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1 Introduction
The increasing globalization of financial markets and the enduring quest of asset and risk
management techniques have developed a large interest in multivariate volatility mod-
elling of asset returns, resulting in a long sequence of proposals to represent the interde-
pendence of financial markets. The seminal paper of Engle (2002) has triggered the de-
velopment of models based on a two-step specification and estimation procedure, where
the volatility of each single asset return is estimated in the first step within a univari-
ate model, and the correlation model is estimated in the second step. Only the second
step genuinely consists of a multivariate model linking a set of financial returns. The
multivariate aspect, coupled with the related difficulty of estimation, justifies that many
efforts were devoted to propose models featuring a small number of parameters (to save
the feasibility of estimation) but able to capture the main stylized facts of the correla-
tions. This evolution has enriched the models belonging to the GARCH family, working
under the conditioning on the past information: the Constant Conditional Correlation
(CCC) model of Bollerslev (1990) has been followed by the Dynamic Conditional Corre-
lation (DCC) models of Engle (2002) and the Time-Varying Correlation (TVC) of Tse and
Tsui (2002), which provide time-varying conditional correlations between assets, with a
GARCH-type dynamics. Concurrently, the smooth transition (STCC) model of Silven-
noinen and Teräsvirta (2015) and the Regime Switching Dynamic Correlation (RSDC)
model of Pelletier (2006) were designed to capture the presence of smooth and abrupt
changes in the correlation dynamics, respectively. All the previously mentioned models
have been extended by Bauwens and Otranto (2016) to include the dependence of the
correlations on the market volatility, resulting in the wide class of Volatility Dependent
Conditional Correlation (VDCC) models.

1



A solid body of empirical evidence confirms the presence of regimes in the condi-
tional correlations of financial markets, see e.g. Billio and Caporin (2005), Lee and Yo-
der(2007), Silvennoinen and Teräsvirta (2012), and Bauwens and Otranto (2016). In fact,
it is linked to co-movements in volatility, which is frequently subjected to abrupt changes,
as shown by Gallo and Otranto (2015 and 2017). The RSDC model of Pelletier (2006) is
a simple solution to include regime changes in the correlation dynamics, but with some
strong constraints on the parameters. Pelletier distinguishes between the case of at most
three assets and the case of a larger number: only in the former it is possible to estimate
different parameters that characterize the conditional correlation of each pair of assets,
whereas in the latter it is necessary to assume common parameters. This is a strong
constraint that typically limits the performance of the RSDC model. In this respect, the
examples shown by Bauwens and Otranto (2016) are instructive: when they use three as-
sets and estimate the most widespread conditional correlation models (CCC, DCC, STCC,
RSDC) and their VDCC extensions without constraints on the correlation parameters, the
RSDC family clearly outperforms all the others; when they use thirty stocks imposing
a common dynamics to all the correlations, the models with a GARCH-type dynamics
(DCC) have a better in-sample and out-of-sample forecasting performance.

To avoid imposing the constraints of a common dynamics on conditional correlations
in large dimensions, new versions of the DCC model and of the RSDC model are intro-
duced. These models provide a specific dynamics to each correlation. They use parame-
terizations implying a nonlinear autoregressive form of dependence on lagged correlations
and are based on properties of the entry-wise exponential function. In their simplest form,
the parameterizations proposed for these new models ensure the positive definiteness of
the conditional correlation matrix and require the estimation of the same number of pa-
rameters as the corresponding scalar forms of DCC (Engle, 2002; Aielli, 2013) and RSDC
(Pelletier, 2006). More flexible versions of the models are also available, with the intro-
duction of a larger number of parameters, for which a general-to-specific procedure is
proposed to identify a more parsimonious model. These new models, called the NonLin-
ear AutoRegressive Correlation (NLARC) and the Flexible RSDC (FRSDC) models, are
applied to a data set of twenty stock market indices, comparing them to the DCC model
of Engle (2002) and the RSDC model of Pelletier (2006). The empirical results show that
the new models improve their simpler versions in terms of fit and CHECK: out-of-sample
forecasting performance.

The paper is structured in five sections. Section 2 sets the modeling framework, re-
minding the DCC and the RSDC models and underlying their constraints. Section 3
introduces the NLARC and FRSDC models and their properties, describing also the pos-
sible parameterizations of the exponential entry-wise transformation of the conditional
correlation matrix. Section 4 illustrates the new models on real data, and compares them
to the RSDC and DCC models both in in-sample and out-of-sample terms. Some final
remarks conclude the paper in Section 5.
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2 The Modelling Framework
Let us consider a set of time series of n asset returns at time t collected in the vector
yt, and available for t = 1, 2, . . . , T . Denoting by Ψt the information set containing
all the values of the returns until time t, yt|Ψt−1 is assumed to follow a multivariate
Normal distribution with zero mean and covariance matrix Ht = StRtSt, where St
is the diagonal matrix containing the conditional standard deviations of the returns and
Rt = (ρij,t) is the positive definite (PD) matrix containing the conditional correlations
between the returns.

The assumption that the conditional variance of each return depends on the past re-
turns of the considered asset but not on those of the other assets is adopted, so that each
element of St can be specified as a univariate GARCH model and each of these models
can be estimated independently of the other. The first step estimates of the matrices St
provide the ‘devolatilized’ (or ‘degarched’) residuals ut = S−1t yt.

After the first step, a dynamic multivariate model for the Rt matrix can be specified
and estimated in a second step, conditioning on the results of the first step. The second
step estimation becomes prohibitive when n is large enough. The models proposed and
widely used in the literature are specified in such a way that the correlation matrix depends
on the past residuals ut through a small number of parameters, to make the estimation
feasible for large n.

The most widespread model is the DCC model of Engle (2002). Using the ‘corrected
DCC‘ (cDCC) of Aielli (2013), without correlation targeting, it is given by the following
equations:

Rt = Q̃−1t QtQ̃
−1
t ,

Qt = C +A� Q̃t−1ut−1u
′
t−1Q̃t−1 +B �Qt−1,

Q̃t = diag(
√
q11,t
√
q22,t, . . . ,

√
qnn,t)

(2.1)

where qii,t (i = 1, . . . , n) are the diagonal elements of Qt, � indicates the Hadamard
(element-by-element) product, and C, A and B are square parameter matrices of order
n. These matrices must be positive semi-definite (PSD) and at least one of them must be
PD, to ensure thatQt be PD. This model has potentially 3n(n+1)/2 parameters, involving
nonlinear constraints (due to the positivity constraints), revealing the estimation difficulty
for large n. When n is not small,C,A andB are restricted to depend on a small number
of parameters. Engle (2002) adopts the scalar restrictions A = aJn and B = bJn,
where Jn is a square matrix with all entries equal to unity, and a and b are non-negative
scalars constrained by a + b < 1. Moreover it is possible to put C = cJn, where c is
an unknown scalar, so model (2.1) contains only three unknown parameters. Then the
number of parameters of the dynamic correlation process is independent of the number of
assets, which is very convenient for estimation but may be considered to be too restrictive
for large n.

