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Abstract

This paper introduces a simple and intuitive measure of microstructure noise, the devi-
ation of observable transaction prices from fundamental values. We measure the moments
of noise, in particular, the variances and autocovariances under a general nonparametric
setting. We demonstrate the intrinsic consistency of the proposed estimators without restric-
tions on data frequencies, and characterize the limit distributions under infill asymptotics.
Simulation studies show the robustness of the proposed estimators to data frequencies and
model specifications.

The new econometric techniques provide two liquidity measures that gauge the instan-
taneous and average bid-ask spread with potentially autocorrelated order flows. While being
flexible with the autocorrelation structures, the new estimators only employ the transaction
prices thus do not require any knowledge of the order flows. Empirically we find that
microstructure noise in transaction data tends to be positively autocorrelated. Such posi-
tive autocorrelation induces sharp discrepancies among the bid-ask spread measures: The
average measures are persistently larger than the instantaneous ones, whereas the classic
Roll measures are further downward biased. Moreover, the intraday spreads have a promi-
nent L-shape: The magnitude is much larger at the beginning of the trading day, and it is
associated with extremely large transactions.

Keywords: Bid-ask spread, execution costs, finite sample bias, high-frequency data, liquidity,
intraday pattern, microstructure noise, mixing sequence, Roll’s measure

1 Introduction

Observed asset prices embed frictions induced by diverse microstructure effects such as trans-
action costs, price discreteness, inventory holdings, information asymmetry, etc. Financial
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models decompose the observed prices1 into a semimartingale and stationary components.
The semimartingale component is identified with the implicit efficient price; the stationary com-
ponent, the deviation between the efficient price and the observed transaction prices, is termed
the microstructure noise.

Two strands of literature deal with the modelling and measuring of the microstructure noise.
In empirical microstructure, microstructure noise typically resembles the bid-ask spread, which
can be further decomposed into components due to order processing cost, adverse information
and inventory costs, see Hasbrouck (2007) for an insightful review. There are several classes of
statistical models that measure the bid-ask spreads and its components. Roll (1984) method
is based on the covariances of returns, see also Choi et al. (1988), Stoll (1989) for extended
Roll measures. Regression models employ the order flows (trading direction indicators of
buying or selling) and other variables, see Huang and Stoll (1997) and Lin et al. (1995). The
Bayesian Gibbs approach is proposed by Hasbrouck (2004, 2009). Chen et al. (2017a,b) develop a
semiparametric estimation method of bid-ask spread based on empirical characteristic function.
The second strand of literature belongs to the field of financial econometrics, in which the inference
of the efficient price process, e.g., volatility, jumps, is the primary concern. The economic
modelling of microstructure noise is not explicit, but its presence makes the inference of the
underlying efficient price more challenging. This leads to the development of several de-
noise methods, in which the moments of noise and parameters of the efficient price are jointly
estimated, e.g., the two/multi-scales realized volatility Zhang et al. (2005), Zhang (2006), Aït-
Sahalia et al. (2011); finite sample treatment by Bandi and Russell (2008), Bandi and Russell
(2006); maximum likelihood estimator by Aït-Sahalia et al. (2005), Xiu (2010); pre-averaging
method developed in Podolskij and Vetter (2009), Jacod et al. (2009); realized kernel by Hansen
and Lunde (2006), Barndorff-Nielsen et al. (2008).

The above approaches confront several facts. First, microstructure data are remarkably
plentiful. The data richness would favour some flexible and robust methods, making the esti-
mation based on asymptotic approximations appealing. However, most empirical microstruc-
ture literature do not fully exploit this data advantage. Second, in financial econometrics,
microstructure noise is frequently modelled as an i.i.d. process. Yet trading practices and
microeconomic mechanisms generate more complicated microstructure noise. Ignoring the
rich structure of microstructure noise makes the estimation results lack economic insights, pro-
viding little guidance to investors and financial regulators. The last concern is primarily of a
practical nature. Econometric practices with microstructure data should account for sampling
schemes and data frequencies. The former may affect price behaviour and many microstruc-
ture effects, while the latter imposes limits on the accuracy of asymptotic estimators in a finite
sample.

We introduce a general approach to measure microstructure noise in a nonparametric set-
ting. We estimate the moments of noise by the Realized moMents of Disjoint Increments
(ReMeDI) of observed transaction prices. The underlying efficient price follows a semimartin-

1Price always refers to the logarithmic price unless stated otherwise.
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gale that accommodates stochastic volatility, jumps, etc. The microstructure noise is a strongly
mixing sequence thus can be serially dependent to capture, for instance, serial autocorrelations
induced by clustered order flows. The efficient price and noise could also be correlated to
reflect informational effects. Statistically, we provide a general method to separate a mixing
sequence from a semimartingale; from an economic point of view, we identify the components
of asset prices arise from market frictions.

We first show, without imposing any restrictions on data frequency that ReMeDI provides
consistent estimators of arbitrary second and third moments of microstructure noise when the
efficient price is a martingale process and is independent of the noise process. The identification
strategy is very intuitive: after taking the realized moments (of the observed prices) over dis-
joint intervals, the efficient price, were it a martingale, constitutes martingale differences of disjoint
intervals of the ReMeDI estimators. Therefore, the ReMeDI approach effectively “removes” the
efficient price thanks to its martingale property, a property that is irrespective of the data fre-
quencies. What remains in the ReMeDI estimators are components of the observed transaction
price but the martingale part, which is identified with microstructure noise. ReMeDI further
controls and tunes the “length” and “distance” of the intervals to eliminate the redundant
moments of microstructure noise. In the end, only the targeted moment remains. Thus the
ReMeDI approach follows a simple design and it is invariant to sampling frequencies. It can
be used by asset pricers with daily or coarser returns and researchers in market microstruc-
ture working on millisecond prices. Next, under infill asymptotics when the data frequency
increases without bound within a fixed time span, we derive consistent ReMeDI estimators of
higher order moments of microstructure noise and obtain the limit distributions of the second
moments estimators. The intuition of the identification and estimation under infill asymptotics
is different: In the limit, the mesh of observation grid is shrinking to zero, thus the variation of
returns over very brief time intervals is largely due to the microstructure effects. As a result,
the moments of observed returns can identify the the moments of microstructure noise.

To demonstrate the applications of the proposed estimators, we propose two general liq-
uidity measures to gauge the instantaneous and average effective bid-ask spread. The measures
have several attractive features. First, the measures are model free thus avoid potential mis-
specification. Second, they are robust to the dynamic patterns in the order flows yet do not
require any prior information of the order flows or trading directions. Third, the second liquid-
ity measure is explicitly designed to gauge the average effective spreads, the deviation of the
average transaction prices from the fundamental values in a sequence of orders that could stem
from a split large order. We develop the corresponding ReMeDI estimators of the two liquidity
measures. The ReMeDI approach has several advantages. First, the ReMeDI estimators are
easy to implement and computationally very efficient. This is an attractive feature to deal with
intraday high-frequency data. Next, the estimators are frequency invariant thus can be applied
in a variety of data sets and research areas. Moreover, the estimators enjoy a feasible central
limit theorem to assess the accuracy of the estimates using high-frequency data.

To demonstrate the robustness of the ReMeDI approach and make it appealing to distinct
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audiences, we conduct extensive simulation studies in several benchmark environments of
financial econometrics and market microstructure. We first show that the ReMeDI estimators
are robust to extreme events, featured jumps in both the price level and volatilities. The second
numerical experiment is motivated by Hasbrouck and Ho (1987). The ReMeDI estimators are
able to recover the bid-ask spread in the presence of autocorrelated order flows and price ad-
justment of midquotes. Of particularly intriguing is a scenario in which a random walk efficient
price and an AR(2) bid-ask spread generate returns process that is visually indistinguishable
from an MA(1) process, the latter is often perceived as the “empirical support” to postulate
i.i.d. spreads. The last numerical study is based on Hendershott et al. (2013) that explicitly
model the correlation of the efficient price and noise 2. The ReMeDI estimators can still identify
the noise parameters with great accuracy.

We apply our new liquidity measures to the INTC and KO intraday transaction prices.
We find positively autocorrelated microstructure noise in both stocks. The average measure
of bid-ask spread is larger than the instantaneous measure. Both measures are persistently
larger than the classic Roll measure, which is downward biased in the presence of positively
autocorrelated noise. The various measures of spreads exhibit prominent intraday pattern. The
measures are significantly larger in the opening of the trading day, and they are accompanied
by large orders.

This paper introduces an econometric approach to richer microstructure models. It aims
to integrate the (empirical) financial market microstructure and (high-frequency) financial
econometrics. It is, however, not the first attempt to push towards the integration of the two
fields. Diebold and Strasser (2013) focus on the correlation of efficient price and noise in sev-
eral leading microstructure models, and study the implication for integrated volatility estima-
tion. Bandi et al. (2017) develop a novel measure of the staleness of stock returns under the infill
asymptotic framework. Jacod et al. (2017) propose a class of estimators of the noise moments
using high-frequency data.3 Bollerslev et al. (2018) study the relationship between trading
volume and return volatility around important public news announcements using intraday
high-frequency data. The study relies critically on the high-frequency econometrics techniques
to identify jumps. Da and Xiu (2017) advocate the quasi maximum likelihood approach to
estimate both the volatility and the autocovariances of moving-average microstructure noise.

The rest of the paper proceeds as follows. Section 2 introduces a general framework for
the microstructure noise and proposes two naive estimators of the autocovariances of noise to
motivate the ReMeDI approach. Section 3 presents the ReMeDI estimators and the frequency-
free and high-frequency asymptotic theories. Section 4 introduces two model-free measures
of the bid-ask spread, and the corresponding ReMeDI estimators of the two measures are
developed in Section 5. Section 6 provides extensive simulation examples to examine the
finite sample performances of the ReMeDI estimators and Section 7 explains the finite sample
robustness. Section 8 contains empirical studies based on the transaction prices of two stocks
and provides some interesting empirical properties of the effective spreads. Section 9 concludes

2It is termed the pricing error in Hendershott et al. (2013).
3In the simulation study, we will compare the estimators proposed by Jacod et al. (2017) to the ReMeDI estimators.
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the paper. All mathematical proofs are collected in the Appendix.

2 Microstructure Noise and Two Naive Estimators

The basic model considered in this paper is

Y = X + ε, (1)

where Y is the observed price of a financial asset, X is the efficient price (or fundamental value)
tjat prevails in a frictionless market, ε is the microstructure noise that measures how closely the
observed price conforms to the efficient price. Section 2.1 introduces the statistical assumptions
on ε (the assumptions on X will be stipulated in Section 3). In Section 2.2, we introduce two
naive estimators of the second moments of noise to motivate the ReMeDI approach.

2.1 The microstructure noise

Intuitively, microstructure noise emerges in each transaction (or quote), thus it is naturally a
discrete process. The following assumptions on microstructure noise are satisfied by a broad
spectrum of discrete processes.4

Assumption 2.1 (Market Microstructure Noise). The noise process {εi}i∈Z satisfies the following
assumptions:

(1) E(εi) = 0, E
(
ε2

i

)
> 0 ∀i ∈ Z;

(2) {εi}i∈Z is a stationary and strongly mixing sequence with mixing coefficients 5
{αk}

∞

k=0, and αk ↓ 0
as k→∞.

Remark 2.1. There is a large literature seeking to characterize the economic mechanisms that govern
the dynamic properties of microstructure noise, for example, the continuation of order flows modeled
by Hasbrouck and Ho (1987), Choi et al. (1988), reversal order flows due to market maker’s risk
aversion by Grossman and Miller (1988) and Campbell et al. (1993) or inventory controls by Ho and
Stoll (1981), Hendershott and Menkveld (2014), and the presence of inattentive (or infrequent) traders
by Bogousslavsky (2016) and Hendershott et al. (2018). Econometric models of microstructure noise
include i.i.d. process or an MA(q) process, see Hansen and Lunde (2006), Hautsch and Podolskij (2013)
and Da and Xiu (2017), or ARMA(p, q) processes, see Barndorff-Nielsen et al. (2008), Hendershott et al.
(2013). Note that the current settings of microstructure noise incorporate all the aforementioned models.

Next, we impose some restrictions on the convergence rate of the mixing coefficients {αk}k∈N

that control the degree of serially dependence. In particular, the following assumption implies
that the autocorrelation function of {εi}i∈Z is decaying at a polynomial rate.

4See Bradley (2005) for an excellent survey of the mixing sequences.
5The mixing coefficients is a sequence satisfying

|P(Ai ∩ Ai+k) − P(Ai)P(Ai+k)| ≤ αk

for all Ai ∈ σ{ε j : j ≤ i},Ai+k ∈ σ{ε j : j ≥ i + k}, where σ(·) is the generated σ-algebra.
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Assumption 2.2 (Polynomially mixing coefficients). There is some C > 0, v > 0 such that

αk ≤
C
kv ∀ k ∈N∗. (2)

Assumption 2.3. Throughout the paper, we assume all moments of noise exist. This assumption can be
relaxed depending on the targeted parameters and the choices of v in (2), see Lemma A.1. Consequently,
an application of Lemma A.1 yields for some C > 0,

∣∣∣r j
∣∣∣ ≤ C

jv/2
, (3)

where r j = E
(
εiεi+ j

)
, ∀ j ∈N.

2.2 Two naive estimators of serial autocovariances

We begin with two estimators of serial autocovariances of stationary time series. Suppose the
microstructure noise {εi}i∈Z satisfying Assumption 2.1 to 2.3 is observable. We would like to
estimate the j-th order autocovariance r j = E

(
εiεi+ j

)
for some j ∈N.

