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Abstract

Forecasts are useless whenever the forecast error variance fails to be smaller than

the unconditional variance of the target variable. This paper proposes tests for the

null hypothesis that forecasts become uninformative beyond some limiting forecast

horizon h∗. Following Diebold and Mariano (DM, 1995) we propose a test based on

the comparison of the mean-squared error of the forecast and the sample variance.

We show that the resulting test does not possess a normal limiting distribution and

suggest two simple modi�cations of the DM-type test with di�erent limiting null

distributions. Furthermore, a forecast encompassing test is developed that tends

to better control the size of the test. In our empirical analysis, we apply our tests

to macroeconomic forecasts from the survey of Consensus Economics. Our results

suggest that forecasts of macroeconomic key variables are barely informative beyond

2�4 quarters ahead.
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1 Introduction

The choice of the largest forecast horizon appears to be an important issue for decision-

makers. For example, in recent years, several central banks, including the Federal Reserve

and the European Central Bank, decided to increase the horizon of their macroeconomic

forecasts.1 Yet, it is unclear whether the additional forecasts for these larger horizons

provide valuable information, since their forecast error variance might be as large as

the unconditional variance of the target variable. While statistical tools for such an

assessment, based on the approach of Parzen (1981), have been proposed in the literature,

formal statistical tests have not been available. The purpose of this paper is to develop

such tests, thereby determining the largest informative forecast horizon.

The empirical literature reports few and di�ering results concerning the largest infor-

mative forecast horizon. The di�erences are at least partly due to di�erent transforma-

tions, as pointed out by Galbraith and Tkacz (2007). For example, concerning quarterly

GDP, they �nd that forecasts of quarter-on-quarter growth are barely informative beyond

a forecast horizon of one quarter, but that for year-on-year forecasts this horizon increases

to about 4 quarters. Concerning annual GDP growth, Isiklar and Lahiri (2007) �nd that

forecasts are informative for horizons up to 6 quarters. Diebold and Kilian (2001) report

even larger horizons for HP-�ltered or linearly detrended GDP.

The tests provided in this paper are directly related to the predictability measures used

in the studies mentioned. Diebold and Kilian (2001) develop a measure for predictability

by comparing the loss function (say mean-squared error) of the short-run and long-run

forecasts. Since our focus is on forecasting stationary time series subject to a quadratic

loss function, i.e. on conditional mean forecasts, our benchmark is the unconditional mean

of the time series, as proposed in Nelson (1976), Parzen (1981) and Clements and Hendry

(1998).2 We also discuss, however, how our approach can be applied to nonstationary

time series.

The predictability measure suggested by Nelson (1976) and others is asymptotically

equivalent to the R2 from a regression of the realized values on their h step ahead forecasts

and a constant. Accordingly, the null hypothesis of no predictive power is equivalent to the

null hypothesis that the forecasts are not correlated with the actual values. Indeed, this is

the null hypothesis underlying the encompassing version of our predictability test. In con-

trast, our Diebold-Mariano (1995) type test statistic directly compares the loss associated

with the model-based forecast and the unconditional mean, where the unconditional mean

is estimated by the mean of the evaluation sample. Therefore, the only data required for

both tests are the forecasts and the actual values within the evaluation sample. This

setup makes the tests applicable to forecasts from unknown models like survey forecasts.

1See Knüppel (2018) for a survey.
2Diebold and Kilian (2001) attribute this predictability measure to Granger and Newbold (1986).
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This feature of the tests is important because such forecasts are often considered to be

more accurate than other common forecasting approaches, as documented for in�ation

survey forecasts by Ang, Bekaert, and Wei (2007).

It is important to notice that, in general, the model-based forecast function nests

a constant as a special case. Accordingly, comparing the model-based forecast and the

unconditional mean should be treated as a nested forecast comparison in the spirit of Clark

and McCracken (2001) and West (1996). It is therefore not surprising that the Diebold-

Mariano type statistic has a nonstandard limiting distribution. To sidestep this di�culty

we suggest a simple modi�cation of the test statistic that results in an asymptotically χ2

distributed random variable provided the null hypothesis is true. On the other hand, our

encompassing variant of the test is equivalent to the (HAC) t-statistic from a regression of

the actual values on the forecasts and a constant. We provide conditions for the standard

limiting null distribution which provide a reasonable approximation in empirical practice.

The rest of this paper is organized as follows. In Section 2 we introduce our testing

framework and alternative concepts of predictability are discussed in Section 3. The

Diebold-Mariano type test and the encompassing test are analyzed in Sections 4 and 5.

Section 6 investigates the small sample properties by means of Monte Carlo experiments

and in Section 7 the proposed tests are applied to forecast of key macroeconomic variables

as reported by Consensus Economics. Section 8 concludes.

2 Model framework

Let {y1+h, . . . , yn+h} denote the set of n observed actual values corresponding to the model

forecasts ŷt+h|t, t = 1, . . . , n, based on the relevant information set It associated with time

period t. We assume that yt is generated by a stationary and ergodic stochastic process

{Yt} and the model forecasts are realizations of the forecast generating process Y θ
t+h|t},

where θ is the parameter vector of the forecasting model. As a simple example, assume

that the target variable is generated by the univariate AR(1) process Yt = αYt−1 + ut

with |α| < 1. In this example Y θ
t+h|t = αhYt with θ = α. The actual forecast realization

is denoted by ŷt+h|t = yθ̂tt+h|t = α̂ht yt, where θ̂t = α̂t denotes some consistent estimate

of θ based on the observations up to period t. Following West (1996) we distinguish

two di�erent estimation schemes. The recursive scheme �xes the starting point of the

estimation sample at t = −T + 1 and adapts an increasing end point such that ST :t =

{−T + 1,−T + 2, . . . , t} and, hence, θ̂t indicates an estimate based on t+T observations.

The rolling-window estimation scheme �xes the size of the estimation samples to T time

periods, that is, St|T = {t−T + 1, t−T + 2, . . . , t}. It is important to note that we do not

assume that the parameter estimates of the model and the sample size T are known. For

our analysis we only need to observe the actual values {yh+1, . . . , yn+h} and their h-step
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ahead forecasts {ŷ1+h, . . . , ŷn+h}.
The assumptions that characterize the process {Yt} are summarized in

Assumption 1 Let Yt = µ + ut with ut = φ(L)εt, φ(L) = 1 + φ1L + φ2L
2 + · · · is a lag

polynomial with all roots outside the unit circle,
∑∞

i=1 |φi| < ∞ and εt is an i.i.d. white

noise process with E(εt) = 0 and E(ε2t ) = σ2
ε . Furthermore E|εt|2+δ <∞ for some δ > 0.

Note that our null hypothesis of an uninformative forecast implies restrictions on the

polynomial φ(L). For a univariate forecast, where Y θ
t+h|t is a function of {yt, yt−1, . . .}, the

null hypothesis requires φs = 0 for s ≥ h.

In the next section it is argued that if Yt is integrated of order one (that is ∆Yt is

stationary) the tests need to be applied to the di�erenced series ∆Yt = Yt − Yt−1. The

assumptions of a linear process and constant variances are not essential and may be

relaxed at the cost of a more demanding asymptotic framework. We are interested in

testing the null hypothesis that the forecast function Y θ
t+h|t is not informative for Yt+h in

the sense that

H0 : E(e2t+h|t) ≥ E(Yt+h − µ)2 (1)

where et+h|t = Yt+h − Y θ
t+h|t is the �theoretical� forecast error where θ is assumed to be

known. We de�ne the maximum forecast horizon h∗ as h∗ = hmin − 1, where hmin is the

smallest value of h for which condition (1) is ful�lled.

Let us consider a simple dynamic regression model of the form

Yt = α + βXt−1 + et , (2)

where Xt and et are independent white noise processes with expectation zero and with

β 6= 0. If the forecast is correctly speci�ed Y θ
t+1|t = α + βXt and Y

θ
t+h|t = α for h > 1.

Thus, for h = 1 the condition (1) is violated but for h = 2, 3, . . . the forecast becomes

uninformative. Accordingly the maximum forecast horizon is h∗ = 1.

More insight can be gained by decomposing the mean-squared prediction error (MSPE)

as

E(e2t+h|t) = E(Yt+h − µ)2 − 2E(Yt+h − µ)(Yt+h|t − µ) + E(Yt+h|t − µ)2. (3)

Obviously, a su�cient condition for the forecast being uninformative is E(Yt+h|t) = µ.

Another su�cient condition is that E(Yt+h − µ)(Yt+h|t − µ) = 0 as E(Yt+h|t − µ)2 ≥ 0.

Furthermore for a rational forecast with E(et+h|tY
θ
t+h|t) = 0 it follows that

E(Yt+h − µ)(Y θ
t+h|t − µ) = E(et+h + Y θ

t+h|t − µ)(Y θ
t+h|t − µ) (4)

= E(Y θ
t+h|t − µ)2 (5)
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Combining (3) and (5) yields

E(e2t+h|t) = E(Yt+h − µ)2 − E(Y θ
t+h|t − µ)2. (6)

Thus, for rational forecasts the conditions (i) Y θ
t+h|t = µ and (ii) cov(Yt+h, Y

θ
t+h|t) = 0 are

equivalent to the null hypothesis (1).

It is important to note that the maximum forecast horizon h∗ can be identi�ed by

sequentially applying a consistent test for (1). The null hypothesis (1) is tested for h =

1, 2, ... until it is not rejected for the �rst time. Then, h∗ is identi�ed as the penultimate

horizon tested. Provided that the tests are consistent, this identi�cation is correct with

probability approaching 1−α as n→∞ with α denoting the signi�cance level of the test.

Therefore, the signi�cance level α of the test must tend to zero to achieve a consistent

selection rule for h∗ (see Remark 5 below). It should be noted that the error variance of

rational forecasts are monotonously increasing with respect to the forecast horizon. Thus

if some forecast is informative at some horizon h it must also be uninformative for any

higher horizon and we therefore can stop the testing sequence whenever the test does not

reject the �rst time.

