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Abstract

Electricity prices are characterised by strong autoregressive persistence, periodicity
(e.g. intraday, day-of-the week and month-of-the-year effects), large spikes or jumps,
GARCH and – as evidenced by recent findings – periodic volatility. We propose a
multivariate model of volatility that decomposes volatility multiplicatively into a
non-stationary (e.g. periodic) part and a stationary part with log-GARCH dynam-
ics. Since the model belongs to the log-GARCH class, the model is robust to spikes
or jumps, allows for a rich variety of volatility dynamics without restrictive positivity
constraints, can be estimated equation-by-equation by means of standard methods
even in the presence of feedback, and allows for Dynamic Conditional Correlations
(DCCs) that can – optionally – be estimated subsequent to the volatilities. We
use the model to study the hourly day-ahead system prices at Nord Pool, and find
extensive evidence of periodic volatility and volatility feedback. We also find that
volatility is characterised by (positive) leverage in one third of the hours, and that
a DCC model provides a better fit of the conditional correlations than a Constant
Conditional Correlation (CCC) model.
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1 Introduction

Modelling the uncertainty or volatility of electricity prices is of great importance for energy
market participants. On the supply side, producers of electricity need estimates of the
time-varying price volatility in order to determine the risks of future production levels.
On the demand side, consumers of electricity need the same type of information in order
to ascertain the risks associated with decisions about when and where to produce goods,
and in order to hedge against adverse price changes.

It is well known that electricity prices are characterised by autoregressive persistence,
periodicity effects (e.g. hour-of-the-day, day-of-the-week and month-of-the-year effects) in
the conditional mean, see e.g. Bunn (2000), Knittel and Roberts (2005), Janczura et al.
(2013), and Weron (2014). It is also well known that the volatility of electricity prices is
characterised by Autoregressive Conditional Heteroscedasticity (ARCH) and large spikes
or jumps, see e.g. Escribano et al. (2002, 2011), Koopman et al. (2007), and Hellström
et al. (2012). Since the periodicity effects in the conditional mean usually account for a
considerable proportion of the conditional mean dynamics, it is reasonable to conjecture
that the same may also be the case for volatility. Recently, this line of research has
received increasing attention. Bauwens et al. (2013, Section 4.2), for example, in a three-
dimensional multivariate model of monthly, quarterly and yearly Phelix baseload futures
at the European Energy Exchange, find that volatility depends on the number of days-
to-delivery, i.e. that the volatility increases as the future in question approaches maturity.
Sucarrat et al. (2016, Section 4), in a two-dimensional multivariate model of peak and
off-peak day-ahead prices in the Oslo region (Nord Pool), find that day-of-the-week effects
matter for volatility, and that peak volatility dynamics is less persistent than off-peak.
Dupuis (2017), in a fifteen-dimensional multivariate model of electricity prices in the New
York area, includes dummies in the volatility equations to accommodate hour-of-the-day
and day-of-the-week effects.

There are two main challenges in the multivariate modelling of electricity price volat-
ility. The first is the socalled “curse of dimensionality”: As the multivariate dimension
grows, joint estimation of the full model becomes infeasible in practice due to the number

2



of parameters that has to be estimated. This problem is not specific to electricity prices,
but it is more severe. The reason is that volatility is likely to depend on additional cov-
ariates, e.g. weather and market specific stochastic conditioning variables, in addition to
periodicity effects similar to those that often characterise the conditional mean dynam-
ics. Moreover, if standard or non-exponential GARCH models are used, then the curse
of dimensionality problem is compounded, since the covariates and/or their parameters
need to be restricted in estimation in order to ensure the positivity of fitted volatility.
An example in which such a parameter restriction is needed in electricity price markets is
the socalled “inverse leverage effect”, as coined by Knittel and Roberts (2005), whereby
negative shocks in one period leads to a reduction in volatility in the next period.1 Knittel
and Roberts (2005) avoid the need for a restriction by using Nelson’s (1991) Exponential
GARCH (EGARCH). However, as is well-known, the EGARCH is not robust to spikes.2

This leads to the second main challenge in the modelling of electricity prices: The oc-
currence of price spikes. It is well-known that the ordinary GARCH model is not robust
to such spikes. This is because the spikes affect estimation and inference inadvertently
(Carnero et al. (2007), Gregory and Reeves (2010)), and because it makes the model
propensive to volatility forecast failure subsequent to the spikes, see e.g. Harvey and
Sucarrat (2014, Introduction). One multivariate model specification that has been put
forward as being able to accommodate fat-tailed standardised errors, is the exponential
version of the Generalised Autoregressive Score (GAS) model, see e.g. Creal et al. (2011).
However, even univariate versions of this model can be very difficult to estimate due to its
nature (see the section on “Computational challenges” in Sucarrat (2013, p. 142)), and
the problem is compounded even further in the multivariate case.

We propose a multivariate model of electricity price volatility that is robust to spikes,
that sidesteps the curse of dimensionality through equation-by-equation estimation, and
which can include both deterministic and stochastic covariates to accommodate period-
icity effects, leverage, the effect of weather-related variables, and so on. The model we
propose is a multivariate multiplicative component log-GARCH-X model that decomposes
volatility multiplicatively into a non-stationary deterministic part of arbitrary form, and
a stationary stochastic part. In order to enable equation-by-equation estimation, we make
use of recent ideas developed formally in Francq and Zaköıan (2016), and in Francq and
Sucarrat (2017). In particular, our model allows for feedback volatility effects among
the equations, and Dynamic Conditional Correlations (DCCs) that – optionally – can be
estimated subsequent to the volatility equations. As long as the DCC specification is
appropriately chosen, this will ensure positive definiteness of the conditional covariance
matrix. The model we propose can be viewed as a generalisation of Sucarrat et al. (2016,
Section 4) in two ways. First, the deterministic component is much more general, since
it can be of arbitrary form (i.e. it needs not be a linear combination of non-stochastic
covariates). Second, we set up the estimation problem in such a way that the determin-
istic and stationary parts can be estimated separately, each by common methods that are

1In stock markets, by contrast, a negative shock is usually followed by an increase. Arguably, the
inverse leverage effect should instead be referred to as negative asymmetry, since the effect is not due
to leverage in many markets (e.g. electricity and currency markets), and because a negative parameter
value is not obtained as the mathematical inverse of a positive parameter.