2.2.1 The first naive estimator — the sample analogue

Given a sample of realized observations {εi}1≤i≤n, the sample analogue provides a simple and
intuitive estimator of r j

r̂n, j :=
1

n − j

n− j∑
i=1

εiεi+ j. (4)

Under very mild conditions on the mixing coefficients {αk}k∈N∗ , r̂n, j has the following limit
distribution for some Σnaive1( j) > 0:6

√
n
(
r̂n, j − r j

)
L
−→ N

(
0,Σnaive1( j)

)
. (5)

2.2.2 The second naive estimator — a ReMeDI estimator

Now we introduce another consistent estimator. Let {kn}n∈N∗ , {k′n}n∈N∗ be two sequences of
integers that grow at slower rates than n: kn, k′n → ∞, kn/n, k′n/n → 0. The new estimator is
given by

ReMeDI(ε; j)n :=
1

n − j − kn − k′n + 1

n− j−kn∑
i=k′n

(
εi − εi−k′n

) (
εi+ j − εi+ j+kn

)
. (6)

Figure 1 depicts the estimators: ReMeDI(ε; j)n is the sample autocovariance of disjoint increments
over relatively large intervals. ReMeDI(ε; j)n is also a consistent estimator of r j. To get the intuition

6See Corollary 5.1 of Hall and Heyde (1980).
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εi−k′n εi εi+ j εi+ j+kn

∆
n,k′n
i−k′n

ε ∆n,kn
i+ j ε

Figure 1: Illustration of the second naive estimator, kn, k′n → ∞ as n → ∞, but kn/n, k′n/n → 0. Since kn, k′n → ∞, the dependence
of pairwise variables except (εi, εi+ j) will shrink to zero since the “distances" between any two variables except (εi, εi+ j) increase
to infinity.

of its consistency, we first note(
εi − εi−k′n

) (
εi+ j − εi+ j+kn

)
= εiεi+ j − εiεi+ j+kn − εi−k′nεi+ j + εi−k′nεi+ j+kn .

The last three terms are the products of asymptotically independent and centered random vari-
ables, given kn, k′n →∞. Then (3) implies the expectations of the three terms are asymptotically
negligible, thus their sample averages (over all i) will converge in probability to zero by law of
large numbers. In the meanwhile, the sample average of εiεi+ j, which is asymptotically equal to
r̂n, j (recall kn/n, k′n/n→ 0), converges in probability to r j. Figure 1 also illustrates the intuition:
the "distance" thus the independence of pairwise variables grows except for εi and εi+ j. Under
certain conditions7, ReMeDI(ε; j)n has a limit distribution for some Σnaive2( j) > 0:

√
n
(
ReMeDI(ε; j)n − r j

)
L
−→ N

(
0,Σnaive2( j)

)
. (7)

εi+ j−k′′n εi+ j−k′n εi+ jεi εi+ j+p εi+ j+p+kn

Figure 2: Illustration of the ReMeDI estimator of E
(
ε0ε jε j+p

)
, j, p ∈N. kn, k′n, k′′n →∞, kn/n, k′n/n, k′′n /n→ 0 as n→∞.

ReMeDI(ε; j)n is essentially the realized autocovariances of disjoint increments (of mi-
crostructure noise), thus it is a special case of the ReMeDI class. Figure 2 illustrates a ReMeDI
estimator of arbitrary third moment of noise (for any j, p ∈N∗) :

ReMeDI(ε; j, p)n :=
1

n − j − kn − k′n − k′′n + 1

n− j−p−kn∑
i=k′′n

(
εi − εi−k′′n

) (
εi+ j − εi+ j−k′n

) (
εi+ j+p − εi+ j+p+kn

)
.

(8)
The same intuition for the consistency of ReMeDI(ε; j)n also applies here, thus one would expect
that ReMeDI(ε; j, p)n provides a consistent estimator of E

(
ε0ε jε j+p

)
.

7See Theorem D.1.
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3 Separate Noise from Efficient Price by ReMeDI

The two naive estimators r̂n, j and ReMeDI(ε; j)n are not applicable in practice since the mi-
crostructure noise is masked by the efficient price thus not directly observable. However, the
second estimator ReMeDI(ε; j)n is still promising if ε is replaced by the observed price Y. In
this section, we explain how the ReMeDI approach effectively separates microstructure noise
from the efficient price. We consider two settings. First, without any specifications on the data
frequencies, we demonstrate the intrinsic consistency of the ReMeDI estimators. The key of
the separation is the martingale property of the efficient price and its independence of the mi-
crostructure noise. Next, under infill asymptotics, we show a more general consistency result
and derive the limit distributions. The intuition behind this general separation principle is that
microstructure noise dominates the variation of the efficient prices under infill asymptotics.

3.1 The intrinsic consistency of ReMeDI

Assume the efficient price {Xi}
∞

i=0 is a discrete martingale. Then the observed price becomes

Yi = Xi + εi, i = 0, 1, 2, . . . (9)

Now we introduce the frequency-free (FF) ReMeDI estimators of arbitrary second and third
moments of noise. Given a sample of observed prices {Yi}

n
i=0, for any j, p, kn ∈N∗, let

ReMeDI(Y; j)FF
n : = −

1
n − 3kn − j + 1

n−kn− j∑
i=2kn

∆kn
i+ jY∆2kn

i−2kn
Y, (10)

ReMeDI(Y; j, p)FF
n : = −

1
n − 4kn − j − p + 1

n−kn− j−p∑
i=3kn

∆kn
i+ j+pY∆2kn

i+ j−2kn
Y∆3kn

i−3kn
Y, (11)

where ∆k
i Y = Yi+k − Yi. One may note the analogy between ReMeDI(Y; j)FF

n and ReMeDI(ε; j)n,
ReMeDI(Y; j, p)FF

n and ReMeDI(ε; j, p)n.

Assumption 3.1. The efficient price {Xi}
∞

i=0 and microstructure noise {εi}
∞

i=0 satisfy the following

(i) The efficient price process {Xi}
∞

i=0 is a martingale with bounded fourth moments.

(ii) The noise process {εi}
∞

i=0 satisfies Assumption 2.1 to 2.3 and is independent of X.

Theorem 3.1. Let kn, v satisfy

kn →∞, kn/n→ 0 as n→∞, v > 2. (12)

Under Assumption 3.1, we have

ReMeDI(Y; j)FF
n
P
→ E

(
ε0ε j

)
; ReMeDI(Y; j, p)FF

n
P
→ E

(
ε0ε jε j+p

)
. (13)

Proof. See Appendix B. �
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3.2 Separation under infill asymptotics

The efficient price X is a Itô semimartingale defined on a filtered probability space (Ω,F , (Ft)t≥0,P)
with the Grigelionis representation

Xt = X0 +

∫ t

0
asds +

∫ t

0
σsdWs +

(
δ1{|δ|≤1}

)
? (p − q)t +

(
δ1{|δ|>1}

)
? pt, (14)

where W is a Brownian motion and p is a Poisson random measure on R+ × R with its
compensator q(dt,dx) = dt ⊗ λ(dx) and λ is a σ-finite measure on (R,B(R)). One is referred
to Aït-Sahalia and Jacod (2014) for the last two stochastic integrals with respect to random
measures. Assumption 3.2 imposes some additional conditions that are satisfied for most
continuous-time price processes in finance and econometrics.

Assumption 3.2. The process a is optionally locally bounded, the process σ is adapted and càdlàg , δ is
predictable and there is a localizing sequence (τn) of stopping times such that for each n and a deterministic
nonnegative function Jn on R satisfying

∫
J2
n(x)λ(dx) < ∞ and such that |δ(ω, t, x) ∧ 1| ≤ Jn(x) for all

(ω, t, x) with t ≤ τn(ω).

Note that the efficient price Xt evolves according to calendar time t, whereas the microstruc-
ture noise εi is indexed by transaction times i (the i-th transaction). The two indexing schemes
coincide after the realizations of observations. To see this, consider a fixed t > 0 and denote the
transaction times by i∆n, i = 0, . . . ,Nn

t ,X
n
i = Xi∆n , where ∆n is the mesh of observation grid and

Nn
t = [t/∆n] is the number of observations. We also denote εn

i = εi, ∀0 ≤ i ≤ Nn
t . The transaction

price is given by
Yn

i = Xn
i + εn

i . (15)

For any process V, we denote ∆n,k
i V = Vn

i+k − Vn
i . For any j, p, q ∈ N∗, the high-frequency (HF)

ReMeDI estimators of the moments of noise are given by

ReMeDI(Y; j)HF
n : = −

1
Nn

t − 3kn − j + 1

Nn
t −kn− j∑
i=2kn

∆n,2kn
i−2kn

Y∆n,kn
i+ j Y, (16)

ReMeDI(Y; j, p)HF
n : = −

1
Nn

t − 4kn − j − p + 1

Nn
t −kn− j−p∑

i=3kn

∆n,3kn
i−3kn

Y∆n,2kn
i+ j−2kn

Y∆n,kn
i+ j+pY, (17)

ReMeDI(Y; j, p, q)HF
n : = −

∑Nn
t −kn− j−p−q

i=4kn
∆n,4kn

i−4kn
Y∆n,3kn

i+ j−3kn
Y∆n,2kn

i+ j+p−2kn
Y∆n,kn

i+ j+p+qY

Nn
t − 5kn − j − p − q + 1

. (18)

A few comments about the notations are in order. Under infill asymptotics, the mesh grid
∆n → 0 as n → ∞. In particular, the distribution of Xi∆n depends on n. Thus all variables
in (15), as well as ∆n,k

i V have an additional superscript n compared to their counterparts in
Section 3.1.8

8The superscript n in εn
i merely indicates that 0 ≤ i ≤ Nn

t , and it does not affect the statistical properties of ε.
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Yn
i−4kn

Yn
i+ j−3kn

Yn
i+ j+p−2kn Yn

i+ j+p

Yn
i+ j

Yn
i

Yn
i+ j+p+q

Yn
i+ j+p+q+kn

Figure 3: Illustration the ReMeDI estimator of E
(
ε0ε jε j+pε j+p+q

)
, j, p, q ∈N.

The remaining part of this section presents the infill asymptotic properties of the high-
frequency ReMeDI estimators. Theorem 3.2 and Theorem 3.3 provide the consistency and
limit distribution. Compared to the consistency results in Section 3.1, the ReMeDI approach
provides a consistent estimator of the fourth moments of noise under infill asymptotics and such
consistency can not be achieved when the data frequency is fixed.9 Theorem 3.4 introduces
a robust estimator of the asymptotic variances thus makes the limit distribution feasible to
construct confidence intervals.

Theorem 3.2. Let the efficient price X be described in (14) and satisfy Assumption 3.2. The noise
process ε satisfies Assumption 2.1 to 2.3 and kn satisfies

kn →∞, ∆nkn → 0. (19)

We have the following consistency results for any j, p, q ∈N:

ReMeDI(Y; j)HF
n

P
→ E

(
ε0ε j

)
; (20)

ReMeDI(Y; j, p)HF
n

P
→ E

(
ε0ε jε j+p

)
; (21)

ReMeDI(Y; j, p, q)HF
n

P
→ E

(
ε0ε jε j+pε j+p+q

)
. (22)

Proof. See Appendix C. �

Note that we do not need the independence of X and ε to achieve the consistency.

Theorem 3.3 (Central Limit Theorem). Let the efficient price X be described in (14) and satisfy
Assumption 3.2. The noise process ε satisfies Assumption 2.1 to 2.3, and it is also independent of X.
Let kn, v satisfy

v > 6, kn � ∆
−γ
n , γ ∈

(1
v
, δ

)
,where δ ∈

( 2
v + 4

,
1
5

)
. (23)

Then we have the following convergence in distribution:√
Nn

t (ReMeDI(Y; j)HF
n − r j)

L
→N

(
0,Σ j

)
; (24)

where

Σ j :=
∞∑

k=−∞

(
E
(
(ε0ε j − r j)(εkεk+ j − r j)

)
+ 3r2

k

)
. (25)

Proof. See Appendix D. �
9See Li and Linton (2018) for a more general treatment.
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Remark 3.1. The tuning parameter kn is bounded both from above and blow. The lower bounded is to
guarantee the ReMeDI estimators converge to the moments of noise at a rate faster than

√
∆n, the upper

bound is set to satisfy some Lindeberg condition.

Theorem 3.4 (Feasible Central Limit Theorem). Let in satisfy

in � ∆−1/5
n . (26)

Under the same conditions of Theorem 3.3, we have

√
Nn

t

ReMeDI(Y; j)HF
n − r j√

Σ̂(Y)n
j

L
→N (0, 1) , (27)

where

Σ̂(Y)n
j : =

1
Nn

t − 3kn − j − in + 1

Nn
t −kn−in− j∑

i=2kn

(Ỹn
i

)2
+ 2

in∑
k=1

Ỹn
i+k

 ; (28)

Ỹn
i : = −∆n,2kn

i−2kn
Y∆n,kn

i+ j Y − ReMeDI(Y; j)HF
n . (29)

Proof. See Appendix E. �

4 New Measures of the Effective Bid-ask Spread

Measuring the effective spreads can be difficult for at least two reasons. First, market orders
have complex dynamics, see Remark 2.1. To directly calculate the effective spread, one needs
to reconstruct the entire orders and measure the deviation of average price from midquote.
This is often, however, not possible for non-participants like researchers or financial regulators.
Second, the data set of trading directions is not always available. Although algorithms, e.g., Lee
and Ready (1991) and Ellis et al. (2000) are available to estimate the signs of transactions, it will
inevitably bring more uncertainty.

