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Abstract

For an asset traded in multiple venues, an outstanding problem is how those places indi-

vidually contribute to the price discovery mechanism (the incorporation of information into

prices). I show that existing measures of price discovery lead to misleading conclusions when

using High-frequency data, due to uninformative microstructure noises. I then propose robust-

to-noise measures, good at detecting “which market incorporates quickly new information”.

Using the Dow Jones stocks traded on NYSE and NASDAQ on the period March 1st to May

30th 2011, I show that the data are in line with my theoretical conclusions. In addition, when

the Information Share measure gives wide bounds making it unusable, my proposed robust IS

has very close bounds. I later obtain that price discovery mostly happens on NYSE and is pos-

itively correlated with its liquidity and its market share in small and big size transactions. For

NASDAQ-listed stocks, large quantities trades do not convey information and NASDAQ con-

tribution to price discovery increases slightly the days with macroeconomic announcements.
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1 Introduction

The institutional evolutions of financial markets and the development of High-frequency Trading
generated a growing literature on the resulting consequences on market’s outcomes. The multipli-
cation of trading platforms coupled with the internationalization of financial markets resulted in
some assets being listed simultaneously in many town or even many countries. Similarly traders
can send orders in remotely located market places. The trading prices for a given security on those
interrelated markets are strongly linked by arbitrage activities. A similar situation arises for one
security and its derivatives: The spot prices are related to futures prices, the CDS prices are related
to the credit spread.

The price discovery mechanism is generally understood as the process by which information is
computed into prices, it is interesting in the multiple markets setup to understand how each market
does so. An international investor for instance, choosing how to split the orders in different markets,
might find it worthy to know where the price is close to the fundamental. The regulator also, in
its quest to the best market organization, is interested in which market contributes to the price
movement of an asset and for which reasons1. This quest of the market with the “best” information
processing mechanism goes back to Garbade and Silber (1983) problem: which market is dominant
and which market is satellite?

To determine in which market price discovery happens some tools (known as price discovery
measures) are developed in the literature. Hasbrouck (1995) pioneer paper, using the Beveridge-
Nelson permanent component, presented a measure called the Information Share (IS) and provided
comparison of NYSE and regional exchanges in the quotes formation of Dow stocks. The main
competing measure to Hasbrouck (1995) is the PT measure inHarris et al. (2002b), consisting of
the common factor weight in the permanent-transitory (PT) decomposition of Gonzalo and Granger
(1995). Those measures are intensively debated by De Jong (2002), Lehmann (2002), Hasbrouck
(2002),Baillie et al. (2002), and Yan and Zivot (2010). One conclusion of the debate is that the IS
accounts more for the variability in the price discovery process and the permanent (efficient) price
identified by Hasbrouck (1995) has an economic relevance2.

The other part of the debate lies in their view of price discovery. Hasbrouck (1995) sees it as
“who moves first” in the process of price adjustment and Harris et al. (2002b) as the process by
which security markets attempt to identify permanent changes in equilibrium transaction prices.
Meanwhile, what their proposed measures actually capture is unclear. And as stated by Lehmann
(2002), a market should dominate the price discovery if it is the best in incorporating information

1Eun and Sabherwal (2003) report that the Canadian authority was really worried about US-markets becoming the
place where the Canadian’s stock prices were computed

2The PT relies on a permanent price that is not a random walk
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in a “timely and efficient” manner. This widely accepted characterization of market dominance
presents two dimensions. The first dimension is the timing: a market reflecting quickly new in-
formation is close to efficiency. The second dimension is the avoidance of noises. A market with
less noises is also efficiently incorporating information. The noises can come from uninformative
sources as bid-ask bounce, price discreteness, and measurement errors. It is then not very clear
which dimension is actually captured by the existing measures. For example, using Monte Carlo
exercises, Putnin, š (2013) obtains that IS and PT are actually assessing how markets avoid noises.
Whereas Yan and Zivot (2010) obtains in a specific structural VECM that the PT assess how mar-
kets avoid noises while the IS captures both dimensions.