3 Measuring predictability

For assessing the predictive content, Theil (1958) proposed (among other measures) the

following inequality coe�cient:

U2(h) =

√√√√√√√
n∑
t=1

(Yt+h − Ŷt+h|t)2

n∑
t=1

(Yt+h − Y 0
t+h)

2

where Y 0
t+h denotes some �naive forecast� (typically the no-change forecast). The model

based forecast is uninformative whenever U2(h) is close to unity. For a stationary variable

the unconditional mean is a natural �naive� (resp. uninformative) forecast, whereas the

no-change forecast is better suited for nonstationary (integrated) target variables; see e.g.

Isiklar and Lahiri (2007) for an application to the survey of professional forecasters.

If the unconditional mean is employed as the benchmark, the inequality coe�cient

U2(h) is related to the R2(h) measure proposed by Nelson (1976) and Diebold and Kilian

(2001) given by

R2(h) = 1−
var(êt+h|t)

var(Yt+h)
,

where êt+h|t = Yt+h − Ŷt+h|t denotes the model-based forecast error. In practice the

variance is estimated by the sample variance such that R2(h) = 1− U2(h)2 with Y 0
t+h =
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Y h = n−1
∑n

t=1 Yt+h yielding the sample analog

R̂2(h) = 1−

n∑
t=1

ê2t+h|t

n∑
t=1

(
Yt+h − Y h

)2 .
Note however that this measure may become negative. An alternative measure with the

usual properties is obtained as the R2 from a (Mincer-Zarnowitz type) regression of Yt+h

on the forecast Ŷt+h|t yielding the square of the sample correlation between the actual

values and the forecasts (see Section 5).

Diebold and Kilian (2001) proposed a generalized measure of predictability

Q(L, h, k) = 1−
E[L(et+h|t)]

E[L(et+k|t)]
for k > h,

where L(·) indicates the loss function and et+k|t denotes the long-run prediction error.

If (i) Yt is stationary, (ii) the loss function is quadratic and (iii) k → ∞, the Diebold-

Kilian measure and the Nelson measure coincide. In what follows we focus on the Nelson

measure and propose a test for the hypothesis R2(h) = 0.

As argued by Diebold and Kilian (2001) their predictability measure is also valid for

nonstationary variables, whereas in this case the Nelson measure tends to unity as n→∞,

no matter of the predictive content.3 The latter approach remains valid, however, if it is

applied to the di�erenced series. Since

et+h|t = Yt+h − Y θ
t+h|t

= (Yt+h − Yt)− (Y θ
t+h|t − Yt)

=

(
h∑
s=1

∆Yt+s

)
−

(
h∑
s=1

∆Y θ
t+s|t

)

=
h∑
s=1

∆et+s|t ,

with ∆et+s|t = ∆Yt+s − ∆Y θ
t+s|t and ∆Y θ

t+s|t = Y θ
t+h|t − Y θ

t+h−1|t is the forecast of the

di�erenced series, it follows that Yt+h is not predictable whenever {∆Yt+1, · · · ,∆Yt+h} are
jointly unpredictable. Hence, for nonstationary (integrated) time series the predictability

tests are applied to the di�erenced series for s ∈ {1, . . . , h}.

4 Diebold-Mariano type test statistics

A natural test statistic for the hypothesis (1) is the statistic proposed by Diebold and

Mariano (1995), which compares the sample MSPE of two competitive forecasts. In our

3More precisely, if yt is I(1) and the forecast error et+h|t is I(0) for �xed h, then the sample analog of

the ratio var(et+h|t)/var(Yt+h) is Op(T
−1) such that R̂2 tends to unity.
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case we are interested in analyzing the loss di�erential of the model based forecast Ŷt+h|t

and the uninformative forecast Yt − µ̂, where µ̂ denotes some suitable estimator of the

unconditional mean. It is important to notice that for any reasonable model forecast

that allows for a constant mean as a special case, the forecasts are nested in the sense of

?. Therefore, under the null hypothesis the loss di�erential is driven by the estimation

error θ̂ − θ and µ̂− µ. It is well known that in such cases the limiting distribution of the

Diebold-Mariano statistic is nonstandard and depends on unknown nuisance parameters

(cf. West (1996) and Clark and McCracken (2001)).

In what follows we sidestep this problem by using estimators of θ and µ from di�er-

ent samples. The model parameters θ are estimated recursively4 using the observations

S−T :t = {−T+1,−T+2, . . . , t} whereas the evaluation sample is P0:n = {0, 1, . . . , n}. No-
tice the overlap between these two samples. If the estimation sample S−T :t is large relative
to the evaluation sample, this overlap of n observations will be asymptotically negligible.

Speci�cally, we decompose the recursive estimator as θ̂t = θ̂0 +Op(n
1/2/T ), where θ0 the

estimator up to t = 0 (that is without overlapping observations) such that the limiting

distribution of θ̂t is asymptotically independent of µ̂h = n−1(Yh+1, yh+2 + · · ·+Yn+h) = Y h

under the null hypothesis. This escapes the problem of a nested forecast comparison.5

Since our test focuses on information of the evaluation sample we use Y h = n−1
∑n+h

t=h+1 Yt

as an estimator for µ = E(Yt). For the forecast functions Y θ
t+h|t and Ŷt+h|t = Y θ̂t

t+h|t we

make the following assumption:

Assumption 2 (i) Under the null hypothesis there exists some h∗ such that Y θ
t+h|t = µ

for all h > h∗. (ii) Under the null hypothesis, ut+h = Yt+h − µ is independent of the

estimation error: E(ut+h|θ̂t, θ̂t−1, . . .) = 0. (iii) The parameters are estimated consistently

with

a) θ̂0 − θ = Op(T
−1/2)

b) sup
t∈{1,...,n}

||θ̂t − θ̂0|| = Op

(√
n

T

)
for t = 1, 2, . . . , n

(iv) Let Dt+h(θ) = ∂Y θ
t+h|t/∂θ and Dh(θ) = n−1

∑n
t=1Dt+h(θ). For all θ∗ ∈ [θ − ε, θ + ε]

with some ε > 0

1

n

n∑
t=1

[Dt+h(θ
∗)−Dh(θ

∗)]2
p→ D

2
with 0 < D

2
<∞

E|Dt+h(θ
∗)ut+h|2+δ <∞ for some δ > 0 and all t.

4Our analysis carries over to a rolling window estimation scheme if we assume that the window size
T gets large relative to the size of the evaluation period.

5A related but fundamentally di�erent approach is suggested by ?, where a �xed-length rolling window
and a recursive estimation scheme are used to compute the forecast errors of the two competing forecasting
methods.
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Part (i) is the null hypothesis of the test. Part (ii) is an implication of the null hypothesis

which claims that the time series is not predictable given the information set It, which
includes the estimation error θ̂t − θ. Part (iii) a) supposes the usual convergence rate

of the estimation error in the estimated parameter vector θ̂0 based on the pre-evaluation

sample {−T +1, . . . , 0}, whereas (iii) b) limits the variation of estimators in the recursive

estimation scheme within the evaluation sample.

To illustrate this assumption consider the forecast based on the regression model with

Ŷt+h|t = α̂t + β̂txt, where β̂t is the least squares estimator based on the T + t time periods

{−T + 1, . . . , t}. If xt is stationary and, without loss of generality, E(xt) = 0, then

E(β̂0 − β)2 = σ2
u/(Tσ

2
x), where σ

2
x = E(x2t ). Obviously, Assumption 2 (iii) a) is ful�lled.

To analyze β̂t − β̂0 we write

β̂0 = (1 + aT,t)

∑0
s=−T+1 xsus∑t
s=−T+1 x

2
s

where aT,t =

∑t
s=0 x

2
s∑0

s=−T+1 x
2
s

= Op

(
t

T

)
.

It follows for t ≤ n that

β̂t − β̂0 =

∑t
s=0 xsus∑t
s=−T+1 x

2
s

+Op

(
t

T 3/2

)
= Op

(√
t

T

)
+Op

(
t

T
· 1√

T

)
= Op

(√
t

T

)
.

Hence, also part (iii) b) is satis�ed. In our simple example D
2

= σ2
x and, thus, part (iv)

is ful�lled as well.

Let us �rst consider a test statistic constructed in the spirit of Diebold and Mariano

(1995):

dh =
1

ω̂δ
√
n

n∑
t=1

δht , (7)

where δht = ê2t+h|t − (Yt+h − Y h)
2 is the loss di�erential, Y h = n−1

∑n
t=1 Yt+h denotes the

sample mean, and ω̂2
δ denotes a consistent long-run variance estimator applied to δht . The

following theorem presents the asymptotic distribution for the case that the number of

observations T for estimating the parameters is large relative to the number of forecasts

n:

Theorem 1 Assume that Assumptions 1�2 hold. If T →∞, n→∞, n/T → 0 we have

dh∗ =
√
n
|u|
2ω̂u

+Op

(n
T

)
d→ |z|

2
,

where z is a standard normally distributed random variable and ω̂2
u denotes the analogous

estimator for the long-run variance ω2
u = lim

n→∞
E
(
n−1

n∑
t=1

ut+h

)2

of ut+h = Yt+h − µ.
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This �nding gives rise to two variants of an adjusted Diebold-Mariano statistic:

Corollary 2 Under Assumptions 1�2, h > h∗, T →∞, n→∞, n/T → 0 it follows that

2dh
d→ |N (0, 1)|

d̃h =
1

ω̂2
u

n∑
t=1

δht
d→ χ2

1

where ω̂2
u is a consistent estimator for the long-run variance of ut = Yt − µ.

