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Abstract

In this article, we introduce a regression based backtest for the risk measure Expected Shortfall (ES) which
is based on a joint regression framework for the quantile and the ES. We also introduce a second variant
of this ES backtest which allows for testing one-sided hypotheses by only testing an intercept parameter.
These two backtests are the first backtests in the literature which solely backtest the risk measure ES as they
only require ES forecasts as input parameters. In contrast, the existing ES backtesting techniques require
forecasts for further quantities such as the Value at Risk, the volatility or even the entire (tail) distribution.
As the regulatory authorities only receive forecasts for the ES, backtests including further input parameters
are not applicable in practice. We compare the empirical performance of our new backtests to existing
approaches in terms of their empirical size and power through several different simulation studies. We
find that our backtests clearly outperform the existing backtesting procedures in the literature in terms of
their size and (size-adjusted) power properties throughout all considered simulation experiments. We
provide an R package for these ES backtests which is easily applicable for practitioners.

Keywords: Expected Shortfall, Backtesting, Mincer-Zarnowitz Regression, Forecast Evaluation

1. Introduction

Through the transition from Value at Risk (VaR) to Expected Shortfall (ES) as the primary market risk
measure in the Basel Accord (Basel Committee, 2016), there is a great demand for reliable methods for
estimating, forecasting and backtesting the ES. Formally, the ES at level τ ∈ (0, 1) is defined as the mean
of the returns smaller than the respective τ-quantile (the VaR), where τ is usually chosen to be 2.5% as
stipulated by the Basel Accord. The ES is introduced into the banking regulation because it overcomes
several shortcomings of the VaR, such as not being coherent and its inability to capture tail risks beyond
the τ-quantile (Artzner et al., 1999; Danielsson et al., 2001; Basel Committee, 2013). In contrast to
estimation and forecasting of ES where most of the existing models for the VaR can easily be adapted and
generalized to the ES, such a generalization is unfortunately not as straight-forward for backtesting of ES
forecasts (Emmer et al., 2015). In general, backtesting of a risk measure is the process of testing whether
given forecasts for this risk measure are correctly specified, which is carried out by comparing the history
of the issued risk forecasts with the corresponding realized returns. The primary reason for the difficulty
to directly backtest ES is its non-elicitability and non-identifiability (Weber, 2006; Gneiting, 2011; Fissler
and Ziegel, 2016; Fissler et al., 2016) as consequently, there is no analog to the hit sequence which is the
natural identification function of quantiles and which lies at the heart of most VaR backtests.1
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1See Yamai and Yoshiba (2002); Kerkhof and Melenberg (2004); Carver (2013); Acerbi and Szekely (2014); Emmer et al.
(2015); Ziegel (2016); Fissler et al. (2016); Nolde and Ziegel (2017) for the ongoing discussion on backtestability of the ES.
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As a consequence, most of the proposed procedures in the growing literature on backtesting ES use
indirect approaches, e.g. based on forecasts for the entire tail distribution or by linear approximations of
the ES with VaR forecasts at several probability levels. However, these approaches are in fact either joint
backtests for a vector of risk measures such as the triple containing the VaR, the ES, and the volatility or
even for the whole tail distribution (Nolde and Ziegel, 2017). As the proposed backtests require further
input parameters such as forecasts for the volatility, the tail distribution beyond some quantile, or even the
entire distribution, they are not applicable for the regulatory authorities because this additional information
is not reported by the financial institutions (Aramonte et al., 2011; Basel Committee, 2016, 2017).

In this paper, we propose a novel backtest for ES forecasts which is based on a regression framework
which models the conditional ES as a linear function, where we use financial returns as the response
variable and ES forecasts as the explanatory variable including an intercept term. For correct ES forecasts,
the intercept and slope parameters should be equal to 0 and 1, respectively. We use a Wald statistic to
test for these parameter values, where we apply both, an asymptotic test using the covariance estimator
introduced in Dimitriadis and Bayer (2017) and a bootstrap hypothesis test. We call this novel test the
bivariate ESR backtest. This procedure is the first that backtests the risk measure ES stand-alone, i.e. the
first that only uses ES forecasts as input parameters.2 Through this feature, our new test is the first backtest
for the ES which is practicably applicable for the regulatory authorities who only have ES forecasts at
hand.

Such regression-based forecast evaluation approaches are already used for testing mean forecasts
(Mincer and Zarnowitz, 1969), quantile forecasts (Gaglianone et al., 2011; Guler et al., 2017), and expectile
forecasts (Guler et al., 2017). In contrast to these functionals where regression techniques are easily
available (see e.g. Koenker and Bassett, 1978, Efron, 1991), estimating regression parameters for an ES
specific regression equation is more difficult as the ES is not elicitable (Gneiting, 2011). We overcome
this difficulty by estimating the parameters of a joint regression procedure for the quantile and the ES,
recently proposed by Dimitriadis and Bayer (2017), Patton et al. (2017) and Barendse (2017).

We also introduce a second regression-based ES backtest by fixing the slope parameter in the regression
to one, and by only estimating and testing the intercept term, where we call this test the intercept ESR
backtest. This second backtest allows for both, one-sided and two-sided hypotheses which contrasts with
the first backtest that only allows for a two-sided hypothesis as it is generally unclear how underestimated
and overestimated ES forecasts respectively influence the slope and intercept parameters. Because the
capital requirements that the financial institutions must keep as a reserve depend on the reported risk
forecasts, the market participants have an incentive to overestimate3 the risk forecasts to minimize these
expensive capital requirements. In contrast, underestimation of the forecasts results in too conservative risk
forecasts and larger capital reserves, which does not have to be punished by the regulatory authorities. Thus,
the regulators only have to prevent and penalize the overestimation of risk forecasts, which demonstrates
the necessity of one-sided testing procedures. For example, the currently applied traffic light system (Basel
Committee, 1996) is in fact a one-sided VaR backtest. As the bivariate ESR backtest, this intercept ESR
test also has the desired characteristic to only require ES forecasts as input parameters and consequently is
the first procedure in the literature that solely backtests the ES against a one-sided alternative.

We introduce several simulation setups to evaluate the empirical properties of our novel ES backtests
and compare them to the existing joint VaR and ES backtests of McNeil and Frey (2000) and Nolde and
Ziegel (2017). In the first setup, we implement the classical size and power analysis for backtesting risk
measures, where we simulate data stemming from a realistic data generating process and evaluate the
empirical rejection frequencies of the backtests for forecasts stemming from the true and from some
misspecified forecasting models. In the second setup, we introduce a novel technique for evaluating

2The backtests which come closest to our procedure in this regard are the exceedance residual backtests of McNeil and Frey
(2000) and the conditional coverage backtests of Nolde and Ziegel (2017) which are in fact joint backtests for the VaR and the ES.

3Throughout the paper, we use the sign convention that losses are denoted by negative numbers and overestimation of risk
measures is meant in the mathematical sense, i.e. as reporting too large real numbers, which implies that the associated market
risk is underestimated.
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the power of backtests for financial risk measures, where we continuously misspecify certain model
parameters of the data generating process to obtain a continuum of alternative models with a gradually
increasing degree of misspecification. Misspecifying the different model parameters separately allows us
to misspecify certain model characteristics (such as the reaction to shocks) in isolation, which permits a
closer examination of the proposed backtesting procedures. To the best of our knowledge, this evaluation
technique is new to the literature.

From these simulations, we find that the bivariate and the intercept ESR backtests that we propose
in this paper are reasonable sized, especially when the tests are applied using the bootstrap. Moreover,
they are more powerful than the existing backtests of McNeil and Frey (2000) and Nolde and Ziegel
(2017) in almost all of the considered simulation designs for both, testing against one-sided and two-sided
alternatives. Notably, throughout all simulation designs, the two ESR backtests are able to detect the various
different misspecifications of the forecasts. In contrast, the existing backtests sometimes completely fail to
detect certain misspecifications, for instance when the forecaster reports risk forecasts for a misspecified
probability level.

The rest of this paper is organized as follows. Section 2 introduces the theory of our new backtests, and
Section 3 reviews the existing ES backtesting techniques. Section 4 contains several simulation studies,
and Section 5 applies the backtests to the risk forecasts of the S&P500 index. Section 6 concludes.