This study innovates in exposing new facts on price discovery measures, particularly linked
to the utilization of High-frequency data. Using those data bring issues that are studied in the
literature for volatility estimation in the presence of microstructure noises (see Andersen et al.,
2000; Zhang, 2010; Jacod et al., 2009). I show that IS and PT are not related to the fundamental
value but rather to information-uncorrelated noises. This could lead to misleading interpretations
in applications. I also contribute to the literature by proposing new measures that are robust-to-
noise and restore a clear interpretation of what is being measured: My robust IS (ISR) and robust
PT (PTR) measures are good at detecting which market incorporates quickly new information. My
framework incidentally provides values to compare the pure noise in the markets.

If both “speed” and “noise-avoidance” dimensions of price discovery are relevant and mean-
ingful, confusions might come in utilization of price discovery measures as their nature can change
given the frequency of data at hand. The analysis of price discovery should disentangle the previous
two dimensions for the following reasons:

First, the way most papers consider a market to be informationally dominant is that, once new
information is available, the price of the asset on this market is the first to reflect it. But this market
might be more affected by information uncorrelated-noise, if it has a different tick size for example.
It is thus unclear which effect will dominate in the measure or which market reveals more about the
fundamental value. Let’s take the extreme case where one market’s price equals the efficient price
plus a noise with infinite variance, and another market’s price is the one-period lagged efficient
price. The latter market is clearly more informative about the efficient price even if the first market
is the fastest. It thus appears that another source of confusion about what the measures will do is
the size of the noise in the data. On this matter, I provide analytical insights on how price discovery
measures are related to microstructure noises and the sampling frequency.

Secondly, Hasbrouck (1995) defines its price discovery measure as the contribution of a mar-
ket’s innovation to the variance of the innovation in the efficient price. He then suggests that his
Information Share is good at detecting which market moves first. This statement is somewhat giv-
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ing more importance to the fact that a market is the first to incorporate information. In addition,
the IS has an identification problem and is only able to produce bounds3. Sometimes, bounds can
be wide making the IS useless. Hasbrouck (1995) recommendeds to sample at High-frequency to
reduce the correlation and tighten the IS bounds, but this practice ignores that at High-frequency
non informative part of the noise dominates the variances estimation4. Meanwhile in application,
Chakravarty et al. (2004) use IS and are interested in the timing sequence when they justify their
contribution to the literature by stating: “there is surprisingly little evidence that new information
is reflected in option prices before stock prices”. My paper emphasizes that at high frequency the
IS is not related to the efficient price and rather measures which market avoids noise.

Lastly, an endogeneity problem could arise in a number of applications. The values provided
by price discovery are used as dependent variables in regression to investigate the determinants
of a market’s dominance. Chakravarty et al. (2004) use IS to show that 17% of informed trading
happens in the options markets, and that price discovery across strike price is determined by rela-
tive spread, leverage, and volume. Huang (2002) uses the IS to compare who has the most timely
and informative quote, between Electronics communication Networks (ECNs) and Nasdaq; they
find that measures of market liquidity do not necessarily explain the market maker’s contribution
to price innovation. Barclay et al. (2003) study the impact of trading costs variables on the In-
formation Share of ECNs. Eun and Sabherwal (2003) regress the PT coefficients on the relative
spread, volume, listing age, and market Cap, to explain the contribution of Toronto Stock Exchange
(TSE) and U.S. exchanges to price discovery of cross-listed Canadian stocks. As an example, in
Chakravarty et al. (2004), the price discovery of the option market, measured by the IS, tends to be
greater when the effective bid-ask spread is narrow relative to the stock market. If by definition the
IS were to fully capture the bid-ask spread noise, then there is full endogeneity in their regression
of the IS on the bid-ask spread. By disentangling the two aspects of price discovery, my proposed
robust measures can be used to avoid the endogeneity issue.