2This is the reason why Nelson proposed his model in combination with the Generalised Error Dis-
tribution (GED) rather than with the standardised Student’s t, since the unconditional variance will
generally not exist if the standardised error is distributed as the latter, see Nelson (1991, p. 365).
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widely available. In particular, in many cases the deterministic part will be estimable by
an Ordinary Least Squares (OLS) regression, and the stochastic part will be estimable via
an ARMA-regression. The equation-by-equation estimation procedure that we propose
is thus readily implemented in software that is widely available. We use the model to
study the multivariate volatility of hourly day-ahead system prices at Nord Pool. We find
extensive evidence of periodicity in the volatility in that it depends on the day-of-the-
week, and in that volatility dynamics varies intradaily. We also find extensive evidence
of volatility feedback from adjacent hours. Leverage (of positive type), however, is only
present in about one third of the instances, and mostly between 1am and 5am. In only
a single instance – at 7pm – does a plain log-GARCH(1,1) without periodicity provide a
better fit of the volatility. Finally, we also find that the corrected DCC (cDCC) of Aielli
(2013) provides a better fit of the conditional correlations than a Constant Conditional
Correlation (CCC) specification. Interestingly, the correlations are found to be at their
strongest among adjacent hours, and that the strength is inversely related to the degree
of adjacency: The further away, the weaker the correlation. This has implications for
risk-management, since it implies that portfolio risk is reduced if the degree of adjacency
among the portfolio components is reduced.

The rest of the paper is organised as follows. The next section, Section 2, outlines the
model and the equation-by-equation estimation procedure. Section 3 contains our study
of hourly day-ahead price volatility at Nord Pool. Section 4 contains the conclusions,
whereas tables and figures are located at the end after the references.

2 Model and estimator

2.1 The model

Let rt = (r1t, . . . , rMt)
′ denote an M -dimensional vector of price returns at t. A generic

model of rt can be written as (see e.g. Engle (2002))

rt = µt + εt, t ∈ Z, (1)

εt = (ε1t, . . . , εMt)
′, H t = Et−1(εtε

′
t), D2

t = diag(H t), (2)

ηt = D−1t εt, Rt = Et−1(ηtη
′
t), (3)

where µt is the conditional mean (say, a VAR-X as in the empirical section, see Section
3.2), εt = (ε1t, . . . , εMt)

′ is the error term, H t is an M ×M covariance matrix conditional
on the past information set Ft−1, Et−1(·) is shorthand notation for E(·|Ft−1), D2

t is a
diagonal M×M matrix with the conditional variance or volatility σ2

t = (σ2
1t, . . . , σ

2
Mt)

′ on
the diagonal, ηt = (η1t, . . . , ηMt)

′ is the standardised error, i.e. E(ηt) = 0 and E(η2
t ) = 1

where 0 and 1 are M×1 vectors, D−1t is a diagonal M×M matrix with (1/σ1t, . . . , 1/σMt)
′

on the diagonal andRt is the correlation matrix conditional on the past. The relationships
betweenH t andRt are given byH t = DtRtDt andRt = D−1t H tD

−1
t . The return vector

rt can be replaced with a price vector St = (S1t, . . . , SMt)
′, albeit – as is well-known –

any vector of prices can be obtained via a straightforward transformation of rt. For
example, if rt is log-return, then St = exp(µt + εt) � St−1, where � is the elementwise
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(Hadamard) matrix product.3 Alternatively, if rt is relative return (this approach is
preferable in markets where negative prices are possible), then St = (rt + 1)� St−1. To
accommodate that our model belongs to the log-GARCH class of models, and in order to
enable equation-by-equation estimation, we add the two assumptions

m = 1, . . . ,M : Pt−1(ηmt = 0) = 0, (4)

ηmt is independent of Ft−1, (5)

where Pt−1(·) denotes a probability conditional on the past. The first assumption is stand-
ard in log-GARCH models, but can be relaxed via the modifications suggested in Sucarrat
and Escribano (2017), and in Grønneberg and Sucarrat (2017). The second assumption
enables equation-by-equation estimation of σ2

t in the case where the conditional correla-
tions (i.e. the off-diagonals of Rt) are dynamic and dependent on the past, i.e. they are
DCCs, see Francq and Zaköıan (2016), and Francq and Sucarrat (2017). It should be
noted, however, that the estimation of Rt is optional. In other words, estimation of σ2

t

does not require the specification nor the estimation of Rt. Accordingly, estimation of Rt

– if needed – proceeds subesquent to the estimation of σ2
t by means of the standardised

residuals (i.e. estimates of ηt). In Section 2.3 we provide a brief survey of potential spe-
cifications of Rt, and in the empirical section we estimate the DCC of Aielli (2013) and
a CCC.

Periodic volatility means volatility is not covariance-stationary, since then the uncon-
ditional variance E(ε2t ) depends on t. The most common approach to non-stationary
volatility is to decompose σ2

t multiplicatively, see (amongst other) Van Bellegem and
Von Sachs (2004), Engle and Rangel (2008), Mazur and Pipien (2012), and Amado and
Terasvirta (2014a, 2014b). This means

σ2
t = gt � ht = (g1th1t, . . . , gMthMt)

′, (6)

where gt is the non-stationary component and ht is the stationary component (typically
a GARCH-like process). In our model, the non-stationary component is specified as

ln gt = (ln g1(λ1,x1t), . . . , ln gM(λM ,xMt))
′ , (7)

where ln g1, . . . , ln gM are known functions (linear or nonlinear), x1t, . . . ,xMt are known,
non-stochastic regressors, and λ1, . . . ,λM are unknown parameters to be estimated. We
do not restrict the xmt’s nor the functions ln gm to be equal across equations, and the
ln gm’s can assume a variety of shapes. In the simplest case the ln gm’s are linear functions
made up of time dummies (calendar effects, etc.), but it can also assume the shape of
an exponential spline as in Engle and Rangel (2008), the Fourier Flexible Form (FFF)
as in Mazur and Pipien (2012), or smooth threshold models as in Amado and Terasvirta
(2014a, 2014b). Under appropriate assumptions, the functions may also be estimated
nonparametrically, as in Van Bellegem and Von Sachs (2004).

