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Abstract

This paper proposes a latent factor model with underlying Wishart distribution to
capture the dynamics of daily realized covariance matrices for forecasting purposes.
The long memory in the series is captured by means of aggregating latent factors with
stochastic volatility structure, where the factors are extracted from the commonality
in the dynamics of realized variance and covariance series. This new model accom-
modates the positive-definiteness and the symmetry of variance-covariance matrix
forecasts within a very parsimonious framework with no parameter constraints. For
estimation purposes, we implement the numerical exact maximum likelihood method
on the Kitagawa state-space filtering procedure. We provide Monte Carlo evidence
on the accuracy of estimates and, on real data, we show that our model outperforms
existing ones when forecasting daily variance-covariance matrices.
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1 Introduction

Modelling and forecasting time varying covariance matrices of financial returns has al-
ways been a challenge for the financial econometric literature. The first approaches in this
direction are the Multivariate Generalized Autoregressive Heteroskedastic (MGARCH)
models (see Bauwens et al. (2006) for a review) and the Multivariate Stochastic Volatility
(MSV) models (see Asai and McAleer (2006) for a review), which measure the unob-
served covariance matrices as a function of past observations and of latent stochastic
shocks, respectively. However, both approaches are difficult to implement in practice as
they suffer from the curse of dimensionality and estimation difficulties when applied to
large dimensional matrices. Alternatively, the Realized Covariance (RCov) estimators
introduced by Barndorff-Nielsen and Shephard (2004) provide consistent estimates of
daily covariance matrices by using high-frequency information (see Zhang et al. (2005),
Barndorff-Nielsen et al. (2011), Lunde et al. (2016), among others, for further devel-
opments). However, in order to make forecasts based on RCov one has to model their
dynamics.

The literature on modeling and forecasting RCov matrices has been growing at a slow
pace due to numerous challenges: the forecasts have to be positive definite and symmetric,
the models have to account for the empirical features of the series, such as long memory
and common dynamics and, in the same time, they have to remain parsimonious when
applied to high dimensional matrices. All these challenges raise further problems in their
practical implementation, as the estimation becomes infeasible starting already at matri-
ces of dimension 6 × 6. The most prominent developments are provided by Gouriéroux
et al. (2009), Chiriac and Voev (2011), Jin and Maheu (2013), Golosnoy et al. (2012) and
Bauwens et al. (2017). However, each of these developments manage to tackle the chal-
lenges mentioned above either singly or by undergoing heavily parametric restrictions.

In this paper we provide a very parsimonious approach to model and forecast RCov
series that solves all these challenges without parametric constraints and it is estimable
by exact numerical Maximum Likelihood (ML). It consists in an additive latent factor
model. The factors feature stochastic volatility structures and, conditionally on them, the
RCov matrix follows a Wishart distribution. The stochastic volatility structure and the
distributional assumption automatically assure the positive definiteness and symmetry of
the forecasts. The latent factor structure accounts for the common dynamics in the series
and the additive structure capture the long persistence in their autocorrelation function
(ACF) in the spirit of Granger (1980). The estimation consists in applying a Kitagawa
filtering approach to provide exact numerical values of the likelihood.

The new approach we introduce, denoted as the Factor Autoregressive (FAW) model,
is very flexible as it allows that realized variances and realized covariances are driven by
common, but also different factors and exhibit different type of dynamics and persisten-
cies. Moreover, FAW model is the most parsimonious model in the existent literature as
the number of parameters are of order O(n), while the one of the alternatives is of or-
der O(n2), where n gives the dimension of the RCov matrix. The model is a non-linear
non-Gaussian state-space model, which might be in general very difficult to estimate.
However, implementing the filter introduced by Kitagawa (1987), which is the first at-
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tempt in the literature for these kind of models, allows the practical implementation of the
FAW model.

The closest to our FAW model is the Conditional Autoregressive (CAW) model of
Golosnoy et al. (2012), which also assumes an underlying Wishart distribution, but where
the dynamics of the conditional mean of the RCov series are originally captured by a
BEKK framework. In order to account for the long-memory of the series, Golosnoy et al.
(2012) extend the original CAW model by replacing the BEKK structure with a HAR
or MIDAS one. Differently, the FAW model allows that the dynamics exhibit stochastic
components and models the long memory without any further extensions. Moreover, the
CAW model becomes practically implementable only by imposing heavily parametric
constraints, such as diagonality for the parameter matrices, while the FAW model does
not necessitate any.

The Kitagawa filtering approach we implement provides, besides exact numerical val-
ues of the likelihood, also recursive formulas for the prediction, filtering and smoothing
of the factors. Thus, the FAW approach can be applied to forecast high-dimensional RCov
matrices with acceptable computation costs. In our simulation exercise, we provide ev-
idence on the good performance of the Kitagawa filter with ML in providing accurate
estimates of the parameter of interest. Moreover, we show that in contrast to standard au-
toregressive approaches that suffer from increasing the dimensionality of RCov matrices,
the FAW approach profits in terms of efficiency of the estimates, as increasing n provides
more information on the commonality in the underlying series dynamics.

In our empirical exercise we apply two types of FAW model to capture the dynamics
of daily series of RCov matrices up to dimension 10 × 10. The in-sample goodness-of-
fit improves by allowing that realized variances have their own factor component and by
increasing the dimension n. Out-of-sample, we compare the performance of FAW to the
RiskMetrics approach that involves no parameter estimation and to CAW models that can
be applied to matrices of dimension 10 × 10 only under heavily parametric restrictions.
The forecasting results are in line with the in-sample results and indicate that the FAW
specifications outperform the alternative ones.

The rest of the paper is organized as follows. Section 2 introduces the FAW model
and its estimation procedure. Section 3 presents simulation results and section 4 presents
empirical results from applying it to real data as well as results from comparing its per-
formance against existing approaches. Section 5 concludes. Details on the filtering pro-
cedure and computation are given in Appendix A.

