaussian QMLE.

Returns, conditional on variance, are assumed to be normally distributed, rt+1|Ft ∼ N
�

µt ,σ2
t

�

. In all

specificationµt =µ∀ t is assumed , since the daily mean is extremely small relative to the daily standard

deviation of returns (Andersen & Bollerslev 1998). The iterative forecasts are all produced by estimating
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parameters using the 1-day ahead conditional quasi likelihood,

max
θ

T
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t
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t

.

2.2 Direct Estimation

The multi-step forecast from a GARCH model shows that it only depends on model parameters and the

final values of ε2
t andσ2

t . This leads to a natural questions as to whether the model-imposed parameter

restrictions are valid, especially over longer horizons. A direct version of a GARCH(1,1) can be specified

as
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which nests the iterated forecast by matching ωh , αh and βh to their counterparts in 1. Throughout

σ2
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2
t+ j will be used to denote the h-period variance. Direct estimation of a model of this

type requires using a horizon specific quasi-likelihood,
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where θh is used to acknowledge that for a particular model, the parameters will depend on the horizon

used in the estimation.

When models, are correctly specified at the 1-step horizon, direct estimates of the model parameters

are also consistent for the same values. They will, however, be inefficient since fitting the h-day squared

innovation add unnecessarily noise to the measurement.

Proposition 1. Let the model for the conditional variance be given by a GARCH(1,1) and further assume

the model is dynamically correct in the sense that σ2
t = Et−1

�

ε2
t
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where the true parameters are θ0. Then

the expectation of the score of the log-likelihood of the h-period direct quasi-likelihood,
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The GARCH model is unique among the other models in the sense that the method of parameter-

izing a direct forecast, either using the simple specification
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lead to identical parameter estimates. The is not generally true when there are more parameters in the

ARCH specification than in the model. For example, consider a HAR model, where the 1-step ahead

forecast is
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Since this is the natural one-step ahead forecast, there are 3 unique parameters in the dynamics. The

two-step ahead forecast is
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In terms of the original model parameters, α1, α5 andα22, there are 5 distinct values: α1+α1α5/5 for ε2
t ,

α1α5/5+α5/5 forε2
t−1, . . . ,ε2

t−3,α1α5/5+α22/22 forε2
t−4,α1α22/5+α22/22 forε2

t−4, . . . ,ε2
t−20 andα1α22/22

for εt−21. In general the h-step cumulative forecast of a HAR model will depend on the constant and

min (1+2h , 22) unique parameters on the lagged squared residuals. When models are restricted ARCH-

type models there will not be a direct one-to-one correspondence between the 1-step ahead model and

the h-step ahead model.

It is, however, possible to enforce the correspondence by directly estimating the forward-iterated

version of a model. Again, consider the example of the HAR model. Eq. 4 only depends on the original
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constant and α1, α5 and α22, and so direct estimation of a model that is compatible with the one-step-

ahead model is trivial. This is true for any model which has an ARCH representation by specifying the

parameters in terms of the one-step-ahead specification irrespective of the estimation frequency. In

this version of the paper, all direct forecasts are produced using the simple approach so that

σ2
t+1:m =ω+

∞
∑

i=1

φi (θ )ε
2
t−i+1.

2.3 Aggregated GARCH

This definition of a direct forecast differs from Ghysels, Rubia & Valkanov (2009) who define the direct

model as a standard GARCH using aggregated data with horizon h . Their version of a direct model is

then
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where the approximation arises since the conditional mean would generally differ. This version just

a standard GARCH model based on lower-frequency data. This definition is not, however, consistent

with what is commonly done in the macroeconometric literature, see e.g., Marcellino, Stock & Watson

(2006), and imposes artificial limits on the lag structure when compared to the natural direct model in

eq. (2). I will refer the model in eq. 5 as the aggregated forecasting model, since if returns have mean 0

and are serially uncorrelated,
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whereηt is a noise term that arises since the squared sum is a much noisier estimator than than the sum

of squared returns. This version of the aggregated model shows that aggregating does two things: first,

it imposes a very flat lag structure on volatility innovations and second it adds noise. The lag structure

can be flexibly addressed in the direct equation, and there is little reason to believe including extra

noise in the volatility innovation measurement would improve the forecast. I also consider a modified

version of the aggregated model using a h−period innovation using the ideas from realized variance on

the right hand side in place of the squared h-period return (Andersen et al. (2001), Barndorff-Nielsen &

Shephard (2002)). The volatility dynamics in this model

σ2
t+1:h =ωh +α

h
∑

i=1

ε2
t−1+1+βσ

2
t−h+1:0.

This specification is just a standard h-period GARCH(1,1) where the usual squared return innovation

has been replaced by the h−period realized variance.

2.4 Low-frequency Models

Models based on the one-step ahead fit are estimated using all data.1 Models that are based on longer

horizon returns, such as the direct forecasts or the aggregated models would usually only be estimated

using a subset – every h th observation – and so do not efficiently utilize the available information. This

also adds a degree of arbitrariness since there are h initial observations that can be used to estimate

the model. To address this, I used an overlapping block estimators. Given a parameter vector θ , these

estimators make use of h recursions to compute h quasi log-likelihoods. The estimated parameter

maximizes the sum of these h-log likelihoods.

2.5 Naïve Models

Historical volatility is popular among practitioners since it is both simple to compute and interpret. The

only parameter required to operationalize historical variance is the window length, and three horizons

1Any backcast values are set to the same value σ2
0 which is based on an exponentially weighted moving average σ2

0 =
(1−λ)

∑T
t=1λ

t ε2
t . All estimates make use of all data irrespective of the lag structure.
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will be considered: monthly (22 days), quarterly (66) and annual (252). The estimator is defined

σ2
t =

k
∑

i=1

�

rt−i −µ
�2

where k is one of the window lengths.