It should be noted that the test based on (2dh)
2 and d̃h are not asymptotically equivalent

although the limiting distribution is the same. The reason is that squaring 2dh requires

to reject for large positive values, whereas the statistics d̃h rejects for small values. For a

signi�cance level of 0.05, the critical value for d̃h∗ is 0.0039 and the corresponding value

for 2dh∗ is 0.0627.

Remark 1: It is interesting to note that under the alternative with E(Yt+h − Ŷt+h|t)2 <
E(u2t+h) it follows that dh = Op(

√
n), whereas d̃h = Op(n). This is due to the fact

that ω̂2
δ = 4u2hω̂

2
u + Op(T

−1/2) + Op(n
−2). Since under a �xed alternative u2h = Op(1)

(instead of Op(n
−1) under the null hypothesis) the denominator of 2dh changes the order

of magnitude while the order of magnitude of the denominator of d̃h remains the same.

This does not imply, however, that 2dh is more powerful against alternatives in the vicinity

of the null hypothesis. In fact under local alternatives both test statistics possess the same

asymptotic power.

Remark 2: To compare the small sample properties of the two modi�cations, we perform

a Monte Carlo experiment, where the data are generated as Yt+1 = µ + ut+1. Since the

test statistic is not a�ected by the value of µ and the variance σ2
u, we set µ = 0 and

σ2
u = 1. The forecast is based on the model Ŷt+1|t = ât + b̂tXt, where θ̂t = (ât, β̂t)

′ denotes

the vector of OLS estimates from a simple regression of Yt+1 on Xt based on the sample

{−T + 1, . . . , t}. Xt is standard normally distributed. The nominal size of all test is 0.05,

and 10,000 replications are used to compute the rejection rates.

From the empirical sizes for various combinations of n and T presented in Table 1

it turns out that for realistic sample sizes such as n = 50 and T = 200, say, the tests

su�er from a substantial size bias. This is not surprising as the critical value for the χ2
1

distribution is very close to zero, and, thus, a large amount of probability mass is located

in the vicinity of the critical value. Accordingly, even small, asymptotically negligible

terms may have large e�ects on the actual size. Very large estimation samples are needed

in order to obtain actual sizes being close to their nominal counterpart.

Remark 3: It is interesting to analyze the properties of the test for situations where

part (ii) of Assumption 2 is violated. Assume that the model forecast is uninformative
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Table 1: Actual sizes for various n/T combinations (α = 0.05)

n = 25 n = 50 n = 100 n = 200

T 2d1 d̃1 2d1 d̃1 2d1 d̃1 2d1 d̃1
50 0.087 0.092 0.070 0.073 0.044 0.047 0.024 0.027
100 0.100 0.105 0.088 0.093 0.066 0.069 0.041 0.043
200 0.113 0.119 0.109 0.115 0.083 0.088 0.062 0.065
500 0.114 0.120 0.110 0.118 0.110 0.116 0.096 0.102
1,000 0.111 0.119 0.110 0.119 0.120 0.127 0.118 0.126
10,000 0.081 0.088 0.090 0.098 0.102 0.109 0.108 0.115
50,000 0.059 0.062 0.063 0.066 0.073 0.077 0.077 0.082
500,000 0.050 0.050 0.054 0.056 0.056 0.059 0.064 0.068

∞ 0.049 0.049 0.049 0.049 0.050 0.050 0.050 0.050

Note: The limiting distribution of the DM-type test statistics 2d1 and d̃1 are presented in
Corollary 2. For T = ∞ the test statistics are computed using the true parameter values.
Results are based on 10,000 simulations. Tests statistics are based on OLS standard errors
without degrees-of-freedom correction.

and biased with E(Yt+h|t) = mt 6= µ. It follows from the proof of Theorem 1 that

1

n

n+h∑
t=h+1

δht = u2h +
1

n

n∑
t=1

(mt − µ)2 +Op(T
−1) .

Therefore if the forecast is biased, the test tends to be conservative in the sense that the

rejection probability converge to zero as n→∞.

Next, assume that the uninformative forecast Y θ
t+h|t is unbiased but di�erent from a

constant: Y θ
t+h|t = µ + vht , where var(v

h
t ) = τ 2h > 0. For example consider the unbiased

forecast function Y θ
t+h|t = βXt with β = µ/θ1 and Xt

iid→ N (θ1, θ2). If Xt and Yt+h are

uncorrelated we have Y θ
t+h|t = µ+ vht , where v

h
t = β(Xt− θ1). It is not di�cult to see that

in this case n−1
∑n+h

t=h+1 δ
h
t = u2h + τ 2h resulting again in a conservative test.

5 Encompassing tests

To overcome the small sample problems of the modi�ed test statistic we consider a variant

of the test based on the encompassing principle. As shown in section 2, a test of the null

hypothesis (1) is equivalent to the null hypothesis

H ′0 : E(Yt+h − µ)(Y θ
t+h|t − µ) = 0

whenever the forecast is rational with E(Yt+h − Y θ
t+h|t|Y θ

t+h|t) = 0. Accordingly, the null

hypothesis can be rejected if the correlation between Yt+h and Ŷt+h|t is positive. Another
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view on the relationship between this approach and the DM statistic emerges from the

decomposition
n∑
t=1

δht =
n∑
t=1

[
Yt+h − Y h − (Ŷt+h|t − Y h)

]2
−
(
Yt+h − Y h

)2
=

n∑
t=1

(Ŷt+h|t − Y h)
2 − 2

n∑
t=1

(Yt+h − Y h)(Ŷt+h|t − Y h).

Since the �rst term on the right hand side is non-negative, it does not improve the power

of the test and can be neglected. Thus, the DM-type test statistic is mainly driven by

the covariance between Yt+h and Ŷt+h|t.

This gives rise to a one-sided t-test of β1,h = 0 vs. β1,h > 0 in the Mincer-Zarnowitz

regression

Yt+h = β0,h + β1,hŶt+h|t + εt+h , (8)

where the error is typically autocorrelated up to lag h− 1 due to the overlapping forecast

horizon. Note that the Mincer-Zarnowitz test for rational (or e�cient) forecasts focus

on the restrictions β0,h = 0 and β1,h = 1. Indeed, if the forecast is informative and

rational, the forecast error Yt+h− Ŷt+h|t should be uncorrelated with Ŷt+h|t, which implies

the restrictions considered by Mincer and Zarnowitz (1969). Our null hypothesis is that

the forecast is uninformative which results in testing the null hypothesis β1,h = 0 against

the alternative β1,h > 0, whereas the constant β0,h = µ is unrestricted.

This test admits an interpretation as a forecast encompassing test (cf. Chong and

Hendry, 1986, and Clements and Hendry, 1993) that is based on a convex combination of

the model based forecast Ŷt+h|t and the unconditional mean Y h:

Yt+h = λhŶt+h|t + (1− λ)Y h + εt+h

Yt+h − Y h = λh(Ŷt+h|t − Y h) + εt+h

and, therefore, a test of β1,h = 0 is equivalent to a test of λh = 0.

In our asymptotic analysis we focus on the LM type test statistic:

%h =
1

ω̂ξ
√
n

n∑
t=1

ξht (9)

where

ξht = (Yt+h − Y h)(Ŷt+h|t − Ŷ h)

and ω̂2
ξ denotes the corresponding long-run variance

ω̂2
ξ = γ̂ξ0 + 2

k∑
j=1

wkj γ̂
ξ
j

γ̂ξj =
1

n

n∑
t=j+1

ξht ξ
h
t−j .
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Table 2: Actual sizes for various n/T combinations (α = 0.05)

n = 25 n = 50 n = 100 n = 200
T β1,1 %1 β1,1 %1 β1,1 %1 β1,1 %1
50 0.025 0.022 0.017 0.018 0.014 0.016 0.012 0.012
100 0.027 0.024 0.022 0.021 0.014 0.014 0.015 0.015
200 0.029 0.028 0.024 0.024 0.017 0.018 0.015 0.016
500 0.040 0.033 0.028 0.026 0.021 0.021 0.019 0.020
1,000 0.041 0.037 0.033 0.032 0.025 0.025 0.023 0.023
10,000 0.050 0.044 0.041 0.039 0.037 0.035 0.032 0.032
50,000 0.062 0.052 0.052 0.049 0.048 0.046 0.040 0.038
500,000 0.056 0.048 0.052 0.046 0.048 0.045 0.047 0.045

Note: β1,1 denotes the regression-based encompassing test using (8), %1 denotes the LM-
type encompassing test based on (9). Results are based on 10,000 replications. Tests
statistics are based on OLS standard errors without degrees-of-freedom correction.

In practice any other asymptotically equivalent test such as the usual t-test of β1,h = 0 in

the regression (8) with appropriate HAC standard errors can be used.

A technical problem with a regression like (8) is that under the null hypothesis the

regressor Ŷt+h|t and the constant are asymptotically collinear. To sidestep this problem

we show in the proof of Theorem 3 that if n/T → 0

Ŷt+h|t − Y h ≈ (θ̂0 − θ)(Dt+h(θ)−Dh(θ))

and, thus, the test of β1,h = 0 in regression (8) is asymptotically equivalent to the test of

β∗1,h = 0 in the regressions

Yt+h = β∗0 + β∗1,hDt+h(θ) + ηt+h

or Yt+h = β∗0,h + β∗1,hDt+h(θ̂) + η̃t+h ,

where β∗1,h = (θ̂0 − θ)β1,h. The details are provided in the proof of

Theorem 3 Under Assumptions 1�2, a recursive forecasting scheme with h > h∗, T →
∞, n→∞ and n/T → 0 we have %h

d→ N (0, 1), where %h is de�ned in (9).