2 Factor Wishart (FAW) Model

Let Yt with t = 1, . . . , T be the series of positive definite daily RCov matrices of dimen-
sion n × n, where Yt = (yij,t) with i, j = 1, . . . , n. We assume that, conditional on a set
of stochastic volatility latent factors ht, Yt is central Wishart distributed as it follows:

Yt|ht ∼ Wn

(
m,

Σt

m

)
, m ≥ n (1)
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where Σt is a symmetric, positive definite matrix such that (Muirhead, 1982):

E [Yt|ht] = Σt (2)

and ht = (h1,t,h2,t)
′ where h1,t = (h1,1,t, . . . h1,K1,t)

′ and h2,t = (h2,1,t, . . . h2,K2,t)
′ such

that

Σt =

K1∑
k1=1

bk1 e
h1,k1,t b′k1 +

K2∑
k2=1

eh2,k2,t Γk2 (3)

h1,k1,t = ρk1 h1,k1,t−1 + δ1,k1 u1,k1,t ∀k1 = 1, . . . , K1 (4)
h2,k2,t = ρk2 h2,k2,t−1 + δ2,k2 u2,k2,t, ∀k2 = 1, . . . , K2 (5)

where u1,k1,t and u2,k2,t are independent of each other and independent and identical
normally distributed with mean zero and variance 1 for all k1 = 1, . . . , K1 and k2 =
1, . . . , K2. bk1 is a vector of dimension n × 1 for all k1 = 1, . . . , K1, Γk2 is a diagonal
matrix of dimension n× n, i.e., Γk2 = diag(γ2

1,k2
, . . . , γ2

n,k2
) for all k2 = 1, . . . , K2. Suf-

ficient conditions to identify the model above is that the first elements of the vector bk1
with k1 = 1, . . . , K1 are set to 1.

We denote Equation (1) the observation equation and equations (4) and (5) the state
equations. As a consequence, the model in equations (1)-(5) is a state-space model with
underlying Wishart distribution, which we denote as the Factor Wishart model with K1

and K2 factors: FAW(K1,K2).

In Equation (1), m is scalar and denotes the degrees of freedom of the Wishart distri-
bution. Equation (3) captures the common dynamics of realized variances and covariances
by means of latent factors with stochastic volatility structures as defined in the equations
(4) and (5). More precisely, the structure given in Equation(3) is very flexible as it al-
lows that the diagonal elements of Σt that correspond to realized variances are driven by
K1 + K2 factors, while the off-diagonal elements of Σt that correspond to realized co-
variances are driven by the K1 factors that are also common to realized variances. This is
in line with the empirical features of the observed realized variances and covariances that
indicate that both type of series exhibit common dynamics, especially during turbulent
times (e.g., Calzolari et al. (2017)) with the variances showing more dependency in time
than the covariances.

The framework given in equations (3)-(5) allows matrix Σt to have a stochastic struc-
ture, which is different from the CAW model of Golosnoy et al. (2012), where Σt follows
a conditionally deterministic path that resembles a BEKK-GARCH specification. More
precisely, we allow that both sets of factors have stochastic volatility structure, which au-
tomatically assures the positive definiteness and symmetry of Σt. Σt and ht are stationary
when |ρk1| < 1 for all k1 = 1, . . . , K1 and |ρk2| < 1 for all k2 = 1, . . . , K2.

Particularly appealing for our FAW model is that it captures the main empirical feature
of realized (co)variance series, namely the slowly decaying autocorrelation function or
long-memory type of persistence by using a very simple framework, namely an additive
structure of stochastic volatility latent factors with short memory dynamics in the spirit
of Granger (1980). Thus, our approach does not need further extensions as the CAW

3



model to account for the long-memory of the underlying series, i.e. CAW-MIDAS and
CAW-HAR, but it automatically accommodates it.

Thus, FAW model manages to accommodate the two main features of realized covari-
ances: common dynamics and long-memory within a very parsimonious framework that
automatically guarantees the symmetry and positive definiteness of the covariance matri-
ces. The total number of parameters involved is equal to (K1 +K2)n−K1 + 1. Thus, for
K1 = K2 = 1, the total number of parameters is equal to 2n+4. This makes our approach
the most parsimonious one in the literature so far, which accounts for the rich dynamic
structures of the underlying series without parameter constraints, besides stationary: all
existing approaches that aim at modelling the covariance matrices with n(n − 1)/2 dif-
ferent elements involve a total number of parameters of order n2: e.g., the simplest CAW
model, namely the diagonal CAW(1,1) has already n(n+ 1)/2 + 2n+ 1 parameters.

For our purposes, in what follows, we focus on providing empirical evidence from
applying two types of FAW models: 1) one with only one factor that is common to both
variances and covariances, i.e., h1 = h2 and K1 = K2 = 1, which we denote FAW(1)
and 2) one with two factors, one for the variances and covariances and one typical only
to the variances, i.e. h1 6= h2 and K1 = K2 = 1, which we denote FAW(1,1). Thus, the
dynamics of Σt defined in equations (3)-(5) can be written for FAW(1) as:

Σt = (bb′ + Γ) eht , (6)
ht = ρ ht−1 + δ ut, (7)

and for FAW(1,1) as:

Σt = (b eh1,t b′) + eh2,t Γ, (8)
h1,t = ρ1 h1,t−1 + δ1 u1,t, (9)
h2,t = ρ2 h2,t−1 + δ2 u2,t, (10)

where Γ = diag(γ2
1 , . . . , γ

2
n) , |ρ|, |ρ1|, |ρ2| are strictly smaller than 1, ut, u1,t, u2,t are

i.i.d. N(0, 1) and the first element of b is fixed to 1.

In order to estimate the parameters of FAW model, we implement the maximum like-
lihood approach with the filtering procedure of Kitagawa (1987). Let θ be the vector of
parameters of the FAW model given in equations (1)-(5). Then, the maximum likelihood
estimator of θ is obtained by:

θ̂ML = arg max
θ

ln f(Y1, Y2, . . . , YT ;θ) = arg max
θ

T∑
t=2

ln f(Yt|Yt−1;θ) + f(Y1|;θ),

(11)
where f(·) denotes the probability density function (pdf) and Yt contains , Y1, Y2, ..., Yt.

The idea of the filtering approach is to compute f(Yt|Yt−1;θ) by integrating out ht

from the joint conditional pdf f(Yt,ht|Yt−1;θ):

f(Yt|Yt−1;θ) =

∫ ∞
−∞

. . .