More flexible, still practically feasible for estimation, alternative parameterizations are
proposed by Billio et al. (2006) where each matrix M of parameters (M = A,B,C) is
restricted to be a rank-one matrix defined as the outer productmm′, wherem is a n× 1
vector. Bauwens et al. (2016) extend this idea to rank-two matrices and extend the scalar
model by constraining the elements of the vectorm to lie on a polynomial of low degree.
Another approach is to group the assets in a small number of clusters following the same
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dynamics (the same parameters inm). Otranto (2010) proposes a clustering algorithm to
detect these groups. Similar ideas are used for the nonlinear models exposed in Section 3.

An alternative to the GARCH-type dynamics of DCC models is to let the correlations
remain constant during different regimes (sequences of periods of random lengths) but
let their levels change in the different regimes. The RSDC model of Pelletier (2006)
with two regimes is of this type, but it imposes the relative change of correlation to be the
same for all correlations. More in detail, the parameterization of the RSDC model (named
RSDC-1λ) proposed by Pelletier (2006) is:

Rt = Rst , st ∈ {h, l},
Rh = R̄, Rl = R̄λl + In(1− λl),
λl ∈ [0, 1],

(2.2)

where R̄ = (r̄ij) is the sample correlation matrix of the residuals ut, (t = 1, 2, . . . , T ),
and st is the unobserved regime indicator driven by a two-state Markov chain with tran-
sition probabilities pgk = Pr(st = k|st−1 = g), g and k ∈ {h, l}, where h is the label of
the high correlation regime and l the label of the low correlation regime. Rt is a PD corre-
lation matrix, being equal to the sample correlation under the regime of high correlation,
and a convex combination of two PD matrices under the low correlation regime.

In this model the relative variation between each element ofRl and the corresponding
element ofRh is the same for all pairs of assets (being equal to (1−λl)/λl), and likewise
when the regime changes from h to l (being equal to λl−1). This feature imposes a strong
constraint on the model.

An alternative parameterization (RSDC-2λ) was proposed by Bauwens and Otranto
(2016):

Rh = R̄λh + In(1− λh), Rl = R̄λl + In(1− λl),
λl ∈ [0, 1], λh ∈ [1, 1/r̄max),

(2.3)

where r̄max(> 0) is the maximum correlation coefficient in R̄. This model is more flex-
ible than RSDC-1λ because it allows each high correlation to exceed the corresponding
sample correlation. To provide a PDRh matrix, it requires the constraint that the smallest
eigenvalue of R̄ be larger than (λh − 1) /λh, this being easily verified considering that
the eigenvalues of Rh are equal to (1 − λh) plus the eigenvalues of R̄ multiplied by λh.
This restriction is not very strong, in particular when r̄max is close to unity. Anyway, this
model also implies that the relative variation of each correlation coefficient, switching
from state l to state h, is the same for all correlations (being equal to (λh − λl)/λl), and
likewise, switching from state h to state l (being equal to λl − λh)/λh).

In other words, the presence of regimes in the correlations between asset returns is a
verified stylized fact, but the constraint of identical dynamics for all the correlations is a
strong hypothesis that justifies our search for more flexible models in the next section.

3 Nonlinearities and Different Dynamics in Correlations
New models are proposed, where each correlation coefficient can have a specific dynamics
or relative variation when changing regime. Nevertheless, these models can remain very
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parsimonious in parameters. The proposed models include a cDCC model with a non-
linear dependence of the conditional correlations on the past values of the correlations,
and two parameterizations in a regime switching framework, corresponding to extensions
of the models (2.2) and (2.3). These models involve, in their simplest specifications, the
same number of unknown parameters as the cDCC and RSDC models. Their formulation
uses the entry-wise exponential operator of a matrix, which has the interesting property
to preserve the positive definiteness of a positive (semi-)definite matrix. The first kind
of model is named the NonLinear AutoRegressive Correlation (NLARC) model and the
second the Flexible RSDC (FRSDC) model.

3.1 The Nonlinear Autoregressive Correlation Model
A feature of the cDCC model in its general version (2.1) is that each correlation pro-
cess has its specific dynamic parameters (aij and bij), so that the dynamics of different
correlations can vary considerably. This interesting property implies that the model be-
comes difficult, if not impossible, to estimate for large n since the number of parameters
is O(n2). The scalar version of the model, where A is replaced by the scalar a and B by
the scalar b, implies on the contrary that all correlations have the same dynamic properties
and that the model is easy to estimate for large n (when C is replaced by a preliminary
estimator). Although intermediate specifications (mentioned in Section 2) exist, a new
one is proposed. It consists formally of the same equations as (2.1), with a time-varying,
newly parameterized, matrix A, a new parameterization of the matrix C, and the scalar
version ofB.1 In this version, the second equation of (2.1) is:

Qt = (1− a− b)C + aAtQ̃t−1ut−1u
′

t−1Q̃t−1 + bQt−1, (3.1)
C = exp�

[
φC
(
R̄− Jn

)]
, At = exp� [φA (Rt−1 − Jn)] , (3.2)

where R̄ is the sample correlation matrix of the residualsut, (t = 1, 2, . . . , T ), assumed to
be PD. For any matrixM = (mij), exp�M = (exp(mij)), so exp� represents the entry-
wise exponential operator. In (3.2), the three scalar parameters of the model are restricted
by 0 ≤ a < 1, 0 ≤ b < 1, b = 0 if a = 0, a + b < 1, φA ≥ 0, φC > 0. The entry-wise
exponential transformation used to obtain At and C provides symmetric matrices with
diagonal elements equal to 1 and non-negative off- diagonal elements smaller than 1.