2. Theory

2.1. Setup and Notation

Let us consider a stochastic process

Z =
{

Zt : Ω→ Rk+1, k ∈ N, t = 1, . . . ,T
}
, (2.1)

defined on some complete probability space
(
Ω, F, P

)
, with the filtration F =

{
Ft, t = 1, . . .T

}
and

Ft = σ{Zs, s ≤ t} for all t = 1, . . . ,T . We partition the stochastic process Zt = (Yt, Xt ), where Yt is
an absolutely continuous random variable of interest and Xt is a k-dimensional vector of explanatory
variables. We denote the conditional cumulative distribution function of Yt given the past information
Ft−1 by Ft (y) = P(Yt ≤ y | Ft−1) and the corresponding probability density function by ft . Whenever
they exist, the mean and the variance of Ft are denoted by Et [·] and Vart (·).

For financial applications, the variable Yt denotes the daily log returns of a financial asset (for instance,
a stock or a portfolio), i.e. Yt = log Pt − log Pt−1, where Pt denotes the price of the asset at day t = 1, . . . ,T .
This means that throughout this paper, we use the sign convention that positive returns denote profits, and
negative returns denote losses. The vector Xt contains further variables that are used to produce forecasts
for certain functionals (usually risk measures) of the random variable Yt .

We are interested in testing whether forecasts for a certain d-dimensional, d ∈ N functional (risk
measure) ρ = ρ(Ft ) of the conditional distribution Ft are correctly specified. For that, we define the most
frequently used functionals for financial risk management in the following. The conditional quantile of Yt
given the information set Ft−1 at level τ ∈ (0, 1) is defined as

Qτ

(
Yt | Ft−1

)
= F−1

t (τ) = inf
{
y ∈ R : Ft (y) ≥ τ

}
, (2.2)

which is called the VaR at level τ in financial applications. Furthermore, we define the functional ES at
level τ of Yt given Ft−1 as

ESτ
(
Yt | Ft−1

)
=

1
τ

∫ τ

0
F−1
t (s) ds. (2.3)

If the distribution function Ft is continuous at its τ-quantile, this definition can be simplified to the
truncated tail mean of Yt ,

ESτ
(
Yt | Ft−1

)
= Et

[
Yt | Yt ≤ Qτ

(
Yt | Ft−1

) ]
. (2.4)
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We denote an Ft−1-measurable one-step-ahead forecast for day t for the risk measure ρ of the
distribution Ft , stemming from some external forecaster or from some given forecasting model4 by
ρ̂t = ρ̂t (Ft−1). Following this notation, we denote forecasts for the τ-VaR by v̂t and for the τ-ES by êt for
some fixed level τ ∈ (0, 1). For simplicity of the notation, we drop the dependence on τ as it is a fixed
quantity.

As both, the incentive of the forecaster and the underlying method used to generate the forecasts are
in general unknown, these forecasts are not necessarily correctly specified. The focus of this paper is to
develop statistical tests for correctness of a given series of forecasts

{
ρ̂t, t = 1, . . . ,T

}
for the risk measure

ρ relative to the realized return series
{
Yt, t = 1, . . . ,T

}
. This is in the literature usually referred to as

backtesting of the risk measure ρ without strictly defining this terminology. We provide such a definition
in the following. The core message of this definition is that besides the realized return series, a backtest
for some risk measure is only allowed to require forecasts for this risk measure as input parameters.

Definition 2.1. A backtest for the series of forecasts
{
ρ̂t, t = 1, . . . ,T

}
for the d-dimensional risk measure

(functional) ρ relative to the realized return series
{
Yt, t = 1, . . . ,T

}
is a function

f : RT × RT×d → (0, 1), (2.5)

which maps the return and forecast series onto the respective p-value of the test.

This strict differentiation becomes relevant in the context of backtesting ES as, in contrast to the
existing VaR backtests, the recently proposed ES backtests require further input parameters such as
forecasts for the VaR, the volatility, or the entire tail distribution. The demand for these further quantities
induces the following practical problems. First, the regulatory authorities who rely on such backtesting
methods do not necessarily receive forecasts from the financial institutions for the additional information
required by these tests, which makes such backtests inapplicable for the regulatory authorities. Second, a
rejection of the tests does not necessarily imply that the ES is misspecified, but that the forecasts for any of
the input components are misspecified. Consequently, these tests are in fact not backtests for the ES, but
rather backtests for vectors of risk measures, or the entire tail distribution.

The two novel regression based ES backtests we propose in the next section are the first backtests for
the ES which follow Definition 2.1 as they only require forecasts for the ES. This makes these tests the
first ES backtests in this sense.

2.2. The bivariate ESR Backtest

Wepropose a newbacktest for the riskmeasure ES that testswhether a series of ES forecasts {êt, t = 1, . . .T},
stemming from some external forecaster or forecasting model is correctly specified relative to a series
of in due course realized returns {Yt, t = 1, . . .T}. For that, we regress the returns Yt on the forecasts êt
including an intercept term by using a regression equation designed specifically for the functional ES,

Yt = α + βêt + ue
t , (2.6)

where ESτ(ue
t | Ft−1) = 0. Given the structure in (2.6) and since êt is generated by using the information

set Ft−1, this condition on the error term is equivalent to

ESτ (Yt | Ft−1) = α + βêt . (2.7)

We then test the hypothesis

H0 : (α, β) = (0, 1) against H1 : (α, β) , (0, 1). (2.8)

4For recent overviews on VaR and ES forecasting approaches, see Komunjer (2004) and Nadarajah et al. (2014).
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Under H0, the ES forecasts are correctly specified as it holds that êt = ESτ (Yt | Ft−1).5 Since this ES
backtest is based on a regression procedure and simultaneously tests the parameters α and β, we call this
test the bivariate ESR backtest.

As outlined in Dimitriadis and Bayer (2017), estimating the parameters (α, β) in (2.6) by M- or
Z/GMM-estimation stand-alone using a semiparametric method without specifying the full conditional
distribution of the error term ue

t is not possible since the functional ES is not elicitable (Gneiting, 2011).
However, these parameters can be estimated through a regression technique which jointly models a
regression equation for the quantile and the ES proposed by Dimitriadis and Bayer (2017), Patton et al.
(2017) and Barendse (2017), which we briefly review in Appendix A. We use this joint regression
framework for the semiparametric estimation of (2.6) by estimating the joint system,

Yt = γ + δêt + uq
t , (2.9)

Yt = α + βêt + ue
t , (2.10)

where Qτ(u
q
t | Ft−1) = 0. and ESτ(ue

t | Ft−1) = 0. This means we choose Yt as the response variable and(
1, êt

)
as explanatory variables for this regression procedure. Because our null hypothesis is based on only

testing the parameters (α, β) in the ES regression equation given in (2.10), we use a Wald statistic which
only incorporates these parameters,

TESR =
( (
α̂, β̂

) ′
− (0, 1)′

) ′
Σ̂
−1
ES

( (
α̂, β̂

) ′
− (0, 1)′

) ′
, (2.11)

where Σ̂ES is an estimator for the (asymptotic) covariance matrix of the M-estimator of the parameters
(α, β). Patton et al. (2017) show consistency and asymptotic normality for theM-estimator of the regression
parameters for α-mixing time series. Using this, and given that Σ̂ES

P
→ ΣES, the test statistic asymptotically

follows a χ2 distribution with two degrees of freedom,

TESR
d
→ χ2

2 . (2.12)

We implement both, backtests based on estimates for the asymptotic covariance matrix and based
on the bootstrap (Efron, 1979). For the asymptotic version, we employ the scl-sp covariance estimation
method discussed in Dimitriadis and Bayer (2017). We further implement the bootstrap hypothesis
testing procedure6 where in each bootstrap sample, we estimate the model parameters and the asymptotic
covariance matrix to compute a total of B = 1000 bootstrap Wald statistics as in (2.11), where the bootstrap
estimates are centered around the estimate for the original sample. Finally, the bootstrap p-value is the
share of the B bootstrap test statistics that are larger than or equal to the test statistic for the original sample.
As neither the underlying loss function of the M-estimator, given in (A.5), nor the asymptotic covariance,
given in (A.8) - (A.12), depend on the temporal ordering of the pairs (Yt, êt ), we apply the iid bootstrap
resampling technique of Efron (1979).