Roll (1984) introduces a simple and elegant measure of effective bid-ask spread based
on transaction price alone. However, the Roll measure is derived under several restrictive
assumptions, e.g., constant spread, uncorrelated order flows, independence of efficient price
and spread. Moreover, the large sample properties of the Roll measure is not available.10

We propose new measures of the effective spreads. The new measures are model free,
and allow for serial autocorrelations in the spreads, correlation between the efficient price
and spreads. The next section introduces the ReMeDI estimators of the new measures. The
frequency-free (FF) and high-frequency (HF) asymptotic properties of the proposed estimators
are also presented.

10Harris (1990) provides some simulation studies on the small sample properties of the Roll measure.

11



4.1 The Roll model: a revisit

To motivate the new measures, we revisit the classic Roll model of bid-ask spread. The efficient
price {Xi}

∞

i=1, captured by the midquote, follows a random walk. The bid-ask spread S is fixed.
Thus the bid and ask prices are given by

ai = Xi +
S
2

; bi = Xi −
S
2
.

The transaction prices are

Yi = Xi +
S
2

qi,

where qi = 1 (qi = −1) indicates buying (selling).

Remark 4.1. Note that the microstructure noise is equivalent to the (signed) half spread that captures
the deviation of transaction prices from the fundamental values, i.e., εi = Sqi/2. Assuming P

(
qi = 1

)
=

P
(
qi = −1

)
= 1/2, the spread is essentially twice the standard deviation of noise: S = 2

√
Var(ε).

4.2 An instantaneous bid-ask spread measure

We now introduce a new measure of effective bid-ask spread. Let

εi = Siqi/2, (30)

where Si is the spread associated with the i-th trade and qis are the the trading direction
indicators with +1 for a buy, −1 for a sale. The bid and ask prices are Xi +

Si
2 ,Xi−

Si
2 , respectively.

Thus we can motivate ε as half of the signed bid-ask spread. Unlike Roll’s settings, the effective
spread Si could to be random, which may vary, for example, with the size of trades. We
allow for serial dependence in the trading directions, which are often found to be positively
autocorrelated, see, e.g., Hasbrouck and Ho (1987), Huang and Stoll (1997), Sadka (2006)
and Hendershott et al. (2013). Instead of modelling Si, qi separately, we directly impose some
distributional assumptions (Assumptions 2.1) on εi = Siqi/2 to accommodate rich dynamics
in spreads and order flows. Motivated by Remark 4.1, we introduce the instantaneous bid-ask
spread (IBAS):

IBAS = 2
√

Var(ε).

4.3 An average bid-ask spread measure

The IBAS is based on the variance of ε only, thus it measures the instantaneous price dispersion —
if a trader initiates a single trade, or several sparse trades, IBAS provides a reasonable measure
of the associated spread. However, if an investor splits a large order into small pieces and
sends the orders continuously over a long time period11, he would concern more about the

11In the high-frequency setting, a long period could be just a few seconds.
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average price dispersion that arises in the next hundreds or thousands of transactions, in which
the autocorrelations in order flows can not be ignored. Such a measure, if it exists, serves as
an accurate measure of the market quality as it gauges the average deviation of all transaction
prices that occur in a period of time.

Proposition 4.1. Let the signed half bid-ask spread satisfy Assumption 2.1 to 2.3, and the mixing
coefficients (αk) satisfy

∑
∞

k=1 α
ε/(2+ε)
k < ∞ for some ε > 0. Let Γ∞ =

∑
∞

i=−∞ ri < ∞, εn =
∑n

i=1 εi
n . Then

√
nεn

L
−→ N (0,Γ∞) .

One is referred to Corollary 5.1 in Hall and Heyde (1980) for a proof. Motivated by Remark 4.1
and Proposition 4.1, we define

Definition 4.1. The average bid-ask spread (ABAS) is given by

ABAS = 2
√

Γ∞. (31)

5 Estimation of IBAS and ABAS through ReMeDI

5.1 Frequency-free estimators of IBAS and ABAS

First, we employ the frequency-free ReMeDI estimators introduced in Section 3.1 to construct
the following estimators:

IBASFF
n := 2

√
ReMeDI(Y; 0)FF

n ; (32)

ABASFF
n := 2

√√√√ReMeDI(Y; 0)FF
n + 2

`FF
n∑
`=1

ReMeDI(Y; `)FF
n

. (33)

Theorem 5.1. Under the assumptions of Theorem 3.1, we have

IBASFF
n
P
→ IBAS. (34)

If further we have `FF
n
√

kn/n→ 0, `FF
n k−v/2

n → 0, we have

ABASFF
n
P
→ ABAS. (35)

5.2 High frequency estimators of IBAS and ABAS

Given the transaction prices {Yn
i }0≤i≤Nn

t
, the ReMeDI estimator of the IBAS under infill asymp-

totics is

IBASHF
n := 2

√
ReMeDI(Y; 0)HF

n . (36)

Theorem 3.2 implies the following:

13



Proposition 5.1. Let the efficient price X be described in (14) and satisfy Assumption 3.2. The signed
half bid-ask spread ε satisfies Assumption 2.1 to 2.3 and kn satisfies

kn →∞, ∆nkn → 0.

We have the following consistency result :

IBASHF
n

P
→ IBAS. (37)

Note that we do not assume the independence of X and ε to obtain the consistency result.
By the delta method, Theorem 3.3 and Theorem 3.4, we have the limit distribution of IBASHF

n :

Theorem 5.2. Let X, ε, kn, v, in satisfy the conditions in Theorem 3.3 and Theorem 3.4. Then√
Nn

t

(
IBASHF

n − IBAS
)
L
−→ N (0,Σ0/r0) , (38)

and

√
Nn

t

√
ReMeDI(Y; 0)HF

n

(
IBASHF

n − IBAS
)

√
Σ̂(Y)n

0

L
−→ N (0, 1) . (39)

To obtain an estimator of ABAS, we first obtain the following consistency result, which is a
simple corollary of Theorem 3.2:

Corollary 5.1. Given v > 2, let ιn, kn satisfy

kn →∞, `
HF
n →∞;

√
kn∆n`

HF
n → 0, k−v/2

n `HF
n → 0. (40)

We have

Γ̂n := ReMeDI(Y; 0)HF
n + 2

`HF
n∑

j=1

ReMeDI(Y; j)HF
n

P
→ Γ∞. (41)

The high-frequency ReMeDI estimator of GABAS is

ABASHF
n := 2

√
Γ̂n, (42)

and (41) speaks to the consistency of ABASHF
n :

ABASHF
n

P
→ ABAS. (43)

Deriving the asymptotic distribution of ABASHF
n is also possible, but it is beyond the scope

of this paper. We need to derive the joint distribution of the ReMeDI estimators that extends
Theorem 3.3. This is studied in another companion paper by Li and Linton (2018).
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5.3 Compare to the Roll measure

The Roll measure is related to the ReMeDI approach: both the Roll measure and the ReMeDI
estimators of the second moments of noise are based on serial autocovariances of observed
returns. In this subsection, we derive the asymptotic properties of the Roll measure and
compare with the ReMeDI estimators. We demonstrate the inconsistency of the Roll measure
when the order flows are serially correlated.

The fundamental value will be the midquotes and it follows a random walk. Let qi be
the trading direction of the i-th trade, qi = 1 (qi = −1) indicates buying (selling). Using our
notations, the transaction prices are

Yi = Xi +
S
2

qi, i = 0, 1, 2, . . .

The (frequency-free) Roll measure of S is given by

RollFF
n = 2

√
−

∑n−1
i=1 ∆1

i Y∆1
i−1Y

n − 1
. (44)

Now assume i) (qi)i∈N is i.i.d. withE
(
qi
)

= 0, ii) q is independent of X, iii) X has bounded fourth
moments, we get the following by adapting the proof of Theorem 3.1:

RollFF
n
P
→ S. (45)

If, however, the trading directions are autocorrelated with autocorrelation ρq(i), i = 0, 1, 2, . . . ,
then (45) becomes

RollFF
n
P
→ S

√
1 − 2ρq(1) + ρq(2). (46)

It is likely that the Roll measure becomes inconsistent12. However, we can apply the ReMeDI
estimators to correct the bias terms in the Roll measure. The bias-adjusted Roll measure is thus
given by

AdjRollFF
n = 2

√(
RollFF

n /2
)2

+ 2ReMeDI(Y; 1)FF
n − ReMeDI(Y; 2)FF

n . (47)

Consequently, we have

AdjRollFF
n
P
→ S.

Remark 5.1. The inconsistency and bias correction of the high-frequency version of the Roll measure
can be derived in a similar manner. In fact, the two versions of the Roll measures will return the same
estimate for a given sample. Thus in the empirical analysis, we will stick to Rolln and AdjRolln

12Consider a simple model P
(
qi+1 = ±1|qi = ±1

)
= π; P

(
qi+1 = ∓1|qi = ±1

)
= 1 − π, one can show that ρq(1) =

ρ, ρq(2) = ρ2 where ρ = 2π − 1. Then 1 − 2ρq(1) + ρq(2) = (1 − ρ)2.
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without explicitly mentioning the asymptotic framework.
We extend this notational convenience to the ReMeDI estimators as well in the sequel. Thus

ReMeDI(Y; j)n refers to either ReMeDI(Y; j)FF
n in (10) or ReMeDI(Y; j)HF

n in (16).

6 Simulation Studies

This section presents extensive simulation studies to examine the performance of the ReMeDI
estimators in finite samples. We introduce several leading benchmark models in financial
econometrics and market microstructure to demonstrate the robustness of the ReMeDI ap-
proach from various perspectives. The model in Section 6.1 allows for jumps in both the
efficient price and volatility level; we compare the ReMeDI estimators with the local averaging
(LA) estimator recently proposed by Jacod et al. (2017). The structural model in Section 6.2 is
based on Hasbrouck and Ho (1987), with an extension in the autocorrelation patterns of the
bid-ask spreads. Section 6.3 studies a pricing error model introduced by Hendershott et al.
(2013), in which the efficient price and noise (pricing errors) are correlated; the estimation is
performed over samples of different data frequencies.

6.1 A statistical model

We consider the following general settings for the efficient log-price X:

dXt = κ1(µ1 − Xt)dt + σtdW1,t + ξ1,tdNt;

dσ2
t = κ2(µ2 − σ

2
t )dt + γσtdW2,t + ξ2,tdNt;

Corr(W1,W2) = %;

ξ1,t ∼ N
(
0, µ2/10

)
; Nt ∼ Poi(λ); ξ2,t ∼ Exp(δ).

(48)

The jumps settings are motivated by empirical facts that jumps in price levels and volatility
tend to occur together, see Todorov and Tauchen (2011). We set

κ1 = 0.5; µ1 = 1.6; κ2 = 5/252; µ2 = 0.04/252; γ = 0.05/252; % = −0.5; λ1 = 5; δ = γ.

We assume an AR(1) noise process, as studied in Aït-Sahalia et al. (2011):

εi = Vi + Ui, (49)

where V is centered i.i.d. and U is an AR(1) process with first order coefficient ρ,
∣∣∣ρ∣∣∣ < 1. V and

U are statistically independent. We set

Var(V) = 2.9 × 10−8; Var(U) = 4.3 × 10−8, ρ = 0.7.

Those estimates are borrowed from Aït-Sahalia et al. (2011). We tentatively set the AR(1)
coefficient ρ = 0.7 to capture positive order flows find in literature. Later, we will vary the
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choices of ρ to account for the complexity of noise dynamics, see a detailed discussion in Li
et al. (2017).

6.1.1 Estimating autocovariances of noise

Figure 4 presents the estimation of the first 20 autocovariances of noise by ReMeDI (top panel)
and LA (bottom panel). The solid lines are the mean estimates of 1,000 replications, the dashed
lines represent the 95% simulated confidence intervals. We examine the performance of the
estimators under different model specifications in which the price and/or volatility may exhibit
jumps. We simulate 23,400 observations for each sample path, corresponding to the number
of seconds of a business day (6.5 trading hours). The ReMeDI estimators perform well: the
estimates are unbiased with compact confidence bands, which are slightly wider when the
price and volatility processes exhibit jumps. Surprisingly, there is a significant deviation of the
LA estimates to the true parameters. Moreover, the deviation and confidence bands become
much larger when the price and/or volatility have jumps.

The deviation of the LA estimates is elicited by a finite sample bias, which is a fraction of the
quadratic variation (QV) of the efficient price, see a discussion in Jacod et al. (2017). Thus to
correct the bias, we need at least an estimate of the QV. But the estimation of QV in the presence
of dependent noise is not trivial.13 In a simulation context, we can obtain the QV thus can
give the LA estimators the privilege to make the exact bias correction, which is, of course not
feasible in practice. The bottom panel of Figure 5 displays the bias corrected estimation of LA.
Even with the exact (yet infeasible) bias correction, the ReMeDI estimators still outperform the
LA estimators with less bias and greater accuracy under all specifications.

6.1.2 Central limit theorem and finite sample distribution

To examine the limit distributions characterized in Theorem 3.3 and Theorem 3.4, we plot the

quantiles of the normalized ReMeDI estimators
√

Nn
t (ReMeDI(Y; j)n − r j)/

√
Σ̂(Y)n

j against the
quantiles of standard normal random variables. Figure 6 displays the plots with mesh grid
fixed at ∆n = 1 sec. The plots well support the limit distributions. For practical concerns, it
is desired to know how well the asymptotic variance estimator Σ̂(Y)n

j captures finite sample
variations when the data frequencies are lower. Figure 7 replicates the plots in Figure 6 with
∆n = 120 sec. As expected the fits are not as perfect as in Figure 6, but Σ̂(Y)n

j only slightly
underestimate the finite sample variance.