More explicitly, the dynamic equation for the covariance element qij,t (i 6= j) of model
(2.1) with parameterization (3.2) is:

qij,t = (1−a−b) exp[φC(r̄ij−1)]+a exp[φA(ρij,t−1−1)] ui,t−1uj,t−1
√
qii,t−1qjj,t−1+bqij,t−1.

(3.3)
This shows that two separate autoregressive dependences are considered: one of them
is the linear dependence on the lagged covariance qij,t−1, with the same parameter b for
all the covariances, as in the scalar cDCC model; the other one is embedded within the

1AlsoB could be considered time–varying, but in our experiments we find evidence for a constant scalar
parameter. This result is consistent with the findings of Bauwens and Otranto (2016) and Clements et al.
(2018), applying the DCC–TVV model proposed by Bauwens and Otranto (2016).
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matrixAt and adds a nonlinear dependence on the lagged conditional correlation, the lat-
ter being itself a linear function of qij,t−1. SHOW GRAPHICALLY THE NONLINEAR
DEPENDENCE AND THE ACF OF qij,t (COMPUTED BY SIMULATION).

The impact of the lagged covariance shock ui,t−1uj,t−1
√
qii,t−1qjj,t−1 on the next co-

variance qij,t is given by aij,t = a exp[φA(ρij,t−1 − 1)] ∈ [0, 1). Thus it is both time-
varying and asset-pair specific through the lagged correlation ρij,t−1. For a given value of
the parameters and of the lagged covariance shock, the impact is an increasing nonlinear
function of ρij,t−1. SHOW GRAPHICALLY THE IMPACT. Thus a given positive (neg-
ative) lagged covariance shock increases (decreases) more the next covariance when the
lagged correlation is strong than when it is weak. The function is convex but in practice it
is quasi-linear, since the estimate of φA is typically smaller than 0.5 (as reported in Table
1), and the correlations are between -1 and +1, so that the interval of relevant values of
φA(ρij,t−1 − 1) is (−k, 0), with k between 0 and 1 (for example k = 0.2 if the lagged
correlation is between 0 and 1 and φA = 0.2). Moreover, aij,t + b is strictly less than 1 for
each pair (i, j) such that i 6= j (because ρij,t−1 < 1 and φA ≥ 0). Thus the new parameter-
ization satisfies at each t one of the sufficient conditions for stationarity (|aij + bij| < 1)
of the general cDCC model (2.1).

For a diagonal element, the dynamic equation is qii,t = (1− a− b) + a u2i,t−1qii,t−1 +
bqii,t−1. As shown by Aielli (2013), this implies that E(qii,t) = 1,

Each off-diagonal element of the matrix C is determined by the corresponding ele-
ment of the sample correlation matrix R̄. Linearizing exp[φC(r̄ij − 1)] around zero gives
1 + φC(r̄ij − 1). Thus, if φC is close to 1, as the estimates reported in Table 1, the con-
stant term is close to the sample correlation. In that sense, the proposed functional form
of C is thus similar to the targeting idea of the DCC model of Engle (2002). However,
since exp[φC(r̄ij − 1)] is always positive, if the degarched returns of an asset pair imply a
negative correlation over the sample period, this feature cannot be captured; for the data
used in Section 4, only one correlation (out of 190) is negative (being equal to -0.0046).
An alternative simple but shaky solution is to use targeting, i.e. estimate directly C by
R̄ as proposed by Engle (2002) for the DCC model, and a sound but difficult one is to
estimate C as a PD matrix (through a Cholesky factorization). The proposed parameteri-
zation (3.2) for the cDCC model (2.1) satisfies the required property that the resultingQt

matrix be PD for all t. This result is based on the following proposition:

Proposition 1: IfD is a PSD correlation matrix, then F = exp� [δ (D − Jn)], is PD
if δ ≥ 0.

This proposition is based on the property according to which the entry-wise expo-
nential function preserves the positive (semi-)definiteness of a matrix. Rewriting F as
exp� (δD) / exp(δ), since δ is non-negative, the argument of the entry-wise exponential
is again PSD and the result is divided by a positive constant, so that F is PSD. Moreover,
another property of the entry-wise exponential of a PSD matrix establishes that it is PD if
no two rows of the matrix are identical (see, for example, Theorem 7.5.9 (c) in Horn and
Johnson, 2013); hence if D is a PD correlation matrix and its off-diagonal elements are
strictly less than 1, then all its rows are different, so that F is PD.

In (3.2), the matrices Rt−1 and R̄ are PSD (and in practice PD) correlation matrices,
so that Proposition 1 can be applied to (1− b)At and C.
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The parameterization (3.2) of At and C is named the scalar parameterization; it is
very parsimonious, involving just one parameter for each matrix. More flexibility can be
reached by associating different parameters to each element of the correlation matrices.
A natural extension of (3.2), is given by:

C = exp�
[
ΦC �

(
R̄− Jn

)]
, At = exp� [ΦA � (Rt−1 − Jn)] , (3.4)

where ΦA and ΦC are square matrices with strictly non-negative entries; on the diagonal,
any fixed constant can be chosen because the elements on the diagonal of At and C are
equal to 1 by construction. A nice property of the parameterization (3.4) is given by the
following proposition:

Proposition 2: If D is a PSD correlation matrix and ∆ is a symmetric PSD matrix
with all strictly positive entries and just one positive eigenvalue, then
F = exp� [∆� (D − Jn)] is PD.

The matrix F is actually the Hadamard product of two entry-wise exponential func-
tions:

F = exp� [∆�D]� exp�
[
(∆)�(−1)

]
, (3.5)

where �(−1) indicates the Hadamard inverse, so that the element (i, j) of∆�(−1) is equal
to 1/δij when δij is the element (i, j) of ∆. ∆ is PSD and, from Schur’s theorem, its
Hadamard product with D is PSD since D is PSD. As a consequence exp� [∆�D] is
PD because it is the entry-wise exponential of a PSD matrix with distinct rows. Bapad
(1988) has proven that the Hadamard inverse of a symmetric matrix with all positive en-
tries and just one positive eigenvalue is PSD. This implies that, under the not restrictive
hypothesis of Proposition 2, (∆)�(−1) is PSD, so that its entry-wise exponential transfor-
mation is PSD. So F is the Hadamard product of a PD matrix and a PSD matrix having
non-zero diagonal entries. By Lemma 2.2 of Reams (1999), this type of Hadamard prod-
uct provides a PD matrix.