Similar tests are already implemented for backtesting of forecasts for the mean (Mincer and Zarnowitz,
1969), for quantiles (Gaglianone et al., 2011) and for expectiles (Guler et al., 2017). As these functionals
are elicitable, M-estimation of regression parameters for mean, quantile (Koenker and Bassett, 1978) and
expectile (Efron, 1991) regressions is straight-forward. This section shows that introducing the same
concept for backtesting ES forecasts is possible, but technically more demanding as we have to estimate
the regression parameters through a joint system as given in (2.9) and (2.10).

5 Given that the ES forecasts are correctly specified, i.e. êt = ESτ (Yt | Ft−1), the correct specification condition (2.7) is
equivalent to α = (1 − β)êt . This results in the remark of Holden and Peel (1990), who claim that the null hypothesis, given in
(2.8) is only a sufficient, but not a necessary condition for correctly specified forecasts as α = (1 − β)êt is the required necessary
condition. However, this more general condition implies that the forecasts êt are constant for all t = 1, . . . ,T , which is highly
unrealistic given the dynamic nature of financial time series. Consequently, we employ the hypotheses given in (2.8) for our
backtesting procedure.

6This approach provides an asymptotic refinement, i.e. the error in the rejection probability decreases faster compared to
both, the asymptotic distribution and the bootstrapped covariance matrices for the test, see e.g. MacKinnon (2009). In the
construction of confidence intervals, this is also known as the percentile-t method.
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2.3. The One-sided Intercept ESR Backtest

The bivariate ESR backtest introduced in the previous section only allows for testing two-sided hypotheses
as specified in (2.8) because it is generally unclear how too small or too large risk forecasts influence the
parameters α and β. Because the capital requirements the financial institutions have to keep as a reserve
depend on the reported risk forecasts, the market participants have an incentive to overestimate7 the risk
forecasts in order to keep as little capital requirements as possible. In contrast, underestimation of the risk
measures results in too conservative risk forecasts and consequently higher capital requirements, which
does not have to be punished by the regulatory authorities.8 Thus, the regulatory authorities only have
to prevent and consequently penalize the overestimation of risk measures, which can be done by using
one-sided backtesting procedures. For example, the traffic light system (Basel Committee, 1996), currently
implemented in the Basel Accords, is in fact a one-sided backtest for the hit ratios of VaR forecasts.

Consequently, we also introduce a regression-based backtesting procedure for the ES that allows for
both, specifying one-sided and two-sided hypotheses. This backtest is based on regressing the forecast
errors, Yt − êt , on an intercept term only,

Yt − êt = α + ue
t , (2.13)

where ESτ(ue
t | Ft−1) = 0 and testing whether the parameter α is zero. Estimation of the parameter α in

(2.13) is carried out by computing the empirical ES of the forecast errors Yt − êt . By using this restricted
regression equation, we can define a one-sided and a two-sided hypothesis,

H2s
0 : α = 0 against H2s

1 : α , 0, and
H1s

0 : α ≥ 0 against H1s
1 : α < 0,

(2.14)

which we test by using a t-test based on the asymptotic covariance and based on the bootstrap procedure
described above. Note that this is equivalent to setting the slope parameter of the bivariate ESR test given
in (2.6) to one and only estimating and testing the intercept term. Consequently, we call this backtest the
intercept ESR backtest. Both, the bivariate and the intercept ESR backtests proposed in this paper are
implemented in our R package esback (Bayer and Dimitriadis, 2017).

3. Existing Backtests

Over the past two decades and especially driven by the recent transition from VaR to ES in the Basel
regulatory framework (Basel Committee, 2016, 2017), a large literature on backtesting the ES has emerged.
These backtests are usually introduced with financial regulators in mind who need to verify the risk
forecasts they receive from the financial institutions. To be applicable for the regulatory authorities, a
backtest for the risk measure ES thus follows Definition 2.1 and only requires the observed return series
and the ES forecasts as input variables. However, many of the proposed backtests for the ES fail to have
this property. In particular, several tests require the whole return distribution (Berkowitz, 2001; Kerkhof
and Melenberg, 2004; Wong, 2008; Acerbi and Szekely, 2014; Graham and Pál, 2014), the cumulative
violation process

∫ τ
0 1{Yt ≤v̂t (p)} dp (Costanzino and Curran, 2015; Emmer et al., 2015; Du and Escanciano,

2017; Kratz et al., 2016), the volatility (McNeil and Frey, 2000; Nolde and Ziegel, 2017; Righi and Ceretta,
2013, 2015), or the VaR (McNeil and Frey, 2000; Nolde and Ziegel, 2017) in addition to the ES forecasts.
However, this information (except the VaR) is not reported by the financial institutions and therefore, most
of these tests can not be used by the regulators (Aramonte et al., 2011; Basel Committee, 2017).

Furthermore, when more information than solely the ES forecasts is used for backtesting, a rejection of
the null hypothesis does not necessarily imply that the ES forecasts are wrong. More precisely, a rejection

7 Overestimation of a risk measure is meant in the mathematical sense, which means reporting a too large real number. As
the ES forecasts are strictly negative, this implies in fact underestimation of the associated market risk.

8One could interpret the higher capital requirements as a punishment for too conservative risk forecasts.
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of the null implies that some component of the input parameters is incorrect (cf. Nolde and Ziegel, 2017).
A related concern is raised by Aramonte et al. (2011), who note that financial institutions could be tempted
to submit forecasts of this additional information chosen such that the tests have particularly low power, so
that correctness of their internal model (or their issued ES forecasts) is not doubted.

Strictly following Definition 2.1, we would have to distinguish between backtests for the ES and joint
backtests for the pair VaR and ES. However, as the ES is strongly intertwined with the VaR (through its
definition and through the joint elicitability), sensible forecasts for the ES are based on correctly specified
VaR forecasts. Consequently, it is reasonable to backtest both quantities jointly and thus, we compare the
performance of our ES backtests to existing joint VaR and ES backtests in the literature. In the following,
we describe the exceedance residual test of McNeil and Frey (2000) and the conditional calibration tests
of Nolde and Ziegel (2017) in more detail, since both have versions that only require VaR forecasts in
addition to the ES.

3.1. Testing the Exceedance Residuals

One of the first and still most frequently used tests for the ES is the exceedance residual (ER) backtest
of McNeil and Frey (2000). This approach is based on the ES residuals that exceed the VaR, ert =(
Yt − êt

)
1{Yt ≤v̂t }, which form a martingale difference sequence given that v̂t and êt are the true Ft−1-

measurable quantile and ES respectively. McNeil and Frey (2000) furthermore consider a second version
that uses exceedance residuals standardized by the volatility, i.e. ert/σ̂t .

This backtest tests whether the expected value of the (raw or standardized) ER, µ = E[ert ], is zero
using the estimate µ̂ = 1/(∑T

t=1 1{Yt ≤v̂t })
∑T

t=1 ert in conjunction with a bootstrap hypothesis test (see
Efron and Tibshirani, 1994, p. 224). In the original paper, McNeil and Frey (2000) propose to test µ
against the one-sided alternative that µ is negative, i.e. that the ES is overestimated. However, in this paper
we discuss both, tests based on one-sided and two-sided hypotheses, so that in addition to the original
proposal, we also include a two-sided test,

H2s
0 : µ = 0 against H2s

1 : µ , 0, and
H1s

0 : µ ≥ 0 against H1s
1 : µ < 0.

(3.1)

By Definition 2.1, the test using the standardized ER is in fact a joint backtest for the triple VaR, ES and
volatility, whereas the test using the raw ER is a joint backtest for the pair VaR and ES. In light of the
discussion above, the test using the raw ER is therefore preferred. Nevertheless, in the simulation studies
and the empirical application we apply both approaches and find that they perform alike.

Even though the intercept ESR test introduced in Section 2.3 and the ER backtest appear to be similar,
there is a subtle difference between the two test statistics. For the intercept ESR test, we compute the
empirical ES of Yt − êt , i.e. the average of Yt − êt given that Yt − êt is smaller than its empirical τ-quantile.
In contrast, the ER backtest computes the average of Yt − êt , given that Yt is smaller than the respective
forecast for its τ-quantile v̂t . This difference seems marginal, but it has severe consequences for the
theoretical and empirical properties of the tests.