In the application, using data of NYSE TAQ database, I examine if my conclusions are in
line with the data. I observe that indeed the data seem to present the patterns I highlighted, but
the frequency of the transactions might not be high enough to show certain features. As quotes
data are more frequent, I do the same analysis with mid-quotes of some assets and it confirms
my theoretical conclusions. I then investigate the relative contribution of NYSE and NASDAQ to
the price formation of Dow Jones assets. The robust IS measure performs well as it has very close
bounds, when the standard IS bounds are wide and thus unusable. Descriptively, NYSE captures the
big part of volume traded but NASDAQ is the most liquid with a high level of activity. This implies

3 it is based on the Cholesky decomposition of variance matrix and is thus dependent of variables ordering.
4This is related to the signature plot of Andersen et al. (2000)
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that NASDAQ mostly runs the orders of small quantities while NYSE runs big quantities orders.
In terms of contribution to price discovery for the assets under investigation, NYSE is generally
dominant. The contribution of a market appears to be positively correlated with its liquidity. I also
analyze the correlation between market’s contribution and markets share in each category of trade
size. It reveals that the contribution of a market is correlated with its share in small size transactions.
For NASDAQ listed stocks, there is no correlation with market’s share in big size transactions, so
large quantities trades do not convey information.

The Macroeconomic indicators5 announcements are some of the times where fundamental in-
formation arrive in the markets, I compute the measures for the News-days and for the non-News
days. I obtain that the contribution of NASDAQ to price discovery slightly increases the days with
news. Traders wanting to exploit quickly those public pre-scheduled news, could prefer to do so on
the most liquid market.

The remainder of the paper is organized as follow. The second section reviews the main existing
measures of price discovery. The third section presents some structural microstructure models and
the price discovery measures are analytically computed at High-frequency. In the fourth section I
propose the robust-to-noise measures and present their performances in some simulation exercises.
In the fifth section, an application is done on assets of the Dow Jones that are listed and traded on
NYSE and NASDAQ on the period March 1st to May 30th 2011.

2 Measuring price discovery

Constructing a price discovery measure would normally require that the object of interest be clearly
identified. There is a current and permanent discussion in this respect with existing measures. This
originates from the fact that they are defined on a reduced form model and not in a structural model.
The approach to build prices discovery measures is to extract a common unobserved permanent
price from the observed prices, and to attribute its characteristics to each market.

Let’s consider an asset traded on markets 1 and 2 at the respective prices p1t and p2t
6. This

is done via the VECM representation of the cointegrated price vector pt = (p1t , p2t)
′. The gap

between the two prices (p1t− p2t) is stationary such that there exists only one common trend for
the prices. In fact, because the prices in the two markets are from the same asset, a gap between
them can not remain infinitely as there will be room for profits by arbitrage (for example buying
continuously in the first market and selling in the second). Under the previous notations and restric-
tions implied by arbitrage, Johansen (1991) results imply that the price vector admits the following

5E.g: Non farm payroll, Fed Fund rates, CPI, PPI...
6The results are easily obtained for more than 2 markets
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Vector Error Correction Model (VECM):

∆pt =−αβ
′pt−1 +Γ1∆pt−1 + . . .+ΓK∆pt−K + et , (1)

where the cointegrating matrix is β ′ = ( 1 −1 ) as β ′pt = p1t − p2t is stationary. et is an
independent white noise with var(et) = Ω.

The Granger representation theorem gives the following transformation of 1 where Ψ(L) is a
lag polynomial:

pt = p0 +Ψ(1)
t

∑
s=1

es +Ψ
∗(L)et , (2)

where the matrix Ψ(1) is given by

Ψ(1) = β⊥

(
α
′
⊥

(
I−

p

∑
i=1

Γi

)
β⊥

)−1

α
′
⊥. (3)

The representation 2 entails a decomposition of the prices in a stationary component p0 +

Ψ∗(L)et and a permanent component Ψ(1)∑
t
s=1 es . The matrix Ψ(1) summarizes the long run

impact of the innovation et on prices pt .