∫ ∞
−∞

f(Yt,ht|Yt−1;θ)dh1,1,t, . . . , dh1,K1,t, dh2,1,t, . . . , dh2,K2,t.

(12)
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The filtering approach consists further in decomposing f(Yt,ht|Yt−1;θ) as it follows:

f(Yt,ht|Yt−1;θ) = f(Yt|ht, Yt−1;θ)f(ht|Yt−1;θ) = f(Yt|ht;θ)f(ht|Yt−1;θ) (13)

as Yt−1 plays no role in the f(Yt|ht, Yt−1;θ) as given in Equation (1) and

f (Yt|ht;θ) =

∣∣Σt
m

∣∣−m2 |Yt| (m−n−1)
2

2
mn
2 π

n(n−1)
4

∏n
i=1 Γ

(
m+1−i

2

)e− 1
2

tr(mΣ−1
t Yt), (14)

where Γ(·) denotes the Gamma function. f(ht|Yt−1;θ) in Equation (2) is obtained re-
cursively. At t = 1, we use as initial f(h1) its unconditional density. Appendix A pro-
vides a detailed description of the filtering approach of Kitagawa (1987) for FAW(1) and
FAW(1,1).

This filtering procedure provides the exact numerical values of the likelihood by nu-
merically integrating over a fixed number of nodes the function f(Yt,ht|Yt−1;θ).

Besides the exact values of the likelihood, the Kitagawa filter also provides (1) the
numerical values of the conditional density of the latent variable(s) at time t given obser-
vations till time t − 1, namely f(ht|Yt−1;θ); (2) the numerical values of the conditional
density(s) and conditional expectation(s) of the latent factor(s) at time t given the ob-
served variables till time t, that is(are) the filtered factor(s), i.e., f(ht|Yt;θ) and E(ht|Yt)
and (3) the numerical values of the conditional density(s) of the latent factor(s) at time
t+1 given the observed variables till time t, i.e., f(ht+1|Yt;θ) from which one can easily
compute the forecasts given by E(ht+1|Yt).

3 Monte Carlo

This section provides simulation evidence on the performance of ML to accurately es-
timate the parameters of FAW(1) and FAW(1,1) on a series of length T = 4000 of co-
variance matrices computed as the sample variance-covariance of m vectors of simulated
multivariate normal variables with variance-covariance that changes for every t and is
equal to Σt, where Σt is obtained from equations (6)-(7) for FAW(1) and from equations
(9)-(10) for FAW(1,1). The choice of the parameters and length of the series is given by
the values of the parameter estimates and the length of the real data we use in our em-
pirical application described in Section 4. Tables B.1 and B.2 provides the average and
standard deviation of the parameter estimates over R = 1000 replications for FAW(1)
and FAW(1,1), respectively. We present here results for n = 5, 8 and 10 series, while
results for larger n can be obtained from the authors upon request. As one may see from
the tables, most of the estimates seem to be unbiased, as the difference between the true
value and the average one is observable starting with the third digit after the comma. In
particular, δ’s and b’s are estimated more accurately than ρ’s, m and γ’s. Increasing n
increases the precision of the estimates as it provides more information on the common
dynamics of the underlying series. This effect is particularly evident for FAW(1), where
the commonality in the dynamics of both realized variances and realized covariances is
captured by a single common factor. As expected, increasing the structure of FAW by
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allowing that the dynamics of realized variances are driven by an additional factor com-
pared to realized covariances (FAW(1,1)) worsens in general the quality of the estimates:
while the parameter estimates corresponding to the factor typical to realized variances
(ρ2, δ2,Γ) become less accurate, the other ones are similar to the ones of FAW(1) in terms
of accuracy. The efficiency of the estimates also worsens in general, except for the one of
the estimates of the common factor of realized variances and covariances, namely, b, ρ1

and δ1, for which the standard deviations decrease or are similar to the ones of FAW(1).
In what follows we provide empirical evidence from applying the two models to real data.

4 Empirical Application

This section provides empirical results from applying FAW(1) and FAW(1,1) to daily se-
ries of RCov matrices of maximum n = 10 stocks composing the Dow Jones Industrial
Average Index, namely of Alcoa Inc. (AA), American Express Company (AXP), Boeing
Corporation (BA), Bank of America Corporation (BAC), Citigroup Inc. (C), Caterpillar
Inc. (CAT), Chevron Corporation (CVX), Dupont (DD), Walt Disney Company (DIS),
General Electric Company (GE), traded on NYSE from 01.11.2001 until 08.08.2017
(T = 3931). The data is obtained from NYSE Trade and Quote (TAQ) database 1 and
the RCov matrix estimators are computed from returns sampled at 5-minute frequencies
(up-scaled here 100) by implementing the subsample approach of Zhang et al. (2005).
Figures C.1 and C.2 plot the line graphs of the realized variances and realized covari-
ances, while figures C.3 and C.4 plot their autocorrelation function (ACF) up to lag 200
2. As one may observe from the first two graphs, the realized variances and the realized
covariances exhibit similar dynamics, especially during turbulent financial times, such as
the previous financial crises, with the commonality in the dynamics of realized variances
being more pronounced. This indicates that there may be two type of factors driving
these common dynamics: one common to both type of series and one common solely to
realized variances. Thus, we expect that at least in-sample the FAW(1,1) is preferred to
FAW(1) in terms of goodness-of-fit. From the last two graphs, we observe that both real-
ized variances and realized covariances exhibit strong and slowly decaying ACF’s typical
to long memory processes. This feature is captured by our FAW representation through
aggregating dynamic factors with short memory stochastic volatility structure.

Tables B.3 and B.4 present results from estimating the parameters of the models
FAW(1) and FAW(1,1), respectively, from the realized covariance matrices of the first
n = 5, n = 8 and n = 10 stocks mentioned above as well as the number of parameters
involved. As one may observe, all estimated parameters are significantly different from
zero. Increasing n reduces the persistence in the factors, as the values of the estimated
ρ’s decrease. This can be due to the fact that adding further stocks, one adds realized
variance and covariance series with different persistencies (smaller and/or faster decaying
ACF patters) as shown in figures C.3-C.4. The factor common to realized variances and
covariances seem to be more persistent than the one typical only to realized variances
(ρ̂1 > ρ̂2). Increasing n also has an effect on the estimated degrees of freedom, which

1We would like to thank Sebastian Bayer for preparing the data.
2Graphs for the rest of 405 realized covariances can be obtained from the authors upon request.
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also increase and on the estimates of Γ that decrease. The estimates of δ2 seem to be unaf-
fected by the change of n. However, increasing n increases the precision of all estimates,
which is due to an increase in the information content regarding the common dynamics
of the series.