As we can write µ̂ = 1/T̃ ∑T
t=1 Yt1{Yt ≤v̂t } − 1/T̃ ∑T

t=1 êt1{Yt ≤v̂t }, where T̃ =
∑T

t=1 1{Yt ≤v̂t }, the ER
backtest in fact compares the empirical average ofYt truncated at v̂t to the average ES forecast êt , whenever
there is a VaR violation. Thus, this backtest rejects whenever the distance/relation between the VaR
and ES-forecasts is incorrect. However, simultaneous misspecifications of both forecasts, such as e.g.
generated by misspecification of the volatility process in location scale models cannot be detected. In the
same spirit, the ER backtest cannot distinguish between correct forecasts for the VaR and ES at level τ
and (correct) forecasts for a misspecified probability level τ̃ , τ, as the given level τ does not influence
the ER test statistic at all. In contrast, by computing the empirical τ-quantile of Yt − êt (instead of using
the forecast v̂t ), the intercept ESR test does not suffer from these shortcomings as can be observed in the
simulation results in Section 4.2.
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3.2. Conditional Calibration Backtests

Nolde and Ziegel (2017) introduce the concept of conditional calibration (CC) based on strict identification
functions (also known as moment conditions or estimating equations) of the respective functional and
show that many classical backtests for risk measures can be unified using this concept. For the pair VaR
and ES at level τ ∈ (0, 1), they choose the strict identification function

V(Y, v, e) =
(

τ − 1{Y≤v }
e − v + 1{Y≤v }(v − Y )/τ

)
, (3.2)

whose expectation is zero if and only if v and e equal the true VaR and ES of Y respectively. The CC
backtest for forecasts for the VaR, v̂t and for the ES, êt is based on the hypotheses

H2s
0 : E

[
V(Yt, v̂t, êt ) | Ft−1

]
= 0 against E

[
V(Yt, v̂t, êt ) | Ft−1

]
, 0, and

H1s
0 : E

[
V(Yt, v̂t, êt ) | Ft−1

]
≥ 0 against E

[
V(Yt, v̂t, êt ) | Ft−1

]
< 0,

(3.3)

component-wise and almost surely for all t = 1, . . . ,T . This is equivalent to testing E
[
h′tV(Yt, v̂t, êt )

]
= 0

for all Ft−1 measurable R2-valued functions ht . As this is infeasible, Nolde and Ziegel (2017) propose to
use an Ft−1-measurable sequence of q × 2-matrices of test functions ht for some q ∈ N and to use the
Wald-type test statistic

TCC = T

(
1
T

T∑
t=1

htV (Yt, v̂t, êt )

) ′
Ω̂
−1

(
1
T

T∑
t=1

htV (Yt, v̂t, êt )

)
, (3.4)

where Ω̂ = 1
T

∑T
t=1 (htV (Yt, v̂t, êt )) (htV (Yt, v̂t, êt ))′ is a consistent estimator of the covariance of the

q-dimensional vector htV (Yt, v̂t, êt ). Under H0, the test statistic asymptotically follows a χ2
q distribution

with q degrees of freedom.
Nolde and Ziegel (2017) propose two versions of this test, where the first uses no information besides

the risk forecasts (termed simple CC test), and where the second additionally requires volatility forecasts
(termed general CC test). For the simple CC test, the test function is the identity matrix, ht = I2, for both,
the one- and two-sided hypotheses. For the general CC test, they propose to choose

ht = σ̂t

(
(êt − v̂t ) /τ, 1

)
and ht =

(
1 |v̂t | 0 0
0 0 1 σ̂−1

t

) ′
, (3.5)

for the two-sided and for the one-sided test, respectively, where σ̂t is a forecast for the volatility. As with the
standardized ER test, the general CC test is strictly speaking a backtest for the triple VaR, ES, and volatility,
but we nevertheless include both versions in our empirical comparisons. We provide implementations of
the two ESR backtests proposed in this paper, both ER backtests of McNeil and Frey (2000) and both CC
backtests of Nolde and Ziegel (2017) in our R package esback (Bayer and Dimitriadis, 2017).

4. Monte-Carlo Simulations

In this section, we evaluate the empirical performance of our proposed ES backtests and compare them to
the tests of McNeil and Frey (2000) and Nolde and Ziegel (2017). For that, we first assess the empirical
size of the tests, defined as the rejection frequency of the test under the null hypothesis and which should
equal the nominal significance level. Then, we analyze the empirical power of the tests which is defined as
the rejection frequency of forecasts stemming from some misspecified model and which is optimally as
close to one as possible.

This comparison is conducted using two different approaches. The first, presented in Section 4.1,
follows the typical strategy in the related literature of first assessing the size of the backtests with
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some realistic location-scale data generating process (DGP), followed by an evaluation of the power by
backtesting forecasts stemming from overly simplified model, in our case the Historical Simulation model.
In the second setup, presented in Section 4.2, we continuously misspecify certain parameters of the true
model and thereby obtain alternative models with a continuously increasing degree of misspecification.
This approach of evaluating backtests has two main advantages. First, we obtain power curves which
can be used to draw conclusions how an increasing model misspecification influences the test decisions.
Second, misspecifying the different model parameters separately allows us to misspecify certain model
characteristics while leaving the remaining model unchanged. Thus, we can evaluate the capability of
the backtests to identify certain model misspecifications, which allows for a closer examination of the
backtesting procedures.

4.1. Traditional Size and Power Comparisons

For the first simulation study, we simulate returns from an EGARCH(1,1) model (Nelson, 1991) with
t-distributed innovations, where the parameter values are calibrated using daily returns of the S&P 500
index. This model is given by

Yt = σt zt,

log(σ2
t ) = −0.160 − 0.125zt−1 + 0.130 (|zt−1 | − E[|zt−1 |]) + 0.983 log(σ2

t−1),

zt ∼ t7.24,

(4.1)

where zt are innovations stemming from the standardized Student-t distribution with 7.24 degrees of
freedom. As the EGARCH model is highly flexible and due to its calibrated parameter values, this DGP
accurately replicates the distributional properties of daily financial returns. Conditional VaR and ES
forecasts at level τ for the DGP in (4.1) are given by

v̂t = σ̂tqz(τ) and êt = σ̂tξz(τ), (4.2)

where σ̂t is a volatility forecast generated through the model given in (4.1) and qz(τ) and ξz(τ) are the
τ-quantile, respectively the τ-ES of the innovations zt . For the following size and power analysis of the
backtests, we simulate the process (4.1) 10,000 times with sample sizes of 250, 500, 1000, 2500, and 5000
observations and 250 additional pre-sample values required for the power analysis. As stipulated by the
Basel Accords, we forecast the two risk measures for the probability level τ = 2.5%. In this part of the
study, we focus on two-sided hypotheses and defer the one-sided case to Section 4.3.

Table 1 presents the empirical sizes of the considered backtests for the different sample sizes and for
nominal test sizes of 1%, 5%, and 10%. We find that in large samples, all backtests display rejection rates
close to the respective nominal sizes. However, in small samples all backtests are oversized and they differ
with respect to their speed of convergence. Looking at the individual tests in greater detail, we find that
especially the tests relying on asymptotic quantities (i.e. the ESR and CC tests) are substantially oversized
in small samples and converge to the nominal sizes comparably slow. However, by using the bootstrap for
the intercept and bivariate ESR tests (indicated by (b) in the table), the empirical sizes are much closer
to the nominal sizes in small samples than for the asymptotic versions. Comparing the intercept and
the bivariate ESR test, we find that the former has better size properties in small samples, presumably
because less parameters need be estimated and the covariance is simpler. Furthermore, also the two ER
tests (which also rely on bootstrapping) exhibit good empirical sizes and there are hardly any differences
between the raw and the standardized version.