6.1.3 The choice of kn

The tuning parameter kn, which controls the length of the non-overlapping intervals to form
the ReMeDI estimators, affects the performance of the estimators in finite samples. In this sub-
section, we propose several general rules to select kn to improve the finite sample performance

13The realized volatility estimators of autocovariances of noise proposed by Li et al. (2017) also have a bias term
induced by the QV. They propose a two-step approach to make the bias correction.
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based on numerical experiments.
We estimate the variance of noise with varying ∆n and ρ (the AR(1) coefficient of noise)

to replicate data samples at different frequencies with rich dynamic properties in the noise
component. Under each specification, the bias, the standard deviation (std) and the root mean
squared errors (RMSE) are reported to give to a full account of the finite sample performance
of the ReMeDI estimators. All estimation results are collected in Table 1 to Table 3.

A close look at Table 1, Table 2 and Table 3 yields several observations. First, for each fixed
kn, the standard deviation and RMSE increase as the data frequency drops. This is intuitive
since in a sparser sample, the efficient price entails more variation to the ReMeDI estimators,
making it challenging to obtain accurate estimates. Second, the optimal kn (in the RMSE sense)
among the three candidates varies as the data frequency changes — a smaller kn improves the
performance when the data frequency is lower. Third, when the dependence in noise is weaker,
a smaller kn outperforms larger ones. Table 2 illustrates that for i.i.d. noise, the smallest kn is
always preferred regardless of the data frequencies.

kn = 20 kn = 10 kn = 6
∆n bias std RMSE bias std RMSE bias std RMSE
0.1s -3.35e-11 1.08e-09 1.08e-09* -1.25e-09 6.26e-10 1.40e-09 -5.63e-09 4.56e-10 5.65e-09
1s -9.99e-10 2.91e-08 2.91e-08 -1.03e-09 1.15e-08 1.15e-08 -5.51e-09 5.48e-09 7.77e-09*
5s 6.98e-09 3.11e-07 3.11e-07 3.98e-09 1.16e-07 1.16e-07 -4.98e-09 5.44e-08 5.46e-08*
30s 5.12e-07 4.67e-06 4.70e-06 1.54e-07 1.70e-06 1.71e-06 5.63e-08 7.77e-07 7.79e-07*
60s 1.49e-06 1.30e-05 1.31e-05 3.37e-07 5.17e-06 5.18e-06 5.79e-08 2.13e-06 2.13e-06*

Table 1: Estimation of the variance of noise using the ReMeDI estimator. The model is specified in (48). The true value is 7.2×10−8.
Number of replications is 1,000. The AR(1) coefficient ρ = 0.7. The starred RMSE indicates the optimal kn for each ∆n.

kn = 20 kn = 10 kn = 6
∆n bias std RMSE bias std RMSE bias std RMSE
0.1s 1.14e-11 1.05e-09 1.05e-09 9.11e-12 4.83e-10 4.83e-10 3.93e-12 3.92e-10 3.92e-10*
1s 1.89e-09 2.88e-08 2.89e-08 -4.97e-10 1.07e-08 1.07e-08 -7.54e-11 5.15e-09 5.15e-09*
5s -7.65e-09 3.30e-07 3.30e-07 4.13e-09 1.18e-07 1.18e-07 8.83e-10 5.55e-08 5.55e-08*
30s 4.23e-07 4.94e-06 4.96e-06 6.93e-08 1.64e-06 1.65e-06 3.58e-08 8.39e-07 8.40e-07*
60s 2.34e-06 1.29e-05 1.31e-05 3.39e-07 4.79e-06 4.80e-06 3.21e-07 2.33e-06 2.35e-06*

Table 2: Estimation of the variance of noise using the ReMeDI estimator. The model is specified in (48). The true value is 7.2×10−8.
Number of replications is 1,000. The AR(1) coefficient ρ = 0. The starred RMSE indicates the optimal kn for each ∆n.

kn = 20 kn = 10 kn = 6
∆n bias std RMSE bias std RMSE bias std RMSE
0.1s -4.80e-11 1.09e-09 1.09e-09* -1.28e-09 5.43e-10 1.39e-09 -5.56e-09 4.20e-10 5.58e-09
1s 2.32e-09 2.91e-08 2.92e-08 -8.19e-10 1.06e-08 1.06e-08 -5.32e-09 5.15e-09 7.40e-09*
5s -3.52e-09 3.19e-07 3.19e-07 4.75e-09 1.08e-07 1.09e-07 -5.32e-09 5.38e-08 5.41e-08*
30s 1.35e-07 5.06e-06 5.06e-06 5.47e-08 1.64e-06 1.64e-06 4.85e-08 8.19e-07 8.20e-07*
60s 1.62e-06 1.29e-05 1.30e-05 4.63e-07 4.66e-06 4.68e-06 -2.21e-08 2.17e-06 2.17e-06*

Table 3: Estimation of the variance of noise using the ReMeDI estimator. The model is specified in (48). The true value is 7.2×10−8.
Number of replications is 1,000. The AR(1) coefficient ρ = −0.7. The starred RMSE indicates the optimal kn for each ∆n.

6.2 A generalized Hasbrouck and Ho (1987) model

Hasbrouck and Ho (1987) introduce a model of lagged price adjustment with positively auto-
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correlated bid-ask spread. We follow their approach and model the efficient price by

Xt = σWt.

The midpoint of bid and ask is given by

pn
i+1 = pn

i + δ(Xn
i − pn

i ),

where δ ∈ [0, 1] is a parameter to reflect the price adjustment: quotes may lag efficient price
due to transaction costs. Compared to the original model in Hasbrouck and Ho (1987), a
distinct feature of the model presented here is that we explicitly model the data/sampling
frequencies, this is reflected in the superscript n in our notations (recall Xn

i = Xi∆n = σWi∆n).
Frequency matters specifically in the study of the dynamic properties of microstructure effects,
see, e.g., Hasbrouck and Sofianos (1993). Therefore any practice that alter the frequency of
the examined data, for example, subsampling as Hasbrouck and Ho (1987) did will affect the
statistical inference of the components of bid-ask spread and the distribution of returns.

Let ε be the half bid-ask spread so that actual transaction price is given by

Yn
i = pn

i + εn
i .

In Hasbrouck and Ho (1987), ε is an AR(1) process so that it can capture the serial dependence
in buy and sell orders. As a consequence, the observed returns will be an ARMA(1,1) process.
In the sequel, we assume ε is an ARMA(p, q) process (without specifying p, q) with Gaussian
innovations14 so that we have great flexibility in modeling the dynamics of order flows and
distributions of observed returns:

εi = ei +

p∑
j=1

ρ jεi− j +

q∑
j=1

γ jei− j, ei
iid
∼ N

(
0, σ2

e

)
. (50)

However, our estimators of the parameters of ε are essentially nonparametric, we do not invoke
any parametric information of the bid-ask spread in this model. In the sequel, we borrow the
empirical estimates from Bandi et al. (2017) and set

δ = 0.01, σ2
e = 1.9 × 10−4, σ = 9.3 × 10−3.

6.2.1 Patterns of bid-ask spread and the distribution of returns

The aim of this subsection is to demonstrate that it could be misleading to make inference
of noise from observed returns. Two contrasting noise processes with random walk efficient
prices could generate return processes that are difficult to disentangle.

If the bid-ask spread is absent and price adjustment is instant (δ = 1), the observed returns

14If the distribution of innovations is absolutely continuous with respect to Lebesgue measure, the ARMA process
is a strongly mixing sequence, see Mokkadem (1988).
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Figure 8: Autocorrelation function (ACF) of observed returns and latent noise (bid-ask spread) difference. The noise follows
an i.i.d. process with variance σ2

e . The top panel plots the ACF of noisy returns and the bottom panel plots the ACF of noise
differences. ∆n = 1 sec.

will be uncorrelated; otherwise the patterns of bid-ask spread will affect the distribution of
observed returns when the data frequency is relatively high15. Very often stock returns have a
significantly negative first order autocorrelation, the celebrated Roll’s model provides a possible
explanation : if the martingale efficient price and i.i.d. bid-ask spread constitute the observed
price, the observed returns will become an MA(1) process. Figure 8 plots the autocorrelation
function (ACF) of the observed returns when the bid-ask spread follows an i.i.d. process.

However, we should keep in mind that an MA(1) pattern of returns is a consequence but
not the cause of an i.i.d. bid-ask spread. Figure 9 depicts the ACF of a return process that is
virtually identical to the ACF in Figure 8, but the latent bid-ask spread follows an ARMA(1,1)
process. Therefore one should be wary to conduct inference about the bid-ask spread based on
the distribution of returns. In particular, assuming an i.i.d. bid-ask spread by observing MA(1)
returns could oversimplify the dynamics of the underlying bid-ask spread. Nevertheless, the
ReMeDI estimators provide a robust solution to deal with such complexities.

6.2.2 Estimating bid-ask spread

Now we employ the ReMeDI estimators to recover the dynamic properties of bid-ask spread.
We plug in several sets of parameters to the ARMA(p, q) models specified in (50) to accommo-
date rich structures. Figure 10 provides the estimation results of the variance and autocovari-

15When the data frequency is high, the bid-ask spread dominates the efficient price process thus the second
moments of observed returns are largely attributed to the second moments of the (first differences of) bid-ask
spread, see Figure 8 and 9. The price adjustments will not affect the second moments of observed returns.
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Figure 9: Autocorrelation function (ACF) of observed returns and latent noise (bid-ask spread) difference. The noise follows an
ARMA(1,1) process: εi = ρ1εi−1 + ei +γ1ei−1 with ρ1 = 0.7, γ1 = −0.4. The top panel plots the ACF of noisy returns and the bottom
panel plots the ACF of noise differences. ∆n = 1 sec.

ances of bid-ask spread generated by 6 models. Clearly the results demonstrate the robustness
of the ReMeDI estimators to different model specifications. Of particular interest are the i.i.d.
(left top panel) and ARMA(1,1) (left bottom panel) models — if the efficient price is masked by
bid-ask spread generated by the two models, the observed returns are close to MA(1) processes
that are hard to distinguish, as illustrated in Figure 8 and 9 — the ReMeDI estimators, however,
are able to disentangle the underlying bid-ask patterns.

6.3 The Hendershott et al. (2013) model of pricing error

To estimate the implementation shortfall, Hendershott et al. (2013) introduce a model that
decompose the price process into permanent efficient price and transitory pricing error. They
argue that the transitory pricing errors would be very persistent when investors split large
orders into smaller ones and feed them into the market gradually. They model such persistence
by an AR(2) process. Using our notations, their model becomes

Yn
i = Xn

i + εn
i ,

Xn
i+1 = Xn

i + wn
i ,

εi+1 = ψ1εi + ψ2εi−1 + ei.


wn

i
iid
∼ N

(
0,∆nσ2

w

)
,

ei
iid
∼ N

(
0, σ2

e

)
,

Cov
(
wn

i , ei

)
=
√

∆nρσeσw.

(51)
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Note that they allow the efficient price to be correlated with pricing errors to incorporate
informational effect. We use the estimates in Hendershott et al. (2013) and set

σw = 9.1 × 10−3, σe = 4.4 × 10−3, ρ = 0.38, ψ1 = 0.65, ψ2 = −0.05.

The inter-observation lag ∆n ranges from 1 second to 10 minutes.
We can recover the parameters of pricing errors using the ReMeDI estimators. The results

are presented in Figure 11. The blue solid lines are the average estimates of the first 20
autocovariances based on 1,000 samples. We observe that the confidence bands become wider
as the data frequency shrinks — this is intuitive since the variation of the permanent efficient
price dominates the pricing errors when the frequency is lower. Nevertheless, the ReMeDI
estimators retain great accuracy with almost negligible bias.

7 Finite Sample Analysis

This section explains the finite sample robustness of the ReMeDI design presented in previous
section. We show the ReMeDI estimators have a very small bias term and its magnitude
is not affected by other variables or parameters. We illustrate that the confidence intervals
constructed from the limit distribution is robust to data frequencies. We explain why the
ReMeDI estimators are robust to jumps. We propose several heuristic rules to select the tuning
parameter to improve the finite sample performance.

7.1 Finite sample bias

Let the efficient price process X be a martingale, and assume the increment of X and the
increment of noise on non-overlapping intervals are uncorrelated. The bias of the ReMeDI
estimator of the second moments of noise is then given by

Bias = E
(
ReMeDI(Y; j)n

)
− r j = r j+2kn − 2r j+kn . (52)

Note that the bias term only depends on the parameters of noise r j+2kn−2r j+kn , which is typically
much smaller than the targeted parameter r j for large kn. The local averaging estimator, in
contrast, have bias terms that stem from the integrated volatility of the efficient price. Li et al.
(2017) show that the bias terms could be larger than the noise parameters of interest in practical
implementations, they also show that without correcting the bias terms, one would obtain very
misleading estimates of the noise parameters and the integrated volatility of the efficient price
process.

Li et al. (2017) propose a two-step approach to solve the intrinsic bias problem: In the first
step, they obtain an estimate of the integrated volatility, and this estimate will be employed to
correct the bias in the second step. Our ReMeDI estimator takes a different approach: by taking
the realize moments on non-overlapping intervals, we effectively remove the bias due to the
efficient price. The validity of this approach hinges on the martingale property of efficient price,
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which is implied by the Efficient Market Hypothesis, a cornerstone in modern finance theory.
This highlights the economic intuition behind the ReMeDI estimators: The non-overlapping
efficient returns “cancel out” and what remains is due to market frictions; by varying the
“distances” and “sizes” of the non-overlapping windows, we can freely estimate the targeted
parameters of microstructure noise. Therefore the ReMeDI approach greatly improves finite
sample performance in ways that would otherwise invoke the estimation of the efficient price
parameters to correct bias.