Comparing the estimation results between the two tables, we observe that increas-
ing the complexity of the model by allowing to disentangle the factors structure between
variances and covariances leads to some changes in the parameter estimates and their
precision: the factor describing the common dynamics of the realized variances and co-
variances becomes more persistent, while the factor typical only to the variances inherits
the persistence of the one of FAW(1). While the estimates of Γ increase, the ones of b
decrease, but there are no significant changes in the estimates of the degrees of freedom
m. The precision of the estimates worsens in general, as FAW(1,1) has more parameters
to estimate than FAW(1).

Comparing the values of the log-likelihoods and BIC, we see that for each n, the
goodness-of-fit is improved by adding a second factor in the expression of Σt. Moreover
the values of the Ljung-Box statistics computed up to lag 20 and averaged over all Yij,t
series, although still very large, drastically decrease by adding further factors leading to
a drop in their values by six compared to the values corresponding to the original Yij,t
series.

In order to evaluate the forecasting performance of the two models, we apply them
to the n = 5 and n = 10 stocks mentioned above and divide the sample of T = 3931
series in an in-sample series of length T1 = 3431 and an out of sample series of T2 = 500.
The forecasts are obtained by expanding window: i.e., use the first 3431 observations
to estimate the model and make one step ahead forecast Ŷ3432|3431. Then, add to the
previous window one observation, i.e., the in-sample window includes the observations
1, . . . , 3432, to estimate the model and make a second one-step ahead forecast Ŷ3433|3432

and go on until the one before the last observation in the series.

To compare the forecast quality of our new approaches, we also consider a simple al-
ternative, which is standard in most of the comparisons undergone in the literature (Golos-
noy et al. (2012), among others), namely the Exponentially Weighted Moving Average
(EWMA) model that is the model used by most of the practitioners through the Risk-
Metrics package of J.P. Morgan (1996) and based on which the forecasts are obtained
recursively through the formula:

Ŷt+1|t = (1− λ)Yt + λŶt−1|t−2, (15)

where λ = 0.94.

Besides EWMA, we also compare our forecasts against the ones stemming from the
CAW model of Golosnoy et al. (2012), which might be seen to be the closest to our
approach. In particular, for our purposes we implement the following two CAW specifi-
cations:

Yt+1|t ∼ Wn

(
m,

Σt+1

m

)
, m ≥ n (16)

where
Σt+1 = CC ′ +BΣtB

′ + AYtA
′ (17)
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and the model is denoted CAW and another specification composing the HAR model of
Corsi (2009), where:

Σt+1 = CC ′ + A1YtA
′
1 + A2Y

5d
t A′2 + A3Y

20d
t A′3, (18)

with Y 5d
t and Y 20d

t being the averages of Yt over the last 5 and 20, respectively, days
and the model is denoted CAW-HAR. The CAW-HAR model aims at capturing the long
memory in the series. Given that the number of parameters of these approaches is of order
O(n2), for n = 10, we choose to implement only their diagonal version (denoted here by
dCAW), i.e. the matrices A, B, A1, A2 and A3 are diagonal. Thus, the total number of
parameters of the CAW specifications is equal for n = 5 to 66 for CAW and 91 for CAW-
HAR, 26 for dCAW and 31 for dCAW-HAR. for n = 10, dCAW has 76 and dCAW-HAR
has 86 parameters.

To compare the forecasting performance of the models we follow Laurent et al. (2013)
and Golosnoy et al. (2012) and use the Root Mean Squared Error (RMSE) computed based
on the Frobenius norm3 of the matrix of forecast errors defined by the difference between
the forecast matrix Ŷt+1|t and the true value of the covariance matrix at time t+ 1. Given
that this true covariance matrix is not observable, we follow Patton (2011) and use instead
the realized value Yt+1. The RMSE loss function is consistent with respect to the choice
of the covariance matrix proxy (Laurent et al. (2013)) and is given by:

RMSE(Ŷt+1|t) =
1

T2

T2∑
t=1

[
n∑
i=1

n∑
j=1

(Ŷij,t+1|t − Yi,j,t+1)2

]1/2

. (19)

To compare the RMSE results, we implement the Diebold-Mariano (DM) test by
choosing the FAW model with the smallest RMSE as the benchmark.

Table B.5 presents the forecast results for the two choices of n. As one may observe
from the table, FAW(1,1) provides the smallest RMSE for both choices of n. This is not
the case of FAW(1), which seems to provide relatively poor forecasts compared to the
alternatives and FAW(1,1). Moreover, we reject at 5% significance level that the alterna-
tive models provide a RMSE equal to the one of FAW(1,1). The superior performance
of FAW(1,1) compared to the alternatives becomes more obvious when increasing n, for
which some of the alternatives are not even implementable due to their extremely large
parametrization.

5 Conclusions

This paper introduces a very parsimonious framework to model and forecast daily RCov
series, denoted the Factor Autoregressive model. It automatically assures the positive def-
initeness and symmetry of the forecasts and accounts for the common dynamics and long
memory of the series without any parametric constraints. It consists in a additive stochas-
tic volatility latent factor structure with Wishart underlying distribution. The model is

3The Frobenius norm of a matrixM = {mkl} of dimension s×q is equal to ||M || =
√∑s

k=1

∑q
l=1m

2
kl
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a non-linear non-Gaussian state-space model that is estimated here by exact Maximum
Likelihood with the Kitagawa filtering approach. In the empirical exercise, we show that
the model outperforms the existing ones in terms of forecasting in sample and out of
sample at very low parametric costs.