For a comparison of the power of the backtests, we evaluate their ability to reject the null hypothesis
for risk models producing incorrect ES forecasts. We utilize the Historical Simulation approach which
forecasts the VaR and ES by using their empirical counterparts from previous trading days,

v̂t = Q̂τ (Yt−1, Yt−2, · · · ,Yt−w) and êt =
1∑w

i=1 1{Yt−i ≤v̂t−i }

w∑
i=1

Yt−i · 1{Yt−i ≤v̂t−i }, (4.3)
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Table 1: Empirical sizes of the backtests

Nominal
Size

Sample
Size

bivariate
ESR (b)

bivariate
ESR

intercept
ESR (b)

intercept
ESR

General
CC

Simple
CC

Std.
ER ER

250 0.03 0.18 0.02 0.10 0.01 0.21 0.04 0.05
500 0.02 0.09 0.02 0.06 0.03 0.12 0.00 0.01

1% 1000 0.02 0.05 0.01 0.03 0.03 0.07 0.01 0.01
2500 0.01 0.03 0.01 0.02 0.02 0.04 0.01 0.01
5000 0.01 0.02 0.01 0.01 0.02 0.03 0.01 0.01

250 0.09 0.27 0.07 0.16 0.08 0.28 0.07 0.08
500 0.07 0.17 0.06 0.11 0.10 0.19 0.04 0.06

5% 1000 0.06 0.11 0.05 0.07 0.08 0.13 0.04 0.06
2500 0.05 0.07 0.04 0.06 0.07 0.09 0.05 0.06
5000 0.06 0.06 0.05 0.07 0.06 0.07 0.05 0.06

250 0.15 0.33 0.12 0.20 0.17 0.32 0.12 0.14
500 0.13 0.22 0.10 0.16 0.16 0.24 0.09 0.11

10% 1000 0.12 0.16 0.09 0.12 0.13 0.19 0.10 0.12
2500 0.11 0.12 0.09 0.12 0.12 0.14 0.10 0.11
5000 0.11 0.11 0.11 0.13 0.11 0.12 0.10 0.11

Notes: The table reports the empirical sizes of the backtests for the EGARCH(1,1)-t process given in (4.1). The number of
Monte-Carlo repetitions is 10,000 and the probability level for the risk measures is τ = 2.5%. ESR refers to the backtests
introduced in this paper with (b) indicating the bootstrap version, CC to the conditional calibration tests of Nolde and Ziegel
(2017), and ER to the exceedance residuals tests of McNeil and Frey (2000).

where Q̂τ is the empirical τ-quantile and w is the length of a rolling window, that we set to 250, i.e. one
year of data. Since the standardized ER and the general CC backtest both require forecasts of the volatility,
we estimate this quantity with the sample standard deviation of the returns over the same rolling window.

For a meaningful and fair comparison of the power of the backtests to reject the null hypothesis, we
compare the size-adjusted power9 of the backtests (Lloyd, 2005). For this, the original critical values of
the tests are either increased or decreased such that the rejection frequencies of the true model equal the
nominal test sizes. The size-adjusted power is then given by the rejection frequencies of the alternative
models using these modified critical values.

Figure 1a contains the size-adjusted power of the backtests for all empirical sizes in the unit interval
for a sample size of 1000.10 The black line depicts the case of equal empirical size and power, which
can be seen as a lower bound for any reasonable test: whenever the power is below this line, randomly
guessing the test decision is more accurate than performing the test. We observe that both, the bivariate and
intercept version of the ESR backtest clearly dominate the others at almost all empirical sizes, including
the most relevant region of test sizes between 1% and 10%. Furthermore, the ESR tests using asymptotic
quantities are slightly more powerful than their bootstrap versions (indicated by (b)), but the loss in power
is negligible compared to the improvements in the sizes we find in Table 1.

In order to present results for all considered sample sizes in condensed form for the relevant area of
empirical sizes between 1% and 10%, we summarize the size-adjusted power by the partial area under
the curve (PAUC), as proposed by Lloyd (2005). For that, we numerically compute the area under each
power curve for the empirical sizes between 1% and 10% which is thus the power to reject a false model
averaged over the considered test sizes. In Figure 1b, we present the PAUC for all backtests and sample
sizes. As expected, the average power increases with the sample size, so that using more information leads

9A comparison of the raw power, i.e. the raw rejection rate of the null hypotheses, could be misleading due to the differences
in the empirical sizes of the backtests. In particular, an oversized test would exhibit unrealistically large rejection rates. For
completeness, Table C.5 reports the raw power of the tests.

10 These plots are known as the receiver operating characteristic (ROC) curves and origin from the psychometrics literature
(Lloyd, 2005). They are an effective presentation method for general binary classification tasks such as hypothesis testing as they
show the size-adjusted power simultaneously for all significance levels.
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Figure 1: Size-adjusted power and Partial Area Under the Curve plots against Historical Simulation for a sample size of 1000
days. The number of Monte-Carlo repetitions is 10,000 and the probability level for the risk measures is τ = 2.5%. ESR refers to
the backtests introduced in this paper with (b) indicating the bootstrap version, CC to the conditional calibration tests of Nolde
and Ziegel (2017), and ER to the exceedance residuals tests of McNeil and Frey (2000).

to more reliable decisions about the quality of a forecast. We find that for all considered sample sizes,
the ESR backtests dominate the other testing approaches. As a robustness check for these findings, we
repeat this simulation experiment with the DGP used by Gaglianone et al. (2011) and find that the results,
presented in Appendix B, are similar to the findings of this section.

4.2. Continuous Model Misspecification

In the second simulation study, we use a GARCH(1,1) model with standardized Student-t distributed
innovations,

Yt = σt zt,

σ2
t = γ0 + γ1Y2

t−1 + γ2σ
2
t−1,

zt ∼ tν,

(4.4)

with the parameter values γ0 = 0.01, γ1 = 0.1, γ2 = 0.85, and ν = 5 for the true model. For the analysis
of the backtests, we simulate 10,000 times from this model with a fixed sample size of 2500 observations
and consider the probability level τ = 2.5% for the VaR and the ES.

Table 2: Empirical sizes for the second simulation study.

Null Hypothesis bivariate
ESR (b)

bivariate
ESR

intercept
ESR (b)

intercept
ESR

General
CC

Simple
CC

Std.
ER ER

Two-Sided 0.06 0.07 0.05 0.06 0.08 0.09 0.05 0.06
One-Sided – – 0.07 0.03 0.02 0.02 0.06 0.06

Notes: This table shows the empirical sizes of the backtests for the GARCH(1,1)-t model given in (4.4), for a nominal test
size of 5% and for both, one-sided and two-sided hypotheses. The number of Monte-Carlo repetitions is 10,000 and the
probability level for the risk measures is τ = 2.5%. ESR refers to the backtests introduced in this paper with (b) indicating
the bootstrap version, CC to the conditional calibration tests of Nolde and Ziegel (2017), and ER to the exceedance residuals
tests of McNeil and Frey (2000). Note that the bivariate ESR test does not permit a one-sided hypothesis and therefore, we
only present sizes for the two-sided hypothesis.

Table 2 presents the empirical sizes of the backtests for a nominal size of 5% for both, the two- and
one-sided hypotheses. As in the first simulation study, we find that most of the backtests are reasonably
sized with rejection frequencies close to the nominal value. However, the two CC tests reject the true
model slightly too often in the two-sided, respectively too rarely in the one-sided case.
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For a detailed analysis of the power of the backtests, we continuously misspecify the true model
according to the following five designs:

(a) We misspecify how the conditional variance reacts to the squared returns by varying the ARCH
parameter γ1. We choose γ̃1 between 0.03 and 0.2 and let γ̃2 = 0.95 − γ̃1, such that the persistence of
the GARCH process remains constant. When γ̃1 < γ1, there is too little variation in the ES forecasts
due to the reduced response to shocks and the GARCH process approaches a constant volatility model.

(b) We alter the unconditional variance of the GARCH process E[σ2
t ] = γ0/(1− γ1 − γ2) between 0.5 and

0.01 by varying the parameter γ0 while holding γ1 and γ2 constant. Since the conditional variance is a
weighted combination of the unconditional variance, the past squared returns and the past conditional
variance, this change implies that the ES is always underestimated when the unconditional variance is
larger as its true value, and vice versa.

(c) We vary the persistence of shocks between 0.9 and 0.999 by setting γ̃1 = c · γ1 and γ̃2 = c · γ2 for a
constant c that we vary, and γ̃0 = E[σ

2
t ](1 − γ̃1 − γ̃2) to keep the unconditional variance constant. A

higher persistence causes a stronger and longer reaction to shocks.

(d) We vary the degrees of freedom of the underlying Student-t distribution between 3 and ∞. Since
the conditional variance is unaffected, this modification implies a relative horizontal shift of the ES
forecasts.