Proposition 2 implies that, if ΦA and ΦC have just one positive eigenvalue, then At

and C are PD. Setting ΦA = φAφ
′
A and ΦC = φCφ

′
C , where φA and φC are vectors of

n strictly positive elements, the resulting matrices satisfy the conditions of Proposition 2.
The parameterization (3.4) with the matrices defined in the previous sentence is called the
rank–1 parameterization.

The extension of the parameterization (3.2) and (3.4) to a non scalar or a time-varying
B is possible but complicated. In particular it is difficult to impose the stationarity con-
straints when premultyplying (element by element) the entry-wise exponential function
At by (Jn−Bt), because it is not possible to guarantee by simple conditions the positive
definiteness of (Jn −Bt)�At.
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3.2 The Flexible Regime Switching Dynamic Correlation Model
The extension of the model (2.2) of Pelletier (2006) to the FRSDC case (FRSDC-1λ) is
simple and given by:

Rt = R
(st)
t , st ∈ {h, l},

R
(h)
t = R̄, R

(l)
t = R̄�Λ

(l)
t ,

Λ
(l)
t = exp�

[
φ(l) (Rt−1 − Jn)

]
pgk = Pr(st = k|st−1 = g), g and k ∈ {h, l}, pkk = 1− pgk if g 6= k

(3.6)

where R̄ is the sample correlation matrix of the residuals ut, (t = 1, 2, . . . , T ), assumed
to be PD, φ(l) is a scalar parameter restricted to be strictly positive, and Λ

(l)
t is a time-

varying symmetric PD matrix (by Proposition 1) with all its diagonal elements equal to 1

and other elements λ(l)ij,t = exp
[
φ(l)(ρij,t−1 − 1)

]
in [0, 1]. The resulting R(l)

t matrix is a
correlation matrix since it is obtained as the Hadamard product of two PD matrices with
the characteristics of correlation matrices (ones on the diagonal and less or equal to 1 in
absolute value otherwise). The last formula of (3.6) implies that each element ρij,t of the
correlation matrix Rt follows a two-state Markov Switching model with a time invariant
transition probability matrix that is common to all correlations.

The first three equations of the model (3.6), written for each element (i, j) of the
correlation matrices, are:

ρij,t = ρst,t, st ∈ {h, l},
ρ
(h)
ij,t = r̄ij, ρ

(l)
ij,t = r̄ijλ

(l)
ij,t = r̄ij exp

[
φ(l)(ρij,t−1 − 1)

]
.

(3.7)

This model implies constant correlations under the high correlation regime, but dynamic
correlations under the low correlation regime; the classification high/low is justified by the
inequality ρ(l)ij,t ≤ ρ

(h)
ij,t at each time t. The dynamics of the low correlation has a nonlinear

autoregressive structure of order 1. The main novelty with respect to the specification
(2.2) is that, even if all the correlations are in the same regime at each time, the relative
variations differ at each time and for each pair of assets, being equal to (1 − λ(l)ij,t)/λ

(l)
ij,t

when the regime switches from l to h, and equal to λ(l)ij,t − 1 when the regime changes
from h to l.

A more flexible specification (FRSDC-2λ) provides a dynamic structure also for the
high correlation matrix. It is given by:

Rt = R
(st)
t , st ∈ {h, l},

R
(h)
t = Wt − (1− θ)In, R

(l)
t = R̄�Λ

(l)
t ,

Wt = R̄+R∗ �Λ
(h)
t ,

R∗ = S
(
Jn − R̄

)
,

Λ
(st)
t = exp�

[
φ(st) (Rt−1 − Jn)

]
,

pgk = Pr(st = k|st−1 = g), g and k ∈ {h, l}, pkk = 1− pgk if g 6= k

(3.8)

where S(·) is a shrinking function that transforms a symmetric matrix into a PD matrix.
A simple specification of S(A) is a convex combination of S(A) and the identity matrix
In:

S (A) = θA+ (1− θ)In, (3.9)
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where θ is chosen to be the highest value in (0, 1] such that all eigenvalues of S (A)
are positive (see Devlin et al., 1975; other techniques are illustrated in Rousseeuw and
Molenberghs, 1993). Subtracting (1 − θ)In from Wt in the second formula of (3.8) is
necessary to render the diagonal elements ofR(h)

t equal to 1.
The matrix R(l)

t is PD by construction (as in the FRSDC-1λ model), whereas R(h)
t is

PD under the constraint expressed in the following proposition:

Proposition 3: R(h)
t is PD if θ is strictly greater than the smallest eigenvalue ofWt.

Let Vt be the orthonormal matrix of eigenvectors of Wt and Lt the diagonal matrix
of associated eigenvalues (all positive and different). By definition, Wt = VtLtV

′
t and

V
′
t Vt = VtV

′
t = In. As a consequence:

V
′
t R

(h)
t Vt = V

′
tWtVt − (1− θ)V ′

t InVt
= V

′
t VtLtVtV

′
t − (1− θ)V ′

t Vt = Lt − (1− θ)In.
(3.10)

The last matrix of (3.10) is a diagonal matrix. It is obviously PD if the smallest eigenvalue
ofWt is strictly larger than 1− θ. Under this condition (equivalent to the condition stated
in the Proposition), V ′

t R
(h)
t Vt is thus PD, and R(h)

t also (since Vt has full rank), so the
proposition is proven.

From (3.8) each element ρ(l)ij,t is smaller than or equal to the corresponding element r̄ij
of the sample correlation matrix. Each off-diagonal element of the high correlation matrix
R

(h)
t is larger than the corresponding element of the sample correlation matrix, since it is

equal to r̄ij+θ(1− r̄ij) exp
(
φ(h)(ρij,t−1 − 1)

)
where the second term is positive. Like the

low correlations, the high correlations follow a nonlinear autoregressive process of order
1, instead of being constant like in (3.6).

The scalar parameterizations of Λ
(st)
t in (3.6) and (3.8) can be extended to a more

general one, which uses rank-one matrices (a rank–1 parameterization), as exposed in the
next sub-section.