Remark 4: It is interesting to note that the DM-type test statistic can be interpreted

as the likelihood ratio test of the null hpyothesis β1,h = 0 against the joint alternative

β0,h = 0 and β1,h = 1 in the regression model (8), where the alternative is equivalent to

the null hypothesis of the Mincer-Zarnovitz test for an informative and rational (e�cient)

forecast. Under the null hypothesis the log-likelihood function is a function of s20 =

12



∑n
t=1(Yt+h − Y n)2, whereas under the alternative the log-likelihood depends on s20 =∑n
t=1(Yt+h − Ŷt+h|h)2. Thus, the logarithm of the likelihood ratio is a function of

s20 − s21 =
n∑
t=1

δt

used in the numerator of the DM-type statistics 2dh and d̃h.

Remark 5: In contrast to the DM-type test, the encompassing test turns out to be

slightly conservative for most combinations of n and T presented in Table 2. For empiri-

cally relevant sample sizes, i.e. for T � 10, 000, the tests are always conservative. While

the empirical sizes for a given value of n vary depending on T , these variations are smaller

than those of the DM-type tests.

Remark 6: As mentioned above, a consistent selection rule for the maximum forecast

horizon h∗ requires that the size of the test tends to zero as n→∞. One possibility is to

apply the critical value κ log(n). It is not di�cult to see that under the alternative ρh =

Op(n
1/2) such that under the alternative h ≤ h∗ we obtain limn→∞ P (ρh < −κ log(n)) = 1,

whereas for h > h∗ we have limn→∞ P (ρh < −κ log(n)) = 0. Thus the decision rule that

selects the last rejection in the sequence of tests with h = 1, 2, . . . is weakly consistent.

Note that for n = 27 the critical value − log(27)/2 = −1.65 is similar to the one-sided

0.05 critical value of a standard normal distribution. This suggests to set κ = 1/2 in order

to generate selection rules roughly equivalent to usual hypothesis testing.

6 Local power

In order to gain some insight into the relative power of the two di�erent types of tests, i.e.

the power of the DM-type tests versus the power of the encompassing tests, we analyse

local power against a suitable sequence of local alternatives. Consider the alternative of

an informative forecast with

Yt+1 = µ+ βXt + ut+1

where Xt is a (demeaned) i.i.d. regressor with E(Xt) = 0 and E(X2
t ) = σ2

x > 0, ut is white

noise with E(ut) = 0, E(u2t ) = σ2
u and ut+1 is independent of {Xt, Xt−1, . . .}. As T →∞ we

have θ̂t
p→ θ, E(Yt+1−Y θ

t+1|t)
2 = σ2

u, where Y
θ
t+1|t = µ+βXt and E(Yt+1−µ)2 = σ2

u+β2σ2
x.

If β 6= 0 the forecast is informative and d̃1 and %̂1 are Op(
√
n). Accordingly, both tests

are consistent against �xed alternatives β 6= 0. The asymptotic power of the tests can

be studied by considering a local alternative of the form β = c/
√
n. The asymptotic

distributions of the DM-type test d̃1 and the encompassing test %̂1 are presented in

13



Theorem 4 Under the sequence of alternatives β = c/
√
n, Xt ∼ iid(0, σ2

x), Assumptions

1 � 2 and n/
√
T → 0 it follows that

d̃1
d→ z21 − 2λz2 − λ2 (10)

%̂1
d→ sign(c)z2 + λ, (11)

where λ2 = c2σ2
x/σ

2
u denotes the signal-to-noise ratio and z1 and z2 represent two inde-

pendent standard normally distributed random variables.

Accordingly, the DM-type test and the encompassing test are not asymptotically equiv-

alent. Figure 1 displays a comparison of the resulting local power curves using the sig-

ni�cance level α = 0.05. The DM-type test is more powerful in the vicinity of the null

hypothesis, whereas the relative power of the encompassing test increases when c or the

variance ratio σ2
x/σ

2
u gets large. The ratio λ

2 can also be represented as

λ2 = n
R (1)2

1−R (1)2
,

using the R (h)2 notation of Section 3. If, for instance, nR (1)2 ≥ 10, then λ2 > 10,

and both tests have a local power of at least 93% if α = 0.05. This insight might

be useful to specify a rule of thumb for appropriate sample sizes if one has some prior

information about the potential magnitude of R (h)2. However, since the power of the

tests will typically be smaller in practice due to the presence of parameter estimation

error, nR (h)2 = 10 should be regarded as a lower bound for reliable inference. This rule

would, for example, imply that in �nancial forecasting, where empirical values of R (1)2

typically do not exceed 0.01, at least 1, 000 evaluation periods should be employed for

testing predictability. With R (h)2 = 0.2, an evaluation sample with only 50 observations

yields a similar local power.

It should also be noted that the power curves are symmetric with respect to the

parameter c as the distribution remains the same if z2 is replaced by −z2 in (10) and (11).

7 Monte Carlo Results

In order to gain insights into the small sample behaviour of the tests, we conduct Monte

Carlo experiments based on the cases displayed in Table 7. In the �rst four cases, uni-

variate models are considered, whereas the last case refers to a simple multivariate model.

The �rst three forecast models refer to moving-average models considered in Stock and

Watson (2007) for the �rst di�erence of quarterly US in�ation. The �rst process is based

on their MA(1)-model estimated for the post-1984 period, whereas the second process

refers to their pre-1984 estimation results. The third process is based on the quarterly
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Figure 1: Local power curves

version of Nelson and Schwert's (1997) model reported in Stock and Watson (2007). For

all three cases, the forecast models are misspecifed, because the data-generating processes

(DGP) are MA(1) and MA(2) processes, but the forecast models assume an AR(1) pro-

cess. Moreover, a constant is estimated. Note that the respective null hypotheses h∗ = 1

and h∗ = 2 are nevertheless correct. The fourth process uses the estimation result for

an AR(1)-process of US GDP growth from 1996q3 to 2016q1 which corresponds to the

sample used in the empirical application below. In this case, h∗ does not exist. The last

process mimics a forecasting equation for �nancial returns and implies an asymptotic R2

of about 0.04 for h = 1, i.e.R (1)2 ≈ 0.04 in the notation of Section 3. This would be

considered a very large value given the usual empirical results as reported, for example,

in Fama and French (1988). In this case, the maximum forecast horizon is h∗ = 1, since

R (h)2 = 0 for h > 1.

Forecasts are made in a direct manner, i.e. for each forecast horizon the target variable

Yt+h is regressed on the explanatory variables known at time t. We calculate the standard

errors according to Newey and West (1987) using the automatic lag length selection

procedure proposed by Andrews (1991) and use the signi�cance level α = 0.05.

Table 4 displays the results for AR(1) forecasts, when the data is generated by the

MAa(1) model, hence h∗ = 1. The evaluation sample includes n = 50 or n = 100

forecasts, the initial estimation samples are based on T = 100 observations, and a recursive
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Table 3: Cases considered for Monte Carlo simulations

cases DGP h∗ forecast model R2 (h∗)

MA(1)a-AR(1) Yt = εt − 0.28εt−1 1 ŷt+h = θ̂h1 + θ̂h2Yt 0.07

MA(1)b-AR(1) Yt = εt − 0.66εt−1 1 ŷt+h = θ̂h1 + θ̂h2Yt 0.21

MA(2)-AR(1) Yt = εt − 0.49εt−1 − 0.16εt−2 2 ŷt+h = θ̂h1 + θ̂h2Yt 0.02

AR(1)-AR(1) Yt = 0.33 + 0.42Yt−1 + εt − ŷt+h = θ̂h1 + θ̂h2Yt −

multivar. Yt = 0.2xt−1 + εt 1 ŷt+h = θ̂h1 + θ̂h2xt 0.04

Note: εt and xt are iid N(0, 1). h∗ is the maximum forecast horizon. R2 (h∗) is the asympotic R2 of the forecast
model at horizon h∗.

estimation scheme is employed. The tests are conducted sequentially for the forecast

horizons h = 1, 2, 3, 4. The last forecast horizon where the test rejects is identi�ed as

horizon ĥ∗. If the test does not reject for any horizon, ĥ∗ ≥ 4. In addition to the

tests presented above, the classical DM-test is considered by using a standard normal

distribution for the test statistic speci�ed in equation (7). Given the values of R2 (h∗)

and n considered, the local power results of Section 6, and the fact that T is not very

large, one can expect the tests to encounter certain di�culties in correctly detecting h∗,

except for the case MA(1)b-AR(1) where nR2 (h∗) > 10.

With n = 50, the DM-type and encompassing tests have a power of at least 0.44 at h =

1, whereas the classical DM test attains 0.12 only. With n = 100, the power of the DM-

type and encompassing tests equals about 0.8. The classical DM test achieves 0.20 and its

size is close to zero. Both DM-type tests are over-sized, whereas both encompassing tests

are conservative. In terms of power, the two DM-type tests are similar and outperform the

encompassing tests. This is likely to be partly due to their too large size, but also partly

to their higher local power in the vicinity of the null hypothesis. Among the encompassing

tests, the regression-based test using (8) clearly is more powerful than the LM-type test

based on (9).