The FAW model can be easily extend to account for specific empirical features of the
underlying series, such as GARCH effects, especially in the realized variance dynamics,
fat-tailedness by assuming a Student’s t or a stable distribution within the SV structure of
the latent factors or a fat-tailed matrix distribution , such as the matrix F-distribution for
the idiosyncratic noises or to add observable factors in the spirit of Fama-French approach.
Although empirically very appealing, these extensions are left for further research.
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Appendix A: Kitagawa Filter

Here we present the Kitagawa filtering procedure for FAW(1) and FAW(1,1). For simplic-
ity, in what follows we drop θ from the pdf specifications (Bilio and Sartore (2003)). In
what follows, Yt indicates the whole sample of observations till time t: Yt = Y1, Y2, . . . , Yt.
Thus Yt = {Yt, Yt−1}

A.1: FAW(1)

ht = ht. LetR be the number of nodes in the grid of values of ht for numerical integration
(e.g., R = 50, R = 100 or R = 200) in such a way that the grid practically covers the
entire domain of ht for any t. As the domain of Gaussian random variables is from −∞
to +∞, the grid must be wide enough to exclude tails with a probability numerically
negligible.

Let p = 1, 2, ..., R indicate the nodes in the grid of ht: h1
t , h

2
t , ..., h

R
t and q = 1, 2, ..., R,

indicate the nodes in the grid of ht+1: h1
t+1, h

2
t+1, ..., h

R
t+1).

f(Yt | ht) and f(ht | ht−1) are known in closed form from the observation equation
(1) and the state equation (7), respectively. More precisely, while f(Yt | ht) is given in
Equation (14), f(ht | ht−1) is given by:

f(ht | ht−1) =
1√

2πδ2
e−

ht−ρht−1

2δ2 . (A.1)

The Kitagawa filtering procedure consists in several recursive steps that repeat for
each t = 1, . . . , T . For this, we assume that f(h1|Y0) is equal to the unconditional pdf of

h1, i.e. f(h1|Y0) = f(h1) =

√
1−ρ2√
2πδ2

e−
(1−ρ2)h1

2δ2 and that the numerical values of all condi-
tional densities of ht given Yt−1 are known at any node of the grid hpt . f(h1

t | Yt−1), . . . f(hRt | Yt−1).
Thus the steps involved by the Kitagawa filtering are the following:

1. Compute f(Yt | ht, Yt−1).

As Yt is a function of the past only through ht, at any node of the grid one can write
f(Yt | hpt , Yt−1) = f(Yt | hpt ) that can be computed from the observation equation
(1) in closed form.

2. Compute f(Yt, ht | yt−1)

f(Yt, ht | Yt−1) = f(Yt | ht, Yt−1) f(ht | Yt−1) = f(Yt | ht) f(ht | Yt−1) whose nu-
merical values at all nodes of the grid h1

t , h
2
t , ..., h

R
t can be computed as f(Yt, h

p
t | Yt−1) =

f(Yt | hpt ) f(hpt | Yt−1)

3. Compute f(Yt | Yt−1)

Numerical integration of the previous step’s function over the R nodes of the grid
provides the numerical value of f(Yt | Yt−1), which can be used to update the like-
lihood till time t. This step requires only one numerical integration, on a grid of R
nodes.
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4. Compute f(ht | Yt)
From f(Yt, ht | Yt−1) = f(ht | Yt, Yt−1) f(Yt | Yt−1) = f(ht | Yt) f(Yt | Yt−1)

one gets f(ht | Yt) = f(Yt,ht | Yt−1)

f(Yt | Yt−1)
= f(Yt | ht) f(ht | Yt−1)

f(Yt | Yt−1)
whose numerical values

f(hpt | Yt) can therefore be computed at all nodes of the grid h1
t , h

2
t , ..., h

R
t .

5. Compute f(ht+1 | ht, Yt)
First of all it must be noticed that ht+1 depends on Y t only through ht. Thus
f(ht+1 | ht, Yt) = f(ht+1 | ht). For each pair ht+1 and ht the density f(ht+1 | ht)
is given by Equation (A.1) in closed form. Thus, for each of the R × R pairs of
values (hqt+1, h

p
t ) (from the grids h1

t+1, h
2
t+1, ..., h

R
t+1 and h1

t , h
2
t , ..., h

R
t ) the Equation

(A.1) provides the numerical value of f(hqt+1 | h
p
t ). This step requires therefore R2

computations of the conditional density function provided by the Equation (A.1).

6. Compute f(ht+1, ht | Yt)
f(ht+1, ht | Yt) = f(ht+1 | ht, Yt) f(ht | Yt) = f(ht+1 | ht) f(ht | Yt). Thus, for
each of the R×R pairs of values (hqt+1, h

p
t ) (from the grids h1

t+1, h
2
t+1, ..., h

R
t+1 and

h1
t , h

2
t , ..., h

R
t ), the above equation provides the numerical value of f(hqt+1, h

p
t | Yt).

7. Compute f(ht+1 | Yt)
For each value (node) hqt+1 of the grid, numerical integrations of the previous
step’s function over the R nodes of the grid h1

t , h
2
t , ..., h

R
t provides the numeri-

cal values of f(hqt+1 | Yt), which is therefore available for each node of the grid
h1
t+1, h

2
t+1, ..., h

R
t+1. This step requires, therefore, R numerical integration, each of

which on a grid of R nodes.

8. Restart from the first step

Time, data, likelihood and the grid are “shifted” from (t− 1, t) to (t, t+ 1). Recur-
sions continue till t = T . At t = T , the complete likelihood is available.

A.2: FAW(1,1)

ht = (h1,t, h2,t)
′. Let R be the number of nodes in the grid of values of h1,t, as well as in

the grid of values of h2,t, for numerical integration (for instance, the largest value could
be R = 100, thus R × R = 10000) such that the grids cover the entire domains of h1,t

and h2,t for any t(in practice, as before, the grids should be wide enough to exclude tails
with a probability numerically negligible);

Let p = 1, 2, ..., R indicate the nodes in the grid of h1,t, r = 1, 2, ..., R indicate the
nodes in the grid of h2,t; q = 1, 2, ..., R indicate the nodes in the grid of h1,t+1 and
s = 1, 2, ..., R indicate the nodes in the grid of h2,t+1.

f(Yt | h1,t, h2,t) is given in Equation (14), f(h1,t | h1,t−1) and f(h2,t | h2,t−1) are
obtained from equations (9) and (10), respectively:
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f(h1,t | h1,t−1) =
1√
2πδ2

1

e
−
h1,t−ρ1h1,t−1

2δ21 (A.2)

f(h2,t | h2,t−1) =
1√
2πδ2

2

e
−
h2,t−ρ2h2,t−1

2δ22 (A.3)

Given that h1,t and h2,t are independent, one can derive f(h1,t, h2,t | h1,t−1, h2,t−1) =
f(h1,t | h1,t−1)f(h2,t | h2,t−1).