7.2 Finite sample distribution

Theorem 3.3 and Theorem 3.4 characterize the limit distribution of the ReMeDI estimators
under infill asymptotics. Two concerns arise to construct confidence intervals using the limit
distribution. First, we need a consistent estimator of the asymptotic variance. Second, among
all available estimators if there is any, we would like to select the one that well measures the
finite sample variance.

The proposed asymptotic variance estimator Σ̂(Y)n
j in (28) is not the only consistent estima-

tor. The following is an alternative, and it is constructed using the ReMeDI estimators of the
second and fourth moments of noise:

Σ̂(Y)′nj :=ReMeDI(Y; 0, j, 0)HF
n

+ 2
in∑

i=1

(
ReMeDI(Y; min{i, j}, |i − j|,min{i, j})HF

n + 3
(
ReMeDI(Y; i)HF

n

)2
)

− (2in + 1)
(
ReMeDI(Y; j)HF

n

)2
.

Indeed, Σ̂(Y)′nj is an excellent estimator of Σ j. However, Σ j itself is a poor measure of the
finite sample variance of the ReMeDI estimators with relatively low data-frequency. It fails to
take into account the variance of the efficient price process, which though is asymptotically
negligible. As a consequence, Σ̂(Y)′nj tends to underestimate the finite sample variance thus

overstate the accuracy of the the ReMeDI estimators. While Σ̂(Y)n
j takes the form of sample

analogue of the asymptotic variance Σ j, it is also close to the finite sample variance. As showed
in the simulation section, Σ̂(Y)n

j provides reasonable estimates of the finite sample variance in
samples with data frequency up to several minutes.

7.3 Robustness to jumps

The ReMeDI estimators are also robust to abrupt extreme events, referred to as jumps in
financial econometrics. The intuition of the robustness is rooted in bipower type estimators of
the integrated volatility, see, among others, Barndorff-Nielsen and Shephard (2004), Barndorff-
Nielsen and Shephard (2006) — taking the realized moments on disjoint intervals mitigate
the impacts of jumps. It is worth mentioning that the presence of jumps will not affect the
infill asymptotic properties of our ReMeDI estimators since the noise component has larger
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asymptotic orders than jumps. However, in any finite samples where the magnitude of noise
is in line with the size of jumps, the ReMeDI approach retains its accuracy, see Section 6.1.

7.4 Finite sample performance and the choice of kn

It is temping to conclude from (52) that a large kn is always preferred to reduce the finite sample
bias. However, optimizing the finite sample performance by opting for large kn is not always
desired, as it fails to account for the variance of the ReMeDI estimators, which is partially
contributed by the efficient price. Intuitively, a large kn, thus large non-overlapping intervals
to form the ReMeDI estimators triggers larger volatility attributed to the efficient prices, as the
volatility is proportional to the length of the time span.

Deriving an analytical form of the optimal choice of kn (in the mean squared error sense)
is beyond the scope of this paper. Nevertheless, there are some heuristic rules on the selection
of kn in applications. If the dependence of noise is weak, a smaller kn is preferred. In practice
one can get some preliminary estimates of the autocorrelation functions of noise using the
ReMeDI estimators with some arbitrarily chosen kn, then repeat the estimation with a smaller
kn if the autocorrelation functions is decaying rapidly. Data frequency also affects the choice
of kn. In a sample with lower data frequency, a smaller kn is preferred to reduce the volatility
caused by the efficient price as the efficient price is dominating the noise component in a sparse
sample. Some practical rules on the choice of kn are also provided in the simulation studies,
see Section 6.1.

8 Empirical Studies

8.1 Data description

We obtain the transaction prices from the TAQ data set for the Intel Corporation (INTC, Nasdaq)
and the Coca-Cola Company (KO, NYSE) over the month February, 2016 (20 trading days).
We remove observations prior to 9:30 AM and after 4:00 PM. Table 4 presents the summary
statistics of the two stocks.

Company Mean Price Std Price Mean Volume Std Volume Transactions/sec
INTC 29.14 0.63 194.51 2439 5.17
KO 43.04 0.54 177.11 1689 3.31

Table 4: Descriptive statistics for transaction price and trading volume of INTC and KO over February, 2016. The means and
standard deviations of price and trading volume are calculated using all transactions over the trading month.

8.2 Autocorrelation patterns of noise

We first recover the autocorrelation patterns of microstructure noise using the ReMeDI estima-
tors. We restrict our attention to the transactions after 9:35 AM, and leave the study of market
opening to later sections.
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Figure 12: Average autocovariances of microstructure noise for INTC (top panel) and KO (bottom panel). In each of the 20 trading
days of February, 2016, the ReMeDI estimates (with kn = 10) of the autocovariances (up to 30 lags) are obtained using transaction
prices between 9:35 AM and 4:00 PM. The mean of the autocovariances over the 20 trading days is plotted.

Figure 12 plots the mean estimates of the variance and autocovariances (up to 30 lags) over
the 20 trading days.16 It is clear that the microstructure noise for both stocks are positively au-
tocorrelated. An intuitive interpretation is that large orders are often split into smaller ones and
sent to the market gradually. Limit order can also generate positive autocorrelated transaction
flows: when dealers change their quotes, only the stale orders on one side of the order book are
executed. In either scenarios, these orders are recorded as separate transactions. Consequently,
the effective spreads are positively autocorrelated, see Hasbrouck and Ho (1987), Choi et al.
(1988), Hendershott et al. (2013) and Li et al. (2017), among others.

8.3 Measuring the bid-ask spread

We apply the estimators developed in Section 5 to measure the instantaneous bid-ask spread
(IBAS) and average bid-ask spread (ABAS), and compare with the classic Roll measure.

The analysis in Section 5.3 reveals that the Roll measure and the ReMeDI measure of IBAS
IBASn will coincide with each other were the order flows uncorrelated. Figure 13 presents

16In the appendix, we present the daily estimates, see related findings in Figure 18 and Figure 19.
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the daily estimates of the two measures. Two observations are immediate. First, the two
measures for INTC are slightly larger than that of KO. This is consistent with earlier empirical
studies that spreads are higher in Nasdaq than NYSE, see, e.g., Stoll (2000, 2003). Second,
there is a persistent and significant discrepancy between the two measures for both stocks.
Such discrepancy is attributed to the nontrivial autocorrelation patterns of order flows. To
see this, we plot the adjust Roll measure in Figure 14, and the two measures are remarkably
close. Therefore the classic Roll measure will underestimate the bid-ask spread when the order
flows display positive autocorrelations.17 The ReMeDI approach, while being flexible on the
autocorrelations patterns, provides an easily implementable and robust measure.

We turn to the ABAS. ABAS measures the average bid-ask spread — an appealing measure
to financial regulators, dealers, or investors who execute a large number of transactions, or
any party interested in measuring the overall bid-ask spread in a period of time (could be just
several seconds). We compare it to the other two measures in Figure 15. The ABASn returns
persistently larger estimates than the other two measures after incorporating the high order
(positive) autocorrelations. Specifically, IBASn only captures the instantaneous bid-ask spread
and fails to account for the persistence in trades.

8.4 Intraday patterns of bid-ask spread

Empirical microstructure literature has documented that there are intraday patterns of bid-ask
spread, see, e.g., Chan and Lakonishok (1995), Hasbrouck (1993), Madhavan et al. (1997), McIn-
ish and Wood (1992) and Wood et al. (1985). The spreads typically exhibit a U-shape or reverse
J-shape. We demonstrate that our nonparametric measures of bid-ask spread on transaction
data produce an L-shape: the spreads are higher in the beginning of a trading day but are
relatively constant in the remaining trading hours.

To study the intraday patterns of bid-ask spread, we segment each trading day (from 9:30
AM to 4:00 PM) into 5-minutes intervals and calculate various measures for each interval.
The estimates are presented in Figure 16. Several observations are immediate. First, the
instantaneous spread measure has an L-shape for each stock. The estimates for the first five
minutes are twice as large as the estimates in the remaining sessions. However, we do not find
any wider (see McInish and Wood (1992)) or narrower (see Chan et al. (1995)) spreads near the
end of the trading day. Using the Roll measure, we find similar patterns, though the estimates
are biased. The average spread measure, however, has a slightly different shape — it drops
sharply after the first 5 minutes and reverts slowly in the first hour. After that the average
spread for INTC remains very constant, but the average spread for KO still exhibits a slightly
positive trend.

The spreads are related to market activities. Various measures of market activities display
intraday patterns, see Jain and Joh (1988) and McInish and Wood (1990) for trading volume
and McInish and Wood (1992) for the number of transactions. To study the interplay between

17Based on an AR(1) model of bid-ask spread, Choi et al. (1988) also find that Roll’s is downward biased when
the spreads are positively autocorrelated.
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Figure 13: ReMeDI estimates of the instantaneous bid-ask spread (IBAS) and Roll measure for INTC (top panel) and KO (bottom
panel) over each trading day in February, 2016, using transaction data from 9:35 AM to 4:00 PM. IBASn is constructed in (32)
(or (36)), the Roll measure in (44). The shaded area constitutes the 95% confidence intervals of the ReMeDI estimator constructed
from Theorem 5.2. The tuning parameters are kn = 10, in = 6.
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Figure 14: ReMeDI estimates of the instantaneous bid-ask spread (IBAS) and Roll measure for INTC (top panel) and KO (bottom
panel) over each trading day in February, 2016, using transaction data from 9:35 AM to 4:00 PM. IBASn is constructed in (32)
(or (36)), the the adjusted Roll measure in (47), kn = 10.
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Figure 15: ReMeDI estimates of the instantaneous bid-ask spread (IBAS), average bid-ask spread (ABAS) and Roll measure for
INTC (top panel) and KO (bottom panel) over each trading day in February, 2016, using transaction data from 9:35 AM to 4:00
PM. IBASn is constructed in (32) (or (36)); ABASn is constructed in (33) (or (42)); the Roll measure is constructed in (44). The
tuning parameters are kn = 10, `n = 6.
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Figure 16: Average intraday patterns of intraday spreads for INTC (top panel) and KO (bottom panel) in February, 2016. The
spreads are estimated in 5 minutes local windows on each trading day starting from 9:30 AM to 4:00 PM. IBASn is constructed
in (32) (or (36)); ABASn is constructed in (33) (or (42)); the Roll measure is constructed in (44). The tuning parameters are
kn = 10, `n = 6.

intraday spreads and market activities, we report the statistics of the trading volume and
number of transactions. The statistics are calculated over 5 minutes time intervals from 9:30
AM to 4:00 PM for each trading day, and the averages of the 20 trading days are plotted in
Figure 17. Interestingly, both measures of market activities have U-shapes (see the left and
right panels of Figure 17), indicating elevated trading at the beginning and end of the trading
day. However, the U-shapes are asymmetric: measured by trading volume, the market is more
active in the beginning; in terms of transactions, the market is more active in the close. Thus
on average, we would expect large numbers of shares are traded in each transaction when the
market starts. The middle panel of Figure 17 shows that the large averages are contributed
by extremely large transactions — the standard deviations of the trading volume in the first
five minutes are exceedingly high — trading volumes thereafter, including the end, are quite
"smooth". The standard deviations of trading volume display similar L-shape patterns to the
spreads. We therefore ascribe the large spreads to extremely large trades, resonating with early
findings in Lin et al. (1995) that order processing costs components of bid-ask spread increase
in trade sizes for the largest trades.
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9 Conclusion

This paper introduces a new econometric method to separate a stationary component from a
semimartingale process. The method is robust to data frequencies, model specifications. We
also derive the rigorous inferential theory. Based on the proposed estimators, we develop two
measures of the bid-ask spread as proxies of market liquidity.
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A Some auxiliary results

In the sequel, C denotes a constant that may change from line to line and even within one line.
When it depends on some parameters par, we use Cpar.

Let’s first state some classic estimates for Itô semimartingales, one is referred to Jacod and
Protter (2011) for details. Let V be any Itô semimartingale satisfying Assumption 3.2. Then for
any s ≤ t, we have for any r ≥ 2,

E (|Vt − Vs|
r
|Fs ) ≤ Cr(t − s); (53)

We also have

|E (Vt − Vs |Fs )| ≤ t − s; (54)∣∣∣∣∣∣E
(∫ i∆n

(i−1)∆n

(
Vs − Vn

i−1

)
ds

∣∣∣F(i−1)∆n

)∣∣∣∣∣∣ ≤ C∆2
n; (55)

E

∣∣∣∣∣∣
∫ i∆n

(i−1)∆n

(
Vs − Vn

i−1

)
ds

∣∣∣∣∣∣
r ∣∣∣F(i−1)∆n

 ≤ Cr∆
r+1
n . (56)

We denote F n
i = Fi∆n . Gi = σ(ε j : j ≤ i),Gi = σ(ε j : j ≥ i); and we introduceHn

i = F n
i ⊗ Gi.

The following lemma states an important property of strongly mixing sequence, and it will be
constantly employed in the proofs.

Lemma A.1. Let ξ, ξ′ be two variables such that ξ isGi-measurable and ξ′ isGi+k-measurable. Assume
ξ, ξ′ have bounded moments of all orders. Then we have

∣∣E(ξξ′) − E(ξ)E(ξ′)
∣∣ ≤ Ck−v/2. (57)

Proof. By the Cauchy-Schwarz inequality, we have

∣∣E((ξ − E(ξ)) (ξ′ − E(ξ′)))
∣∣ =

∣∣E((ξ − E(ξ))E (ξ′ − E(ξ′) |Gi ))
∣∣

≤

√
E
(
(ξ − E(ξ))2

)
E
(
(E (ξ′ − E(ξ′) |Gi ))2

)
.