(e) We misspecify the probability level τ̃ of the ES forecasts between 0.5% and 5%. This represents
the scenario that a forecaster submits (accidentally or on purpose) predictions for some level τ̃ , τ.
Similar to changing the degrees of freedom, this modification implies a relative horizontal shift of the
ES forecasts.

As an illustrative example of these misspecifications, Figures 2a to 2e show 250 realizations of the returns
of the true DGP (4.4), together with the corresponding ES forecasts of the true model (black dashed line)
and two models following the parameter misspecifications described in the points (a) to (e) above.

We present the size-adjusted rejection rates plotted against the respective misspecified parameters for
these five designs in Figures 3a to 3e. The true model is indicated by the gray vertical line and, induced by
the results of Figure 2, the x-axis is oriented such that too small (too risky) ES forecasts are on the left side
of the true model.11 Even though there is no backtest that dominates the others throughout all considered
designs, several conclusions can be drawn from this figure.
(1) Overall, the bivariate and intercept ESR tests perform similar and in four out of the five considered
designs, their performance is superior compared to the general CC and both ER backtesting approaches.
(Figures 3a to 3c and 3e). The ESR backtests outperform the competitors especially when we misspecify
the volatility dynamics of the underlying GARCH process (Figures 3a to 3c). This shows that, in contrast
to the existing approaches, our new ESR backtests can be used to detect misspecifications in the dynamics
used to construct the ES forecasts which go beyond level shifts.
(2) The application of the bootstrap for our ESR tests mainly affects the empirical sizes whereas the
empirical size-adjusted power of the asymptotic and the bootstrap ESR tests is similar throughout all
designs.
(3) The two ER tests (and the general CC test that is constructed to be similar to the ER backtest) cannot
discriminate between forecasts for the VaR and ES issued through misspecified volatility processes
(Figures 3a to 3c) and through misspecified probability levels τ̃ , τ (Figure 3e). This confirms the
theoretical results discussed in Section 3.1 that these backtests only reject misspecifications which affect
the relation (distance) between the VaR and ES forecasts. In contrast, these backtests perform well in the

11Notice that this inequality of the forecast magnitude only holds on average in the cases of Figures 3a and 3c whereas it
holds strictly for Figures 3b, 3d and 3e.
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(c) Changing the persistence
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(d) Changing the degrees of freedom
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(e) Changing the probability level
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Figure 2: These plots show exemplary simulated return series with 250 observations for the DGP given in (4.4) and for the five
parameter misspecifications illustrated in the points (a) - (e) in Section 4.2. In each of the subfigures, the black dashed line
corresponds to the true model parameters.

case of misspecified tails of the residual distribution, which affects the relative distance between the VaR
and ES forecasts (Figure 3d). If these backtests would be used by the regulatory authorities, banks could
submit joint VaR and ES forecasts for some level τ̃ > τ or some (too small) volatility process in order
to minimize their capital requirements without facing the risk of being detected by these backtests. In
comparison, our intercept ESR backtest which is similar to the ER backtests by construction is clearly able
to identify these misspecified probability levels.
(4) Throughout all five misspecifications, the simple CC backtest also exhibits good power properties,
similar to our proposed backtests. However, our two ESR backtests exhibit much better size properties (see
Tables 1 and 2) and in contrast to the simple CC test, they do not fail to reject the Historical Simulation
forecasts in the first simulation study (see Figure 1).

Together with the results from the first simulation study, these findings show that our proposed ESR
backtests are a powerful choice for backtesting ES forecasts. They are reasonably sized and exhibit good
power properties against a variety of misspecifications. Notably, in contrast to the existing backtests, there
is no single type of misspecification where our ESR tests are unable to discriminate between forecasts of
the true and the misspecified models.
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(d) Changing the degrees of freedom
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(e) Changing the probability level
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Figure 3: Size-adjusted rejection rates for various types of misspecification. The gray vertical line depicts the true model. The
number of Monte-Carlo repetitions is 10,000 and the probability level for the risk measures is τ = 2.5%. ESR refers to the
backtests introduced in this paper with (b) indicating the bootstrap version, CC to the conditional calibration tests of Nolde and
Ziegel (2017), and ER to the exceedance residuals tests of McNeil and Frey (2000).

4.3. Testing one-sided hypotheses

For the regulatory authorities, testing against a one-sided alternative might be more meaningful than the
two-sided version we consider in the previous section. Holding more money than stipulated in the Basel
accords is no concern for regulators as it is only important that banks keep enough monetary reserves to
cover the risk from their market activities. As all backtests (with exception of the bivariate ESR test) allow
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for testing against one-sided alternatives, we assess their ability to reject the null hypothesis that the issued
ES forecasts are smaller or equal to the true ES, i.e. that the associated market risk is not underestimated.

In Figures 4a to 4e, we present the size-adjusted rejection rates for the one-sided versions of the
considered backtests and for the five continuous parameter misspecifications described in the points (a) -
(e) from the previous section. The structure of these figures is analog to the two-sided case where the
x-axis is oriented such that too small (too risky) ES forecasts are on the left side of the true model (vertical
gray line). As it can be seen in Figures 2a to 2e, the five modifications of the true model exhibit clear
patterns when they are over-, respectively underestimating the true ES, where the overestimation holds
strictly for the cases (b), (d) and (e) and on average for the cases (a) and (c). Thus, the one-sided backtests
should only reject the null hypothesis for ES forecasts that overestimate the true ES, i.e. which are on the
right side of the true model in Figures 4a to 4e.

We find that our intercept ESR backtest (in the asymptotic and the bootstrap version) is reasonably
sized (compare Table 2) and clearly dominates the ER and the CC tests in terms of their power in four out
of five misspecification designs. Only when changing the degrees of freedom, the ER test is slightly more
powerful than the intercept ESR test. Surprisingly, we see that in four out of the five cases, the one-sided
CC tests (both, the simple and the general version) also reject too small (too risky) ES forecasts, even
though these should not be rejected by the specifications of the one-sided tests.12 Furthermore, as for the
two-sided tests, both ER backtests fail to detect misspecifications of the underlying volatility process and
of the underlying probability level. Summarizing these results, the proposed intercept ESR backtest is a
powerful backtest with good size properties for testing one-sided hypotheses which clearly dominates the
existing one-sided backtesting techniques in the literature.

5. Empirical application

In the empirical application, we predict the market risk for the daily close-to-close log-returns of the
S&P500 index for the time period from January 3, 2000 to October 18, 2017, totaling up to 4478 days.
We predict the ES (and the VaR for application of the existing tests) for this return series using 10 different
risk models. The first two are the Historical Simulation estimated with a rolling window of 250 days and
RiskMetrics. The other 8 models follow the volatility specifications of the GARCH(1,1) model and the
asymmetric GJR-GARCH(1,1) model of Glosten et al. (1993) and use four different assumptions on the
conditional distribution of the innovations. These are the standard normal distribution (abbreviated by N),
the standardized Student-t (t), the standardized skewed Student-t (skew-t) and the semi-parametric filtered
historical simulation approach (FHS) of Barone-Adesi et al. (1999), where the quantile, respectively the
ES of the innovations is estimated from the standardized returns. We estimate these 8 models on a rolling
window of 1000 days.

Table 3 presents the p-values of the different ES backtests (for the two-sided hypothesis), the average
losses of the strictly consistent 0-homogeneous loss function for the pair VaR and ES13 (Fissler and Ziegel,
2016), and the p-value of the Model Confidence Set (MCS) of Hansen et al. (2011) applied to this loss
function. With the MCS p-values, we can determine a set of models having equal predictive ability at a
certain significance level with respect to the losses. The models are sorted according to the average loss.

From this table we can draw several conclusions. First, the MCS rejects 7 out of 10 models at the 5%
significance level, i.e. only 3 models have equal predictive power with respect to the joint loss function.
These three (GJR-GARCH-skew-t, -FHS, -t) share the same assumption on the volatility process and
only differ with respect to the assumption on the innovations. Moreover, for these three models the null
hypothesis of correct forecasts is not rejected by almost all backtests at the 5% significance level. Thus,
the backtests and the MCS agree on which models predict the ES (and the VaR) well. Second, the CC and

12We verified our implementation of the CC tests with the codes provided by Nolde and Ziegel (2017) at https://github.com/
nnolde/Elicitability-and-Backtesting/.