For n = 50 the DM-type tests and the regression-based encompassing test identify the

maximum forecast horizon correctly in about 60% of the replications, and this number

rises to roughly 80% with n = 100. The LM-type encompassing test is slightly less

successful. ĥ∗ is always median-unbiased for the DM-type tests and the regression-based

encompassing test, but they possess a downward mean bias. ĥ∗ based on the classical

DM test has a strong downward bias due to its lack of power. With a rolling estimation
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Table 4: Results for case `MA (1)a-AR (1)'

forecast horizon h 0 1 2 3 4 0 1 2 3 4

T = 100, n = 50 T = 100, n = 100

MSPE / Variance 0.96 1.03 1.03 1.03 0.95 1.02 1.02 1.02

rejections
DM-type tests

d̃h 0.71 0.13 0.12 0.12 0.83 0.09 0.09 0.09
2dh 0.72 0.13 0.13 0.13 0.84 0.10 0.10 0.10

encompassing tests
β1,h 0.61 0.04 0.04 0.03 0.81 0.03 0.02 0.02
%h 0.44 0.02 0.02 0.02 0.75 0.02 0.02 0.02

classical DM test 0.12 0.01 0.01 0.01 0.20 0.00 0.00 0.00

ĥ∗

DM-type tests

d̃h 0.29 0.62 0.07 0.02 0.01 0.17 0.76 0.06 0.01 0.00
2dh 0.28 0.63 0.07 0.02 0.01 0.16 0.76 0.06 0.02 0.00

encompassing tests
β1,h 0.39 0.59 0.02 0.00 0.00 0.19 0.79 0.02 0.00 0.00
%h 0.56 0.44 0.01 0.00 0.00 0.25 0.74 0.01 0.00 0.00

classical DM test 0.88 0.11 0.00 0.00 0.00 0.80 0.20 0.00 0.00 0.00

Note: The values displayed in the category `rejections' denote the percentage of rejections for each horizon h. The values

displayed in the category `ĥ∗' denote the percentage of cases in which h is identi�ed as the maximum forecast horizon. The
estimation is carried out recursively, and T denotes the number of observations used for the �rst parameter estimation. n
is the number of observations for evaluation. The signi�cance level is set to α = 0.05. `classical DM test' refers to the test
statistic proposed by Diebold and Mariano (1995). `MSPE' is the mean-squared prediction error. The in-sample variance
in the MSPE-variance-ratio is calculated dividing by n. Bold entries refer to the true h∗. If a test rejects for all horizons,

ĥ∗ is set equal to the largest horizon h = 4. 2dh denotes the test statistic distributed as |N (0, 1)|, d̃h the test statistic
distributed as χ2

1 under the null. β1,h denotes the regression-based test using (8), %h denotes the LM-type test based on
(9). Results are based on 20,000 simulations.
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Table 5: Results of the remaining cases

forecast horizon h 0 1 2 3 4 0 1 2 3 4

T = 100, n = 50 T = 100, n = 100

MA (1)b-AR (1)
MSPE / Variance 0.80 1.02 1.02 1.02 0.80 1.02 1.02 1.01
rejections

DM-type test 0.97 0.19 0.18 0.19 1.00 0.14 0.15 0.14
encompassing test 0.99 0.05 0.05 0.04 1.00 0.04 0.03 0.03

ĥ∗

DM-type test 0.03 0.80 0.11 0.05 0.02 0.00 0.85 0.09 0.04 0.01
encompassing test 0.01 0.94 0.04 0.01 0.00 0.00 0.96 0.03 0.01 0.00

MA (2)-AR (1)
MSPE / Variance 0.91 1.00 1.02 1.02 0.91 1.00 1.02 1.01
rejections

DM-type test 0.88 0.40 0.17 0.16 0.97 0.45 0.13 0.13
encompassing test 0.84 0.19 0.04 0.04 0.97 0.23 0.03 0.03

ĥ∗

DM-type test 0.12 0.57 0.25 0.05 0.01 0.03 0.55 0.36 0.05 0.01
encompassing test 0.16 0.71 0.11 0.01 0.00 0.03 0.76 0.21 0.01 0.00

AR (1)-AR (1)
MSPE / Variance 0.88 1.03 1.06 1.07 0.86 1.01 1.03 1.04
rejections

DM-type test 0.84 0.28 0.10 0.08 0.96 0.40 0.12 0.07
encompassing test 0.88 0.20 0.06 0.05 0.99 0.33 0.06 0.04

ĥ∗

DM-type test 0.16 0.57 0.20 0.05 0.02 0.04 0.56 0.30 0.07 0.03
encompassing test 0.12 0.68 0.16 0.02 0.01 0.01 0.66 0.28 0.04 0.01

multivar.
MSPE / Variance 1.00 1.04 1.04 1.04 0.99 1.02 1.02 1.02
rejections

DM-type test 0.50 0.08 0.08 0.09 0.62 0.06 0.06 0.07
encompassing test 0.33 0.03 0.03 0.03 0.51 0.02 0.02 0.02

ĥ∗

DM-type test 0.50 0.45 0.04 0.00 0.00 0.38 0.58 0.04 0.00 0.00
encompassing test 0.67 0.33 0.01 0.00 0.00 0.49 0.50 0.01 0.00 0.00

Note: The DM-type test uses d̃h, the encompassing test employs β1,h. For further information, see Tables 3 and 4.
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window instead of a recursive estimation scheme, the results turn out to be very similar

(see Table 9 in Appendix C).

For the remaining Monte Carlo experiments, we do not report results for the DM-

type test based on 2dh, because it performs almost identically to d̃h. Moreover, we focus

on the regression-based encompassing test, because it has good size properties and more

power than the LM-type encompassing test. Results for all cases except MAa(1)-AR(1)

are reported in Table 5. We do not consider the classical DM test, because of its problems

in detecting h∗ documented above.

Concerning the case MAb(1)-AR(1), the absolute value of the MA-coe�cient is much

larger than in the case MAa(1)-AR(1), making it considerably easier for the tests to detect

h∗ = 1.With n = 50 as well as with n = 100, both tests reject in almost all replications at

h = 1. The DM-type test rejects far too often for h ≥ 2, whereas the encompassing test

has almost the correct size.6 Mainly due to the size distortion, the DM-type test detects

the correct h∗ in 80% to 85% of the replications only, whereas the encompassing test

attains about 95%. Both tests yield a median-unbiased ĥ∗. Moreover, ĥ∗ has an upward

mean bias which is more pronounced for the DM-type test because of its size distortion.

In the case MA(2)-AR(1), the second MA-coe�cient is very close to zero, making it

di�cult to identify h∗ = 2. Note that the ratio of the mean-squared prediction error

(MSPE) to the evaluation-sample variance is virtually equal to 1.7 While for h = 1, both

tests reject in about 85% of the replications with n = 50 and in 97% of the replications

with n = 100, these numbers are considerably lower for h = 2. The DM-type test yields

a rejection probability of 40% to 45%, whereas the encompassing tests attains about

20%. The higher numbers of the former test are again at least partly related to its size

distortion. The maximum forecast horizon h∗ is detected correctly in about 10% to 20%

of the replications by the encompassing test and in about 25 to 35% by the DM-type test.

The median of ĥ∗ equals 1 in all cases considered. Thus, with the MA(2)-speci�cation

chosen here, larger evaluation samples are needed in order to reliably determine h∗.8

The rejection probabilities for h = 1 and h = 2 in the AR(1)-AR(1) case are not too

di�erent from the MA(2)-AR(1) case. Accordingly, the median of ĥ∗ equals 1 for both

tests and both values of n considered. The correct identi�cation of h∗ ≥ 4 only happens in

1% to 3% of the replications. Noting that the asymptotic R2 is given by R2 (h) = 0.422h in

this case, it is obvious that very large samples would be needed to observe a median of ĥ∗

6In simulations not reported here, it turns out that the size distortions of the DM-type test are far
less pronounced if the MA-coe�cient is positive. With a value of 0.66 instead of −0.66, the size equals
about 0.10.

7The variance of the evaluation sample is calculated dividing by n, so that it equals the MSPE of the
evaluation-sample mean.

8Using the rule of thumb from Section 6, and noting that R2 (2) of the forecast equation equals about

0.016, roughly 600 observations would be needed. Indeed, with n = 600, ĥ∗ = 2 in about 70% of the
replications.
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equal to 4. Given that R2 (4) ≈ 0.001, even a very large evaluation sample of n = 10, 000

would not result in �nding ĥ∗ ≥ 4 much more often than in 50% of the replications. If, in

addition T = 1, 000 instead of T = 100, both tests would arrive at the correct result that

ĥ∗ ≥ 4 in roughly 60% of the replications.

Finally, in the multivariate case, the DM-type test rejects in 50% to about 60% of the

replications, whereas the encompassing test does so in about 35% to 50%. However, the

latter test is conservative, whereas the former rejects a little too often under the null, i.e.

for h > 1. With n = 50, both tests would reject predictability in at least 50% of the

replications, i.e. they would yield ĥ∗ = 0. With n = 100, ĥ∗ = 1 in about 60% of the

replications with the DM-type test, whereas the encompassing test reaches 50%.

As the multivariate case is conformable with the local power analysis of Section 6, it

is especially interesting to compare the results with the theoretical �ndings presented in

Theorem 4. For the corresponding value c = 0.2
√
n and λ = c · 1, one gets λ =

√
2 for

n = 50 and λ = 2 for n = 100. The corresponding power for the DM-type test is 0.64

with n = 50 and 0.77 with n = 100, and for the encompassing test 0.41 with n = 50

and 0.64 with n = 100. These values are moderately lower than the respective rejection

probabilities for the multivariate case at h = 1 reported in Table 5. The di�erences are

apparently due to the parameter estimation error. If one sets, for example, T = 1, 000

instead of T = 100, the rejection probabilities obtained via simulations become very

similar to those following from Theorem 4.

8 Empirical Results

For the empirical application of the tests, we employ quarterly survey forecasts collected

by Consensus Economics. The mean of the forecasts across all panelists is known to be

a very accurate forecast, as documented, for example, by Ang, Bekaert, and Wei (2007)

for in�ation forecasts. We consider survey forecast as being generated by some empirical

model. One may argue, however, that survey forecast do not involve any parameters to

be estimated. This would be a comfortable situation for our analysis as in this case the

Op(n/T ) terms due to estimated parameters drops out and the asymptotic results should

be more reliable.