2.1 The Information Share measure

Hasbrouck (1995) looks for a measure that will determine on which market the price discovery
does happen. He proposes to use the contribution of each market to the variance of the innovation
of the “efficient price” price.

As β ′ = ( 1 −1 ), its orthogonal β
′
⊥ = ( 1 1 ) and the formula 3can be written as

Ψ(1) =

(
1
1

)
ψ =

(
1
1

)(
ψ11 ψ12

)
.

The 2×1 row ψ replaced in equation 2 yields

pt = p0 +

(
1
1

)
ψ

t

∑
s=1

es +Ψ
∗(L)et . (4)

This representation displays a scalar random walk component of the prices ψ ∑
t
s=1 es, and a

stationary part Ψ∗(L)et that might be attributed to transitory effects. The common permanent com-
ponent is identified as the implicit fundamental price of the asset. Something to notice here is
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that et drives both the permanent and the transitory component. So, the construction does not dis-
tinguish the non-informative noise (due for example to tick size or measurement errors) from the
information-correlated frictions that would be due to information asymmetry, market under/over
reaction (Menkveld et al., 2007).

The new information entering the fundamental price is the innovation ψet , and its variance
(ψΩψ ′) is the total Information Share. Hasbrouck (1995) defines the market contribution to price
discovery in the following way.

If Ω is diagonal, then the total Information Share is

ψΩψ
′ = ψ

2
11Ω11 +ψ

2
22Ω22

and the Information Share (IS) for the market j, defined as the relative contribution of this market
in the variance of the new information, is obtained as:

IS1 =
ψ2

1 Ω11

ψ2
11Ω11 +ψ2

22Ω22
and IS2 =

ψ2
2 Ω22

ψ2
11Ω11 +ψ2

22Ω22
. (5)

As Ω is not diagonal in general, Hasbrouck (1995) suggests using its Cholesky root to obtain a
lower triangular matrix F , such that Ω= FF ′. An identification problem arises as the ranking of the
variables matters for the Cholesky decomposition. That is the matrix F changes with the ordering
of the variables in the prices vector. Thus, the Information Share measure can only provides an
upper and a lower bounds.

When the market 1 is placed in the first position in pt , then Ω = FF ′, and I have the bounds

ISu,1 =
([ψF ]1)

2

ψΩψ ′
and ISl,2 =

([ψF ]2)
2

ψΩψ ′
, (6)

where [ψF ] j represents the jth element of the vector ψF .
Now if the market 1 is switched to the 2nd position in pt , the new Cholesky root F̃ is obtained

such that Ω = F̃F̃ ′. The others bounds are

ISu,2 =

(
[ψF̃ ]1

)2

ψΩψ ′
and ISl,1 =

(
[ψF̃ ]2

)2

ψΩψ ′
(7)

The non-uniqueness of the Information share is a problem for applications as the measure are
used as dependent variable in regression. Many studies thus, simply consider the lower bound or
take the mid-bounds (see Chakravarty et al., 2004; Putnin, š, 2013).

The IS identification issue is related to the Macroeconomics VAR literature problem of identi-
fying the structural shocks from the reduced form model. Relying on Hasbrouck (1995)’s efficient
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price, some authors tried to solve this by doing some transformations of the innovation variance
matrix. The limit of those techniques is that they completely lose an economic meaning behind the
mathematical operations. For example, Lien and Shrestha (2014) use an orthogonalization of the
correlation matrix to propose a measure that is independent of the variables ordering. Meanwhile
there is no economic intuition behind the orthogonalization of the correlation matrix. Grammig and
Peter (2013) exploit “tail dependence” for identification which is done through heteroskedasticity
on two regimes as in Rigobon (2003), Lanne and Lütkepohl (2010). The drawback is that identi-
fication relies on the data and it is not always the case that they provide enough tail dependence
to identify unique information share. Another limit of all the existing method based on Hasbrouck
(1995) efficient price is that they lack a testing theory. This is not the case of the PT measure, which
in turn, has the severe drawback that its efficient price is not a random walk.