Since ξ′ has bounded moments of all orders, Lemma VIII 3.102 of Jacod and Shiryaev (2003)
implies E

(
(E (ξ′ − E(ξ′) |Gi ))2

)
≤ Ckv. Now the result follows since E

(
(ξ − E(ξ))2

)
is bounded.

�

B Proof of Theorem 3.1

Proof of Theorem 3.1. We prove the result for ReMeDI(Y; j, p)FF
n , the consistency of ReMeDI(Y; j)FF

n

can be proved similarly. For any process V and any i, j, p ∈N∗, let

V̂( j, p)i := −∆kn
i+ j+pV∆2kn

i+ j−2kn
V∆3kn

i−3kn
V, r(ε; j, p)n := E

(
ε̂( j, p)i

)
, r( j, p) := E

(
ε0ε jε j+p

)
.
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Note that

r(ε; j, p)n − r( j, p) = − E
(
εi+ j+pεi+ jεi−3kn

)
− E

(
εi+ j+pεi+ j−2knεi

)
+ E

(
εi+ j+pεi+ j−2knεi−3kn

)
− E

(
εi+ j+p+knεi+ jεi

)
+ E

(
εi+ j+p+knεi+ jεi−3kn

)
− E

(
εi+ j+p+knεi+ j−2knεi

)
+ E

(
εi+ j+p+knεi+ j−2knεi

)
.

Apply Lemma A.1, we can show the absolute value of each term on the RHS is bounded by
C/kv/2

n . We thus have

∣∣∣r(ε; j, p)n − r( j, p)
∣∣∣ ≤ C

kv/2
n

. (58)

For any k > 5kn + j + p, by the independence of X and ε, the martingale property of X and the
fact that X has bounded fourth moments and Lemma A.1, we have∣∣∣∣E((Ŷ( j, p)i − ε̂( j, p)i

) (
ε̂( j, p)i+k − r(ε; j, p)n

))∣∣∣∣
=

∣∣∣∣∣E(∆kn
i+ j+pε

(
ε̂( j, p)i+k − r(ε; j, p)n

))
E
(
∆2kn

i+ j−2kn
X∆3kn

i−3kn
X
)∣∣∣∣∣

≤C
∣∣∣∣∣E(∆kn

i+ j+pε
(
ε̂( j, p)i+k − r(ε; j, p)n

))∣∣∣∣∣ ≤ C(k − 5kn − j − p)−v/2.

Similar result holds for
∣∣∣∣E((ε̂( j, p)i − r(ε; j, p)n

) (
Ŷ( j, p)i+k − ε̂( j, p)i+k

))∣∣∣∣, and a direct application of

Lemma A.1 yields
∣∣∣E((ε̂( j, p)i − r(ε; j, p)n

) (
ε̂( j, p)i+k − r(ε; j, p)n

))∣∣∣ ≤ C(k−5kn− j−p)−v/2. Thus we
have∣∣∣E((ε̂( j, p)i − r(ε; j, p)n

) (
ε̂( j, p)i+k − r(ε; j, p)n

))∣∣∣ +
∣∣∣∣E((Ŷ( j, p)i − ε̂( j, p)i

) (
ε̂( j, p)i+k − r(ε; j, p)n

))∣∣∣∣
+

∣∣∣∣E((ε̂( j, p)i − r(ε; j, p)n
) (

Ŷ( j, p)i+k − ε̂( j, p)i+k

))∣∣∣∣
≤C(k − 5kn − j − p)−v/2.

(59)

Next, we show∣∣∣∣E((Ŷ( j, p)i − ε̂( j, p)i

) (
Ŷ( j, p)i+k − ε̂( j, p)i+k

))∣∣∣∣ ≤C(k − 5kn − j − p)−v/2. (60)

We get 49 terms after expanding
(
Ŷ( j, p)i − ε̂( j, p)i

) (
Ŷ( j, p)i+k − ε̂( j, p)i+k

)
.We divide the 49 terms

into two categories. First, if the term has exact one of ∆kn
i+k+ j+pX,∆2kn

i+k+ j−2kn
X,∆3kn

i+k−3kn
X, then its

expectation is zero by the martingale property of X. Second, if the term has at most one of
∆kn

i+k+ j+pε,∆
2kn
i+k+ j−2kn

ε,∆3kn
i+k−3kn

ε, then its expectation is either zero (by the independence of X and
ε, the martingale property of X, and the fact E(ε) = 0) or bounded by C(k − 5kn − j − p)−v/2 (by
the independence of X and ε and Lemma A.1). This proves (60). Combined with (59), we get∣∣∣∣E((Ŷ( j, p)i − r(ε; j, p)n

) (
Ŷ( j, p)i+k − r(ε; j, p)n

))∣∣∣∣ ≤ C(k − 5kn − j − p)−v/2,
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which further leads to (recall v > 2)

E




n−kn− j∑
i=3kn

(
Ŷ( j, p)i − r(ε; j, p)n

)
2 ≤ Cnkn. (61)

In view of (58) and (61), we have

E

n−2


n−kn− j∑
i=3kn

(
Ŷ( j, p)i − r( j, p)

)
2 ≤ max{k−v

n , kn/n} → 0. (62)

This proves ReMeDI(Y; j, p)FF
n
P
→ r( j, p). �

C Proof of Theorem 3.2

Proof. We prove (18), the proofs of (20), (21) and (45) are easier and can be proved in a similar
way. For a process V, let V̂( j, p, q)n

i = −∆n,4kn
i−4kn

V∆n,3kn
i+ j−3kn

V∆n,2kn
i+ j+p−2kn

V∆n,kn
i+ j+p+qV. We obtain the

following using similar arguments to obtain (58):∣∣∣∣E(ε̂( j, p, q)n
i

)
− E

(
εiεi+ jεi+ j+pεi+ j+p+q

)∣∣∣∣ ≤ C

kv/2
n

. (63)

We denote `0 = 0, `1 = j, `2 = j + p, `3 = j + p + q, and let

δn
i,k =

Xn
i+`k
− Xn

i+`k−(4−k)kn
k = 0, 1, 2;

Xn
i+`k
− Xn

i+`k+kn
k = 3.

δ̃n
i,k =

ε
n
i+`k
− εn

i+`k−(4−k)kn
k = 0, 1, 2;

εn
i+`k
− εn

i+`k+kn
k = 3.

Note that

Ŷ( j, p, q)n
i =

3∏
k=0

(
δi,k + δ̃i,k

)
; ε̂( j, p, q)n

i =

3∏
k=0

δ̃i,k.

And

Ŷ( j, p, q)n
i − ε̂( j, p, q)n

i =
∑

(Q,Qc)⊂Q4

∏
k∈Q

δi,k

∏
k′∈Qc

δ̃i,k′ , (64)

where Q4 = {(Q,Qc) : Q ∩Qc = ∅,Q ∪Qc = {0, 1, 2, 3},Q , ∅}. By (53), and the fact that all
moments of noise exist, we have for any r ≥ 2, (Q,Qc) ∈ Q4,

E
(∣∣∣δn

i,k

∣∣∣r) ≤ Ckn∆n, E


∣∣∣∣∣∣∣∣
∏

k′∈Qc

δ̃n
i,k

∣∣∣∣∣∣∣∣
r ≤ C. (65)

Given (Q,Qc) ∈ Q4, let l = |Q|, l ≥ 1 since Q , ∅. Apply the (generalized) Hölder’s inequality
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with exponents (2l, . . . , 2l︸   ︷︷   ︸
l

, 2), we have

E


∣∣∣∣∣∣∣∣
∏
k∈Q

δn
i,k

∏
k′∈Qc

δ̃n
i,k′

∣∣∣∣∣∣∣∣
 ≤∏

k∈Q

(
E
(∣∣∣δn

i,k

∣∣∣2l
)) 1

2l

√√√√√√
E


∣∣∣∣∣∣∣∣
∏

k′∈Qc

δ̃n
i,k′

∣∣∣∣∣∣∣∣
2 (65)
≤ C

√
kn∆n. (66)

Now it follows from (63), (64) and (66), and the facts that kn →∞ and kn∆n → 0:

E
(∣∣∣∣ReMeDI(Y; j, p, q)HF

n − E
(
εiεi+ jεi+ j+pεi+ j+p+q

)∣∣∣∣)
≤

Nn
t −kn− j−p−q∑

i=4kn

E
(∣∣∣∣Ŷ( j, p, q)n

i − ε̂( j, p, q)n
i

∣∣∣∣) + E
(∣∣∣∣̂ε( j, p, q)n

i − E
(
εiεi+ jεi+ j+pεi+ j+p+q

)∣∣∣∣)
Nn

t − 5kn − j − p − q + 1
→ 0.

The proof is finished. �

D Proof of Theorem 3.3

For any process V, let V̂n
i = −∆n,2kn

i−2kn
V∆n,kn

i+ j V.

Lemma D.1. Let ε satisfy Assumption 2.1. For any kn →∞, we have

rn
j := E

(
ε̂n

i

)
→ r j. (67)

For any k ∈ Z,∣∣∣∣E((ε̂n
i − rn

j

) (
ε̂n

i+k − rn
j

))
− 3r2

k − E
((
εiεi+ j − r j

) (
εi+kεi+k+ j − r j

))∣∣∣∣ ≤ C

kv/2
n

. (68)

Proof. It is immediate to get ∣∣∣∣rn
j − r j

∣∣∣∣ ≤ C

kv/2
n

(69)

after an application of Lemma A.1.To prove (68), we consider the following scenarios:

(a) We show for any k ∈ Z,

∣∣∣∣∣E(εn
i ε

n
i+kε

n
i+ j+kn

εn
i+ j+kn+k

)
− r2

k

∣∣∣∣∣ ≤ C
kv/2

n
;∣∣∣∣∣E(εn

i−2kn
εn

i−2kn+kε
n
i+ jε

n
i+ j+k

)
− r2

k

∣∣∣∣∣ ≤ C
kv/2

n
;∣∣∣∣∣E(εn

i−2kn
εn

i−2kn+kε
n
i+ j+kn

εn
i+ j+kn+k

)
− r2

k

∣∣∣∣∣ ≤ C
kv/2

n
.

(70)

(1) To prove the first estimate in (70), we first consider |k| ≤ bkn/2c so that

min(i + j + kn + k, i + j + kn) −max(i, i + k) ≥ kn/2.
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Then apply Lemma A.1, we have∣∣∣∣E((εn
i ε

n
i+k − rk

) (
εn

i+ j+kn
εn

i+k+ j+kn
− rk

))∣∣∣∣ ≤ C

kv/2
n

.

When |k| > bkn/2c, we first note r2
k ≤ C/kv

n by (3), whereas∣∣∣∣E(εn
i ε

n
i+ j+kn

εn
i+kε

n
i+k+ j+kn

)∣∣∣∣
≤



√
E

((
εn

i ε
n
i+kε

n
i+ j+kn

)2
)
E

((
E

(
εn

i+ j+kn+k

∣∣∣Gmax(i+ j+kn,i+k)

))2
)
, k > bkn/2c√

E

((
εn

i ε
n
i+ j+kn+kε

n
i+ j+kn

)2
)
E
((
E

(
εn

i+k

∣∣∣Gmin(i,i+k+ j+kn)
))2

)
, k < −bkn/2c

≤
C

kv/2
n

.

(2) For the second estimate in (70), we first assume |k| ≤ kn thus

min(i + j, i + j + k) −max(i − 2kn, i − 2kn + k) ≥ kn

so that we have∣∣∣∣E((εn
i−2kn

εn
i+k−2kn

− rk

) (
εn

i+ jε
n
i+ j+k − rk

))∣∣∣∣
≤

√
E
(
εn

i−2kn
εn

i+k−2kn
− rk

)2
(
E
(
E

(
εn

i+ jε
n
i+ j+k − rk

∣∣∣Gmax(i−2kn,i+k−2kn)

))2
)
≤

C

kv/2
n

.

For |k| > kn, we have r2
k ≤ C/kv

n and∣∣∣∣E(εn
i−2kn

εn
i−2kn+kε

n
i+ jε

n
i+k+ j

)∣∣∣∣
≤



√
E

((
εn

i−2kn
εn

i−2kn+kε
n
i+ j

)2
)
E

((
E

(
εn

i+ j+k

∣∣∣Gmax(i+ j,i+k−2kn)

))2
)
, k > kn√

E

((
εn

i−2kn
εn

i+ jε
n
i+ j+k

)2
)
E
((
E

(
εn

i−2kn+k

∣∣∣Gmin(i−2kn,i+k+ j)
))2

)
, k < −kn

≤
C

kv/2
n

.

(3) The last estimate in (70) can be proved similarly. For |k| ≤ kn thus

min(i + j + kn, i + j + k + kn) −max(i − 2kn, i − 2kn + k) ≥ kn
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so that we have∣∣∣∣E((εn
i−2kn

εn
i+k−2kn

− rk

) (
εn

i+ j+kn
εn

i+ j+kn+k − rk

))∣∣∣∣
≤

√
E
(
εn

i−2kn
εn

i+k−2kn
− rk

)2
(
E
(
E

(
εn

i+ j+kn
εn

i+ j+k+kn
− rk

∣∣∣Gmax(i−2kn,i−2kn+k)

))2
)
≤

C

kv/2
n

.

For |k| > kn, we have r2
k ≤ C/kv

n and∣∣∣∣E(εn
i−2kn

εn
i−2kn+kε

n
i+ j+kn

εn
i+k+ j+kn

)∣∣∣∣
≤



√
E

((
εn

i−2kn
εn

i−2kn+kε
n
i+ j+kn

)2
)
E

((
E

(
εn

i+ j+k+kn

∣∣∣Gmax(i+ j+kn,i+k−2kn)

))2
)
, k > kn√

E

((
εn

i−2kn
εn

i+ j+kn
εn

i+ j+k+kn

)2
)
E
((
E

(
εn

i−2kn+k

∣∣∣Gmin(i−2kn,i+k+ j+kn)
))2

)
, k < −kn

≤
C

kv/2
n

.