Another view on survey forecasts is the notion that survey forecasters derive their pre-

dictions of yt+h as some function of the past, say f(yt, x
′
t, yt−1, x

′
t−1, . . .). Such a function

is similar to a model based forecast where we �rst specify some (linear) function on past

values and plug in some estimated parameter values that are again a function of past

values. For a univariate AR(1) forecast this approach result in the forecast function

ŷt+h,t =

∑t
s=t−T+h ysys−h∑t
s=t−T+h ys−h

yt = f(yt, yt−1, . . . , yt−T ).
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Note that this forecast function is a (nonlinear) �lter of the past values that does not

depend on any parameter. In our theoretical framework we assume that the (infeasible)

forecast is based on the optimal �lter represented by Y θ
t+h|t = θYt, whereas the feasible

forecast is given by Ŷt+h|t = Y θ̂
t+h|t = f(yt, yt−1, . . . , yt−T ). No matter how the �lter

f(yt, yt−1, . . . , yt−T ) is derived (maybe some �guess� based on past observations, maybe

using some statistical plug-in estimators for the parameters) the relevant issue is whether

the di�erence Ŷt+h|t − Y θ
t+h|t is su�ciently small such it does not a�ect the test decision.

In other words, for our analysis it is su�cient to assume that the order of magnitude of

f(yt, yt−1, . . . , yt−T )−Y θ
t+h|t from the survey forecasts is similar to Y θ̂

t+h|t−Y θ
t+h|t resulting

from the parametric model framework. Based on the existing empirical literature, we have

no reason to suppose that survey forecasts perform systematically worse than forecasts

derived from some statistical model.

In our empirical analysis we consider forecasts of real GDP growth and real private

consumption growth, because these are the only quarter-on-quarter (q-o-q) growth rates

in the survey. For the indices of consumer prices (CPI), only forecasts for quarterly year-

on-year (y-o-y) rates are available. Given the importance of in�ation forecasts, we also

include these forecasts in our analysis. However, given the y-o-y de�nition, and denoting

the forecast horizon for the current quarter, i.e. the nowcast by h = 0, we can expect to

�nd h∗ ≥ 2. This is because knowledge about past values of the price index enables the

forecasters to mechanically produce forecasts which have lower mean-squared prediction

errors than the unconditional mean up to h = 2.9 In addition to these variables, we also

investigate the forecasts of the end-quarter values of the 3-month interest rate. Since

interest rates show signs of non-stationarity in the sample under study, we use the �rst

di�erences of this variable. The countries under study are the United States, the euro area

(labeled `Eurozone' by Consensus Economics), Japan, Germany, the United Kingdom,

Italy, Canada, and France.

Since, in each quarter, Consensus Economics also provides data for recent quarters,

we can employ this real-time data for the evaluation of the forecasts. We use the second

vintage of all variables mentioned.

Considering forecasts for up to h = 6 quarters ahead, the balanced sample of forecasts

and realizations starts in the third quarter of 1996 and ends in the �rst quarter of 2016,

yielding a sample size of n = 79. However, the sample sizes for individual variables can

be smaller, mainly due to changes in the survey. For example, in the beginning of the

sample, the survey switched from asking for West German variables to variables for the

9The year-on-year rate for h = 2 equals the sum of the quarter-on-quarter rates for h = −1, 0, 1, 2.
Using the observed quarter-on-quarter rate for h = −1 and the unconditional mean as the forecast of the
quarter-on-quarter rates for the latter three horizons yields a MSPE for the year-on-year rate forecast for
h = 2 which is lower than the variance of the year-on-year rates by construction. If information on the
current quarter is available, the maximum forecast horizon must be equal to or larger than 3.
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reuni�ed Germany, and we only consider the latter forecasts. The 3-month interest rate

to be forecasted for Germany, Italy and France changed in the �rst quarter of 1999 from

country-speci�c rates to the Euribor. Only the Euribor forecasts enter our analysis. While

they can be expected to be similar across the three countries, di�erences might emerge,

for instance, due to the smaller number of forecasters for Italy. For Japan, the target

variable of the interest rate forecasts changed from the 3-month Yen certi�cate of deposit

to the TIBOR in the second quarter of 2010, and we only use the former forecasts.

In some countries, several large changes of the value-added tax rate (VAT) occurred.

Since these changes are commonly announced well in advance, their occurrence can have

a major impact on the predictability of in�ation. In addition, the growth rate of real

private consumption tends to be strongly negatively correlated with the VAT rate change

contemporaneously, and in addition, there is a strong positive correlation in the quarter

prior to the VAT rate change. We use the following rule in order to limit the impact of

these changes on our analysis: For countries with at least two VAT rate changes of at

least 2 percentage points, we shorten the sample such that these changes are excluded.

This rule leads to sample modi�cations for Japan and the UK. We are going to report

results obtained without this modi�cation in the text, but not in the following �gures

and tables. More details on the variables and samples entering our analysis are given in

Appendix B.

The quarterly forecasts are usually gathered in the �rst half of the last month of a

quarter. Therefore, the forecasters can be expected to have information about the variable

of interest in the current quarter, i.e. for the forecast (resp. nowcast) horizon h = 0. Note

that for the q-o-q growth rate of consumption in Japan and in the UK, the nowcast is

uninfomative and hence ĥ∗ = −1. Concerning in�ation, at least the in�ation rate for

the �rst month of the current quarter should be known when the forecast is made. This

implies that one can expect ĥ∗ ≥ 3 for the y-o-y in�ation rates.

As an example forecast consider the in�ation forecasts for the United States provided

in 2016 as presented in Figure 2. What is striking about the forecasts for longer horizons

is that they tend to settle at a value of about 2.3 which is almost identical to the mean

of in�ation in the evaluation period, being equal to 2.27 percent.

The empirical maximum forecast horizons ĥ∗ determined by the tests are shown in

Table 6. The sequential p-values of the tests giving rise to these values of ĥ∗ are displayed

in Figures 3 to 6. Notably, ĥ∗ is virtually always smaller than the largest forecast horizon

of h = 6. The encompassing test implies larger values of ĥ∗ than the DM-type test in

several cases. This may be due to potential biases of the forecasts. The larger the bias

is at ĥ∗ + 1, where ĥ∗ is determined by the DM-type test, the more likely it is that the

encompassing test still rejects at this horizon.

For the q-o-q growth rates of real GDP growth, ĥ∗ tends to range from 1 to 3 quarters.
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Figure 2: Forecasts for year-on-year US CPI in�ation rates. The number on the x-axis
denotes the forecast horizon in quarters with 0 being the nowcast.

Table 6: Maximum forecast horizons in quarters determined by DM-type and encompass-
ing tests

US EA JP DE UK IT CA FR median
GDP q-o-q

DM-type test 2 2 1 1 3 1 1 2 1.5
encompassing test 2 2 1 2 3 5 1 4 2

CPI y-o-y
DM-type test 3 5 3 2 2 3 4 3 3
encompassing test 3 3 4 3 3 3 4 3 3

PrivCons q-o-q
DM-type test 3 1 −1 0 −1 1 0 2 0.5
encompassing test 3 3 0 3 3 3 1 5 3

d(3m rate)
DM-type test 1 0 3 2 2 1 2 2
encompassing test 2 0 2 6 3 1 2 2

Note: The DM-type test uses d̃h, the encompassing test employs β1,h. `GDP q-o-q' denotes quarter-on-quarter
growth rates of real GDP, `CPI y-o-y' year-on-year growth rates of consumer prices, `PrivCons q-o-q' quarter-on-
quarter growth rates of real private consumption, and `d(3m rate)' quarter-on-quarter changes of the end-quarter
3-month interest rate. The abbreviations used for the countries are `US' for the United States, `EA' for the euro
area, `JP' for Japan, `DE' for Germany, `UK' for the United Kingdom, `IT' for Italy, `CA' for Canada, and `FR' for
France. For further information on the variables, see the text and Appendix B.
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Only for Italy and France, the encompassing test leads to larger values. The median of ĥ∗

across countries is 1.5 quarters according to the DM-type test, and 2 quarters according

to the encompassing test.

Concerning the y-o-y growth rates of the CPI, ĥ∗ is mostly equal to 3 quarters, which

is also the median across countries according to both tests. Only for Canada, both tests

indicate a higher value of ĥ∗ = 4. For the Euro area and Japan, at least one test indicates

a larger value. Given the considerations with respect to y-o-y rates and nowcasts made

at the end of h = 0, these results indicate substantial di�culties in making informative

in�ation forecasts. Using the full sample for Japan and the UK leaves the results for the

UK unchanged, but leads to ĥ∗ ≥ 6 for Japan according to both tests. Thus, as to be

expected, strong changes in the VAT rate which are announced well in advance can render

in�ation forecasts informative even at larger horizons.

The results for the q-o-q growth rates of real private consumption growth vary strongly

across tests and countries. The encompassing test often implies pronouncedly larger values

of ĥ∗ than the DM-type test. Moreover, ĥ∗ according to the encompassing test is mostly

larger than in the case of real GDP growth. These results might be due to the facts that

announced changes in the VAT rate are relatively important for private consumption, and

that consumption forecasts often tend to biased. Indeed, using the full sample for Japan

and the UK leads to ĥ∗ ≥ 6 for both countries according to both tests. With the restricted

sample, for the UK, the DM-type test indicates that not even the nowcast is informative.

The maximum forecast horizon for the change in the 3-month interest rate mostly

varies between 1 quarter and 3 quarters. For the UK, the encompassing test �nds infor-

mative forecasts at least up to h = 6. Except for the latter case, the two ĥ∗ found by

the tests for a given country do not di�er by more than 1 quarter. For Japan, only the

nowcasts turn out to be informative.