2.2 The Permanent-Transitory measure

The main competitor to IS is the Gonzalo and Granger (1995) common factor weight in the
Permanent-Transitory (PT) decomposition. This consists of decomposing a difference stationary
time series as the sum of a permanent component Qt and a transitory stationary component Tt . The
identification of the two components of pt = Qt +Tt relies on two assumptions:

• Tt does not Granger-cause Qt in the long run,

• Tt is a linear combination of the observed variables.

In the context of one asset and many markets, the permanent component is driven by a difference
stationary7 factor ( ft) that is common to both markets, such that the observed prices vector can be
written as

pt =

[
1
1

]
ft +Tt .

The common factor is a linear combination of current prices ft = γ1 p1t + γ2 p2t . It is easily
shown that given the ECM equation 1, the weight (γ1γ2) are proportional to α⊥ such that:

ft = cα1⊥× p1t + cα2⊥× p2t

with c constant.
Harris et al. (2002a) evaluate the relative contribution to price discovery of market 1 and market

2 by taking the weight of each market in the permanent component as
7Or integrated of order 1 denoted I(1)
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PT1 =
α1⊥

α1⊥+α2⊥
,PT2 =

α2⊥
α1⊥+α2⊥

.

The link between the permanent price extracted by Hasbrouck (1995) and the permanent price
of Harris et al. (2002b) is studied by De Jong (2002). A difference between the PT measure with the
IS measure is that ft is a linear combination of only the current prices. Thus the permanent compo-
nent of the Gonzalo and Granger (1995) decomposition is generally not a random walk. This is a
serious limitation as this permanent component could not represent an efficient price and only gets
an economic meaning in a structural model (see Lehmann, 2002). Baillie et al. (2002) show that IS
and PT can be computed easily after the estimation of the VECM and they present the relationship
linking PT to IS. In the case of a diagonal Ω, the PT squared coefficients are weighted by the inno-
vations variances to obtain IS. This is seen by deducing

(
ψ11 ψ12

)
= c
(

α1⊥ α2⊥

)
from for-

mula 3 and replacing for example in formulas 5 to obtain IS1 =
(
α2

1⊥Ω11
)
/
(
α2

1⊥Ω11 +α2
2⊥Ω22

)
.

Instead of focusing on the innovation variance, the permanent component share relies on the
error correction weighting matrix α⊥. In this respect Eun and Sabherwal (2003) also think of
price discovery as the adjustment to the equilibrium and access it by the coefficient α summarizing
how a market corrects a departure from the other market price. Building the measures with only
a coefficient of the VECM allows those methods to have testable implications and thus test of
statistical significance can be performed.

3 Microstructure models and sampling frequency

The price discovery measures presented in Section 2 are used in the literature to detect which
model is likely to have generated the observed log prices pt ≡ (p1t , p2t)

′
. Are the two markets

structurally identical? Is one market leading the information while the other is lagged? To compare
the performances of the measures in answering those questions, literature relies on some structural
microstructure models (see Hasbrouck, 2002; Harris et al., 2002a) representing the different situ-
ations that might arise on market . I rewrite versions of those models to make them dependent of
the sampling interval h and a delay parameters δ . For those models, ∆pt generally admits a Vector
Moving-Average of order 1 (V MA(1)) representation, allowing to compute analytically the values
of the prices discovery metrics. The VMA(1) equation is

∆pth = eth +Θeth−h with Θ =

(
−1+ c 1+d

c d

)
, (8)
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where eth is the white noise innovation with variance Ω = var (eth) =

(
σ11 σ12

σ12 σ22

)
.