3 Data

The models are evaluated using a range of assets spanning the major asset classes: equities, treasuries,

corporate bonds, currencies and commodities. The equity series include the value weighted market

(VWM), the value factor (HML, Fama & French (1992)), and a momentum factor (UMD, Carhart (1997)),

as well as the components of 12 industry portfolios. These were all taken from Ken French’s return data

library.2 Returns to treasury portfolios were constructed to correspond to the return on level, slope and

curvature portfolios. These portfolios were constructed using the 1, 5 and 10 year treasury yields. Yields

were transformed into prices which were then transformed into log returns. The level is the holding

return on the 1-year bond, the slope is the return on a portfolio the is long the 10-year bond and short

the 1-year bond, and the curvature factor is the return on a portfolio that is long both the 1 and 10

year bonds and short the 5 year bond. The currency returns are from the USD-GBP exchange rate, the

USD-JPY exchange rate and a trade-weighted US Dollar index. The BoA Merrill Lynch US Corp Master

Total Return Index was used to measure the return on a corporate bond portfolio. Commodities are

represented by gold, west Texas intermediate crude, and the CRB Commodity Index. All non-equity

data series were taken from from the Federal Reserve Economics Database, with the exception of the

CRB commodity index which comes from Haver. Table 1 contains additional details on the source of

data used. All series were included from the earliest date that daily data was continuously available

until the end of December 2014.

The range of series was chosen to provide a wide range of data characteristics and especially to go

beyond the common benchmarks of a broad, value-weighted equity portfolio. Summary statistics of the

2The series are available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.
html.
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data are presented in 2. The panel has a wide range of basic characteristics, with annualized volatilities

ranging from the low single digits to nearly 40% for crude oil. The skewness values range from -1.6 for

the momentum portfolio for 0.5 for the Treasury level factor portfolio. The kurtosis of the data series

also spans a wide range, from only slightly higher than that of a normal for corporate bonds returns to

over 30 for the momentum portfolio.

3.1 In-sample Results

Before turning to forecast evaluation, it is useful to assess the “best case” scenario for these model using

some in-sample measures of fit. Table 3 contains relative log likelihood values and average ranks. Given

the range of the sample sizes across the the 24 series, a direct comparison of log-likelihood differences

would be strongly biased towards the series with more data points. To remedy this, all values in the

table are based the average daily log-likelihood value scaled up to a typical hypothetical 10-year sample

with 2,520 days. Using these scaled log-likelihoods, the difference relative to the median was computed

series-by-series. The average of these differences is reported in the left panel.

The best model, on average, was the component GARCH model which typically outperformed the

median model by 15 or more log-likelihood points across all series. Other models which performed well

include all models that feature use 66 lags: the HAR66, the MIDAS−β66 and the MIDAS-hyp66. Models

with shorter lag lengths or with less flexibility performed worse than the median in the majority of series.

The two aggregated GARCH models performed very differently. Results for these two models are

only presented for the multi-step horizons since they exactly coincide with a GARCH model when h =

1. The standard aggregated GARCH model which makes use of h-day returns as the innovation was

much worst than the median model. The realized-variance-based version of the aggregated GARCH

model performs much better, and is typically very close to the median model. This shows the gains to

using the sum of squares rather than the square of the sum when modeling longer horizon returns. The

worst models are clearly the moving average models, which is not surprising since these have no free

parameters to optimize.

The ranks paint a similar picture, with the component GARCH model performance the best for

nearly all series. The three other models that performed well on average also have similar, low ranks,
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and models with shorter lag lengths are worst than average. The return-based Aggregate GARCH model

is only better than the moving averages while the RV-based aggregated GARCH model performs slightly

better than average for all horizons.

Figure 1 contains the first 30 weights from an ARCH representation for the GARCH and Component

GARCH models and the 22- and 66-lag versions of the MIDAS−β and MIDAS-hyp models using data

on the value weighted market portfolio and the entire sample. The longer lag versions consistently out-

performed the shorter lag models, even when the models were not strictly nested. A common feature

of the longer lag models is the hyper-geometric-like shape where a relatively large weight is given to the

most recent observation followed by a rapid decline in weights for intermediate values followed by a

relatively flat set of weights given to long lags.

4 Forecast Comparison

Forecasts were generated for all models using a variety of configurations. The baseline estimation

method used a 10-year rolling window scheme and all quasi-likelihoods were computed using returns

(eq. 3). Other parameterizations made use of 5- or 20-year rolling windows or altered the quasi-log

likelihood to use realized variance (eq. XX). All models were re-estimated monthly and the parameters

were held fixed until the start of the next calendar month.

4.1 Forecast Evaluation

The forecast evaluation focuses on relative performance of the alternative models. Forecasts are as-

sessed using the QLIK loss function,

L
�

σ̂2
t+1:h , rt+1, . . . rt+h

�

= lnσ̂2
t+1:h +

∑h
i=1 rt+i/σ̂2

t+1:h .

Volatility forecast evaluation is sensitive to the choice of loss function since the object of interest, the

conditional variance, is not adapted to the Ft+h in formation set. The set of loss functions that will

prefer the true model even when using a noisy proxy has been studiesHansen & Lunde (2005) and Pat-
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ton (2011). The QLIK loss function is in this set, as is the MSE loss function. Simulations in Patton &

Sheppard (2009) show that the QLIK version performs better than other parameterizations, and so this

version is used here.