When starting the Kitagawa filter at time t, one should know the numerical values of
all joint conditional densities of (h1,t, h2,t) given Yt−1 at any of the R×R nodes of the bi-
dimensional grid {hp1,t, hr2,t}: f(hp1,t, h

r
2,t | Yt−1) at (h1

1,t, h
1
2,t), (h1

1,t, h
2
2,t), ...., (h1

1,t, h
R
2,t),

...., (h2
1,t, h

1
2,t), ...., (hR1,t, h

R
2,t).

The Kitagawa filtering procedure consists in the following steps:

1. Compute f(Yt | h1,t, h2,t, Yt−1)

As Yt is a function of the past only through h1,t and h2,t, at any node of the bi-
dimensional grid it is f(Yt | hp1,t, hr2,t, Yt−1) = f(Yt | hp1,t, hr2,t), and it can therefore
be computed from the observation equation (1).

2. Compute f(Yt, h1,t, h2,t | Yt−1)

f(Yt, h1,t, h2,t | Yt−1) = f(Yt | h1,t, h2,t, Yt−1) f(h1,t, h2,t | Yt−1), whose numerical
values can be computed in any of the R × R nodes of the bi-dimensional grid
{hp1,t, hr2,t} as f(Yt, h

p
1,t, h

r
2,t | Yt−1) = f(Yt | hp1,t, hr2,t)f(hp1,t, h

r
2,t | Yt−1)

3. Compute f(Yt | Yt−1)

Numerical integration of f(Yt, h1,t, h2,t | Yt−1) over the R × R nodes of the bi-
dimensional grid {hp1,t, hr2,t} provides the numerical value of f(Yt | Yt−1). It can be
used to update the likelihood till time t.

4. Compute f(h1,t, h2,t | Yt)
From f(Yt, h1,t, h2,t | Yt−1) = f(h1,t, h2,t | Yt, Yt−1) f(Yt | Yt−1) = f(h1,t, h2,t | Yt) f(Yt | Yt−1)

one gets

f(h1,t, h2,t | Yt) = f(Yt,h1,t,h2,t | Yt−1)

f(Yt | Yt−1)

whose numerical values f(hp1,t, h
r
2,t| Yt) can therefore be computed at all nodes of

the bi-dimensional grid {hp1,t, hr2,t}. It must be remarked that, even if the two factors
are independent, conditionally on Yt they are usually not independent.

5. Compute f(h1,t+1, h2,t+1 | h1,t, h2,t)

For each pair (h1,t+1, h2,t+1) and each pair (h1,t, h2,t) the joint conditional density
f(h1,t+1, h2,t+1 | h1,t, h2,t) = f(h1,t+1 | h1,t)f(h2,t+1 | h2,t)) where f(h1,t+1 | h1,t)
and f(h2,t+1 | h2,t)) are given in equations (A.2) and (A.3). Thus, R4 values of this
function should be computed.
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6. Compute f(h1,t+1, h2,t+1, h1,t, h2,t | Yt)
f(h1,t+1, h2,t+1, h1,t, h2,t | Yt) = f(h1,t+1, h2,t+1 | h1,t, h2,t, Yt) f(h1,t, h2,t | Yt) =
f(h1,t+1, h2,t+1 | h1,t, h2,t) f(h1,t, h2,t | Yt).
Thus, for each of the R4 quadruples of values (hq1,t+1, h

s
2,t+1, h

p
1,t, h

r
2,t) the above

equation provides the numerical value of f(hq1,t+1, h
s
2,t+1, h

p
1,t, h

r
2,t | Yt).

7. Compute f(h1,t+1, h2,t+1 | Yt)
Numerical integration of the previous step’s function over theR×R nodes of the bi-
dimensional grid {hp1,t, hr2,t} provides the numerical values of f(hq1,t+1, h

s
2,t+1 | Yt)

that will, therefore, be available for each node of the bi-dimensional grid {hq1,t+1, h
s
2,t+1}.

This step would involve a quite large number of function evaluation (the order
would be R4). Given that the two latent factors h1,t and h2,t are independent, the
computational procedure can be done more efficiently, with a number of function
evaluations of order R3 as it follows:

7.1 Compute f(h2,t+1 | h1,t, h2,t, Yt)

When the two factors are independent, the above conditional density is simply
given by the state equation of the second factor: f(h2,t+1 | h1,t, h2,t, Yt) =
f(h2,t+1 | h1,t, h2,t) = f(h2,t+1 | h2,t).

7.2 Compute f(h2,t+1, h1,t, h2,t | Yt)

f(h2,t+1, h1,t, h2,t | Yt) = f(h2,t+1 | h1,t, h2,t, Yt) f(h1,t, h2,t | Yt)
= f(h2,t+1 | h2,t) f(h1,t, h2,t | Yt).

Thus, for each of the R3 triples of values (hs2,t+1, h
p
1,t, h

r
2,t) the above equation

provides the numerical value of f(hs2,t+1, h
p
1,t, h

r
2,t | Yt).

7.3 Compute f(h2,t+1, h1,t | Yt)
Numerical integration of the previous step’s function over the one-dimensional
grid {hr2,t} provides the numerical values of f(hs2,t+1, h

p
1,t | Yt), that will there-

fore be available for each node of the bi-dimensional grid {hs2,t+1, h
p
1,t}.

7.4 Compute f(h1,t+1, h2,t+1, h1,t | Yt)
f(h1,t+1, h2,t+1, h1,t | Yt) = f(h1,t+1 | h2,t+1, h1,t, Yt) f(h2,t+1, h1,t | Yt). Given
that the two factors are independent, and h1,t+1 depends on Yt only through
h1,t, f(h1,t+1, h2,t+1, h1,t | Yt) = f(h1,t+1|h1,t) f(h2,t+1, h1,t | Yt).