13This is in fact the loss function given in (A.5), applied to a scenario of forecast comparison.
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Figure 4: Size-adjusted rejection rates for various types of misspecification with a one-sided hypothesis. The gray vertical line
depicts the true model. The number of Monte-Carlo repetitions is 10,000 and the probability level for the risk measures is
τ = 2.5%. ESR refers to the backtests introduced in this paper with (b) indicating the bootstrap version, CC to the conditional
calibration tests of Nolde and Ziegel (2017), and ER to the exceedance residuals tests of McNeil and Frey (2000).

ER tests reject less forecasts at the 5% significance level than the two ESR backtests, which reflects the
findings of the simulation studies where these backtests are often less powerful than our ESR tests. In
particular, the null hypothesis is not rejected for the Historical Simulation model, although this approach
yields large losses. Third, incorporating leverage into the volatility dynamics appears to be important,
since mainly the models using the GJR-GARCH are not rejected by the backtests. Additionally, it is crucial
to consider models with flexible tails, e.g. by using the skewed Student-t or the FHS approach, since the
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Table 3: Results of the empirical application.

Model biv.
ESR (b)

biv
ESR

int.
ESR (b)

int.
ESR

General
CC

Simple
CC

Std.
ER ER Mean

Loss
MCS

p-value

GJR-GARCH-skew-t 0.07 0.12 0.78 0.77 0.85 0.08 0.87 0.14 0.951 1.00
GJR-GARCH-FHS 0.13 0.20 0.30 0.30 0.39 0.69 0.34 0.55 0.953 0.70
GJR-GARCH-t 0.06 0.10 0.06 0.04 0.28 0.11 0.23 0.90 0.963 0.28
GJR-GARCH-N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.982 0.02
GARCH-skew-t 0.12 0.19 0.92 0.92 0.33 0.05 0.38 0.10 0.986 0.05
GARCH-FHS 0.09 0.14 0.19 0.17 0.67 0.31 0.68 0.69 0.993 0.03
GARCH-t 0.03 0.05 0.05 0.03 0.57 0.02 0.58 0.60 1.000 0.03
GARCH-N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.030 0.01
RiskMetrics 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.075 0.00
Historical Simulation 0.01 0.00 0.01 0.00 0.11 0.01 0.06 0.06 1.132 0.01

Notes: In this table, p-values smaller than 5% are printed bold-faced and the models are sorted by the average loss. ESR
refers to the backtests introduced in this paper with (b) indicating the bootstrap version, CC to the conditional calibration tests
of Nolde and Ziegel (2017), and ER to the exceedance residuals tests of McNeil and Frey (2000). We compute the MCS
p-values using the R-statistic of Hansen et al. (2011).

models based on conditionally normally distributed returns are collectively rejected by the backtests and
the MCS.

6. Conclusion

In this paper, we introduce two novel backtests for ES forecasts which regress the realized returns on the
issued ES forecasts using an appropriate regression method for the ES introduced in Dimitriadis and Bayer
(2017); Patton et al. (2017); Barendse (2017) and test the resulting parameter estimates. We introduce a
bivariate version, denoted bivariate ESR backtest, where we test the intercept and the slope parameters for
zero and one, and an intercept version, denoted intercept ESR backtest, that only incorporates an intercept
term being estimated and tested for zero. The motivation for the latter test is the possibility to specify a
one-sided hypothesis that is particularly relevant for the regulatory authorities. These backtests can be
interpreted as ES-specific versions of the classical Mincer and Zarnowitz (1969) test for evaluating mean
forecasts.

A unique feature of the backtests proposed in this paper is that they solely require forecasts for the ES
and are consequently the first backtests for the ES stand-alone. In contrast to that, a common drawback of
the existing backtests is that they need forecasts of further input parameters, such as the VaR, the volatility,
the tail distribution or even the whole return distribution. Using more information than the ES forecasts is
problematic for two reasons. First, these tests are not applicable for the regulatory authorities, who receive
forecasts of the ES, but not of the additional information required by these tests. Second, rejecting the null
hypothesis does not necessarily imply that the ES forecasts are incorrect as the rejection can be a result of
a false prediction of any of the input parameters.

In several simulation studies, we assess the empirical size and power properties of our proposed
backtests and compare them to the approaches of McNeil and Frey (2000) and Nolde and Ziegel (2017),
which jointly backtest the VaR and the ES. We find that our regression-based tests are reasonably sized,
especially when they are applied using the bootstrap. Moreover, in almost all simulation designs our
two proposed backtests are more powerful than the existing tests. The backtests from the literature are
often not able to distinguish between forecasts stemming from the true model and some misspecified
model, for instance when we consider a misspecified volatility process or a wrong probability level of the
ES. In contrast to that, our two ESR backtests detect the misspecifications in all considered simulation
experiments. We provide an implementation of our backtests and of several approaches from the literature
in the esback package for R (Bayer and Dimitriadis, 2017).
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This paper contributes to the ongoing discussion about which risk measure is the best in practice
in the following way. As the VaR is criticized for not being subadditive and for not capturing tail risks
beyond itself, the recent literature proposes both, the ES and expectiles as alternative risk measures.
Expectiles are suggested as they are coherent, elicitable and are able to capture extreme risks beyond the
VaR and thus, they simultaneously overcome the drawbacks of the VaR and the ES (Bellini et al., 2014;
Ziegel, 2016). Unfortunately, as opposed to the VaR and ES, they lack a visual and intuitive interpretation
(Emmer et al., 2015). In contrast, the ES is mainly criticized for its theoretical deficiencies of being not
elicitable and not (only with difficulties) backtestable. However, starting with the joint elicitability result
of VaR and ES of Fissler and Ziegel (2016), there is a growing body of literature using this result for a
regression procedure (Dimitriadis and Bayer, 2017; Barendse, 2017; Patton et al., 2017) and for relative
forecast comparison (Fissler et al., 2016; Nolde and Ziegel, 2017), which is extended by this paper through
introducing the ESR backtests, which are the first sensible backtests for the ES stand-alone. This shows
that, even though technically more demanding, the ES can be modeled, evaluated and backtested in the
same way as quantiles and expectiles. Combining this with its ability to capture extreme tail risks and its
intuitive visual interpretation, the ES is an appropriate candidate for being the standard risk measure in
practice.
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Appendix A The Joint Quantile and ES Regression Technique

Assume we have a response variableYt and a k-dimensional vector of covariates Xt following the definition
of the stochastic process in (2.1) and assume that we are interested in a linear regression technique for the
ES at level τ ∈ (0, 1),

Yt = X ′t θ
e + ue

t , (A.1)

where ESτ(ue
t | Ft−1) = 0 for all t = 1, . . . ,T , T ≥ 1. This means that we model the conditional ES

through a linear function, ESτ(Yt | Ft−1) = X ′t θ
e. As outlined in Dimitriadis and Bayer (2017), Patton

et al. (2017) and Barendse (2017), it is infeasible to estimate the parameter vector θe by M- or Z-/GMM-
estimation using a semiparametric method without specifying the full conditional distribution of the error
term ue

t . The underlying reason for this is that the functional ES is not elicitable (Gneiting, 2011), i.e.
there exists no strictly consistent loss function for the ES, which could be minimized in M-estimation of
the regression parameters.14

However, as the ES and the quantile at common probability level τ are jointly elicitable (Fissler and
Ziegel, 2016), the parameters θe in (A.1) can be estimated by jointly modeling a regression equation for
the quantile and for the ES,

Yt = X ′t θ
q + uq

t and (A.2)
Yt = X ′t θ

e + ue
t , (A.3)

14In contrast, classical mean regression is built on minimizing the squared loss function, which is a strictly consistent loss
function for the mean. Furthermore, quantile regression (Koenker, 2005) is estimated by minimizing the asymmetric linear loss
function, a strictly consistent loss function for quantiles and expectile regression (Efron, 1991) by the asymmetric squared error
loss, a strictly consistent loss function for expectiles.