This finishes the proof of (70).

(b) Now we show the remaining 13 terms inE
(
ε̂n

i+kε̂
n
i

)
are bounded by C/kv/2

n except εn
i ε

n
i+ jε

n
i+kε

n
i+k+ j.

The approach is still to apply Lemma A.1 to "separate" each term. Therefore we only need
to show the maximal or minimal index is at least Ckn larger or smaller than the remaining
indices.

(1) For εn
i ε

n
i+ jε

n
i+k−2kn

εn
i+k+ j+kn

, we have

min(i, i + j, i + k + j + kn) − (i + k − 2kn) ≥ 2kn, k < 0

(i + k + j + kn) −max(i + j, i, i + k − 2kn) ≥ kn. k ≥ 0

(2) For εn
i ε

n
i+ jε

n
i+k−2kn

εn
i+k+ j, we have

min(i, i + j, i + k + j) − (i + k − 2kn) ≥ b3kn/2c, k < bkn/2c

(i + k + j) −max(i + j, i, i + k − 2kn) ≥ bkn/2c. k ≥ bkn/2c

(3) For εn
i ε

n
i+ jε

n
i+kε

n
i+k+kn

, we have

min(i, i + j, i + k + j) − (i + k) > bkn/2c, k < −bkn/2c

(i + k + kn) −max(i, i + j, i + k) ≥ bkn/2c − j. k ≥ −bkn/2c
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(4) For εn
i ε

n
i+ j+kn

εn
i+k−2kn

εn
i+k+ j+kn

, we have

min(i, i + j + kn, i + k + j + kn) − (i + k − 2kn) ≥ kn, k < kn

(i + k + j + kn) −max(i, i + j + kn, i + k − 2kn) ≥ kn. k ≥ kn

(5) For εn
i ε

n
i+ j+kn

εn
i+k−2kn

εn
i+k+ j, we have

min(i, i + j + kn, i + k + j) − (i + k − 2kn) ≥ bkn/2c, k < b3kn/2c

(i + k + j) −max(i + j + kn, i, i + k − 2kn) ≥ bkn/2c. k ≥ b3kn/2c

(6) For εn
i ε

n
i+ j+kn

εn
i+kε

n
i+k+ j, we have

i + j + kn −max(i, i + k + j, i + k) ≥ bkn/2c, k < bkn/2c

min(i + j + kn, i + k, i + k + j) − i ≥ bkn/2c. k ≥ bkn/2c

(7) For εn
i−2kn

εn
i+ jε

n
i+kε

n
i+k+ j+kn

, we have

min(i + k, i + j, i + k + j + kn) − (i − 2kn) ≥ bkn/2c, k ≥ b−3kn/2c

(i + j) −max(i − 2kn, i + k, i + k + j + kn) ≥ bkn/2c. k < b−3kn/2c

(8) For εn
i−2kn

εn
i+ jε

n
i+k−2kn

εn
i+k+ j+kn

, we have

min(i − 2kn, i + j, i + k + j + kn) − (i + k − 2kn) ≥ bkn/2c, k < b−kn/2c

(i + j + k + kn) −max(i − 2kn, i + j, i + k − 2kn) ≥ bkn/2c. k ≥ b−kn/2c

(9) For εn
i−2kn

εn
i+ j+kn

εn
i+kε

n
i+k+ j, we have

min(i + k, i + j + k, i + j + kn) − (i − 2kn) ≥ 2kn, k ≥ 0

(i + j + kn) −max(i − 2kn, i + k, i + k + j) ≥ kn. k < 0

(10) For εn
i−2kn

εn
i+ j+kn

εn
i+kε

n
i+k+ j+kn

, we have

min(i + k, i + j + kn, i + j + k + kn) − (i − 2kn) ≥ kn, k ≥ −kn

(i + j + kn) −max(i − 2kn, i + k, i + k + j + kn) ≥ kn. k < −kn

(11) For εn
i−2kn

εn
i+ j+kn

εn
i+k−2kn

εn
i+k+ j, we have

min(i + k − 2kn, i + k + j, i + j + kn) − (i − 2kn) ≥ bkn/2c, k ≥ bkn/2c

(i + j + kn) −max(i − 2kn, i + k − 2kn, i + k + j) ≥ bkn/2c. k < bkn/2c
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(12) For εn
i−2kn

εn
i+ jε

n
i+kε

n
i+k+ j, we have

min(i + k, i + j, i + j + k) − (i − 2kn) ≥ kn, k ≥ −kn

(i + j) −max(i − 2kn, i + k, i + k + j) ≥ kn. k < −kn

Now the proof of (68) is complete.

�

Lemma D.2. Let v > 2, kn∆n → 0. Then

Σn
j :=

Var
(∑Nn

t −kn− j
i=2kn

ε̂n
i

)
Nn

t − 3kn − j + 1
→ Σ j. (71)

Proof. Since v > 2, (68) implies∣∣∣∣∣∣∣∣
j+4kn∑

k=− j−4kn

E
((
ε̂n

i − rn
j

) (
ε̂n

i+k − rn
j

))
−

4kn+ j∑
k=−4kn− j

(
3r2

k + E
((
ε0ε j − r j

) (
εkεk+ j − r j

)))∣∣∣∣∣∣∣∣ ≤ Ckn

kv/2
n

→ 0. (72)

We also have
∞∑

k=4kn+ j

(
3r2

k + E
((
ε0ε j − r j

) (
εkεk+ j − r j

)))
≤

C

k
v
2−1
n

→ 0. (73)

Hence (72) and (73) imply

j+4kn∑
k=− j−4kn

E
((
ε̂n

i − rn
j

) (
ε̂n

i+k − rn
j

))
→ Σ j. (74)

Since ∣∣∣∣∣∣∣∣
∞∑

k= j+4kn

E
((
ε̂n

i − rn
j

) (
ε̂n

i+k − rn
j

))∣∣∣∣∣∣∣∣ ≤ C

k
v
2−1
n

→ 0,

(71) now follows. �

Lemma D.3. Let (wn)n be a sequence of integers such that wn > 2kn. Then for v > 2, we have

E


 wn∑

i=2kn

(
ε̂n

i − rn
j

)
2 ≤ C (wn − 2kn) . (75)

Proof. It suffices to prove for each 2kn ≤ i ≤ wn − 1,

E

wn−i∑
k=1

(
ε̂n

i − rn
j

) (
ε̂n

i+k − rn
j

) ≤ C. (76)
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Note that ∣∣∣∣∣∣∣E
wn−i∑

k=1

(
ε̂n

i − rn
j

) (
ε̂n

i+k − rn
j

)
∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣E


(wn−i)∧(3kn+ j)∑
k=1

(
ε̂n

i − rn
j

) (
ε̂n

i+k − rn
j

)
∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣E


(wn−i)∨(3kn+ j)∑
k=1+(3kn+ j)

(
ε̂n

i − rn
j

) (
ε̂n

i+k − rn
j

)
∣∣∣∣∣∣∣∣ .

But for k ≥ 1 + (3kn + j),
∣∣∣∣∣E((ε̂n

i − rn
j

) (
ε̂n

i+k − rn
j

))∣∣∣∣∣ ≤ C
(k−3kn− j)v/2 . Recall that v > 2, thus it suffices

to prove
∑(wn−i)∧(3kn+ j)

k=1

∣∣∣∣∣E((ε̂n
i − rn

j

) (
ε̂n

i+k − rn
j

))∣∣∣∣∣ < C, which is a simple consequence of (68).
�

Theorem D.1. Let the noise process ε satisfy Assumption 2.1, kn, v satisfy

v > 6, kn � ∆
−γ
n , γ ∈ (0, δ) ,where δ ∈

( 2
v + 4

,
1
5

)
. (77)

Then we have the following convergence in distribution:√
Nn

t

(
ReMeDI(ε; j)HF

n − rn
j

)
L
−→ N

(
0,Σ j

)
. (78)

In addition if γ > 1
v , we have √

Nn
t

(
ReMeDI(ε; j)HF

n − r j

)
L
−→ N

(
0,Σ j

)
. (79)

Proof. We follow the steps to prove central limit theorems of dependent variables, see Ibragimov
(1962). Let (pn), (qn) be two sequences of integers satisfying

pn � ∆−τn , τ ∈
(
2δ,

1 − δ
2

)
; qn � ∆−`n , ` ∈ (δ, 2δ) . (80)

Let νn = [(Nn
t − kn − j)/(pn + qn)]. Thus νn � ∆−

(1−τ)
n . We can verify the following asymptotic

relations:

p−1
n qn → 0; (81)

q−1
n kn → 0; (82)

knp2
n∆n → 0; (83)

q−
v
2

n νn → 0. (84)

In particular, the last asymptotic relation holds since

1 − τ < 1 − 2δ < 1 −
4

v + 4
=

v
2
×

2
v + 4

<
v
2
δ <

v
2
`.
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For 1 ≤ k ≤ νn − 1, let

η̃n
k =

k(pn+qn)+qn∑
i=k(pn+qn)+1

(
ε̂n

i − rn
j

)
; η̄n

k =

(k+1)(pn+qn)∑
i=k(pn+qn)+qn+1

(
ε̂n

i − rn
j

)
. (85)

Recall rn
j is defined in (67). As we will prove later, the "big" blocks (η̄n

k )k, separated by the
"small" blocks (η̃n

k )k are approximately independent, while the "small" blocks are asymptotically
negligible. Denote the remainders by

η̃n
νn

=

pn+qn∑
i=2kn

(
ε̂n

i − rn
j

)
+

Nn
t −kn− j∑

i=νn(pn+qn)

(
ε̂n

i − rn
j

)
.

Let

Sn =
1
σn

Nn
t −kn− j∑
i=2kn

(
ε̂n

i − rn
j

)
; S̃n =

1
σn

νn∑
k=1

η̃n
k ; S̄n =

1
σn

νn−1∑
k=1

η̄n
k . (86)

where

σn :=

√√√√
Var


Nn

t −kn− j+1∑
i=2kn

ε̂n
i

.
From (71), we know σn � ∆−1/2

n . Note that Sn = S̃n + S̄n.

(a) Now we prove
S̃n

P
→ 0. (87)

Lemma D.3 implies

E
((
η̃n
νn
/σn

)2
)
≤ C∆n(pn + qn)→ 0.

Similarly, we have for any 1 ≤ k ≤ νn − 1:

E
((
η̄n

k

)2
)
≤ Cpn; E

((
η̃n

k

)2
)
≤ Cqn. (88)

Let S̃′n = 1
σn

∑νn−1
k=1 η̃n

k . We prove S̃′n
P
→ 0 given (81) and (82). The following is easy to get in

view of (88) and v > 2:

E


νn−1∑

k=1

η̃n
k


2 =

νn−1∑
k=1

E
(
η̃n

k

)2
 + 2

νn−2∑
k=1

νn−1∑
k′>k

E
(
η̃n

k η̃
n
k′
)
≤ Cνnqn,

and it leads to
E
((

S̃′n
)2
)
≤ Cνn∆nqn � qn

(
pn + qn

)−1 (81)
−→ 0. (89)
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Therefore we have
E
((

S̃n
)2
)
≤ 2

(
E
((

S̃′n
)2
)

+ E
((
η̃n
νn
/σn

)2
))
→ 0. (90)

This finishes the proof of (87).

(b) Now we prove the following Lindeberg condition :

νnE
(
1{
η̄n

k /σn>ε
} (η̄n

k/σn
)2
)
→ 0, for any ε > 0. (91)

We first have

E
((
η̄n

k

)4
)

=pnE
((
ε̂n

i − rn
j

)4
)

+
∑
i,i′
E
((
ε̂n

i − rn
j

)2 (
ε̂n

i′ − rn
j

)2
)

+
∑

i,i′,i”

E
((
ε̂n

i − rn
j

)2 (
ε̂n

i′ − rn
j

) (
ε̂n

i” − rn
j

))
+

∑
i,i′,i”,i′′′

E
((
ε̂n

i − rn
j

) (
ε̂n

i′ − rn
j

) (
ε̂n

i” − rn
j

) (
ε̂n

i′′′ − rn
j

))
≤Cp3

nkn.

To see the last inequality, we evaluate the following∑
i>i′

∑
i′>i”

∑
i”>i′′′

∑
i′′′
E
((
ε̂n

i − rn
j

) (
ε̂n

i′ − rn
j

) (
ε̂n

i” − rn
j

) (
ε̂n

i′′′ − rn
j

))
≤

∑
i>i′

∑
i′>i”

∑
i”>i′′′

Ckn +
∑

i′′′<i”−2kn− j

E
((
ε̂n

i − rn
j

) (
ε̂n

i′ − rn
j

) (
ε̂n

i” − rn
j

) (
ε̂n

i′′′ − rn
j

))
≤Cp3

nkn.

Now we get

νnE
(
1{
η̄n

k /σn>ε
} (η̄n

k/σn
)2
)
≤ νnE

1{
η̄n

k /σn>ε
}
(
η̄n

k/σn
)4

ε2


≤

νnE
((
η̄n

k

)4
)

σ4
nε2

≤
Cνnknp3

n

σ4
n

� knp2
n∆n

(83)
→ 0.

(c) Next, we show
E
(
S2

n

)
− E

(
S̄2

n

)
→ 0. (92)

To get (92), it suffices to show E
(
S̄2

n

)
< ∞ since we have E

(
S̃2

n

)
→ 0 and E

(
S2

n

)
− E

(
S̄2

n

)
=

E
(
S̃2

n

)
+ 2E

(
S̃nS̄n

)
. Apply the estimate in (88), we get E

(
S̄2

n

)
≤ Cνnpn∆n, which is bounded.