3.3 Groupwise Formulation
The scalar models defined in (2.1)-(3.2), (3.6) and (3.8) provide a practical way to limit
the number of parameters, while ensuring the positive definiteness of the corresponding
conditional correlation matrices. On the other hand they introduce constraints that may be
considered strong, especially when n is very large. A more flexible solution is the rank–1
formulation, which provides also PD correlation matrices but with a larger yet manage-
able number (of O(n)) of parameters. A middle ground can be achieved by a groupwise
formulation, which is a rank–1 parameterization where groups of correlations with simi-
lar dynamics are formed. Of course the detection of groups is a difficult task. A possible
solution consists in adopting model-based clustering algorithms (such as Otranto, 2010,
for DCC models), where a parameter-dependent distance measure is used to identify sim-
ilar correlation dynamics. Extending the Otranto (2010) algorithm to the FRSDC model
does not bring a successful outcome. Alternatively some a priori information about assets
could be used to create groups of assets characterized by a similar correlation structure
(as in Billio et al., 2006, for DCC models), but of course this approach is subjective.
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If the number of assets is not huge (say less than thirty), a heuristic general-to-specific
search procedure to obtain a parsimonious version of the rank–1 models is can be applied.
For the FRSDC-2λ case, let us consider a rank–1 version of Φ(st):

Φ(st) = φ(st)φ(st)′ (3.11)

where φ(st) is a n×1 vector of strictly positive elements φ(st)
i (i = 1, . . . , n). By Proposi-

tion 2, this formulation provides a PD matrix Λ
(st)
t . Then the search procedure to reduce

the number of parameters from 2n to 2k with k ≤ n involves the following steps:

1. Estimate the FRSDC-2λ model with the parameterization (3.11).

2. Compute the p-value of the joint null hypothesis H0 : φ
(h)
i = φ

(h)
j , φ

(l)
i = φ

(l)
j

for each pair i, j (i 6= j). This test can be done using a Wald statistic having
asymptotically a χ2(2) distribution under H0.

3. Select all the pairs for which H0 is not rejected with highest p-values (for example
more than 0.9) and set φ(h)

i = φ
(h)
j and φ(l)

i = φ
(l)
j for these pairs. Of course it

is necessary to check if the different results are consistent: for example if the null
hypotheses φ(st)

1 = φ
(st)
2 and φ(st)

2 = φ
(st)
3 are accepted with a large p-value, the

restriction φ(st)
1 = φ

(st)
2 = φ

(st)
3 is adopted only if the p-value of the statistic for

φ
(st)
1 = φ

(st)
3 is also large.

4. Estimate the model imposing the constraints obtained in step 3.

5. If the constrained model of the previous step is preferred to the initial model in
terms of a loss function (for example BIC or AIC), compute the p-values of the null
hypothesis (as defined in step 2) for all the pairs of parameters in φ(st) that are not
constrained after step 3. Select the new pairs of parameters with highest p-value for
which the null hypothesis is not rejected. Obviously, if no pair is selected, stop the
procedure.

6. Constrain the selected pairs of parameters of the previous step to be equal and
estimate the new constrained model.

7. Repeat steps 5 and 6 until the loss function no longer decreases or all the null
hypotheses are rejected.

This procedure partitions each vectors φ(h) and φ(h) into k groups of parameters; the
grouping is the same in both vectors, the elements of a group of φ(h) are the same, as are
those of a group in φ(l), and the parameters of the same group in φ(h) and φ(l) differ.

For the NLARC model, the procedure is the same, but substituting ΦA and ΦC for
Φ(l) and Φ(h) respectively. For the FRSDC-1λ model, the null hypothesis considered in
step 2 involves only the vector φ(l).
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4 Empirical Findings
It is instructive to apply the previous models to a real data set, following some steps to
come to the best specifications of the NLARC and FRDSC models. Twenty daily series
of stock indices have been downloaded from the Oxford-Man Institute Realized Library
version 0.2 (Heber et al., 2009): S&P 500 (abbreviated to SP), FTSE 100 (FTSE), Nikkei
225 (NIK), DAX (DAX), Russell 2000 (RUS), All Ordinaries (AO), Dow Jones Industrial
Average (DJ), Nasdaq 100 (NAS), CAC 40 (CAC), Hang Seng (HS), KOSPI Compos-
ite Index (KOS), AEX Index (AEX), Swiss Market Index (SMI), IBEX 35 (IBEX), S&P
CNX Nifty (CNX), IPC Mexico (IPC), Bovespa Index (BOV), S&P/TSX Composite In-
dex (TSX), Euro STOXX 50 (EU), FTSE MIB (MIB). The time span starts the 8th of July
2002 and ends the 27th of April 2017. This provides 2555 daily observations for each
series, keeping only the dates where all the indices are recorded. The series of the de-
garched returns ut = S−1t yt (t = 1, 2, . . . , 2554) have been obtained after estimating the
conditional variances of the log-returns by univariate GARCH-GJR(1,1) models (Glosten
et al.,1993).

The estimated models are: scalar cDCC (see Section 2), NLARC (see Section 3.1),2

the RSDC-1λ (see eq. (2.2)), RSDC-2λ (eq. (2.3)), FRSDC-1λ (eq. (3.6)) and FRSDC-
2λ (eq. (3.8)). The NLARC and FRSDC-2λ models have been estimated both in the
scalar, the rank 1 and the groupwise versions.

4.1 Estimation Results for cDCC and NLARC
The estimation results for the scalar cDCC model and NLARC models are shown in Table
1. Nonscalar versions of the cDCC model have also been estimated, using the rank–1 pa-
rameterization proposed in Billio et al. (2006). First, the procedure of Otranto (2010) was
applied to detect series with similar cDCC dynamics to reduce the number of parameters,
but this identifies a single group of twenty series. Next a cDCC model with a rank–1 pa-
rameterization of the matrices C and A, and another with also a rank–1 B matrix, were
estimated. In both cases, the estimated elements of the matrices C and A are all close
to zero and in the second case those of the matrix B are comprised in a small range (be-
tween 0.93 and 1). Moreover the BIC of the most general model is equal to 1.888, which
is higher than for the scalar model (1.866). Given this evidence, the scalar cDCC model
is adopted as the benchmark for this study. The estimates show a very small a coefficient
and a large b.

The scalar NLARC shows a clear increase in the log-likelihood and a decrease both
in AIC and BIC with respect to the scalar cDCC model. Moreover, the null hypothesis
φA = 0, which verifies the null of cDCC model against the NLARC model, can be verified
with a Likelihood Ratio test, but since φA = 0 is on the boundary of the parameter space,
it does not follow a χ2(1) distribution. However, the value of the statistic (60.04) is
sufficiently large to provide a certain evidence in favor of the NLARC against the cDCC.