7.5 Compute f(h1,t+1, h2,t+1 | Yt)
Numerical integration of the previous step’s function over the one-dimensional
grid {hp1,t} provides the numerical values of f(hq1,t+1, h

s
2,t+1 | Yt), that will,

therefore, be available for each node of the bi-dimensional grid {hq1,t+1, h
s
2,t+1}.

8. Restart from the first step.

Time, data, likelihood and the grids are “shifted” from (t− 1, t) to (t, t+ 1). Recur-
sions continue till t = T . At t = T , the complete likelihood is available.
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A.3: Computational Issues

Numerical integration is necessary in many steps of the filtering procedure presented
above, as a closed form integration is usually unfeasible. As in our approach we deal
with ”Gaussian type” probability distributions, the Gauss-Hermite integration is expected
to provide very accurate numerical values for all the integrals. Its application, however,
is not straightforward, given the particular form of the functions to be integrated, whose
”location and width” change ”unpredictably” over time. Parallel to the Gauss-Hermite,
we, therefore, implement numerical integration procedures of a standard ”trapezoid rule”.
They are remarkably simpler from the computational point of view, so we use them in
the algorithm. Of course, trapezoid integration leads to higher costs in terms of compu-
tation time, due to more ”grid points” necessary to ensure the same numerical accuracy
as Gauss-Hermite. In all cases, where both procedures are applied, the differences in the
results are only after four decimal digits after the comma of those reported in our tables.

Fixing the grid for the trapezoid integration rule requires some care in order to assure
that the grid reasonably covers the entire domain of the integration variable. Dealing
with Gaussian-type distributions, the domain of integration is conceptually infinite. The
integration grid should be wide enough to exclude tails with a negligible probability. For
this, we adopt the rule of excluding tails, where the probability density is less than 10−15

with respect to the maximum value of the density in the integration interval. In most
cases, an integration interval between minus and plus 8 times the unconditional standard
deviation of each factor is more than sufficient.
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Appendix B: Tables

Table B.1: Monte Carlo results from estimating FAW(1): n = 5, 8, 10 series, T = 4000
observations and R = 1000 replications.

Parameters n = 5 n = 8 n = 10
True Mean Std. dev True Mean Std. dev True Mean Std. dev

ρ 0.9600 0.9595 0.0053 0.9400 0.9394 0.0057 0.9400 0.9395 0.0050
δ2 0.1000 0.1001 0.0032 0.1000 0.0999 0.0028 0.1000 0.1000 0.0023
m 15.0000 15.0032 0.0781 20.0000 20.0018 0.0617 25.0000 25.0056 0.0585

Γ

2.0000 2.0020 0.0382 2.0000 2.0011 0.0290 2.0000 1.9993 0.0229
2.0000 2.0016 0.0338 2.0000 2.0006 0.0275 2.0000 1.9996 0.0213
2.0000 2.0013 0.0345 2.0000 2.0000 0.0267 2.0000 1.9993 0.0215
2.0000 2.0015 0.0337 2.0000 2.0006 0.0273 2.0000 1.9999 0.0215
2.0000 2.0021 0.0340 2.0000 2.0001 0.0273 2.0000 1.9993 0.0218

2.0000 2.0002 0.0277 2.0000 1.9994 0.0219
2.0000 2.0003 0.0265 2.0000 1.9995 0.0215
2.0000 2.0003 0.0272 2.0000 1.9993 0.0219

2.0000 1.9998 0.0213
2.0000 1.9997 0.0217

b

1.0000 1.0004 0.0106 1.0000 1.0000 0.0083 1.0000 0.9998 0.0065
1.0000 1.0006 0.0103 1.0000 0.9999 0.0081 1.0000 0.9998 0.0068
1.0000 1.0002 0.0107 1.0000 1.0002 0.0082 1.0000 0.9999 0.0062
1.0000 1.0004 0.0109 1.0000 1.0002 0.0081 1.0000 1.0000 0.0066

1.0000 1.0001 0.0084 1.0000 0.9999 0.0067
1.0000 1.0003 0.0084 1.0000 0.9999 0.0065
1.0000 1.0000 0.0082 1.0000 0.9999 0.0064

1.0000 0.9999 0.0065
1.0000 0.9999 0.0064
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Table B.2: Monte Carlo results from estimating FAW(1,1): n = 5, 8, 10 series, T =
4000 observations and R = 1000 replications.

Parameters n = 5 n = 8 n = 10
True Mean Std. dev True Mean Std. dev True Mean Std. dev

ρ1 0.9800 0.9793 0.0043 0.9700 0.9695 0.0041 0.9700 0.9694 0.0043
ρ2 0.9500 0.9489 0.0053 0.9400 0.9388 0.0057 0.9400 0.9387 0.0058
δ21 0.1000 0.0996 0.0095 0.1000 0.1002 0.0052 0.1000 0.0998 0.0055
δ22 0.1000 0.1000 0.0033 0.1000 0.1000 0.0027 0.1000 0.1000 0.0027
m 15.0000 14.9947 0.1093 20.0000 19.9986 0.0666 20.0000 19.9998 0.0491

Γ

1.0000 1.0016 0.0979 1.0000 1.0058 0.0853 1.0000 1.0016 0.0837
1.0000 1.0013 0.0981 1.0000 1.0061 0.0857 1.0000 1.0016 0.0834
1.0000 1.0015 0.0980 1.0000 1.0061 0.0858 1.0000 1.0017 0.0834
1.0000 1.0017 0.0980 1.0000 1.0063 0.0857 1.0000 1.0017 0.0836
1.0000 1.0019 0.0977 1.0000 1.0062 0.0855 1.0000 1.0021 0.0836

1.0000 1.0059 0.0856 1.0000 1.0023 0.0835
1.0000 1.0059 0.0859 1.0000 1.0021 0.0837
1.0000 1.0060 0.0854 1.0000 1.0020 0.0835

1.0000 1.0016 0.0833
1.0000 1.0020 0.0837

b

1.0000 1.0000 0.0027 1.0000 1.0001 0.0028 1.0000 1.0000 0.0028
1.0000 1.0001 0.0028 1.0000 1.0000 0.0028 1.0000 1.0001 0.0027
1.0000 1.0000 0.0026 1.0000 0.9999 0.0028 1.0000 1.0002 0.0028
1.0000 1.0000 0.0027 1.0000 1.0000 0.0028 1.0000 1.0002 0.0028

1.0000 1.0000 0.0028 1.0000 1.0002 0.0027
1.0000 1.0000 0.0029 1.0000 1.0001 0.0027
1.0000 1.0000 0.0028 1.0000 1.0002 0.0028

1.0000 1.0002 0.0027
1.0000 1.0001 0.0028
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Table B.3: Results from estimating FAW(1) from realized covariance matrices computed
from the first n = 5, 8, 10 series over the window 01.11.2001 until 08.08.2017 (T =
3931).