When comparing two forecasts, Diebold-Mariaon-Giaomini-White test statistics are a natural choice

(Diebold & Mariano (1995), Giacomini & White (2006)). The DMGW test statistic is

p
P

�

T
∑

t=R+1

L
�

σ̂2
t+1:h ,A , rt+1, . . . rt+h

�

− L
�

σ̂2
t+1:h ,B , rt+1, . . . rt+h

�

�

=
p

P δ̄.

where P is the number of out-of-sample observations and A and B are used to represent the forecasts

of two competing models. In practice, the test statistic is the same in either Diebold & Mariano (1995)

or Giacomini & White (2006), and the main difference in in the assumptions. Giacomini & White (2006)

incorporate estimation error into the loss function so that two models, even when nested, can be com-

pared since the amount of parameter estimation error will differ. Under standard assumptions, even

when models are nested,
p

P δ̄
d→N (0, V )

where V is the long-run variance of the difference. In practice a Newey & West (1987) estimator is used

with a data driven bandwidth. The null of the test is equal predictive accuracy, H0 : E [δt ] = 0 and the

composite alternative is H A
1 : E [δt ]< 0 and H B

1 : E [δt ]> 0. The forecasts were produced using a rolling

estimation scheme and so incorporating the consequences of parameter estimation error is desirable.

Pairwise DMGW tests, while useful, are difficult to extend to multiple models. The Model Confi-

dence Set (MCS) of ? provides a method to extend the pairwise tests to a collection of tests. The MCS

aims to find the set of models which are not distinguishable from the best model while controlling the

familywise error rate – that is the probability that the best models (or a model that is equal good in pre-

dictive accuracy as the best) is excluded. Conceptually this is similar to the size of the test. The MCS

is constructed by examining all pairwise differences in losses and estimating the distribution of these

differences if all models were equally accurate. Models which are unlikely to to be as good as the best

model – that is, those with losses that would have been unlikely to be seen if they were equally good are

excluded, and the algorithm is rerun on the remaining models. This algorithm provides a sequence of
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p-values where each model was excluded. The final MCS is all models that could not be excluded at the

α level. In all applications of the MCS, α=10% is used.

4.2 Results

Each series had a total of 324 distinct forecasts spanning the range of:

• 11 dynamics models plus 3 moving averages3

• 4 forecast horizons – 1, 5, 10 and 22 days

• 3 forecasting methods – iterative, direct using return-based estimates and direct using realized

variance-based estimates

• 3 estimation windows – 5, 10 and 20 years

The results will be presented sequentially covering one feature at a time.

Ranking Iterative Models

Table 4 contains results for pairwise DMGW tests for the iterative forecasts across the 4 horizons. Each

statistic was computed for all series and all combinations of models. Test statistics larger than 1.96

indicated that model B – the column model – outperformed model A – the row models. The value

reported is the percentage of rejections across the 25 series for each combination.

For horizon 1 – the estimation horizon for all models – there is a clear set of models that perform

relatively well and a clear set that perform relatively poorly. The best performing model is the compo-

nent GARCH, which is only worse than two other models for a small number of series. The component

GARCH model strongly outperforms models with shorter memory including the standard GARCH, and

22-lag versions of the HAR, MIDAS−β , MIDAS−exp and MIDAS-hyp. The other models that outper-

form more than they under perform include the 66-lag version of the HAR, MIDAS−β and MIDAS-hyp.

3Not all models are unique across all configurations. The moving average models all produce the same forecasts for any
forecasting method or horizon and so do not vary across configurations. The aggregated GARCH models do not differ from
standard GARCH when estimated at horizon 1 and so these results are excluded, and are only used for direct forecasts. Finally,
when the horizon is 1, all methods are identical for all models.
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The worst model is the MIDAS−exp which is statistically worse then the alternative in over 50% of the

comparisons and rarely outperforms other models. Other lower persistence models including the stan-

dard GARCH and the 22-lag versions of the HAR, MIDAS-β and MIDAS-hyp all under perform.

Increasing the horizon allows the two aggregated GARCH models to be included in the comparison.

There is a clear patter here: across all longer horizon forecast evaluation samples, the standard aggre-

gated GARCH which uses the h-period return as the shock is never better than any model and is almost

always worse than the other models. The aggregated GARCH model that uses a realized-variance-type

shock also perform relatively poorly except when compared to the other aggregated model. The in-

crease in the horizon reaffirms and strengthens the pattern observed at the shorter horizon – a small

number of models are clearly superior, and many common models perform worse than their competi-

tors. The set of superior models clearly includes the component GARCH, and the 66-lag versions of the

MIDAS-β and MIDAS-hyp models. The 66-lag version of the HAR performs relatively better than the

lower persistence models, but either outperformed or no better than the set of three superior models.

The lower persistence models are roughly similar with no obvious pattern aside from the consistent

under performance of the MIDAS−exp model.

Pairwise comparisons are difficult to interpret since controlling size is challenging when the test

statistics are likely to be dependent. The MCS was applied to the set of models at each horizon on a

series-by-series basis. Table 5 contains the percentage of Model Confidence Sets where a model appears

using a family wise error rate of 10%. The left panel applies the MCS on the losses directly. Three models

stand out with inclusion rates above 90% across the horizons: the component GARCH and the 66-lag

versions of the MIDAS-β and MIDAS-hyp. The 66-lag HAR is also in the majority of MCS. The lower

persistence models – GARCH, HAR22, MIDAS−β22 and MIDAS-hyp22 are included a lower rate, although

they still appear in nearly 50% of the sets. The MIDAS-exp is notable worse, and both aggregated GARCH

models and the moving average models are excluded from most sets.

The right panel of table 5 applies the MCS to the ranks of the losses. For each series, for each forecast

observation, the losses were ranked across all models so that the lowest loss received a rank of 1 and the

highest a rank equal to the number of models. While the rank of the QLIK loss function is not necessarily

robust to noise in the proxy, using ranks in place of losses can be considered a robustness measure
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to ascertain whether the performance is driven by the typical loss or by a relatively small number of

observations with large losses. There is a strong correspondence between the rank MCS and the loss

MCS with one notable exception. The 22-day moving average performs exceptionally well in terms of

ranks at short horizons and is in 100% of the MCS. At longer horizons the MCS tend to include the

component GARCH and the 66-lag models, with the HAR66 in all but 2 of the MCS when evaluated at a

22-day horizon.