3For example, if a and b are two equally sized M × 1 vectors, say, a = (a1, . . . , aM )′ and b =
(b1, . . . , bM )′, then a� b = (a1b1, . . . , aMbM )′.
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The stationary component is specified as

lnht = ω +

p∑
i=1

αi ln ε̃
2
t−i +

q∑
j=1

βj lnht−j + δxst−1, (8)

where lnht = (lnh1,t, . . . , lnhM,t)
′, ω = (ω1, . . . , ωM)′, ln ε̃2t = (ln ε2t−ln gt) = (lnh1tη

2
1t, . . . , lnhMtη

2
Mt)

′,
xst = (xs1t, x

s
2t, . . .)

′ is a vector of strictly stationary stochastic – hence the superscript s –
variables that satisfy E(xst) = 0,

αi =

 α11.i · · · α1M.i
...

. . .
...

αM1.i · · · αMM.i

 , βj = diag(β11.j, . . . , βMM.j)

and δ is a parameter matrix of appropriate size. The non-diagonality of αi enables
feedback among equations, whereas the diagonality of βj enables equation-by-equation
estimation. The motivation for xst is that electricity price volatility may also depend on
a range of stochastic factors, e.g. leverage, weather-related quantities and other market
specific variables. Contrary to non-exponential GARCH models, we do not need to impose
any non-negativity constraints on δ, nor on the variables in xst . The model is stable (in
lnht) if all eigenvalues of

∑p
i=1(αi + βi) are strictly less than 1 in modulus, and lnht is

invertible if all the eigenvalues of
∑q

j=1 βj are strictly less than 1 in modulus.

2.2 Equation-by-equation estimation of σ2
t

In our model, given by (1)-(8), the mth. log-volatility equation can be written as

lnσ2
mt = ln gmt + lnhmt, (9)

ln gmt = ln gm(λm,xmt), (10)

lnhmt = ωm +

p∑
i=1

αm.i ln ε̃
2
t−i +

q∑
j=1

βmm.j lnh2m,t−j + δmx
s
t−1, (11)

where αm.i is the mth. row of αi, i.e. αm.i = (αm1.i, . . . , αmM.i), and δm is the mth. row
of δ. Estimation of equation m proceeds in three steps:

1. Estimate λm by means of the auxiliary regression

ln ε2mt = λm0 + ln gm(λm,xmt) + ymt, (12)

where λm0 is the intercept and ymt the error-term. Below, we show that λm0 =
E(ln ε̃2mt) and that ymt is a zero-mean stationary error under standard assumptions.
If λm enters linearly in ln gm, then it can be estimated by OLS.

2. Fit an ARMA model to the residuals ŷmt from the first step. Below, we show
that the error-term ymt from Step 1 is in fact governed by a mean-corrected ARMA
representation of lnhmt. Due to the relationships between the parameters of the log-
GARCH model and the parameters of the mean-corrected ARMA-representation,
this provides consistent estimates of all the log-GARCH parameters apart from the
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intercept ωm. As we will show, however, an estimate of ωm is not needed in order
to estimate σ2

mt. Nevertheless, ωm can – if needed – be estimated subsequently in a
fourth step (see below).

3. Estimate the log-moment E(ln η2mt) needed to complete the estimate of σ2
mt. As we

show below, estimation of E(ln η2mt) is straightforward by means of a simple formula
made up of the residuals from Step 2.

We now provide the details of this three step estimator.
Step 1 consists of estimating an auxiliary regression whose error-term follows the

mean-corrected ARMA-representation of lnhmt. If E| ln η2mt| < ∞, then the ARMA-
representation of lnhmt is

ln ε̃2mt = φm0 +

p∑
i=1

φm.i ln ε̃
2
t−i +

q∑
j=1

θmm.jum,t−j + δmx
s
t−1 + um,t, (13)

where

φm0 = ωm + (1−
q∑
j=1

βmm.j)E(ln η2mt), (14)

φm.i = (αm1.i, . . . , αmm.i + βmm.i, . . . , αmM.i), θmm.j = −βmm.j, (15)

um,t = ln η2m,t − E(ln η2m,t), um,t ∼ WN(0, σ2
um). (16)

In other words, φm.i is the mth. row of φi. If E| ln ε̃2t | < ∞, then the mean-corrected
ARMA representation is

ym,t =

p∑
i=1

φm.iyt−i +

q∑
j=1

θmm.jum,t−j + δmx
s
t−1 + um,t, um,t ∼ WN(0, σ2

um), (17)

where ym,t = ln ε̃2m,t −E(ln ε̃2m,t) and yt = (y1,t, . . . , yM,t)
′. To obtain the auxiliary regres-

sion in (12), we simply add ln η2mt to ln σ2
mt in (9), which gives

ln ε2mt = ln gmt + lnhmt + ln η2mt
= ln gmt + ln ε̃2mt
= λm0 + ln gmt + ymt,

where λm0 = E(ln ε̃2mt) and ymt = ln ε̃2mt − E(ln ε̃2mt). In other words, (12) is a stand-
ard regression model in which the error-term follows a zero-mean stationary error. In
particular, if λm enters ln gmt linearly, then λm0 + ln gmt can be estimated by OLS.