2Both cDCC and NLARC models were estimated using the versions with and without correlation target-
ing, and estimating the constant matrix C or substituting it with the sample correlation R̄. The best results
in terms of fitting are obteined with the correlation targeting version and the sample correlation; we will
show only the results relative to this specification.
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For the rank–1 version of the NLARC model, the number of groups detected by the
algorithm, described in subsection 3.3, is just one, in the sense that all the coefficients
of the vector φA are not significantly different. In practice the groupwise specification is
identical to the scalar one, with a very parsimonious specification. This is confirmed by a
comparison of the AIC and BIC of the scalar and the rank 1 specifications; they are equal
to 1.45 and 1.46 respectively for the scalar NLARC (see Table 1), whereas they are 1.45
and 1.50 respectively for the rank 1 NLARC. The Wald statistic of the hypothesis that the
twenty different parameters in φA are equal (resulting in 19 constraints) shows a p-value
of 0.02, rejecting the null at a 1% nominal size (this test is standard).

Figure 1 illustrates the dynamics of the correlations between SP and the other indices
using the scalar cDCC and the scalar NLARC. The graphs inspire the following com-
ments:

1) On average (graph in the lower right corner) the correlations are lower using cDCC.
This is visible also in some other graphs.

2) The graphs generally reveal that the time series of the correlations obtained with
the NLARC models are locally changing more strongly than the corresponding cDCC
series. This feature is a consequence of the specification – see (3.3) – of the time-varying
impact of the lagged covariance shock through its interaction with the lagged correlation.
Nevertheless, for the correlations of SP with the other U.S. indices (RUS, DJ, NAS) and
many european indices, the differences between the scalar cDCC and the NLARC are not
so strong as for the other indices.

3) The graphs also show that for a given asset pair, all models anchor the correlations
approximately at the same level. This happens because the constant terms of the dynamic
equations are linked to the sample correlations.

4) The NLARC correlations show similar global or local patterns for some series: for
example FTSE, CAC, DAX, SMI (indices of European countries) have the same global
evolution and are subjected to an evident jump toward lower levels of correlations at
the end of 2016, whereas NIK and KOS (two Asian indices) show an abrupt increase in
correlations at the same time.

4.2 Estimation Results for RSDC and FRSDC
The estimation results of the RSDC and FRSDC models are shown in Table 2. The 2-λ
models improve the 1-λ in terms of AIC and BIC. Moreover, it is possible to test, using
the LR statistic, the (F)RSDC-1λ model against the corresponding 2-λ, by defining the
null hypothesis as λh = 1 for the RSDC 2-λ model and φ(h) = 0 for the scalar FRSDC
2-λ model. In the first case, the test is standard and the null is rejected with a p-value
very close to zero. In the second case the null is on the frontier but the statistic suggests
that it can be rejected. For this reason only the 2-λ version of the rank–1 and groupwise
parameterization of FRSDC are reported. The estimates of the parameters of the FRSDC
2-λ with rank–1 parameterization are shown in Figure 2; several estimated parameters
seem similar and some are not significantly different from zero. The grouping algorithm
determines three groups:

Group 1: SP, RUS, DJ, NAS, IPC, TSX;
Group 2: FTSE, DAX, CAC, AEX, SMI, IBEX, EU, MIB;
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Group 3: NIK, AO, HS, KOS,CNX, BOV
It is interesting to notice how the three groups correspond to natural geographical

partitions; the first group is given from North American indices, the second group from
European indices, the third one all the rest (Asian, Australian and Brasilian markets).

The comparison in terms of AIC shows a very similar fitting of the groupwise and the
rank–1 parameterization, whereas the BIC clearly favors the more parsimonious group-
wise representation. It is interesting to notice that the groups are consistent with the
dynamics of the correlations derived from the NLARC models (illustrated in Figure 1).

In terms of AIC and BIC the correlation models belonging to the Markow Switching
family of Table 2 outperform all the cDCC family models of Table 2 and all the 2-λ
models outperform the 1-λ models. The groupwise FRSDC shows the best performance
in terms of both loss criteria. The probability to stay in the high correlation regime and, as
a consequence, the persistence of that regime, is lower in the FRSDC models than in the
RSDC models, the latter involving as a consequence more frequent changes from high to
low correlations. The inverse occurs for changes from low to high.

4.3 In-sample Forecasting
A complementary comparison among non nested models can be made by evaluating the
in-sample and out-of-sample forecasting performance of the models, using a statistical
criterion and an economic one. The former is the Model Confidence Set (MCS) of Hansen
et al. (2003), with the purpose to detect a set of models having the best forecasting
performance. This is done in the way proposed by Clements et al. (2009), by adopting the
Quasi Likelihood loss function with the semi-quadratic statistics. The important finding of
this experiment is that the set of models with the best in-sample forecasting performance
is given by the FRSDC-2λ models, which outperform the RSDC models and the FRSDC-
1λ (upper part of Table 3). The approach excludes first the models belonging to the DCC
family; it is interesting to notice that the models with 1-λ parameterization are excluded
before the RSDC 2-λ.

The economic criterion is based on theoretical portfolio performances, following the
approach of Engle and Colacito (2006). The purpose is to compare the sample volatility of
portfolios with weights depending on the alternative correlation matrices, having the same
variances (obtained in step 1 of the estimation procedure), and fixing the expected returns
equal to 1/

√
n (so the corresponding vector has length equal to one). In practice the dif-

ference between the portfolios depends only on the correlation matrix, and the model with
the smallest portfolio volatility is the best model in economic terms. In the second part of
Table 3 the result is the opposite with respect to the MCS experiment; the best model is
the scalar NLARC and the cDCC family outperforms the RSDC family which provides an
increase of 1 to 3% in the portfolio variance. The bottom part of Table 3 reports the results
of the Diebold-Mariano (DM) test proposed by Engle and Colacito (2006) to verify the
equality of each pair of models, comparing the differences between the squared returns
within each pair of portfolios. The scalar NLARC model, which provides the minimum
variance portfolio, outperforms only the FRSDC–2λ models, whereas the differences do
not seem significant with respect to the other models (the largest increase in the portfolio
variance is 1.6%). The same holds for the cDCC, RSDC and FRSDC–1λ models, so this
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group of five models seems to have a very similar economic performance.
In summary, the in-sample forecast analysis indicates that the two alternative families

have different performances if evaluated with statistical or economic criteria, favoring
the RSDC family in the former, the cDCC family in the latter. Within the best family,
the new models outperform the corresponding classical model. The scalar model shows a
non significantly different performance with respect to the groupwise version, so the most
parsimonious NLARC and FRSDC models are the preferred models to represent the data.