In addition to directly exampling the MCS on the series, both losses were aggregated across asset-

type groups as well as across all assets. Two types of aggregation was used. The first simply averages

the losses across group members and the second uses a GLS inspired average where

L̄Mi
=

∑

j∈G r o up w j L j ,Mi
∑

j∈G r o up w j

where the weights were computed as the inverse of the average (across models) variance of the losses.

This GLS-type average gives more weights to series that have relatively less time series variation in

their loss, which typically comes from having less volatile volatility. Table 6 contains the average inclu-

sion rates across the four groups: equities, commodities, interest rates and exchange rates. Grouping

broadly confirms that the component GARCH as well as the the 66-lag MIDAS models perform well

and appear in all MCS, irrespective of the averaging method. The only model that performs differently

across the aggregation methods is the GARCH which is in most MCS when using the GLS series. This

indicates that GARCH performs relatively well in series that have less volatile volatility. The third panel

in table 6 contains results using the average rank in place of the average loss. Since ranks are unlikely be

highly heterostructure, only a simple average is included. The rank-based results are similar to the pre-

vious rank-based finding where the moving average performs much better especially at short horizons,

and the lower persistence models are excluded from all of the MCS.

Finally, table 7 contains the MCS p-values for the fully aggregated losses across all 25 series. The left

panel contains the results from a simple average and the middle panel contains the p-values for a GLS

average of the losses and the right panel contains the MCS p-values for the average ranks. These results

are consistent with what has been found both for the individual assets and the grouped averages. Three
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models standout – the component GARCH, and the 66-lag versions of the MIDAS−β and the MIDAS-

hyp. Using a FWER of 10%, the only other model that would be included is the 66-lag version of the HAR.

All of the lower persistence models and the moving averages are excluded, typically with very small p-

values. Using GLS weighting makes little difference to the MCS, and the same models are included with

the exception of the 66-lag HAR which is excluded for 3 of the 4 horizons. The rank-based MCS shows

a similar pattern with the usual exception that a short moving average performs well for the shorter

horizons.

Ranking Direct Forecasting Models

Direct forecasts were produced using two estimation schemes: the first estimates model parameters

using a quasi-likelihood for h-day squared returns and the second uses a quasi-likelihood for h-day

the sum of squared returns. These two methods will be referred to as the returns-base forecasts and

the realized variance-based forecasts. Table 8 contains the results for the MCS constructed on average

losses, GLS-averaged losses, and average ranks for the alternative direct forecasting schemes. The MCS

were constructed separately for the two methods of forecasting model estimation. These tables are

similar in structure to table 7.

The top panels contain the MCS p-values of models when considering only return-based forecasting

models. The bottom contains results for MCS for models estimated using realized variance. When es-

timating models using returns a number of models consistently perform well: the component GARCH

and the 66-lags versions of the HAR. The two MIDAS models that performed well in the iterative fore-

casting are excluded for the longer horizons. When estimating the model parameters using realized

variance, the model confidence set is slightly larger and includes the component GARCH model as well

as the 66-lag versions of the MIDAS-β and MIDAS-hyp models.

While these two tables show that a similar set of models performs well irrespective of the estima-

tion or forecasting method, they do not address the issue of which models perform best across alter-

native forecasting generation schemes. To address this question pairwise DMGW tests were estimated

comparing the iterative forecast for a particular model with the iterative forecast for both direct fore-

cast parameter estimation methods. Table 11 contains results of these comparisons where a the test
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is implemented using a 5% size. When comparing iterative models to direct forecasts generated using

parameters estimated on returns there is unequivocal evidence that iterative models are superior. The

direct forecast was never preferred to the iterative forecast, and in most instances over 90% of the iter-

ative forecasts were superior to the direct forecasts. When the estimation method is changes to utilize

realized variance the picture is slightly altered, although the iterative models continue to perform as

well or better than the direct models in most cases. The only models which show meaningful rejection

of the null in favor of the direct model are for those models which perform worse, on average, including

the GARCH as well as the 22-lag versions of the HAR, MIDAS-β and MIDAS-hyp. The models that were

consistently top performers consistently outperform their direct counterparts.

The source of the performance difference is the extra parameter estimation error that is present in

the directly estimated models. The iterative models are relatively efficient, and so the only hope for the

direct models is meaningful misspecification of the iterative models. However, for a reasonably well

specified iterative model — one that utilizes a relatively long lag structure – any gains in bias are more

than offset by a reduction in parameter estimation error. This is confirmed when comparing the per-

formance across alternative estimation windows. All results presented thus far have utilized 10-year

rolling estimates. Table 10 contains results for model-by-model comparisons of iterated forecast ver-

sus realized-variance-based direct forecasts using both 5-year and 20-year estimation windows. 4 The

top panel contains results for a 5-year estimation window and shows a clear preference for iterative

forecasts when the estimation sample is shorter. This is consistent with an increase in parameter esti-

mation error especially for the direct models. When the estimation window is lengthened to 20 years

the direct models perform relatively better – often outperforming the iterative models. Lengthening

the sample has two consequences for the forecasting models. The obvious one is that the parameters

should be estimated with more precision. The less obvious consequence is that the model is more likely

to be well specified and so the gains to direct forecasting, when evaluated at pseudo-true parameters

might be larger.

One final comparison was using the MCS on an initial set of models that included the best models

4Changing the estimation sample alters the prediction sample so that these models are evaluated over different samples
than the 10-year estimates. In all cases the maximum number of out-of-sample observations was used.
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across the iterative and direct estimation schemes. MCS were constructed series-by-series for 8 models:

4 forecasts produced using iterative methods and 4 produced using direct methods. Table 11 contains

the percentage of MCS that contained the model with a FWER of 10%. For most model/horizon combi-

nations the iterative version of the model is contained in the MCS at least as often as the direct version

of the model. The component GARCH, the MIDAS-β66 and the MIDAS-hyp are in almost all MCS when

using losses. When suing average ranks, the iterated models continue to outperform the direct fore-

casting models.