Step 2 consists of estimating (17) using the residuals ŷmt from Step 1. This is an
ARMA-X estimation problem that provides estimates of all the ARCH and GARCH
parameters – except ωm – due to the relationships in (15). An estimate of ωm, however,
is not needed if the aim is to estimate σ2

mt. The reason for this is that the fitted values
from the first two steps provide estimates of E(ln ε̃2mt)+ln gmt and Et−1(ymt), respectively.
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Adding these gives

E(ln ε̃2mt) + ln gmt + Et−1(ymt) = ln gmt + Et−1(ln ε̃
2
mt)

= ln gmt + lnht + E(ln η2mt), (18)

since ln ε̃2mt = lnhmt + ln η2mt. So only an estimate of E(ln η2mt) is needed to complete the
estimate of σ2

mt.
Step 3 thus consists of estimating E(ln η2mt). Sucarrat et al. (2016) noted that, if

E| ln η2mt| <∞ and E(η2mt) = 1, then it follows straightforwardly that − lnE(exp(umt)) =
E(ln η2mt). This suggests

− ln

[
T−1

T∑
t=1

exp(ûmt)

]
(19)

is a consistent estimator of E(ln η2mt), where the ûmt’s are the residuals from Step 2.4

Sucarrat et al. (2016) provide conditions under which this indeed holds, whereas Francq
and Sucarrat (2017) prove that this holds when the ARMA-X representation of equation
m in a first order multivariate log-GARCH-X model – where the X-part refers to stochastic
conditioning variables – is estimated by Least Squares.

Summarised, then, the estimate of σ2
mt is given by

σ̂2
mt = exp

(
Ê(ln ε̃2mt) + ln ĝmt + Êt−1(ymt)− Ê(ln η2mt)

)
, (20)

where Ê(ln ε̃2mt) + ln ĝmt is the fitted value of the auxiliary regression in Step 1, Êt−1(ymt)

is the fitted value of the mean-corrected ARMA representation in Step 2 and Ê(ln η2mt) is
the estimate of E(ln η2mt) in Step 3.

An estimate of ωm requires estimation of the other equations, in addition to equation
m. This is because the expression for E(ln ε̃2mt), which can be written as E(ln ε̃2mt) = φm0+∑p

i=1φm.iE(ln ε̃2t ), depends on the unconditional expectations of the other equations.
Solving for ωm in the expression for E(ln ε̃2mt) gives

ωm = (1−
q∑
j=1

βmm.j)E(ln ε̃2mt)−
p∑
i=1

αm.iE(ln ε̃2t )− (1−
q∑
j=1

βmm.j)E(ln η2mt), (21)

where we have used the expression for φm0 in (14), and that
∑p

i=1φm.iE(ln ε̃2t ) =
∑p

i=1αm.iE(ln ε̃2t )+∑q
j=1 βmm.jE(ln ε̃2mt). It should be noted that only the elements in E(ln ε̃2t ), apart from

the mth. entry, comes from the other equations. In other words, if there is no feedback
effects (i.e. all entries in the αm.i’s apart from the mth. entry are zero), then there is no
need to estimate the other equations in order to estimate ωm.

For inference an estimate of the covariance matrix of the coefficients is needed. To
this end an estimate of the covariance matrix of the mean-corrected ARMA specification
can be used, since the log-GARCH parameters – apart from the log-volatility intercept
ωm – is a linear combination of the ARMA-parameters, see (15). For inference on ωm the
delta method can be used. Finally, for inference involving λm a “sandwich” approach can
be used, where the autocovariance structure of ymt provides the “meat” of the sandwich.

4The expression in square brackets in (19) is the smearing estimate of Duan (1983).
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2.3 Dynamic Conditional Correlations (DCCs)

Assumption (5) enables DCCs. The three-step estimation procedure described above,
however, does not provide estimates of the DCCs. Nevertheless, they can – if needed – be
estimated in a subsequent step. The estimates σ̂2

1t, . . . , σ̂
2
Mt from the three-step procedure

above lead to the standardised residuals η̂t = (η̂1t, . . . , η̂Mt)
′, where η̂mt = εmt/σ̂mt. These

residuals can be used to estimate either a CCC or DCC specification ofRt = E(ηtη
′
t|Ft−1).

An example is the DCC of Engle (2002), or alternatively the corrected version of Aielli
(2013), see e.g. the empirical section of Francq and Sucarrat (2017). Another option is
the robust (to spikes) DCC model proposed for electricity prices by Dupuis (2017). In
the empirical section (see Section 3.3) we estimate the DCC of Aielli (2013) and a CCC.

3 The volatility of hourly day-ahead system prices at

Nord Pool

3.1 Data

Nord Pool Spot AS is one of the largest energy exchanges in the world measured in traded
volume of terrawatts per hour (TWh). Currently 380 members operate on the exchange,
and these include public and private energy producers, energy intensive industries, large
consumers, distributors, funds, investment companies, banks, brokers, utility companies
and financial institutions. Arguably, the most important price at the exchange is the
“system price”. This is because it constitutes some sort of aggregate or equilibrium price
(it is determined by the intersection of the aggregate supply and demand curves of all bids
and offers), and because it is used as reference in financial contracts – used for hedging
and risk management – traded at Nasdaq Commodities.5

Our rawdata consist of the hourly day-ahead system prices in Euros per kw/h from
1 January 2010 to 20 May 2014. This amounts to T = 1601 daily observations for each
m before differencing and lagging. The price at day t in hour m we denote Smt, where
m = 1, . . . , 24. Note that S1t should be interpreted as the price from midnight to 1am
in day t, S2t is the price from 1am to 2am in day t, and so on. The daily log-return for
hour m, denoted rmt, is defined as lnSm,t − lnSm,t−1, i.e. the daily log-return for hour
m. Graphs of Smt and rmt are contained in Figures 1 and 2, respectively, whereas the
top graph in Figure 3 contains the average hourly price. The prices and returns exhibit
the usual characteristics, i.e. that return variability is substantially larger than those of
stocks, stock indices and exchange rates, and that big spikes or jumps occur relatively
frequently. On average, the price is highest at 9am and lowest at 4am. There are no
negative prices in our data, but five spurious zeros due to daylight saving time.6 These
zeros we replace by the average of the two adjacent values.