The long run impact matrix is thus

Ψ(1) = I +Θ =

(
c 1+d

c 1+d

)
= ψ

(
1
1

)
with ψ =

(
c 1+d

)
(9)

To compute the measures, one needs the values of the parameters Ω, c, d in terms of the structural
parameters in pt . For this, the values of the structural variance and autocovariance are matched
with the ones of the VMA(1) equation 8. That is

C0 = var(∆pth) = Ω+ΘΩΘ′

C1 = cov(∆pth,∆pth−h) = ΘΩ
(10)

Computing ΘC0 and replacing ΘΩ by C1 gives the equation 11

C1−ΘC0 +ΘC1Θ
′ = 0 (11)

For each of the model I will present, I computed Θ by solving this matrix equation via long and
tedious calculations given in appendix, and then Ω is obtained as Ω = Θ−1C1. Next, I present the
structural models of interest and study the behavior of the price discovery measures.

3.1 Model I: A two-market “Roll” model.

In model I, both markets incorporate the efficient price mt . This situation could arise from markets
with no private information, and an efficient price driven by public non-traded information. At the
sampling interval h, the latent fundamental log price of the asset is

mth = mth−h +ηth

The innovation is ηth = σhN (0,1) and its variance σ2 (h) converges to zero when h goes to zero.
This is not a limitation as empirically the returns and their variance become very small at high
frequency. It can also be viewed in the discretization of the often-used continuous time model
dmt = σdBt , implying σh = σ

√
h. The observed prices are contaminated by i.i.d non correlated

microstructure noises
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p1th = mth + c1ε1th (12)

p2th = mth + c2ε2th

ε1t ,ε2t ,∼N (0,1) with E (ε1tε2t) = E (ηthε1t) = E (ηthε2t) = 0. The constants c1,c2 represent the
variances of the noise components. They could be made dependent of h and going to zero but
less faster than σh. This will not change the main conclusions as all the facts I describe remain
qualitatively the same.

In this setup, there is no market dominating the price discovery process considered as the pre-
dominance in incorporating the new information ηth.

I compute the variance and covariance 10 and obtain

C0 =

(
σ2

h +2c2
1 σ2

h

σ2
h σ2

h +2c2
2

)
and C1 =

(
−c2

1 0
0 −c2

2

)
.

Using C0 and C1 to solve equation 11, the values of ψ and Ω that are necessary to compute the
different measures, are obtained in terms of the structural parameters σ2

h , c2
1, c2

2.

Lemma 1. In model I, solving equations 44 gives

ψ = κ

(
c−2

1 c−2
2

)
and Ω = K

(
c2

1
(
1− c−2

2 κ
)

κ

κ c2
2
(
1− c−2

1 κ
) ) (13)

With κ =−1
2

hσ
2 +
√

hσ
1
2

√
hσ2 +

4c2
1c2

2(
c2

1 + c2
2
) , (14)

K =
[
1−κ

(
c−2

1 + c−2
2
)]−1

. (15)

Proposition 1. The PT measure

Using the results in Lemma 1, the PT gives

PT1 =
c−2

1

c−2
1 + c−2

2
and PT2 =

c−2
2

c−2
1 + c−2

2
. (16)

Proof. See Appendix

The PT does not assess the priority to incorporate mt but is completely dependent of noises.
The contribution of a market is inversely proportional to its own noise. That is, the market with the
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lowest noise has the biggest contribution, and the PT is measuring the avoidance of noises at any
frequency. It is only when the level of noise is the same in the two markets, that the measure can
be coherently interpreted in term of fundamental information with an equal value for each market.

Proposition 2. The IS measure,

Using the results in Lemma 1, The IS bounds for market 1 and for market 2 are computed as

ISu,1 =
c−2

1(
c−2

1 + c−2
2
)(

1− c−2
2 κ

) and ISl,1 =
c−2

1 K−1(
c−2

1 + c−2
2
)(

1− c−2
1 κ

) , (17)

ISu,2 =
c−2

2(
c−2

1 + c−2
2
)(

1− c−2
1 κ

) and ISl,2 =
c−2

2 K−1(
c−2

1 + c−2
2
)(

1− c−2
2 κ

) . (18)