5 Extensions

Asymmetric models TBC, Conditional predictive ability TBC

6 Conclusions

This paper examines the performance of volatility forecasting models over a range of frequencies out

to one month. Three classes of models are consistently found to perform the best across a range of se-

tups, estimation methods and data series: the component GARCH, the MIDAS−β and the MIDAS-hyp.

Other models, especially models commonly used such as a HAR using 3 components with a maximum

lag of 22 days, are consistently outperformed by these models. The worse models were consistently ag-

gregated GARCH models which directly forecast the h-day variance using h-day shocks. It is clear that

using a simple approach to forecasting low frequency volatility – a week or more – is an unwise choice.

Direct forecasts are generally unable to outperform iterative forecasts. Moreover, the direct forecasts

are only able to outperform if estimated using the h-day realized variance to measure variance – using

h-day squared returns as the volatility proxy is sufficiently noisy that any gains from a reduction in bias

are lost to increased variance of parameters. The only setups where the forecasts from direct models

outperformed forecasts generated iteratively are when the estimation window is especially long – 20

years of daily data.

Among the models that were consistently found to perform well, the MIDAS with a hypergeometric
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weighting function is the most parsimonious, using only 3 parameters.5 There are still a number of

remaining questions when examining the relative performance of direct forecasts. Are there times when

direct forecast can out-perform iterative forecasts, and so it is possible to improve these by combining

information from both? Are conditional asymmetries useful for predicting long horizon volatility? I

leave these as topics for further research.

5The lag length used could be considered a model parameter, although this is not usually optimized.
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A Tables

Code Name Additional Info First Observation

Vwm Value Weighted Market July 1926
Hml High minus Low factor July 1926
Mom Momentum factor November 1926
Bus Business Equipment July 1926
Chem Chemicals July 1926
Durbl Consumer Durables July 1926
Energy Oil, Gas and Energy July 1926
Health Healthcare July 1926
Finance Financial Firms July 1926
Manuf Manufacturing Firms July 1926
NonDurbl Consumer Non-durables July 1926
Other Other Firms July 1926
Shops Wholesale, Retails and Services July 1926
Tele Telephone and Television July 1926
Utility Utilities July 1926
Level 1-year Yield DGS1 June 1961
Slope 15-year Yield DGS5 August 1971
Curve 10-year Yield DGS10 August 1971
JPYUSD Yes-Dollar rate DEXJPUS January 1971
GBPUSD Pound-Dollar rate DEXUSUK January 1971
TWUSD Trade Weighted Dollar index DTWEXM January 1973
Corp Bond BoA Merrill Lynch US Corp TRI BAMLCC0A0CMTRIV November 1986
Gold London-fixing Gold GOLDAMGBD228NLBM April 1968
Crude West Texas Intermediate Crude DCOILWTICO January 1986
Comm CRB Commodity Index PZALL January 1971

Table 1: Description and source of data used in paper.
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Observations µ σ Skewness Kurtosis

Vwm 23385 7.25 17.00 -0.110 19.82
Mom 23284 6.88 11.78 -1.673 31.58
Hml 23385 4.15 9.15 0.660 18.67
Bus 23385 12.40 24.39 0.205 15.90
Chem 23385 11.73 18.32 -0.241 25.19
Durbl 23385 12.19 24.20 0.371 18.45
Energy 23385 12.18 20.27 0.098 17.84
Health 23385 12.20 17.46 -0.275 19.66
Manuf 23385 11.40 20.18 0.207 23.67
Finance 23385 10.93 20.88 0.209 25.70
NonDurbl 23385 11.03 13.76 -0.237 23.41
Other 23385 9.10 19.53 -0.010 16.83
Shops 23385 11.13 17.36 -0.018 17.71
Tele 23385 9.99 16.34 0.207 21.26
Utility 23385 9.86 17.42 0.326 27.33
Level 13349 0.05 0.95 0.505 23.35
Slope 10813 1.27 9.33 0.129 8.86
Curve 10813 0.23 4.09 -0.093 26.95
JPYUSD 11036 -1.97 10.28 -0.565 12.01
GBPUSD 11042 -0.54 9.42 -0.143 7.82
TWUSD 10524 -0.35 6.71 -0.291 8.83
Corp Bond 7302 7.11 4.76 -0.209 6.90
Gold 11822 9.45 20.48 0.361 16.21
Crude 7315 10.44 39.60 -0.221 13.55
Comm 11089 2.64 12.70 -0.164 8.05

Table 2: Decriptive statistics of the data. Count is the number of non-missing daily observations. µ and
σ are the annualized mean and standard deviations in percent, respectively. Skewness and Kurtotis are
the skewness and kurtosis of the daily data.
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Log-likelihood Difference Ranks
1 5 10 22 1 5 10 22

Agg. GARCH – -52.1 -74.7 -98.1 – 10.8 11.2 11.9
Agg. GARCH-RV – 0.80 1.18 -0.67 – 5.24 5.52 6.88
Component GARCH 15.0 14.4 15.9 17.2 1.08 1.12 1.12 1.12
GARCH 0.54 2.25 4.81 6.58 5.88 3.92 3.52 2.48
HAR22 -10.2 -14.8 -14.5 -15.0 9.92 9.72 9.88 9.92
HAR66 6.57 3.74 4.29 3.55 3.52 3.84 4.32 3.96
MIDAS-β22 -8.30 -12.9 -13.3 -14.3 8.04 7.84 8.32 8.44
MIDAS-β66 6.21 4.23 4.84 3.61 3.82 3.50 3.46 4.06
MIDAS-exp22 -10.2 -11.5 -3.97 -2.82 9.76 8.40 7.44 6.20
MIDAS-hyp22 -8.90 -13.4 -13.7 -14.5 9.12 8.72 8.72 8.56
MIDAS-hyp66 6.21 4.23 4.84 3.61 3.82 3.50 3.46 4.06
MA22 -1154 -1348 -1376 -1411 12.6 13.0 13.2 13.6
MA66 -320.0 -281.8 -276.2 -291.0 13.8 13.4 13.3 12.2
MA252 -840.7 -542.3 -502.4 -492.7 12.5 11.9 11.5 11.6