5See https://www.nordpoolspot.com/About-us/, http://www.nordpoolspot.com/

How-does-it-work/Financial-market/ and http://www.nordpoolspot.com/TAS/

Day-ahead-market-Elspot/Price-calculation/. All accessed 14 July 2016.
6The five zeros all occurred for m = 3, one in each year: 28 March 2010, 27 March 2011, 25 March

2012, 31 March 2013 and 30 March 2014.
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3.2 Models of the mean and volatility

We start by fitting a conditional mean specification to the vector rt of daily returns. A
restricted Vector Autoregressive (VAR) model is formulated and estimated, where each
equation contains its own AR-lags from 1 to 7 and six day-of-the-week dummies (Tuesday
to Sunday). The total number of estimated parameters in each conditional mean equation
is thus fourteen: One intercept + seven AR-parameters + six dummy-parameters. We do
not explicitly model the spikes in the mean, since our volatility model is robust to them
due to the log-transform. However, if a user wishes do to so, our model is – of course –
compatible with specifications that model them explicitly. The second column of Table 1
and the second graph in Figure 3 contain the R-squareds of the twenty-four conditional
mean equations. As is clear, predictability varies substantially across the day, since the
R-squareds range from only 5% when m = 1 to a peak of 50% when m = 9. As a whole,
the graph clearly indicates that the explanatory power is higher in peak hours, i.e. from
about m = 7 to about m = 19.

We fit five different multivariate volatility models to the vector of errors εt. The
models we label (a) – (e), and in each of the five models equation m is given by

(a) lnσ2
mt = ωm + αmm.1 ln ε̃2m,t−1 + βmm.1 lnhm,t−1,

(b) lnσ2
mt =

6∑
i=1

λmidit,

(c) lnσ2
mt =

6∑
i=1

λmidit + ωm + αmm.1 ln ε̃2m,t−1 + βmm.1 lnhm,t−1,

(d) lnσ2
mt =

6∑
i=1

λmidit + ωm + αmm.1 ln ε̃2m,t−1 + αmm(1).1 ln ε̃2m(1),t−1

+αmm(2).1 ln ε̃2m(2),t−1 + βmm.1 lnhm,t−1,

(e) lnσ2
mt =

6∑
i=1

λmidit + ωm + αmm.1 ln ε̃2m,t−1 + αmm(1).1 ln ε̃2m(1),t−1

+αmm(2).1 ln ε̃2m(2),t−1 + βmm.1 lnhm,t−1 + δmxm,t−1.

Model (a) is a plain log-GARCH(1,1) and serves as benchmark. The variables d1t, . . . , d6t
are dummies for Tuesday to Sunday, respectively. So (b)–(e) all contain periodicity. In
(e) and (d), ln ε̃2m(1),t−1 and ln ε̃2m(2),t−1 are the two most adjacent (within the same day)

log-ARCH lags in equation m. For example, if m = 1, then m(1) = 2 and m(2) = 3.
Similarly, if m = 2, then m(1) = m − 1 = 1 and m(2) = m + 1 = 3. And so on. The
idea is to include those log-ARCH terms that are most likely to have a feedback effect
on the volatility of equation m.7 Finally, the variable xm,t−1 is a lagged mean-corrected
asymmetry or “leverage” term, where the lagged asymmetry term is given by I{εm,t−1<0}
before mean-correction.

7For simplicity we only include lags from the same day. However, as pointed out by one of the
reviewers, for m = 1, it is not obvious that m(2) = 2 for t− 1 is more adjacent that m(2) = 24 in t− 2.
Indeed, additional estimation results (not reported) suggests the m = 1 equation can be improved further
by including the ARCH-lag for m = 24 in t− 2. A detailed study of the optimal adjacency structure we
leave for future research.
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The number of estimated parameters (denoted km) in equation lnσ2
m is 3, 7, 9, 11

and 12, respectively, for the five specifications (a) – (e). The total number of estimated
parameters in each of the five multivariate volatility specifications of σ2

t is thus 3×24 = 72
for (a), 7× 24 = 168 for (b), 9× 24 = 216 for (c), 11× 24 = 264 for (d) and 12× 24 = 288
for (e). Estimation of the five multivariate models all together takes about thirty seconds
on an average laptop, and we experience no numerical issues.8 Both the deterministic and
stationary parts are estimated by Least Squares (LS), and a summary of the estimation
results are contained in Table 1. For comparison we use the Schwarz (1978) information
criterion (BIC), which favours parsimony. The best model in hour m according to the BIC
is identified with an asterisk (∗) to the right of its BIC-value. In all but two cases the best
model is either (d) or (e). In other words, in all but two cases the best model contains
periodicity and feedback terms. The exceptions occur for m = 16 and m = 19, in which
models (c) and (a), respectively, are the best according to the BIC. If we only compare
(a), (b) and (c) against each other to obtain a more detailed idea of the importance of
periodicity, then we see that either (b) or (c) performs better in 17 out of the 24 hours.
Moreover, the periods in which (a) performs better are clustered in the evening, since
they are m = 17, 18, 19, 20, 21, 22 and 24. Finally, with respect to leverage, equation (e)
performs better than (d) in 8 instances, whereas the opposite is the case in 16 instances.
In other words, there is evidence of leverage in about one third of the hours. Interestingly,
whenever present the leverage is always positive except once (m = 12) – i.e. we find little
evidence of the socalled inverse (i.e. negative) leverage effect. Summarised, then, our
results provide extensive evidence of periodicity and feedback effects in the volatility, and
in about one third of the hours there is leverage. In only a single instance (m = 16) did
the plain log-GARCH(1,1) perform better than the other specifications.

The third, fourth and fifth graphs in Figure 3 provide a more detailed picture of
the best specifications in each m. The third graph contains the ARCH(1) estimates,
i.e. α̂mm.1, for m = 1, . . . , 24. All estimates are positive and lie between 0.06 and 0.12.
In other words, once periodicity and feedback effects are controlled for, then the (own)
ARCH effect becomes substantially smaller than commonly found in electricity prices,
and much closer to those usually found in stock and currency markets. The fourth graph
in the figure contains the GARCH(1) parameter estimates, i.e. β̂mm.1. The values are in
the 0.8 to 0.95 range, and interestingly the values about 0.9 are mostly clustered around
the morning hours, i.e. m = 1, . . . , 8. Finally, the bottom graph contains the leverage
estimates, i.e. δ̂m. The estimated value is zero if the best model in hour m does not
contain leverage, and it is notable that half of the non-zero values occur at night, from
m = 2 to m = 5.