18



where Qτ(u
q
t | Ft−1) = 0 and ESτ(ue

t | Ft−1) = 0 for all t = 1, . . . ,T , T ≥ 1. Here, θ =
(
θq, θe

)
denotes

the 2k-dimensional vector of regression parameters of the joint model and the quantile and ES equations
are modelled through the separate k−dimensional parameter vectors θq and θe. The M-estimator of the
regression parameters θ is obtained by

θ̂T = arg min
θ

1
T

T∑
t=1

ρ(Yt, Xt, θ), (A.4)

where the loss function15 is given by

ρ(Yt, Xt, θ) =
1

−X ′t θe

(
X ′t θ

e − X ′t θ
q +
(X ′t θ

q − Yt )1{Yt ≤X′t θq }
τ

)
+ log(−X ′t θ

e). (A.5)

Consistency and the asymptotic normality of the M-estimator of θ is shown by Patton et al. (2017) for an
α-mixing stochastic process Zt = (Yt, Xt ). Under the further technical conditions in Assumption 1 and 2
in Patton et al. (2017), it holds that

√
TC−1/2

T ΛT
(
θ̂T − θ0

) d
−→ N (0, I) , (A.6)

where θ0 denotes the unknown true parameter value and where

ΛT =

(
Λ11,T 0

0 Λ22,T

)
and CT =

(
C11,T C12,T
C21,T C22,T

)
, (A.7)

with

Λ11,T = −
1
T

T∑
t=1

1
α
E

[
(Xt X ′t ) ft (X

′
t θ

q
0 )/(X

′
t θ

e
0)

]
, (A.8)

Λ22,T =
1
T

T∑
t=1
E

[
(Xt X ′t )/(X

′
t θ

e
0)

2] , (A.9)

C11,T =
1
T

T∑
t=1

1 − α
α
E

[
(Xt X ′t )/(X

′
t θ

e
0)

2] , (A.10)

C12,T = C21,T = −
1
T

T∑
t=1

1 − α
α
E

[
(Xt X ′t )

(
X ′t θ

q
0 − X ′t θ

e
0
)
/(X ′t θ

e
0)

3] , (A.11)

C22,T =
1
T

T∑
t=1
E

[
(Xt X ′t )/(X

′
t θ

e
0)

4
(

1
α

Vart
(
Yt − X ′t θ

q
0 | Yt ≤ X ′t θ

q
0
)
+

1 − α
α

(
X ′t θ

q
0 − X ′t θ

e
0
)2

)]
. (A.12)

Appendix B Robustness Check

The DGP used by Gaglianone et al. (2011) is a GARCH(1,1) model with standard normally distributed
innovations,

Yt = σt zt,

σ2
t = 0.05 + 0.05Y2

t−1 + 0.90σ2
t−1,

zt ∼ N (0, 1) .
(B.1)

For this DGP, Table B.4 and Figure B.5 present the empirical sizes and the PAUC analog to the results
provided in Section 4.1.

15As shown by Dimitriadis and Bayer (2017), consistent and asymptotically normal M-estimation of these regression
parameters can be obtained by employing loss functions from a whole class of functions, originally introduced by Fissler and
Ziegel (2016) in the context of forecast evaluation. However, consensus seems to emerge on the 0-homogeneous loss function
presented in (A.5), see e.g. Dimitriadis and Bayer (2017); Taylor (2017); Patton et al. (2017); Barendse (2017) and Nolde and
Ziegel (2017).
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Table B.4: Empirical sizes of the backtests

Nominal
Size

Sample
Size

bivariate
ESR (b)

bivariate
ESR

intercept
ESR (b)

intercept
ESR

General
CC

Simple
CC

Std.
ER ER

250 0.02 0.10 0.01 0.07 0.01 0.17 0.04 0.04
500 0.02 0.05 0.01 0.05 0.02 0.08 0.00 0.00

1% 1000 0.01 0.04 0.01 0.03 0.02 0.05 0.00 0.01
2500 0.01 0.02 0.01 0.02 0.02 0.03 0.01 0.01
5000 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01

250 0.08 0.18 0.05 0.13 0.06 0.22 0.06 0.07
500 0.06 0.12 0.05 0.10 0.07 0.14 0.04 0.04

5% 1000 0.06 0.09 0.05 0.07 0.07 0.10 0.04 0.04
2500 0.06 0.07 0.05 0.06 0.06 0.07 0.05 0.05
5000 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.05

250 0.14 0.24 0.10 0.18 0.13 0.26 0.11 0.11
500 0.12 0.18 0.10 0.14 0.13 0.19 0.08 0.08

10% 1000 0.11 0.14 0.10 0.12 0.12 0.15 0.09 0.09
2500 0.10 0.12 0.10 0.11 0.11 0.12 0.10 0.10
5000 0.10 0.11 0.10 0.11 0.11 0.11 0.10 0.10

Notes: The table reports the empirical sizes of the backtests for a GARCH(1,1)-N process. The number of Monte-Carlo
repetitions is 10,000 and the probability level for the risk measures is τ = 2.5%. ESR refers to the backtests introduced in this
paper with (b) indicating the bootstrap version, CC to the conditional calibration tests of Nolde and Ziegel (2017), and ER to
the exceedance residuals tests of McNeil and Frey (2000).
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Figure B.5: Size-adjusted power and Partial Area Under the Curve plots against Historical Simulation for a sample size of 1000
days. The number of Monte-Carlo repetitions is 10,000 and the probability level for the risk measures is τ = 2.5%. ESR refers to
the backtests introduced in this paper with (b) indicating the bootstrap version, CC to the conditional calibration tests of Nolde
and Ziegel (2017), and ER to the exceedance residuals tests of McNeil and Frey (2000).
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Appendix C Raw Power

Table C.5: Raw empirical power of the backtests against Historical Simulation

Nominal
Size

Sample
Size

bivariate
ESR (b)

bivariate
ESR

intercept
ESR (b)

intercept
ESR

General
CC

Simple
CC

Std.
ER ER

250 0.13 0.46 0.04 0.18 0.02 0.23 0.07 0.07
500 0.08 0.29 0.02 0.11 0.01 0.09 0.03 0.03

1% 1000 0.07 0.32 0.05 0.22 0.02 0.09 0.09 0.07
2500 0.46 0.83 0.52 0.81 0.17 0.34 0.37 0.25
5000 0.96 1.00 0.98 1.00 0.61 0.90 0.81 0.61

250 0.25 0.58 0.12 0.31 0.06 0.34 0.13 0.12
500 0.18 0.48 0.11 0.29 0.06 0.20 0.13 0.11

5% 1000 0.28 0.61 0.31 0.51 0.15 0.23 0.28 0.21
2500 0.89 0.97 0.91 0.97 0.50 0.65 0.67 0.52
5000 1.00 1.00 1.00 1.00 0.90 0.99 0.95 0.85

250 0.35 0.66 0.21 0.41 0.14 0.42 0.21 0.19
500 0.29 0.62 0.26 0.41 0.15 0.30 0.23 0.20

10% 1000 0.53 0.77 0.54 0.65 0.28 0.36 0.41 0.33
2500 0.98 0.99 0.98 0.99 0.70 0.80 0.80 0.67
5000 1.00 1.00 1.00 1.00 0.96 1.00 0.98 0.92

Notes: The table reports the raw empirical power of the backtests against the Historical Simulation for the EGARCH(1,1)
process given in (4.1). The number of Monte-Carlo repetitions is 10,000 and the probability level for the risk measures is
τ = 2.5%. ESR refers to the backtests introduced in this paper with (b) indicating the bootstrap version, CC to the conditional
calibration tests of Nolde and Ziegel (2017), and ER to the exceedance residuals tests of McNeil and Frey (2000).
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(a) Changing the ARCH parameter
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Figure C.6: Raw rejection rates for various types of misspecification. The gray vertical line depicts the true model. The number
of Monte-Carlo repetitions is 10,000 and the probability level for the risk measures is τ = 2.5%. ESR refers to the backtests
introduced in this paper with (b) indicating the bootstrap version, CC to the conditional calibration tests of Nolde and Ziegel
(2017), and ER to the exceedance residuals tests of McNeil and Frey (2000).
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(a) Changing the reaction to the squared returns
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Figure C.7: Raw rejection rates for various types of misspecification with a one-sided hypothesis. The gray vertical line depicts
the true model. The number of Monte-Carlo repetitions is 10,000 and the probability level for the risk measures is τ = 2.5%.
ESR refers to the backtests introduced in this paper with (b) indicating the bootstrap version, CC to the conditional calibration
tests of Nolde and Ziegel (2017), and ER to the exceedance residuals tests of McNeil and Frey (2000).
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