Table 3: The left panel show the cross-series averge quasi likelihood difference relative to the median
quasi log-likelihood for the series. The differences have been normalized to correspond to 10 years of
daily data. The right panel reports the average rank for each model and horizon, where the ranks were
computed series by series. Higher ranks correspond to larger quasi log-likelihoods.
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Agg. Agg. Comp. MIDAS MIDAS MIDAS MIDAS MIDAS
GARCH GARCHRV GARCH GARCH HAR22 HAR66 β22 β66 exp hyp22 hyp66

Horizon 1
Comp. GARCH – – – 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.12
GARCH – – 0.52 – 0.04 0.24 0.08 0.56 0.00 0.04 0.40
HAR22 – – 0.76 0.28 – 0.64 0.04 0.72 0.16 0.16 0.56
HAR66 – – 0.32 0.08 0.00 – 0.00 0.04 0.00 0.00 0.12
MIDAS-β22 – – 0.76 0.32 0.04 0.52 – 0.72 0.16 0.16 0.60
MIDAS-β66 – – 0.16 0.08 0.00 0.00 0.00 – 0.00 0.00 0.12
MIDAS-exp – – 0.76 0.92 0.32 0.64 0.48 0.76 – 0.28 0.68
MIDAS-hyp22 – – 0.64 0.24 0.00 0.52 0.00 0.76 0.08 – 0.56
MIDAS-hyp66 – – 0.12 0.00 0.00 0.04 0.00 0.08 0.00 0.00 –

Horizon 5
Agg. GARCH – 0.88 0.96 0.92 0.92 0.96 0.88 0.96 0.88 0.92 0.96
Agg. GARCHRV 0.00 – 0.84 0.76 0.68 0.80 0.68 0.84 0.72 0.68 0.84
Comp. GARCH 0.00 0.00 – 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08
GARCH 0.00 0.00 0.40 – 0.04 0.24 0.04 0.56 0.00 0.04 0.32
HAR22 0.00 0.00 0.52 0.32 – 0.44 0.12 0.60 0.12 0.32 0.44
HAR66 0.00 0.00 0.24 0.00 0.00 – 0.00 0.12 0.00 0.00 0.20
MIDAS-β22 0.00 0.04 0.52 0.20 0.04 0.36 – 0.68 0.12 0.24 0.40
MIDAS-β66 0.00 0.00 0.04 0.04 0.00 0.00 0.00 – 0.00 0.00 0.12
MIDAS-exp 0.00 0.00 0.72 0.84 0.16 0.60 0.44 0.80 – 0.32 0.64
MIDAS-hyp22 0.00 0.00 0.48 0.16 0.04 0.20 0.00 0.64 0.08 – 0.40
MIDAS-hyp66 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.04 0.00 0.00 –

Horizon 10
Agg. GARCH – 0.92 1.00 0.96 0.96 1.00 0.92 1.00 0.92 0.96 1.00
Agg. GARCHRV 0.00 – 0.96 0.84 0.72 0.92 0.72 0.92 0.80 0.76 0.96
Comp. GARCH 0.00 0.00 – 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08
GARCH 0.00 0.00 0.40 – 0.00 0.32 0.00 0.56 0.00 0.00 0.36
HAR22 0.00 0.00 0.56 0.20 – 0.52 0.00 0.68 0.08 0.32 0.48
HAR66 0.00 0.00 0.20 0.00 0.00 – 0.00 0.12 0.00 0.00 0.16
MIDAS-β22 0.00 0.00 0.56 0.20 0.12 0.48 – 0.64 0.08 0.32 0.48
MIDAS-β66 0.00 0.00 0.00 0.00 0.00 0.04 0.00 – 0.00 0.00 0.16
MIDAS-exp 0.00 0.00 0.60 0.80 0.28 0.60 0.36 0.76 – 0.48 0.60
MIDAS-hyp22 0.00 0.00 0.52 0.20 0.04 0.24 0.04 0.52 0.08 – 0.40
MIDAS-hyp66 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.04 0.00 0.00 –

Horizon 22
Agg. GARCH – 0.92 1.00 0.96 0.96 0.96 0.96 1.00 0.96 0.96 1.00
Agg. GARCHRV 0.00 – 0.96 0.92 0.88 0.96 0.80 0.92 0.88 0.88 1.00
Comp. GARCH 0.00 0.00 – 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.12
GARCH 0.00 0.00 0.44 – 0.04 0.44 0.00 0.60 0.00 0.08 0.52
HAR22 0.00 0.00 0.56 0.24 – 0.52 0.04 0.52 0.12 0.20 0.56
HAR66 0.00 0.00 0.12 0.00 0.00 – 0.00 0.04 0.00 0.00 0.20
MIDAS-β22 0.00 0.00 0.60 0.36 0.68 0.64 – 0.68 0.16 0.68 0.64
MIDAS-β66 0.00 0.00 0.16 0.00 0.00 0.04 0.00 – 0.00 0.00 0.20
MIDAS-exp 0.00 0.00 0.64 0.80 0.56 0.72 0.40 0.68 – 0.48 0.64
MIDAS-hyp22 0.00 0.00 0.56 0.24 0.16 0.48 0.04 0.48 0.16 – 0.52
MIDAS-hyp66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 –

Table 4: Pairwise DMGW tests of the iterative forecasting methods for horizons 1, 5, 10 and 22. Table
values indicate the percentage of times that the model in the column outperformed the model in the
row.
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Losses Ranks
1 5 10 22 1 5 10 22