3.3 Dynamic Conditional Correlations (DCCs)

To obtain estimates of the off-diagonals of H t, an estimate of Rt = Et−1(η
′
tηt) is needed.

To this end we fit the corrected DCC (cDCC) model of Aielli (2013), which is a modified
version of Engle’s (2002) DCC. It should be noted that the cDCC is a covariance-stationary
model of η′tηt even though ε′tεt is not covariance stationary.

8The computations were undertaken with R code (R Core Team (2014)) on a Lenovo X250 with an
Intel Core i7-5600U-2.60 Ghz processor running Win7-64bit.
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The cDCC model is given by

Rt = Q
∗−1/2
t QtQ

∗−1/2
t , Qt = (1− γ1 − γ2)R+ γ1Q

∗1/2
t−1 ηt−1η

′
t−1Q

∗1/2
t−1 + γ2Qt−1, (22)

where γ1, γ2 ≥ 0 are scalars such that γ1 + γ2 < 1, R is a correlation matrix (which in
general is not equal to E(Rt)), Q

∗
t is a diagonal matrix with elements from the diagonal of

Qt and ηt = D−1t εt. So estimation of the cDCC entails estimation of only two parameters,
γ1 and γ2. The standardised error ηt is made up of the errors from the best model in each
m according to the BIC (see above). In other words, if m = 1, then η̂1t is that of model
(e). If m = 8, then η̂8t is that of model (d). And so on.

Recalling that Rt is both the conditional correlation and covariance matrix of ηt,
estimation of γ1 and γ2 by Gaussian Quasi Maximum Likelihood (QML) leads to the
estimator

(γ̂1, γ̂2) = arg max
(γ̂1,γ̂2)

T∑
t=1

(
−M ln 2π − ln |R̂t| − η̂′tR̂

−1
t η̂t

)
/2, (23)

where |Rt| is the determinant of Rt, η̂t are the standardised residuals of the best models,

R̂t = Q̂
∗−1/2
t Q̂tQ̂

∗−1/2
t , Q̂t = (1− γ̂1 − γ̂2)R̂+ γ̂1Q̂

∗1/2
t−1 η̂t−1η̂

′
t−1Q̂

∗1/2
t−1 + γ̂2Q̂t−1

R̂ =
1

T

T∑
t=1

Q̂
∗1/2
t η̂tη̂

′

tQ̂
∗1/2
t , Q̂

∗
t = diag(q̂11t, . . . , q̂MMt)

q̂mmt = (1− γ̂1 − γ̂2) + γ̂1η̂
2
m,t−1 + γ̂2q̂mm,t−1 for m = 1, . . . ,M.

The estimates of γ1 and γ2 are 0.005 and 0.868, respectively, which suggests the dynamic
correlations are very persistent, indeed almost constant. An estimate of the uncondi-

tional correlation E(Rt) is obtained as R̂
∗−1/2

R̂R̂
∗−1/2

, where R̂
∗

is a diagonal matrix

containing the diagonal elements of R̂. Figure 4 depicts the evolution of the unconditional
correlations over the day depending on m. The general tendency is clear: The strongest
unconditional correlations of Ê(ηitηmt) are always those closest to hour i. The top left

graph, for example, depicts Ê(η1tηmt) for m = 1, . . . 24. Naturally, when m = 1, then

Ê(η1tη1t) = 1. Next, the unconditional correlations fall gradually until they reach their
lowest point at m = 23, in which the estimate is about 0.2. More generally, whenever
i < m, then almost without exception Ê(ηitηm,t) is stronger than Ê(ηitηm+1,t), which is

stronger than Ê(ηitηm+2,t), and so on. Similarly, whenever i > 1, Ê(ηitηm−1,t) is stronger

than Ê(ηitηm−2,t), which is stronger than Ê(ηitηm−3,t), and so on. So just as in the case
of volatility feedback (see above), there is a clear adjacency effect among correlations.

Estimation of the cDCC entails fitting a total of 24 · (24 − 1)/2 = 276 distinct (off-
diagonal) conditional correlation paths. Figure 5 contains graphs of the first 23 together

with its own correlation, i.e. of Êt−1(η1tηmt) for m = 1, . . . , 24. Graphically, the subset of
paths exhibit relatively little variation around their unconditional values, and the near-
zero estimate of γ1 also suggests this is the case. So one may ask whether the cDCC
provides a better fit than a Constant Conditional Correlation (CCC) specification. The
Gaussian log-likelihood of the cDCC is given by the formula in (23) at the estimated values

γ̂1, γ̂2, whereas the log-likelihood of the CCC specification is obtained by replacing R̂t
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with the sample correlation matrix of {η̂t} in the same formula (we use the function cor
in R to compute the sample correlation matrix). The two values are −24863.82 (cDCC)
and −25064.15 (CCC), so the former produces a better fit in terms of the (quasi) log-
likelihood. In terms of the BIC, computed in terms of the average (quasi) log-likelihood
with T = 1592, and defining the cDCC to be characterised by 2 parameters and the CCC
by 0, the values are 31.25 (cDCC) and 31.49 (CCC), respectively. In other words, the
DCC specification is also warranted according to the BIC.