Parameters n = 5 n = 8 n = 10
Estimate Std. dev Estimate Std. dev Estimate Std. dev

ρ 0.9620 0.0045 0.9386 0.0056 0.9371 0.0057
δ2 0.0803 0.0028 0.0804 0.0024 0.0809 0.0022
m 15.5701 0.0816 19.9202 0.0636 23.4778 0.0597

Γ

4.5225 0.1013 2.7317 0.0435 2.7629 0.0395
1.4873 0.0326 1.0260 0.0155 1.0220 0.0140
2.1567 0.0467 1.3341 0.0202 1.2772 0.0175
1.3759 0.0302 1.2729 0.0191 1.3584 0.0186
1.5165 0.0332 1.4031 0.0211 1.4790 0.0203

1.3234 0.0203 1.2989 0.0180
1.1163 0.0170 1.1122 0.0153
1.0400 0.0160 1.0178 0.0141

1.1877 0.0163
0.8665 0.0119

b

1.0006 0.0114 0.8690 0.0071 0.8706 0.0064
0.7347 0.0098 0.7061 0.0065 0.7255 0.0059
1.3270 0.0147 1.0222 0.0084 1.0074 0.0075
1.3928 0.0154 1.0693 0.0088 1.0499 0.0078

0.9033 0.0074 0.9171 0.0068
0.6477 0.0059 0.6576 0.0054
0.7873 0.0065 0.7989 0.0059

0.6959 0.0057
0.7816 0.0058

Nr. of parameters 12 18 22
Log-likelihood -9.4850 -11.4239 -7.4428

BIC 18.9954 22.8856 14.9318
Average LB-statistics(20) Yij,t series 20016 20397 19567
Average LB-statistics(20) residuals 8379 10016 9434
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Table B.4: Results from estimating FAW(1,1) from realized covariance matrices com-
puted from the first n = 5, 8, 10 series over the window 01.11.2001 until 08.08.2017
(T = 3931).

Parameters n = 5 n = 8 n = 10
Estimate Std. dev Estimate Std. dev Estimate Std. dev

ρ1 0.9809 0.0033 0.9700 0.0042 0.9622 0.0047
ρ2 0.9505 0.0052 0.9358 0.0058 0.9347 0.0059
δ21 0.0777 0.0050 0.0791 0.0047 0.0990 0.0052
δ22 0.0741 0.0028 0.0770 0.0024 0.0778 0.0022
m 16.3750 0.0878 20.4789 0.0663 24.0805 0.0620

Γ

2.7991 0.2451 2.4203 0.1668 2.4449 0.1650
0.9444 0.0827 0.9067 0.0625 0.9061 0.0612
1.3338 0.1168 1.1847 0.0816 1.1327 0.0764
0.8098 0.0712 1.1145 0.0769 1.2066 0.0815
0.9381 0.0824 1.2357 0.0852 1.3199 0.0891

1.1839 0.0816 1.1567 0.0781
0.9876 0.0680 0.9825 0.0663
0.9294 0.0641 0.9048 0.0611

1.0504 0.0709
0.7693 0.0519

b

1.0206 0.0114 0.8847 0.0071 0.8799 0.0063
0.7173 0.0095 0.7045 0.0064 0.7251 0.0058
1.4357 0.0156 1.0566 0.0085 1.0254 0.0074
1.4706 0.0159 1.0990 0.0089 1.0633 0.0077

0.9016 0.0073 0.9165 0.0066
0.6500 0.0058 0.6608 0.0053
0.7862 0.0064 0.7994 0.0058

0.6992 0.0056
0.7889 0.0057

Nr. of parameters 14 20 24
Log-likelihood -9.1984 -11.0022 -6.8088

BIC 18.4220 22.0424 13.6639
Average LB-statistics(20) Yij,t series 20016 20397 19567
Average LB-statistics(20) residuals 6302 4442 3808

Table B.5: Forecasting results: RMSE and the p-values of DM test with FAW(1,1) as
the benchmark: out of sample window from 07.08.2015 until 08.08.2017 (T2 = 500)

Model
n = 5 n = 10

RMSE DM p-value RMSE DM p-value
FAW(1) 3.9024 0.0000 5.4783 0.0000

FAW(1,1) 3.2191 - 4.3817 -
EWMA 3.5556 0.0000 4.9043 0.0000
CAW 3.3814 0.0041 n.a. n.a.

CAW-HAR 3.3155 0.0210 n.a. n.a.
dCAW 3.3752 0.0032 5.5056 0.0000

dCAW-HAR 3.3234 0.0164 4.5667 0.0166
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Appendix C: Figures
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Figure C.1: Line graph of daily realized variances over the period 01.11.2001 until
08.08.2017 (T = 3931 trading days). On X-axis we plot the years.
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Figure C.2: Line graph of daily realized covariances over the period 01.11.2001 until
08.08.2017 (T = 3931 trading days). On X-axis we plot the years.
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Figure C.3: ACF of daily realized variances up to 200 lags over the period 01.11.2001
until 08.08.2017 (T = 3931 trading days). On X-axis we plot the lags. The dotted-line is
the 95% confidence interval.

Figure C.4: ACF of daily realized covariances up to 200 lags over the period 01.11.2001
until 08.08.2017 (T = 3931 trading days). On X-axis we plot the lags. The dotted-line is
the 95% confidence interval.
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