At High-frequency ( when h' 0), the parameter κ ' 0 and

ISu,1 ' ISl,1→
c−2

1

c−2
1 + c−2

2
= PT1, (19)

ISu,2 ' ISl,2→
c−2

2

c−2
1 + c−2

2
= PT2. (20)

Proof. See Appendix

In this model at high frequency, when h is small, the bounds on the Information Share be-
comes tighter and close to the value of the PT measure. But the limiting values are dominated by
information-uncorrelated microstructure noises and are not related to the fundamental value. This
result challenges the interpretation of price discovery measure in term of the fundamental price. At
high frequency, the parameter σ2of the fundamental price disappears from the formulas and we are
let with a comparison of the level of noises. So if c2

1 is smaller than c2
2, then IS1 = PT1 > PT2, and

ones might conclude that the Market 1 is fast to compound new information, while the market are
actually equally fast. The formulas 19 and 20 could meanwhile be taken as positive result, in the
sense that they provide items to compare the costs of trading in different markets for a cross listed
asset.

To explore how the measures depend on the noise and the frequency we plot the IS and PT as a
function of M = 1/h. In Figure 1 with equal level of noise the bounds are wide at lower frequency
but go to 50% when the frequency (M = 1/h) increases. When the level of noise is different (Figure
2) the bounds are reduced but then the market with the smallest noise becomes dominant.
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Figure 1: Equal noises c2
1 = c2
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Note: The figures plot the IS and the PT measures computed analytical on model I. The horizontal axis
represents the sampling frequency M = 1/h.

Figure 2: Different noises c2
1 = 2c2
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Note: The figures plot the IS and the PT measures computed analytical on model I. The horizontal axis
represents the sampling frequency M = 1/h.
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3.1.1 Time Varying noises

The previous results are derived under constant noises variances. The following theorem show that
all the conclusions remain when the noises variance vary with the sampling frequency as long as
the fundamental return decreases less faster than h.

Proposition 3. Time Varying noises: Let c2
1 ≡ c

′2
1 hα1 , c2

2 ≡ c
′2
2 hα2 with α1,α2 > 0

If Max(α1,α2)< 1 , then
κ = −1

2 hσ2 +
√

h σ

2

√
σ2h+ 4c′21 c′22 hα1 hα2

(c′21 hα1+c′22 hα2)
−→ 0

K =
[
1−κ

(
c
′−2
1 h−α1 + c

′−2
2 h−α2

)]−1
−→ 1

And

ISu,i ' ISl,i
h→0−→→ PTi =

c
′−2
i

c
′−2
1 + c

′−2
2

, i = 1,2

Proof. See appendix

3.2 Model II: The Roll model with a delayed market

The fundamental log price of the asset is still driven by the innovation ηth = σhN (0,1) with
σ (h) = σ

√
h, and

mth = mth−h +ηth.

The first market incorporates mt , but the second market is delayed of δ . The observe prices are

p1th =mth + c1ε1th (21)

p2th =mth−δ + c2ε2th.

I compute the variance and covariance 10 as

C0 =

(
hσ2 +2c2

1 (h−δ )σ2

(h−δ )σ2 hσ2 +2c2
2

)
and C1 =

(
−c2

1 0
δσ2 −c2

2

)
.

When h > δ the price admits a VMA(1) representation and I calculate the analytical solutions
by solving the matrix equation 11

Proposition 4. The PT measure
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In Model II, solving equations 44 gives

PT1 =

(
−1

2
σ2[(δσ2+c2

2)(σ2δ (h−δ )+h(c2
1+c2

2))+2c2
1c2

2δ ]
c2

1

[
(δσ2)

2
+δσ2c2

2+c2
1c2

2+c4
2

] ± 1
2

√
∆

)
(
−1

2
σ2[(δσ2+c2

2)(σ2δ (h−δ )+h(c2
1+c2

2))+2c2
1c2

2δ ]
c2

1

[
(δσ2)