4 Conclusions

We propose a multivariate model of electricity price volatility that decomposes volatil-
ity multiplicatively into a non-stationary part (e.g. periodic) of arbitrary form, and a
stationary part with log-GARCH dynamics. The model is robust to spikes or jumps, a
common characteristic of electricity prices, the model allows for a rich variety of volatility
dynamics without restrictive positivity constraints on the parameters, it can be estimated
equation-by-equation by means of standard methods in widely available software, and
Dynamic Conditional Correlations (DCCs) can – optionally – be estimated subsequent to
the volatilities. In a study of the hourly day-ahead system prices at Nord Pool, we find
extensive evidence of periodic volatility and volatility feedback, and that about one third
of the hours exhibit (positive) leverage. The strength of the ARCH, GARCH and leverage
effects depend on the hour of the day. In only a single instance (at 7pm) does the plain
log-GARCH(1,1) perform better than the other specifications. We also find that time-
varying conditional correlations provide a better fit than constant correlations, and that
the correlations are at their strongest in adjacent hours. This may have implications for
risk-management, since it implies that portfolio risk is reduced if the degree of adjacency
among the components of a portfolio is reduced.
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Sucarrat, G. and Á. Escribano (2017). Estimation of log-GARCH models in the presence of
zero returns. European Journal of Finance. http://dx.doi.org/10.1080/1351847X.
2017.1336452.
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Table 1: Estimation results of multivariate models (a)–
(e) for each equation m = 1, . . . , 24, see Section 3. Only
selected parameter estimates reported

m R2
m Spec. α̂mm.1 β̂mm.1 δ̂m LogLm km BICm T

1 0.05 (a) 0.145 0.785 1696.179 3 -2.1157 1593
(b) 1223.525 7 -1.5037 1593
(c) 0.150 0.779 1761.886 9 -2.1704 1593
(d) 0.073 0.905 1965.803 11 -2.4187∗ 1592
(e) 0.095 0.870 0.177 1965.393 12 -2.4135 1592

2 0.08 (a) 0.142 0.800 1366.772 3 -1.7021 1593
(b) 703.540 7 -0.8509 1593
(c) 0.151 0.787 1443.756 9 -1.7710 1593
(d) 0.045 0.945 1539.855 11 -1.8835 1592
(e) 0.076 0.908 0.251 1599.195 12 -1.9535∗ 1592

3 0.11 (a) 0.148 0.803 972.495 3 -1.2071 1593
(b) 377.325 7 -0.4413 1593
(c) 0.166 0.780 1169.506 9 -1.4266 1593
(d) 0.062 0.924 1282.371 11 -1.5601 1592
(e) 0.080 0.903 0.155 1312.374 12 -1.5931∗ 1592

4 0.13 (a) 0.145 0.808 803.453 3 -0.9948 1593
(b) 184.655 7 -0.1994 1593
(c) 0.168 0.778 1016.636 9 -1.2347 1593
(d) 0.067 0.920 1099.937 11 -1.3309 1592
(e) 0.078 0.912 0.186 1140.255 12 -1.3769∗ 1592

5 0.18 (a) 0.192 0.731 591.917 3 -0.7293 1593
(b) 214.012 7 -0.2363 1593
(c) 0.225 0.690 1068.156 9 -1.2994 1593
(d) 0.087 0.895 1112.289 11 -1.3464 1592
(e) 0.090 0.893 0.064 1124.681 12 -1.3573∗ 1592

6 0.34 (a) 0.408 0.023 448.025 3 -0.5486 1593
(b) 221.996 7 -0.2463 1593
(c) 0.210 0.695 953.960 9 -1.1560 1593
(d) 0.074 0.909 1143.808 11 -1.3860∗ 1592
(e) 0.071 0.912 -0.036 1138.104 12 -1.3742 1592

7 0.46 (a) 0.342 0.026 536.814 3 -0.6601 1593
(b) 569.559 7 -0.6827 1593
(c) 0.206 0.654 1078.526 9 -1.3124 1593
(d) 0.089 0.879 1180.251 11 -1.4318∗ 1592
(e) 0.085 0.882 -0.065 1165.374 12 -1.4085 1592

8 0.49 (a) 0.230 0.247 473.888 3 -0.5811 1593
(b) 582.832 7 -0.6993 1593
(c) 0.146 0.705 800.839 9 -0.9638 1593
(d) 0.072 0.887 890.887 11 -1.0683∗ 1592
(e) 0.074 0.880 -0.100 889.508 12 -1.0619 1592

9 0.50 (a) 0.112 0.795 702.853 3 -0.8685 1593
Table continues on next page. Explanatory note at the end of table.



m R2
m Spec. α̂mm.1 β̂mm.1 δ̂m LogLm km BICm T

(b) 636.460 7 -0.7667 1593
(c) 0.120 0.784 841.824 9 -1.0152 1593
(d) 0.105 0.822 859.360 11 -1.0287∗ 1592
(e) 0.106 0.820 -0.058 852.266 12 -1.0151 1592

10 0.48 (a) 0.106 0.820 1169.681 3 -1.4546 1593
(b) 958.053 7 -1.1704 1593
(c) 0.111 0.813 1218.310 9 -1.4879 1593
(d) 0.105 0.825 1264.594 11 -1.5377∗ 1592
(e) 0.105 0.825 -0.032 1262.402 12 -1.5304 1592

11 0.44 (a) 0.087 0.848 1436.812 3 -1.7900 1593
(b) 1230.942 7 -1.5130 1593
(c) 0.092 0.840 1478.363 9 -1.8144 1593
(d) 0.086 0.857 1517.217 11 -1.8551∗ 1592
(e) 0.083 0.862 -0.066 1518.019 12 -1.8515 1592

12 0.40 (a) 0.096 0.837 1652.884 3 -2.0613 1593
(b) 1348.482 7 -1.6606 1593
(c) 0.103 0.827 1675.852 9 -2.0624 1593
(d) 0.080 0.880 1737.819 11 -2.1322 1592
(e) 0.074 0.890 -0.139 1745.956 12 -2.1378∗ 1592

13 0.39 (a) 0.108 0.817 1750.552 3 -2.1839 1593
(b) 1463.161 7 -1.8046 1593
(c) 0.115 0.805 1786.314 9 -2.2010 1593
(d) 0.086 0.870 1836.079 11 -2.2557∗ 1592
(e) 0.084 0.875 -0.060 1836.131 12 -2.2511 1592