9 Concluding remarks

This paper develops a forecast evaluation framework for testing the null hypothesis that

the forecast at some pre-speci�ed horizon h is uninformative. The tests are constructed

such that they can be used if the forecasts and the corresponding realizations are the only

data available to the evaluator. The proposed tests can be applied sequentially to identify

the maximum forecast horizon of the predictions. We show that due to the nested nature

of the forecast comparison the standard Diebold-Mariano (DM) type test statistic has a

nonstandard limiting distribution and su�ers from a severe loss of power. To overcome

this problem we adjust the test statistic and derive alternative tests from the encom-

passing principle that result in a Mincer-Zarnovitz regression. Our analysis of the local

power reveals that the DM-type test statistic is more powerful in the vicinity of the null
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Figure 3: Test results for quarter-on-quarter growth rates of real GDP. The number on
the x-axis denotes the forecast horizon in quarters with 0 being the nowcast. The dotted
line is at 0.05, corresponding to the signi�cance level of the tests. The dashed line is
at 1. The solid line indicates the MSPE-variance ratio. The DM-type test uses d̃h, the
encompassing test employs β1,h. The maximum forecast horizon ĥ∗ identi�ed by a test
equals the horizon before the smallest horizon for which the p-value of the test exceeds
0.05. 25
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Figure 4: Test results for year-on-year growth rates of the CPI (the RPI in the case of
the UK). For further explanations, see Figure 3.
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Figure 5: Test results for quarter-on-quarter growth rates of real private consumption.
For further explanations, see Figure 3.
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Figure 6: Test results for the change in the end-quarter 3-month interest rate. For further
explanations, see Figure 3.

28



hypothesis, whereas it performs similar to the encompassing test if the forecasts are more

informative. Our Monte Carlo simulations suggest that the DM-type test su�ers from

considerable size distortions in reasonable sample sizes, whereas the regression variant of

the encompassing test exhibits reliable sizes.

In our empirical analysis, we apply our tests to macroeconomic forecasts from the

survey of Consensus Economics. Our results suggest that forecasts of macroeconomic key

variables are hardly informative beyond 2�4 quarters ahead. Our results con�rm earlier

(anecdotal) �ndings from macroeconomic forecasting. The main contribution of our work

is to provide statistical tests that allow the forecaster to assess the maximum forecast

horizon of the forecast of interest.

It is worth mentioning that our testing approach (as any other empirical methodology)

has two major limitations. First, the estimated maximum forecast horizon may be biased

downwards if the predictive power is weak but not negligible. A similar caveat applies if

the number of forecasts in the evaluation sample is small. Second, the estimated maximum

forecast horizon depends on the approach model that generates the forecasts. If the

approach fails to exploit important information it may produce uninformative forecasts,

while a richer forecasting procedure may result in informative forecasts. Accordingly, any

quali�cation of the informative content is conditional on the forecasting approach.
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Appendix A: Proofs

Proof of Theorem 1:

Let h > h∗. Applying a mean-value expansion of the form Y θ̂t
t+h|t = Y θ

t+h|t+Dt+h(θ̄t)(θ̂t−θ),
where θ̄t denotes a value between θ̂t and θ yields

δht = [ut+h −Dt+h(θ̄t)(θ̂t − θ)]2 − (ut+h − uh)2

δht = u2t+h − (ut+h − uh)2 − 2ut+hDt+h(θ̄t)(θ̂t − θ) +Dt+h(θ̄t)
2(θ̂t − θ)2

= uh(2ut+h − uh)− 2ut+hDt+h(θ̄t)(θ̂t − θ) +Dt+h(θ̄t)
2(θ̂t − θ)2

where uh = n−1
∑n+h

t=h+1 ut and

θ̂t − θ = (θ̂t − θ̂0) + (θ̂0 − θ)

= Op

(√
n

T
· T−1/2

)
+Op(T

−1/2) = Op(T
−1/2)

due to Assumption 2 (iii). Furthermore, (ii) and (iv) imply

1

n

n∑
t=1

δht = u2h − 2
1

n

n∑
t=1

ut+hDt+h(θ̄t)(θ̂t − θ) +
1

n

n∑
t=1

Dt+h(θ̄t)
2(θ̂t − θ)2

= u2h +Op(T
−1)

and

γ̂δ(j) =
1

n

n∑
t=j+1

δht δ
h
t−j

=
1

n
u2h

n∑
t=j+1

(2ut+h − uh)(2ut+h−j − uh) + Op(T
−1)

=
1

n
u2h

[(
n∑

t=j+1

4ut+hut+h−j

)
− 3nu2h

]
+Op(T

−1)

= u2h

(
1

n

n∑
t=j+1

4ut+hut+h−j

)
+Op(n

−2) +Op(T
−1).

Hence

ω̂2
δ = γ̂δ(0) + 2

h−1∑
j=1

γ̂δ(j)

= 4u2h

(
γ̂u(0) + 2

h−1∑
j=1

γ̂u(j)

)
+Op(T

−1) +Op(n
−2)

= 4u2hω̂
2
u +Op(T

−1) +Op(n
−2).
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Thus,

dh =
1

ω̂δ
√
n

h∑
t=1

δht

=
(
√
nuh)

2 +Op(n/T )√
4nu2hω̂

2
u +Op(n/T ) +Op(n−1)

=

√
n|uh|
2ω̂u

+Op

(n
T

)
d→ |z|

2

where z is a standard normally distributed random variable.

Proof of Corollary 1:

The distribution of 2dh follows directly from Theorem 1. As shown in Theorem 1 we have

n∑
t=1

δht =
(√

nu
)2

+Op(n/T ) .

If n/T → 0 and ω̂2
u is a consistent estimator of the long-run variance of ut+h = Yt+h − µ

then d̃h possesses a χ
2 limiting distribution with one degree of freedom.

Proof of Theorem 3

Consider some h > h∗. We �rst analyze

n∑
t=1

(Ŷt+h|t − Ŷ h)(Yt+h − Y h) =
n∑
t=1

Ŷt+h|t(ut+h − uh).

An important problem with analysing this expression is that the estimation error in

Ŷt+h|t = Y θ̂t
t+h|t is correlated with uh. To sidestep this di�culty we decompose the forecast

into one component Y θ̂0
t+h|t that is independent of {u1+h, . . . , un+h} and show that the

remaining component is asymptotically negligible. Applying a mean value expansion

yields

Ŷt+h|t = Y θ̂t
t+h|t = Y θ̂0

t+h|t +Dt+h(θ̄t)(θ̂t − θ̂0)

where Dt+h(θ) = ∂Y θ
t+h|t/∂θ and θ̄t denotes some value between θ0 and θ̂t. Note that by

Assumption 2 Y θ̂0
t+h|t is uncorrelated with all uh+1, uh+2, . . . , un+h. Accordingly,

n∑
t=1

[
Y θ̂0
t+h|t +Dt+h(θ̄t)(θ̂t − θ̂0)

]
(ut+h − uh) = AT,n +B1

T,n +B2
T,n
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where

AT,n =
n∑
t=1

Y θ̂0
t+h|t(ut+h − uh)

B1
T,n =

n∑
t=1

Dt+h(θ̄t)(θ̂t − θ̂0)ut+h

B2
T,n = uh

n∑
t=1

Dt+h(θ̄t)(θ̂t − θ̂0).

Another mean value expansion around the true value θ with Y θ
t+h|t = µ yields

AT,n = (θ̂0 − θ)
n∑
t=1

Dt+h(θ̄0)ut+h − (θ̂0 − θ)uh
n∑
t=1

Dt+h(θ̄0)

= A1
T,n + A2

T,n

where θ̄0 is some value between θ̂0 and θ. Since θ̂0 and Dt+h(θ̄0) are uncorrelated with

ut+h it follows that A
1
T,n = Op(T

−1/2)Op(n
1/2), whereas A2

T,n = Op(T
−1/2)Op(n

−1/2)Op(n).

Thus, AT,n is Op(
√
n/T ). By Assumption 2 (iii) we have

ξT,n,t ≡ θ̂t − θ̂0 = aT,n,t

√
t

T
,

where aT,n,t is Op(1). Furthermore under the null hypothesis ξT,n,t and Dt+h(θ̄t) are

uncorrelated with ut+h. It follows that

n∑
t=1

ξ2T,n,tDt+h(θ̄t)
2u2t+h =

n∑
t=1

a2T,n,tt

T 2
Dt+h(θ̄t)

2u2t+h

=
n∑
t=1

b2T,n,t
t

T 2
= Op

(
n2

T 2

)
,

where bT,n,t = a2T,n,tDt+h(θ̄t)
2u2t+h = Op(1). Thus,

B1
T,n =

n∑
t=1

ξT,n,tDt+h(θ̄t)ut+h = Op

(n
T

)
.

Since

n∑
t=1

ξT,n,tDt+h(θ̄t) =
n∑
t=1

a2T,n,t
√
t

T
Dt+h(θ̄t)

= Op

(
n3/2

T

)
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and, therefore, B2
T,n = Op(n

−1/2)Op(n
3/2/T ) = Op(n/T ). As n/T → 0 It follows that√

T

n

n∑
t=1

(Ŷt+h|t − Y h)(Yt+h − Y h) =

√
T

n
(AT,n +B1

T,n +B2
T,n)

=

√
T

n
AT,n +Op

(√
n

T

)
=
√
T (θ̂0 − θ)

1√
n

n∑
t=1

Dt+h(θ̄0)(ut+h − uh) +Op

(√
n

T

)
Next we analyze

n∑
t=1

(Ŷt+h|t − Ŷ h)
2(Yt+h − Y h)

2 =
n∑
t=1

(Ŷt+h|t − Ŷ h)
2(ut+h − uh)2

Using the above mean value expansions we obtain

Ŷt+h|t = Y θ̂0
t+h|t +Dt+h(θ̄t)(θ̂t − θ̂0)

= µ+Dt+h(θ̄0)(θ̂0 − θ) +Dt+h(θ̄t)(θ̂t − θ̂0)

Ŷt+h|t − Ŷ h = D̃t+h(θ̄0)(θ̂0 − θ) + Ψ̃t+h(θ̂t, θ̂0)

where

D̃t+h(θ̄i) = Dt+h(θ̄i)− n−1
n∑
t=1

Dt+h(θ̄i)

Ψ̃t+h(θ̂t, θ̂0) = Dt+h(θ̄t)(θ̂t − θ̂0)−
1

n

n∑
t=1

Dt+h(θ̄t)(θ̂t − θ̂0)

for i = 0, 1, . . .. It follows that

n∑
t=1

(Ŷt+h|t − Ŷ h)
2(Yt+h − Y h)

2 = (θ̂0 − θ)2
n∑
t=1

D̃t+h(θ̄0)
2(ut+h − uh)2

+
n∑
t=1

Ψ̃t+h(θ̂t, θ̂0)
2(ut+h − uh)2

+ 2(θ̂0 − θ)
n∑
t=1

D̃t+h(θ̄0)Ψ̃t+h(θ̂t, θ̂0)(ut+j − uh)2

= C0
T,n + C1

T,n + C2
T,n .