Agg. GARCH – 8 12 8 – 0 0 0
Agg. GARCHRV – 24 16 12 – 8 8 4
Comp. GARCH 92 96 96 100 4 76 76 76
GARCH 48 64 68 56 0 24 16 8
HAR22 28 48 52 56 0 0 0 0
HAR66 76 80 84 92 32 96 92 92
MIDAS-β22 24 60 60 28 0 0 0 0
MIDAS-β66 80 100 92 92 0 32 44 16
MIDAS-exp 16 20 36 28 0 0 4 4
MIDAS-hyp22 24 60 64 52 0 0 0 0
MIDAS-hyp66 88 100 96 96 4 72 80 72
MA22 0 0 4 0 100 68 20 4
MA66 0 0 0 4 0 0 0 0
MA252 4 8 12 24 12 24 16 16

Table 5: Percentage of models that enter a Model Confidence Set with a family wise error rate of 10%
for horizons 1, 5, 10 and 22 days. The left panel applies the MCS directly to losses, and the right panel
applies the MCS to than rank of the losses.

Avg. Losses Avg. Losses (GLS) Avg. Losses (Ranks)
1 5 10 22 1 5 10 22 1 5 10 22

Agg. GARCH 0 0 0 0 0 0 0 0 0 0 0 0
Agg. GARCHRV 0 50 0 0 0 25 0 0 0 0 0 0
Comp. GARCH 100 100 100 100 100 100 100 100 0 25 50 75
GARCH 50 50 25 25 75 75 75 75 0 0 0 0
HAR22 0 0 25 0 25 25 25 50 0 0 0 0
HAR66 50 100 100 100 75 75 100 75 0 75 100 100
MIDAS-β22 0 0 0 0 0 25 25 25 0 0 0 0
MIDAS-β66 100 100 100 100 100 100 100 100 0 0 25 0
MIDAS-exp 25 0 25 0 25 25 25 25 0 0 0 0
MIDAS-hyp22 25 25 50 25 50 25 25 25 0 0 0 0
MIDAS-hyp66 100 100 100 100 100 100 100 100 0 25 50 50
MA22 50 25 0 0 50 50 25 0 100 75 50 25
MA66 0 0 25 50 0 0 0 50 0 0 0 0
MA252 50 50 50 50 50 50 50 50 0 50 50 50

Table 6: Percentage of models that enter a Model Confidence Set for the losses grouped by category.
The left panel uses the average loss when constructing the MCS, the middle panel uses a GLS-weighted
average when constructing the MCS and the right panel uses the average rank when constructing the
MCS. All report inclusion using a FWER of 10%.
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Avg. Losses Avg. Losses (GLS) Avg. Losses (Ranks)
1 5 10 22 1 5 10 22 1 5 10 22

Agg. GARCH – 0.0 0.0 0.0 – 0.0 0.0 0.0 – 0.0 0.0 0.0
Agg. GARCHRV – 0.0 0.0 0.0 – 0.0 0.0 0.0 – 0.0 0.0 0.0
Comp. GARCH 100.0 100.0 88.3 48.0 100.0 100.0 100.0 90.7 0.0 91.2 89.9 54.3
GARCH 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0
HAR22 0.0 0.1 0.0 2.2 0.0 0.0 0.1 0.4 0.0 0.0 0.0 0.0
HAR66 0.9 10.9 15.6 10.5 2.3 9.8 18.4 8.4 0.0 91.2 70.5 100.0
MIDAS-β22 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
MIDAS-β66 14.8 96.2 88.3 25.6 23.4 76.3 91.7 40.3 0.0 0.0 0.1 0.0
MIDAS-exp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MIDAS-hyp22 0.0 1.8 3.7 4.1 0.1 0.1 0.1 0.4 0.0 0.0 0.0 0.0
MIDAS-hyp66 19.3 96.2 100.0 100.0 23.4 76.3 91.7 100.0 0.0 88.3 100.0 54.3
MA22 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 100.0 100.0 2.4 0.0
MA66 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0
MA252 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.0 3.3 2.4 0.0

Table 7: MCS p-values for includion when averaging losses across all models. The left panel contains
results from a simple average of the losses and the right panel contains results for a GLS-type average
of the losses.
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Estimation method: Returns
Avg. Losses Avg. Losses (GLS) Avg. Losses (Ranks)

5 10 22 5 10 22 5 10 22

Agg. GARCH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Agg. GARCHRV 0.4 2.1 98.0 0.6 7.0 64.6 0.0 0.0 0.1
Comp. GARCH 100.0 100.0 98.0 100.0 100.0 64.6 44.7 44.7 0.4
GARCH 0.4 7.8 98.0 0.8 15.0 100.0 0.0 0.0 0.0
HAR22 6.6 35.6 54.1 4.3 7.0 3.1 0.0 0.0 0.0
HAR66 32.8 47.1 100.0 43.2 60.6 89.5 100.0 100.0 100.0
MIDAS-β22 0.4 0.5 1.6 0.0 0.2 1.1 0.0 0.0 0.0
MIDAS-β66 1.4 0.6 0.4 3.2 3.8 0.0 0.0 0.0 0.0
MIDAS-exp 0.0 0.3 24.3 0.0 0.1 3.3 0.0 0.0 0.1
MIDAS-hyp22 8.6 35.6 17.1 4.6 4.8 1.1 0.0 0.0 0.0
MIDAS-hyp66 32.8 47.1 4.7 43.2 60.2 0.0 0.0 0.0 0.0