4.4 Out–of–sample Forecasting
To evaluate the out–of–sample performance of the models, four experiments were con-
ducted. In the first two, the parameters of each model are fixed during the forecast pe-
riod at the values obtained during two different estimation samples, and one-step ahead
forecasts are computed until the end of each sample. In the other two experiments, the
parameter estimates are updated every day (or every fifth day) during the forecast period
before computing the next forecast (or the next five forecasts). In full details, for each
model:

1. Experiment 1: the estimation sample ends on the 30th of December 2014, and the
forecasts of the remaining 441 correlation matrices are computed.

2. Experiment 2: the estimation sample ends on the 18th of October 2016 and the
forecasts of the remaining 100 correlation matrices are computed.

3. Experiment 3: the first estimation sample ends on the 30th of December 2014 and
the five next correlation matrices are forecasted; then five observations are added
to the estimation sample, the model is re-estimated and the five next forecasts are
computed. This continues until 441 correlation matrices are forecasted.

4. Experiment 4: the first estimation sample ends on the 18th of October 2016 and the
next correlation matrix is forecasted; then one observation is added to the estimation
sample, the model is re-estimated and the next forecast is computed. This continues
until 100 correlation matrices are forecasted.

In the first experiment (Table 4) the MCS includes the FRSDC–2λ scalar and group-
wise models. The FRSDC–1λ scalar model is the last model excluded from the best
forecasting set; thus the FRSDC family is clearly favored. The NLARC and cDCC mod-
els are the first to be excluded by this procedure. In terms of MVP evaluation, an opposite
order of the best performing models is observed: the NLARC s provides the best portfolio
and it performs significantly better than the other models, except the FRSDC–2λ g and
the FRSDC–1λ c, as shown by the DM tests, considering a 5% significance level. The
cDCC has a very similar portfolio variance in mean with respect to the NLARC s, but the
DM test indicates a significant difference at a 5% significance level; anyway all the mod-
els show a similar performance if we consider a 1% significance levels, a part FRSDC–2λ
s, which shows an increase of the portfolio variance of 5% with respect to the NLARC s.

For the reduced forecast sample of the second experiment (Table 5), again the scalar
and the groupwise FRSDC–2λ are the best set in the MCS, whereas the NLARC s is again
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the best in terms of the MVP criterion, but, considering a 1% significance level of the DM
test, its performance is not significantly different from the other models (a part cDCC).

In the third and fourth experiments, (Tables 6 and 7), the MCS includes all models,
meaning that their forecast performances are not significantly different at usual nominal
sizes. In terms of MVP, the models also do not show significantly different performances,
except for the worse performance of the cDCC model in the last experiment.

In summary, when the estimates are updated, all models are included in the MCS, and
all models are equivalent according to the MVP criterion. When the estimates are frozen
at the end of the estimation sample, only the FRSDC-2λ models are included in the MCS,
and all models are not significantly dominated by the NLARC s in terms of MVP.

5 Concluding Remarks
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Tables and Figures

Table 1: QML estimation results for DCC and NLARC models (QML robust standard
errors in parentheses)

cDCC NLARC scalar
a 0.007 0.008

(0.001) (0.001)
b 0.975 0.975

(0.004) (0.004)
φA 0.157

(0.068)
Log–Lik -1881.9 -1851.9
AIC 1.476 1.454
BIC 1.481 1.461
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Table 2: QML estimation results for RSDC and FRSDC models (QML robust standard
errors are in parentheses).

RSDC FRSDC
1–λ 2–λ 1–λ scalar 2–λ scalar 2–λ rank–1 2–λ groupwise

phh 0.980 0.974 phh 0.967 0.895 0.905 0.898
(0.004) (0.006) (0.006) (0.013) (0.013) (0.013)

pll 0.340 0.323 pll 0.305 0.453 0.397 0.406
(0.066) (0.061) (0.098) (0.094) (0.060) (0.060)

λh 1.004 φ
(h)
1 1.461 1.517 (SP) 0.928

(0.001) (0.195) (0.243) (0.065)
λl 0.552 0.591 φ

(h)
2 1.259

(0.095) (0.097) (0.178)
φ
(h)
3 0.317

(0.128)
φ
(l)
1 1.907 1.058 0.969 (RUS) 1.464

(0.522) (0.300) (0.124) (0.182)
φ
(l)
2 0.586

(0.079)
φ
(l)
3 5.251

(1.301)
Log–Lik -1744.0 -1719.2 -1734.5 -1577.9 -1453.0 -1494.8
AIC 1.369 1.350 1.362 1.240 1.172 1.178
BIC 1.376 1.360 1.369 1.249 1.268 1.196

The coefficients φ(h) and φ(l), in the case of the FRSDC models with rank–1, are the medians of the
estimates (in parentheses the corresponding indices), considering, as median, the 10-th index in increasing
order. For the FRSDC 2–λ models, the shrinking coefficient θ is equal to 0.21.
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Table 3: In–sample evaluation: Model Confidence Set and Minimum Variance Portfolio
Model Confidence Set

NLARC s cDCC RSDC 1–λ FRSDC 1–λ RSDC 2–λ FRSDC 2–λ g FRSDC 2–λ s
0.000 0.000 0.000 0.000 0.000 0.687 1.000

Minimum Variance Portfolio
FRSDC 2–λ g FRSDC 2–λ s FRSDC 1–λ s RSDC 2–λ RSDC 1–λ cDCC NLARC s
102.76 102.34 101.60 101.27 101.15 100.28 100.00

Diebold–Mariano p-values for MVP
RSDC 2–λ FRSDC 1–λ s FRSDC 2–λ s FRSDC 2–λ g cDCC NLARC s

RSDC 1–λ -0.074 -0.143 -0.008 -0.030 0.143 0.087
RSDC 2–λ -0.245 -0.013 -0.039 0.106 0.065
FRSDC 1–λ s -0.039 -0.077 0.084 0.055
FRSDC 2–λ s -0.329 0.010 0.007
FRSDC 2–λ g 0.007 0.005
cDCC 0.139

For the MCS criterion: the models are in the order (from left to right) in which they are removed from the
MCS and the corresponding p-value is indicated below the model name. The letter s indicates the scalar
version, g the groupwise. For the MVP: the models are shown (from left to right) in decreasing volatility
order, setting to 100 the minimum volatility, so a number like (100 + x) means that the corresponding
model provides, on average, a x% higher portfolio volatility than the model having the lowest volatility.
The bottom panel shows the p-values of the Diebold and Mariano statistics to compare the model in row
with the model in column. A negative sign means that the model in row is better than the model in column.