For the leading term we obtain

C0
T,n = Op(T

−1)Op(n) = Op(n/T )
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For the second term we note that
n∑
t=1

a2T,n,t
t

T 2
Dt+h(θ̄t)

2(ut+h − uh)2 = Op(n
2/T 2).

Since the mean adjustment does not a�ect the order of magnitude we conclude that

C1
T,n = Op(n

2/T 2)

For the last term we obtain
n∑
t=1

aT,n,t

√
t

T
Dt+h(θ̄0)Dt+h(θ̄t) = Op(n

3/2/T )

and, since the mean-adjustment does not a�ect the order of magnitude,

C2
T,n = Op(n

3/2/T 3/2).

Combining these results yields

T

n

n∑
t=1

(Ŷt+h|t − Ŷ h)
2(Yt+h − Y h)

2 = T (θ̂0 − θ)2
1

n

n∑
t=1

D̃t+h(θ̄0)
2(ut − uh)2 +Op

(√
n

T

)
In the same manner it can be shown that for j = 1, 2, . . . , h

T

n

n∑
t=1+j

(Ŷt+h|t − Ŷ h)(Ŷt+h−j|t − Ŷ h)(Yt+h − Y h)(Yt+h−j − Y h)

= T (θ̂0 − θ)2
1

n

n∑
t=1

D̃t+h(θ̄0)D̃t+h−j(θ̄0)(ut+h − uh)(ut+h−j − uh) +Op

(√
n

T

)
.

De�ne V̂n,T = Γ̂0,n,T + 2
∑h−1

j=1 Γ̂j,n,T where

Γ̂j,n,T =
1

n

n∑
t=1+j

(Ŷt+h|t − Ŷ h)(Ŷt+h−j|t − Ŷ h)(Yt+h − Y h)(Yt+h−j − Y h).

It follows that

T

n
V̂n,T = T (θ̂0 − θ)2E

 1

n

(
n∑
t=1

D̃t+h(θ)(ut+h − uh)

)2
+ op(1).

Applying a suitable version of the central limit theorem it follows that

1√
nVn,T

n∑
t=1

(Ŷt+h|t − Y h)(ut+h − un) =

1√
n

n∑
t=1

D̃t+h(θ)(ut+h − uh)√√√√E

[
1
n

(
n∑
t=1

D̃t+h(θ)(ut+h − uh)
)2
] + op(1)

d→ N (0, 1)

�
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Proof of Theorem 4

Under the local alternative, we have for h = 1

Yt+1 − Y 1 = ut+1 − u1 + (c/
√
n)(Xt −X)

and the model prediction error is given by êt+h|t = ut+1 +Op(T
−1/2). Following the proof

of Theorem 1 we obtain for n/T → 0

n∑
t=1

δ1t = (
√
nu1)

2 − 2c√
n

n∑
t=1

(Xt −X)ut+1 −
c2

n

n∑
t=1

(Xt −X)2 +Op(n/T )

= (
√
nu1)

2 − 2cσuσxRn − c2σ2
x + op(1)

d→ σ2
uz

2
1 − 2σuσxcz2 − c2σ2

x ,

where
√
n

σu
u

d→ z1
d
= N (0, 1)

Rn =
1

σuσx
√
n

n∑
t=1

(Xt −X)ut+1
d→ z2

d
= N (0, 1)

Accordingly, for the modi�ed DM statistic we obtain

d̃1 =
1

σ̂2
u

n∑
t=1

δ1t
d→ z21 − 2c

σx
σu
z2 − c2

σ2
x

σ2
u

where σ̂2
u = n−1

∑n
t=1(ut+1 − u1 + (c/

√
n)Xt)

2 = σ2
u +Op(n

−1/2).

Using

Ŷt+1|t =
c√
n
Xt +Op(T

−1/2)

we have for n/
√
T → 0

n∑
t=1

ξ1t =
n∑
t=1

[
ut+1 − u1 +

c√
n

(Xt −X)

]
Ŷt+1|t

=
c√
n

n∑
t=1

ut+1(Xt −X) +
c2

n

n∑
t=1

(Xt −X)2 +Op(n/
√
T )

d→ c σuσxz2 + c2σ2
x .

Furthermore

nω̂2
ξ =

n∑
t=1

(ξ1t )
2 =

c2

n

n∑
t=1

(ut − u1)2(Xt −X)2 + op(1)

p→ c2σ2
uσ

2
x
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and, thus,

%1 =

1√
n

∑n
t=1 ξ

1
t√

ω̂2
ξ

d→ sign(c)z2 + |c|σx
σu

with sign(a) = 1 if a ≥ 0 and sign(a) = −1 for a < 0.

Appendix B - Data Descriptions

Concerning the quarter-on-quarter growth rates of real GDP, the only change that oc-

curred in the sample is from West German GDP to the GDP of the reuni�ed Germany in

the fourth quarter of 1995. Forecasts for the euro area started being collected in the last

quarter of 2002 for all variables except the 3-month interest rate.

The in�ation measure used is the year-on-year growth rate of the index of consumer

prices (CPI) for all countries except for the UK, where the retail price index (RPI) is used,

because the sample of forecasts for the CPI does not start until 2004. In�ation forecasts

for the reuni�ed Germany started in the fourth quarter of 1996.

Private consumption is measured by the personal consumption expenditures in the

US and Canada, by private consumption in Japan, Germany, and the Euro area, and by

household consumption in France, the UK, and Italy. Private consumption forecasts for

the reuni�ed Germany started in the fourth quarter of 1995.

The 3-month interest rate is measured at the last day of the quarter. The interest rate

used in the analysis is the 3-month treasury bill rate for the US and Canada, the 3-month

Yen certi�cate of deposit rate for Japan, with the sample ending in the �rst quarter in

2010, the 3-month Euribor in Germany, Italy, and France, with the sample starting in the

�rst quarter of 1999, and the 3-month interbank rate for the UK.

The changes in the VAT rates are listed in Table 7. Since Japan and the UK expe-

rienced two VAT rate changes of at least 2 percentage points, we adapt their samples of

in�ation and private consumption. For Japan, both samples start in the second quar-

ter of 1997 and end in the fourth quarter of 2013, because in the �rst quarter of 2014,

real private consumption already increased substantially due to the following VAT rate

increase. For the UK, the samples continue to start in the �rst quarter of 1995, but end

in the second quarter of 2008.

All resulting sample sizes can be found in Table 8.
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Table 7: Changes in the value-added tax rates in percentage points

VAT rate in pp
Country Date from to change

Japan Apr 97 3 5 2
Japan Apr 14 5 8 3
Germany Apr 98 15 16 1
Germany Jan 07 16 19 3
France Apr 00 20.6 19.6 -1
Italy Oct 97 19 20 1
Italy Sep 11 20 21 1
Italy Oct 13 21 22 1
UK Dec 08 17.5 15 -2.5
UK Jan 10 15 17.5 2.5
UK Jan 11 17.5 20 2.5
Canada Jul 06 7 6 -1
Canada Jan 08 6 5 -1

Table 8: Numbers of observations n

US EA JP DE UK IT CA FR
GDP q-o-q 79 48 79 76 79 79 79 79
CPI y-o-y 79 48 63 72 48 79 79 79

PrivCons q-o-q 79 48 63 76 48 79 79 79
d(3m rate) 79 53 63 79 63 79 63

Note: `GDP q-o-q' denotes quarter-on-quarter growth rates of real GDP, `CPI y-o-
y' year-on-year growth rates of consumer prices, `PrivCons q-o-q' quarter-on-quarter
growth rates of real private consumption, and `d(3m rate)' quarter-on-quarter changes
of the end-quarter 3-month interest rate. The abbreviations used for the countries are
`US' for the United States, `EA' for the euro area, `JP' for Japan, `DE' for Germany,
`UK' for the United Kingdom, `IT' for Italy, `CA' for Canada, and `FR' for France.

Appendix C - Not for Publication
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Table 9: Results for case `MA (1)a-AR (1)'

forecast horizon h 0 1 2 3 4 0 1 2 3 4

T = 100, n = 50 T = 100, n = 100

MSPE / Variance 0.96 1.03 1.03 1.03 0.96 1.03 1.02 1.02

rejections
DM-type tests

d̃h 0.68 0.12 0.12 0.12 0.80 0.07 0.07 0.08
dh 0.69 0.12 0.12 0.12 0.81 0.08 0.08 0.08

encompassing tests
β1,h 0.57 0.04 0.03 0.03 0.75 0.02 0.03 0.03
%h 0.42 0.02 0.02 0.02 0.68 0.02 0.02 0.02

classical DM test 0.10 0.00 0.00 0.00 0.15 0.00 0.00 0.00

ĥ∗

DM-type tests

d̃h 0.32 0.60 0.06 0.02 0.01 0.20 0.74 0.04 0.01 0.00
dh 0.31 0.61 0.06 0.02 0.01 0.19 0.75 0.05 0.01 0.00

encompassing tests
β1,h 0.43 0.56 0.02 0.00 0.00 0.25 0.73 0.02 0.00 0.00
%h 0.58 0.41 0.00 0.00 0.00 0.32 0.67 0.01 0.00 0.00

classical DM test 0.90 0.10 0.00 0.00 0.00 0.85 0.15 0.00 0.00 0.00

Note: For explanations, see Table 4. In contrast to Table 4, the estimation is carried out using a rolling window of length
T .
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