(d) Now we show ∣∣∣∣∣∣∣E(exp
(
iuS̄n

))
−

νn−1∏
k=1

E
(
exp

(
iuη̄n

k/σn
))∣∣∣∣∣∣∣ ≤ Cνn

qv/2
n

(84)
→ 0. (93)
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Let η̄n
νn

= η̄n
0 = 0. For k = 0, . . . , νn − 2, let

χn
k :=

k∏
k′=0

E
(
exp

(
iuη̄n

k′/σn
))
E

exp

iu
νn∑

k”=k+1

η̄n
k”/σn




−

k+1∏
k′=0

E
(
exp

(
iuη̄n

k′/σn
))
E

exp

iu
νn∑

k”=k+2

η̄n
k”/σn


.

Rewrite

E
(
exp

(
iuS̄n

))
−

νn−1∏
k=1

E
(
exp

(
iuη̄n

k/σn
))

=

νn−2∑
k=0

χn
k ,

then apply Lemma A.1 yields
∣∣∣χn

k

∣∣∣ ≤ C/qv/2
n ∀k whence the inequality in (93). Therefore we

see that the sequence (η̄n
k )1≤k≤νn−1 behave asymptomatically as if they are independent.

Now the proof of (78) is complete given (71), (87), (91), (92) and (93). If γ > 1/v, (79) follows
from (69) and (78).

�

Lemma D.4. Under the assumption of Theorem 3.3, we have√
Nn

t

(
ReMeDI(Y; j)HF

n − ReMeDI(ε; j)HF
n

) P
→ 0. (94)

Proof. By Cauchy-Schwarz inequality and the estimates in (53), we have

E

√Nn
t

∑Nn
t −kn− j

i=2kn

∣∣∣∣∆n,2kn
i−2kn

X∆n,kn
i+ j X

∣∣∣∣
Nn

t − 3kn − j + 1

 ≤ Ckn
√

∆n.

Thus it suffices to prove

√
Nn

t

∑Nn
t −kn− j

i=2kn

(
∆n,2kn

i−2kn
X∆n,kn

i+ j ε + ∆n,2kn
i−2kn

ε∆n,kn
i+ j X

)
Nn

t − 3kn − j + 1
P
→ 0,

since √
Nn

t

(
ReMeDI(Y; j)HF

n − ReMeDI(ε; j)HF
n

)
=

√
Nn

t

∑Nn
t −kn− j

i=2kn

(
∆n,2kn

i−2kn
X∆n,kn

i+ j X + ∆n,2kn
i−2kn

X∆n,kn
i+ j ε + ∆n,2kn

i−2kn
ε∆n,kn

i+ j X
)

Nn
t − 3kn − j + 1

.
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We note by the independence of X, ε∣∣∣∣∣∣∣∣
Nn

t −kn− j∑
i=2kn

Nn
t −kn− j∑
k=2kn

E
(
∆n,2kn

i−2kn
X∆n,kn

i+ j ε∆
n,2kn
k−2kn

X∆n,kn
k+ j ε

)∣∣∣∣∣∣∣∣
≤

Nn
t −kn− j∑
i=2kn

Nn
t −kn− j∑
k=2kn

∣∣∣∣E(∆n,2kn
i−2kn

X∆n,2kn
k−2kn

X
)∣∣∣∣ ∣∣∣∣∣E(∆n,kn

i+ j ε∆
n,kn
k+ j ε

)∣∣∣∣∣
≤ Ckn∆n

Nn
t −kn− j∑
i=2kn

Nn
t −kn− j∑
k=2kn

∣∣∣∣∣E(∆n,kn
i+ j ε∆

n,kn
k+ j ε

)∣∣∣∣∣
= Ckn∆n

Nn
t −kn− j∑
i=2kn

 ∑
{k:|i−k|≤ j+3kn}

∣∣∣∣∣E(∆n,kn
i+ j ε∆

n,kn
k+ j ε

)∣∣∣∣∣ +
∑

{k:|i−k|> j+3kn}

∣∣∣∣∣E(∆n,kn
i+ j ε∆

n,kn
k+ j ε

)∣∣∣∣∣


≤ Ck2
n.

The last inequality follows an application of Lemma A.1 and v > 2. This proves that

E


√Nn

t

∑Nn
t −kn− j

i=2kn
∆n,2kn

i−2kn
X∆n,kn

i+ j ε

Nn
t − 3kn − j + 1


2 ≤ Ck2

n∆n,

hence √
Nn

t

∑Nn
t −kn− j

i=2kn
∆n,2kn

i−2kn
X∆n,kn

i+ j ε

Nn
t − 3kn − j + 1

P
→ 0.

Similarly we show √
Nn

t

∑Nn
t −kn− j

i=2kn
Xn,kn

i−2kn
ε∆n,kn

i+ j ε

Nn
t − 3kn − j + 1

P
→ 0.

This finish the proof of (94). �

Proof of Theorem 3.3. The proof simply follows from Theorem D.1 and Lemma D.4. �

E Proof of Theorem 3.4

We first introduce several notations. For each 2kn ≤ i ≤ Nn
t − kn − in − j, denote

ε̃n
i := ε̂n

i − ReMeDI(Y, j)HF
n ; ε̃n

i (1) := ε̂n
i − rn

j ; ε̃n
i (2) := ReMeDI(Y, j)HF

n − rn
j ;

Σ̂(ε; ι1, ι2)n
j :=

1
Nn

t − 3kn − j − in + 1

Nn
t −kn−in− j∑

i=2kn

ε̃n
i (ι1)ε̃n

i (ι2) + 2
in∑

k=1

ε̃n
i (ι1)ε̃n

i+k(ι2)

 , ι1, ι2 ∈ {1, 2};
Σ̂(ε)n

j :=
1

Nn
t − 3kn − j − in + 1

Nn
t −kn−in− j∑

i=2kn

(ε̃n
i

)2
+ 2

in∑
k=1

ε̃n
i ε̃

n
i+k

 .
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Lemma E.1. Assume all conditions of Theorem 3.4 hold. Then

Σ̂(ε; 1, 2)n
j + Σ̂(ε; 2, 1)n

j + Σ̂(ε; 2, 2)n
j
P
→ 0. (95)

Proof. We first show

E
((

ReMeDI(Y, j)HF
n − ReMeDI(ε, j)HF

n

)2
)
≤ Ckn∆n. (96)

(96) can be obtained by replicating the arguments in the proof of Theorem 3.1. For the sake of
completeness, we detail the proof. Let

δn
i (1) = Xn

i − Xn
i−2kn

; δn
i (2) = Xn

i+ j − Xn
i+ j+kn

; δ̃n
i (1) = εn

i − ε
n
i−2kn

; δ̃n
i (2) = εn

i+ j − ε
n
i+ j+kn

.

Then we have

Ŷn
i =

(
δn

i (1) + δ̃n
i (1)

) (
δn

i (2) + δ̃n
i (2)

)
, ε̂n

i = δ̃n
i (1)δ̃n

i (2),

Ŷn
i − ε̂

n
i = δn

i (1)δn
i (2) + δ̃n

i (1)δn
i (2) + δn

i (1)δ̃n
i (2).

Apply the estimate (53), the fact ε has bounded moments and Cauchy-Schwarz inequality, we
have

E
((

Ŷn
i − ε̂

n
i

)2
)
≤ Ckn∆n. (97)

Now (96) follows. Next, we show

E
((

ReMeDI(ε, j)HF
n − rn

j

)2
)
≤ C max{∆n, k

−v/2
n }. (98)

Apply (68), we have

Nn
t −kn− j∑
i=2kn

Nn
t −kn− j−i∑

k=0

E
((
ε̂n

i − rn
j

) (
ε̂n

i+k − rn
j

))
≤

Nn
t −kn− j∑
i=2kn

Nn
t −kn− j−i∑

k=0

E((ε0ε j − r j)(εkεk+ j − r j)
)

+ 3r2
k +

C

kv/2
n


≤ C

(
∆−1

n + ∆−2
n k−v/2

n

)
.

This proves (98). (96) and (98) imply E
((
ε̃n

i (2)
)2
)
≤ max{kn∆n, k

−v/2
n }. Now apply the Cauchy-

Schwarz inequality, we get

E
(∣∣∣∣Σ̂(ε; 1, 2)n

j

∣∣∣∣ +
∣∣∣∣Σ̂(ε; 2, 1)n

j

∣∣∣∣ +
∣∣∣∣Σ̂(ε; 2, 2)n

j

∣∣∣∣) ≤ Cin max{
√

kn∆n, k
−v/4
n } → 0.

�

Lemma E.2. Under the assumptions of Theorem 3.4, we have

Σ̂(ε; 1, 1)n
j
P
→ Σ j. (99)
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Proof. We first show

E
(
Nn

t

(
ReMeDI(ε; j)HF

n − rn
j

)2
)
− Σ̂(ε; 1, 1)n

j → 0. (100)

Let ε̄n
i,i′ =

(
ε̂n

i − rn
j

) (
ε̂n

i′ − rn
j

)
− E

((
ε̂n

i − rn
j

) (
ε̂n

i′ − rn
j

))
. First, we apply Lemma A.1 and get an

estimate E
((∑Nn

t −kn−in− j
i=2kn

ε̄n
i,i

)2
)
≤ C∆−1

n kn, which implies

1
Nn

t − 3kn − in − j + 1

Nn
t −kn−in− j∑

i=2kn

ε̄n
i,i
P
→ 0. (101)

Similarly, we can prove

1
Nn

t − 3kn − in − j + 1

Nn
t −kn−in− j∑

i=2kn

in∑
k=1

(
ε̄n

i,i+k + ε̄n
i+k,i

) P
→ 0. (102)

Another application of Lemma A.1 yields

1
Nn

t − 3kn − in − j + 1
E


Nn

t −kn−in− j∑
i=2kn

Nn
t −kn−in− j−i∑

k=in+1

(
ε̂n

i − rn
j

) (
ε̂n

i+k − rn
j

) ≤ Ci1−
v
2

n . (103)

(101), (102) and (103) imply

Σ̂(ε; 1, 1)n
j −

1
Nn

t − 3kn − in − j + 1

Nn
t −kn−in− j∑

i=2kn

Nn
t −kn−in− j∑

i′=2kn

E
((
ε̂n

i − rn
j

) (
ε̂n

i′ − rn
j

)) P
→ 0. (104)

However, the remainders are negligible due to the conditions on in:

E
(
Nn

t

(
ReMeDI(ε; j)HF

n − rn
j

)2
)
−

∑Nn
t −kn−in− j

i=2kn

∑Nn
t −kn−in− j

i′=2kn
E
((
ε̂n

i − rn
j

) (
ε̂n

i′ − rn
j

))
Nn

t − 3kn − in − j + 1
→ 0. (105)

Now (100) follows from (104) and (105). Note that (68) implies

E
(
Nn

t

(
ReMeDI(ε; j)HF

n − rn
j

)2
)
→ Σ j. (106)

Now the result follows from (100) and (106). �

Proof of Theorem 3.4. The following is immediate to obtain

ε̃n
i = ε̃n

i (1) + ε̃n
i (2); Σ̂(ε)n

j =

2∑
ι1=1

2∑
ι2=1

Σ̂(ε; ι1, ι2)n
j .
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Then by Lemma E.1, Lemma E.2 and Theorem 3.3, it suffices to show

Σ̂(Y)n
j − Σ̂(ε)n

j
P
→ 0. (107)

Now we will show
E
(∣∣∣∣Σ̂(Y)n

j − Σ̂(ε)n
j

∣∣∣∣) ≤ C
(
in(kn∆n)1/2

)
. (108)

Once this is proved, (107) follow since
√

kn∆n = op
(
∆2/5

n

)
, in � ∆−1/5

n . For any k ≥ 0,

Ỹn
i Ỹn

i+k − ε̃
n
i ε̃

n
i+k =

(
Ŷn

i+k − ε̂
n
i+k

) (
ε̂n

i − ReMeDI(Y; j)HF
n

)
+

(
Ŷn

i − ε̂
n
i

) (
Ŷn

i+k − ReMeDI(Y; j)HF
n

)
.

Now (97), Cauchy-Schwarz inequality and the (trivial) facts that E
((
ε̂n

i − ReMeDI(Y; j)HF
n

)2
)
≤

C, E
((

Ŷn
i+k − ReMeDI(Y; j)HF

n

)2
)
≤ C imply

E
(∣∣∣∣Ỹn

i Ỹn
i+k − ε̃

n
i ε̃

n
i+k

∣∣∣∣) ≤ C
√

kn∆n.

Now (108) is proved and this completes the proof.
�

F Proof of the results in Section 5

Proof of Theorem 5.2. This follows from Theorem 3.3, Theorem 3.4 and the delta method. �

Proof of Corollary 5.1. (69), (96) and (98) yield for any j∣∣∣ReMeDI(Y; j)HF
n − r j

∣∣∣ = Op
(
max{(kn∆n)1/2, k−v/2

n }

)
.

The consistency result (41) follows from (40). �

Proof of Theorem 5.1. Replicate the proof of Theorem 3.1, we obtain a similar result of (62):

E

n−2


n−kn− j∑
i=2kn

(
Ŷ( j)i − r j

)
2 ≤ max{k−v

n , kn/n},

whence ReMeDI(Y, j)FF
n − r j = Op

(
max{k−v/2

n ,
√

kn/n}
)
. Now the results follows from the asymp-

totic conditions on `HF
n . �

G Autocorrelation patterns of bid-ask spread of INTC and KO, daily
estimation
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