Table 4: Out–of–sample evaluation of 441 forecasts of experiment 1
Model Confidence Set

NLARC s cDCC RSDC 1–λ RSDC 2–λ FRSDC 1–λ FRSDC 2–λ s FRSDC 2–λ g
0.000 0.000 0.000 0.001 0.008 0.162 1.000

Minimum Variance Portfolio
FRSDC 2–λ s FRSDC 1–λ s FRSDC 2–λ g RSDC 1–λ RSDC 2–λ cDCC NLARC s
105.05 102.93 102.84 102.40 102.22 100.50 100.00

Diebold–Mariano p-values for MVP
RSDC 2–λ FRSDC 1–λ s FRSDC 2–λ s FRSDC 2–λ g cDCC NLARC s

RSDC 1–λ 0.229 -0.376 -0.013 -0.406 0.046 0.021
RSDC 2–λ -0.340 -0.009 -0.362 0.046 0.020
FRSDC 1–λ s -0.020 0.465 0.116 0.073
FRSDC 2–λ s 0.005 0.004 0.002
FRSDC 2–λ g 0.115 0.064
cDCC 0.019

The models are estimated using the sample from 8th July 2002 to 30th December 2014; then the estimated
models are fixed and the successive 441 correlations are forecasted. The letter s indicates the scalar version,
g the groupwise. For a description of the table contents, see the note below Table 3.
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Table 5: Out–of–sample evaluation of 100 forecasts of experiment 2
Model Confidence Set

NLARC s cDCC RSDC 1–λ FRSDC 1–λ s RSDC 2–λ FRSDC 2–λ g FRSDC 2–λ s
0.000 0.000 0.000 0.000 0.004 0.908 1.000

Minimum Variance Portfolio
FRSDC 2–λ g FRSDC 2–λ s RSDC 2–λ RSDC 1–λ FRSDC 1–λ s cDCC NLARC s
106.09 104.87 104.66 103.86 103.03 102.65 100.00

Diebold–Mariano p-values for MVP
RSDC 2–λ FRSDC 1–λ s FRSDC 2–λ s FRSDC 2–λ g cDCC NLARC s

RSDC 1–λ -0.155 0.336 -0.368 -0.143 0.250 0.077
RSDC 2–λ 0.228 -0.451 -0.218 0.159 0.039
FRSDC 1–λ s -0.308 -0.044 0.392 0.201
FRSDC 2–λ s -0.277 0.197 0.069
FRSDC 2–λ g 0.153 0.056
cDCC 0.001

The models are estimated using the sample from 8th July 2002 to 18th October 2016; then the estimated
models are fixed and the successive 100 correlations are forecasted. The letter s indicates the scalar repre-
sentation, g the groupwise representation. For a description of the table contents, see the note below Table
3.

Table 6: Out–of–sample evaluation of 441 forecasts of experiment 3
Model Confidence Set

FRSDC 2–λ s RSDC 2–λ RSDC 1–λ FRSDC 1–λ s FRSDC 2–λ g cDCC NLARC s
0.067 0.150 0.117 0.078 0.038 0.088 1.000

Minimum Variance Portfolio
FRSDC 2–λ g RSDC 2–λ RSDC 1–λ FRSDC 1–λ s FRSDC 2–λ s cDCC NLARC s
104.37 102.32 102.31 101.92 101.20 101.13 100.00

Diebold–Mariano p-values for MVP
RSDC 2–λ FRSDC 1–λ s FRSDC 2–λ s FRSDC 2–λ g cDCC NLARC s

RSDC 1–λ -0.450 0.172 0.176 -0.013 0.316 0.086
RSDC 2–λ 0.152 0.191 -0.026 0.297 0.067
FRSDC 1–λ s 0.292 -0.017 0.386 0.114
FRSDC 2–λ s -0.001 -0.486 0.295
FRSDC 2–λ g 0.133 0.030
cDCC 0.111

The first models are estimated using the sample from 8th July 2002 to 30th December 2014; then the
estimates are updated each 5 observations and the last 441 correlations are forecasted. The letter s indicates
the scalar representation. For a description of the table contents, see the note below Table 3.
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Table 7: Out–of–sample evaluation of 100 forecasts of experiment 4
Model Confidence Set

FRSDC 2–λ g FRSDC 2–λ s cDCC NLARC s FRSDC 1–λ s RSDC 1–λ RSDC 2–λ
0.998 0.990 0.974 0.917 0.640 0.361 1.000

Minimum Variance Portfolio
FRSDC 2–λ g cDCC FRSDC 2–λ s NLARC s RSDC 2–λ FRSDC 1–λ s RSDC 1–λ
104.01 103.24 103.02 102.10 100.36 100.00 100.00

Diebold–Mariano p-values for MVP
RSDC 2–λ FRSDC 1–λ s FRSDC 2–λ s FRSDC 2–λ g cDCC NLARC s

RSDC 1–λ -0.101 0.488 -0.003 -0.000 -0.253 -0.328
RSDC 2–λ 0.141 -0.002 -0.000 -0.268 -0.349
FRSDC 1–λ s 0.000 -0.000 -0.232 -0.310
FRSDC 2–λ s -0.061 -0.481 0.400
FRSDC 2–λ g 0.411 0.292
cDCC 0.003

The models are estimated using the sample from 8th July 2002 to 18th October 2016; then the estimates are
updated each time and the last 100 correlations are forecasted. The letter s indicates the scalar representa-
tion. For a description of the table contents, see the note below Table 3..
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Figure 1: Conditional correlations between SP and the other 19 indices derived from DCC
(gray line) and NLARC scalar (black line). The last graph represents the average of the
19 correlation series.
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Figure 2: Estimated vectors φ(l) (continuous line, left axis) and φ(h) (dotted line, right
axis) of the FRSDC–2λ model with rank–1 parameterization. The x axis refers to the
corresponding financial indices.

23