14 0.42 (a) 0.116 0.801 1736.312 3 -2.1660 1593
(b) 1497.177 7 -1.8473 1593
(c) 0.127 0.786 1794.275 9 -2.2110 1593
(d) 0.108 0.829 1851.949 11 -2.2756 1592
(e) 0.109 0.827 0.067 1856.392 12 -2.2766∗ 1592

15 0.41 (a) 0.104 0.800 1647.765 3 -2.0549 1593
(b) 1448.164 7 -1.7858 1593
(c) 0.114 0.787 1698.284 9 -2.0905 1593
(d) 0.105 0.811 1731.209 11 -2.1239∗ 1592
(e) 0.106 0.808 0.049 1734.441 12 -2.1234 1592

16 0.40 (a) 0.103 0.819 1655.581 3 -2.0647 1593
(b) 1428.192 7 -1.7607 1593
(c) 0.113 0.804 1734.833 9 -2.1364∗ 1593
(d) 0.106 0.823 1735.811 11 -2.1297 1592
(e) 0.106 0.822 -0.018 1733.501 12 -2.1222 1592

17 0.35 (a) 0.119 0.792 1574.735 3 -1.9632 1593
(b) 1326.363 7 -1.6328 1593
(c) 0.127 0.782 1583.191 9 -1.9460 1593
(d) 0.098 0.851 1690.942 11 -2.0734 1592
(e) 0.098 0.852 0.047 1699.919 12 -2.0800∗ 1592

18 0.30 (a) 0.118 0.833 1649.697 3 -2.0573 1593
Table continues on next page. Explanatory note at the end of table.
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m R2
m Spec. α̂mm.1 β̂mm.1 δ̂m LogLm km BICm T

(b) 1198.336 7 -1.4721 1593
(c) 0.123 0.827 1663.243 9 -2.0465 1593
(d) 0.110 0.847 1718.433 11 -2.1079∗ 1592
(e) 0.110 0.847 -0.023 1716.875 12 -2.1013 1592

19 0.23 (a) 0.114 0.830 1784.389 3 -2.2264∗ 1593
(b) 1320.064 7 -1.6249 1593
(c) 0.118 0.825 1783.915 9 -2.1980 1593
(d) 0.118 0.823 1807.227 11 -2.2194 1592
(e) 0.118 0.823 -0.009 1807.172 12 -2.2147 1592

20 0.20 (a) 0.130 0.778 2051.643 3 -2.5619 1593
(b) 1558.624 7 -1.9244 1593
(c) 0.135 0.770 2057.749 9 -2.5418 1593
(d) 0.119 0.811 2094.393 11 -2.5802∗ 1592
(e) 0.117 0.815 -0.058 2093.004 12 -2.5738 1592

21 0.16 (a) 0.109 0.807 2260.769 3 -2.8245 1593
(b) 1815.880 7 -2.2474 1593
(c) 0.113 0.801 2269.980 9 -2.8083 1593
(d) 0.075 0.886 2331.225 11 -2.8777∗ 1592
(e) 0.075 0.887 -0.006 2331.454 12 -2.8734 1592

22 0.13 (a) 0.132 0.781 2441.839 3 -3.0518 1593
(b) 2022.447 7 -2.5068 1593
(c) 0.136 0.775 2446.624 9 -3.0301 1593
(d) 0.104 0.846 2478.759 11 -3.0631∗ 1592
(e) 0.103 0.848 -0.034 2476.671 12 -3.0558 1592

23 0.10 (a) 0.137 0.761 2448.579 3 -3.0603 1593
(b) 2014.287 7 -2.4965 1593
(c) 0.141 0.755 2478.169 9 -3.0697 1593
(d) 0.103 0.840 2539.517 11 -3.1394∗ 1592
(e) 0.096 0.854 -0.096 2539.433 12 -3.1347 1592

24 0.10 (a) 0.131 0.818 2048.593 3 -2.5581 1593
(b) 1356.737 7 -1.6710 1593
(c) 0.133 0.815 2001.696 9 -2.4715 1593
(d) 0.099 0.869 2085.080 11 -2.5685 1592
(e) 0.103 0.864 0.071 2099.393 12 -2.5819∗ 1592

R2
m, the R-squared of conditional mean equation m. Spec., the log-GARCH specific-

ation in question, see Section 3. α̂mm.1, β̂mm.1 and δ̂m, the ARCH, GARCH and asym-
metry/leverage estimates, respectively. LogLm, the Gaussian log-likelihood of equation m
in question. km, the number of parameters for equation m in the log-GARCH specification
in question. BICm, the value of the Schwarz (1978) information criterion for the equation
m in question in terms of the average log-likelihood. T , the number of observations. All
computations in R (R Core Team (2014)).
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Figure 1: Hourly (m = 1, . . . , 24) day-ahead system prices in Euros per kw/h at Nord
Pool from 1 January 2010 to 20 May 2014 (T = 1601 observations before differencing and
lagging), see Section 3.1.
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Figure 2: Hourly (m = 1, . . . , 24) day-ahead log-returns of system prices at Nord Pool
from 1 January 2010 to 20 May 2014, see Section 3.1.
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Figure 3: The average hourly price in Euros (top graph), the R-squared of the conditional
mean equations (second graph), and the estimated ARCH(1), GARCH(1) and leverage
parameters of the best specification (according to BIC) in each m (third, fourth and
bottom graphs). The best specification in hour m is identified by an asterisk ∗ to the
right of its BIC value in Table 1.
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Figure 4: Estimates of the unconditional correlations E(ηitηmt), i = 1, . . . , 24 and m =
1, . . . , 24, of the cDCC, see Section 3.3.
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Figure 5: Estimates of a subset (the first 24) of the cDCC conditional correlations paths

{Êt−1(η1tηmt)} for m = 1, . . . , 24, see Section 3.3.

23


	Introduction
	Model and estimator  
	The model
	Equation-by-equation estimation of bold0mu mumu t2  
	Dynamic Conditional Correlations (DCCs)  

	The volatility of hourly day-ahead system prices at Nord Pool  
	Data  
	Models of the mean and volatility  
	Dynamic Conditional Correlations (DCCs)  

	Conclusions  