Estimation method: Realized Variance
5 10 22 5 10 22 5 10 22

Agg. GARCH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Agg. GARCHRV 0.2 0.2 1.5 0.1 0.3 0.1 0.0 0.0 0.0
Comp. GARCH 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
GARCH 9.0 22.0 6.7 11.1 16.7 4.9 0.0 0.0 3.0
HAR22 0.5 0.6 1.9 0.1 0.0 0.1 0.0 0.0 0.0
HAR66 2.7 3.2 20.7 1.0 6.5 15.6 37.2 14.4 44.5
MIDAS-β22 3.0 2.4 3.0 0.7 0.0 2.2 0.0 0.0 0.0
MIDAS-β66 41.4 26.4 48.4 24.6 16.7 18.6 0.0 0.0 0.0
MIDAS-exp 0.0 0.0 0.3 0.0 0.0 0.1 0.0 0.0 0.0
MIDAS-hyp22 9.0 22.0 48.4 2.3 6.5 15.3 0.0 0.0 0.0
MIDAS-hyp66 41.4 34.4 48.4 24.6 16.7 18.6 2.3 3.8 0.0

Table 8: MCS p-values for includion when averaging losses across all models when forecasting using
direct estimation using returns (top panel) or realized variance (bottom panel). The left panel contains
results from a simple average of the losses and the right panel contains results for a GLS-type average
of the losses.

29



Iterative better Direct better
Estimation method: Returns

5 10 22 5 10 22

Comp. GARCH 84.0 92.0 100.0 0.0 0.0 0.0
GARCH 84.0 80.0 92.0 0.0 0.0 0.0
HAR22 76.0 92.0 92.0 0.0 0.0 0.0
HAR66 84.0 92.0 96.0 0.0 0.0 0.0
MIDAS-β22 76.0 92.0 96.0 0.0 0.0 0.0
MIDAS-β66 88.0 100.0 96.0 0.0 0.0 0.0
MIDAS-exp 80.0 88.0 92.0 0.0 0.0 0.0
MIDAS-hyp22 76.0 92.0 92.0 0.0 0.0 0.0
MIDAS-hyp66 84.0 96.0 96.0 0.0 0.0 0.0

Estimation method: Realized Variance
5 10 22 5 10 22

Comp. GARCH 8.0 16.0 36.0 0.0 0.0 0.0
GARCH 0.0 4.0 4.0 0.0 16.0 16.0
HAR22 12.0 12.0 8.0 0.0 4.0 24.0
HAR66 20.0 24.0 44.0 4.0 0.0 0.0
MIDAS-β22 24.0 24.0 4.0 12.0 12.0 36.0
MIDAS-β66 36.0 28.0 32.0 0.0 4.0 8.0
MIDAS-exp 0.0 0.0 0.0 4.0 16.0 24.0
MIDAS-hyp22 24.0 24.0 8.0 4.0 8.0 32.0
MIDAS-hyp66 24.0 28.0 48.0 4.0 0.0 0.0

Table 9: Percentage of DMGW test rejecting in favor of iterative version (left columns) or direct foreasts
(right columns) . The top panel uses direct forecasts estiamtes using h−period returns. The bottom
panel uses direct forecasts where the parameters were estimated on the h-day realized variance.
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Iterative better Direct better
5-year Estimation Window

5 10 22 5 10 22

Comp. GARCH 8.0 36.0 60.0 4.0 0.0 0.0
GARCH 4.0 28.0 24.0 0.0 0.0 0.0
HAR22 20.0 24.0 12.0 0.0 12.0 8.0
HAR66 44.0 40.0 68.0 0.0 0.0 0.0
MIDAS-β22 24.0 20.0 4.0 0.0 4.0 12.0
MIDAS-β66 36.0 44.0 48.0 0.0 0.0 0.0
MIDAS-exp 16.0 24.0 12.0 0.0 4.0 4.0
MIDAS-hyp22 24.0 32.0 32.0 4.0 4.0 12.0
MIDAS-hyp66 20.0 40.0 64.0 0.0 0.0 0.0

20-year Estimation Window
5 10 22 5 10 22

Comp. GARCH 4.0 4.0 4.0 12.0 16.0 16.0
GARCH 0.0 0.0 0.0 24.0 16.0 28.0
HAR22 4.0 4.0 4.0 16.0 36.0 72.0
HAR66 16.0 8.0 16.0 0.0 0.0 12.0
MIDAS-β22 8.0 8.0 4.0 16.0 32.0 84.0
MIDAS-β66 20.0 20.0 8.0 4.0 12.0 24.0
MIDAS-exp 0.0 0.0 0.0 24.0 24.0 40.0
MIDAS-hyp22 4.0 4.0 4.0 24.0 44.0 84.0
MIDAS-hyp66 16.0 12.0 24.0 8.0 0.0 4.0

Table 10: Percentage of DMGW test statistics that prefer the iterative forecast (left panel) or the direct
forecast (right panel) when the estimation window is 5 years of daily data (top panels) or 20 years of
daily data (bottom panels). The parameters used to produce the direct forecasts were estimated using
the realized variance-based quasi likelihood.

Losses Ranks
5 10 22 5 10 22

Direct (RV)
Comp. GARCH 96 96 80 72 84 60
HAR66 60 76 60 68 60 40
MIDAS-β66 76 84 72 16 24 16
MIDAS-hyp66 84 84 72 40 52 24

Iterative
Comp. GARCH 96 96 100 76 80 80
HAR66 84 88 92 84 84 84
MIDAS-β66 100 100 92 32 48 12
MIDAS-hyp66 92 92 96 76 84 80

Table 11: Percentage of models that enter a Model Confidence Set with a family wise error rate of 10%
for horizons 1, 5, 10 and 22 days. The left panel applies the MCS directly to losses, and the right panel
applies the MCS to than rank of the losses. The top set of models were direct forecasts using parameters
estimated with realized variance and the bottom used iterative forecasts.
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B Figures
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Figure 1: Weight given to observation at lag j for the first 30 lags. The left panel show the weights when
the model is optimized to predict on one-day ahead volatility and the right panel shows the weights
when optimized to predice 22-day ahead volatility. All weights based on full sample estimates of the
VWM series.
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