2
+δσ2c2

2+c2
1c2

2+c4
2

] ± 1
2

√
∆

)(
1+ c2

1
δσ2+c2

2

)
− δσ2

δσ2+c2
2

PT2 = 1−PT1

where

∆ =

σ2
[(

δσ2 + c2
2
)(

σ2δ (h−δ )+h
(
c2

1 + c2
2
))

+2c2
1c2

2δ
]

c2
1

[
(δσ2)2 +δσ2c2

2 + c2
1c2

2 + c4
2

]
2

+4
c2

2σ2
[
σ2δ (h−δ )+hc2

2
]

c2
1

[
(δσ2)2 +δσ2c2

2 + c2
1c2

2 + c4
2

]
Proof. See appendix

The formula for the IS, which is also very cumbersome, is computed after obtaining Ω by the
equation 36. The formulas are not really intuitive, but it displays the fact that PT depend on the
information parameter σ , on the frequency parameter h, and on the delay δ . Here, the limit when
h is small can not be easily obtained analytically. In fact, by computing the autocavariance for the
process for h < δ , the order of the VMA becomes bigger than 1 and increases when h decreases.
We will rely on graphical analysis for more insights.

The behavior of the measures in Model II is summarized in Figures 3a and 3b. The Panel A
of the graph corresponds to h > δ is plotted using the analytical formulas. The Panel B is plotted
for all h using simulations. In this setup by construction, the first market dominates structurally the
price discovery mechanism as it is the first to compute new information. When the level of noise
are equals (Figure 3a), the measures succeed in designing market 1 as dominant when h≥ δ . But at
high frequency with h < δ , the measures converges to 0.5, stating that the two markets are equally
contributing to the price discovery mechanism. When the market 1 is noisier than market 2 (Figure
3b), the measures in both panels seem to converge to values such that market 2 is dominant. Theses
results simply reflect the relative size of noise in market 1, compared to noise in market 2.

3.3 Model III: A Two-market model with public and private information

In this model presented by Hasbrouck (2002), the efficient price is driven by informative trading on
the market 1 (η1th) and a non-traded public information ηth = σhN (0,1). The dynamic of price is
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Figure 3: Model II: performances of the measures
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Note: The figure plots the IS and PT model II. The horizontal axis represents the sampling frequency
M = 1/h. Panel A and Panel B are separated at the point where h < δ . c2

2 = 0.002/2.
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described by the following system

mt =mt−h +λhη1th +ηth (22)

p1th =mth +η1th + c1ε1th

p2th =mth−h + c2ε2th

where λh, the liquidity parameter, goes to zero with h for the same reasons as σh in the previous
sections. The Market 2 relies on a delayed value (with lag h) of mt . The parts of microstructure
noises that are information-uncorrelated are ε1th and ε2th.

As before, Market 1 is dominant from the structural point of view.
We solve for the equation 11 and the results at the order of

√
λh are :

Proposition 5. The PT Share

In Model III, the solutions of equations 44 at the order of
√

λh gives

PT1 =
1

1+ c−2
2
(
1+ c2

1
) +o

(√
λh

)
and PT2 =

c−2
2
(
1+ c2

1
)

1+ c−2
2
(
1+ c2

1
) +o

(√
λh

)
Proof. See appendix

Proposition 6. The IS bounds

In Model III, the solutions of equations 44 at the order of
√

λh gives

ISu,1 = − 1
c−2

2 (1+c2
1)D−1

× 1
1+c−2

2 (1+c2
1)

+o
(√

λh

)
ISl,1 =

D(1+c−2
2 (1+c2

1))−1
D−1 × 1

1+c−2
2 (1+c2

1)
+o
(√

λh

)
ISu,2 =

−(1+c2
1)c−2

2
(−1+D) ×

1
1+c−2

2 (1+c2
1)

+o
(√

λh

)
ISl,2 =

D(1+c−2
2 (1+c2

1))−1
Dc−2

2 (1+c2
1)−1

× c−2
2 (1+c2

1)
1+c−2

2 (1+c2
1)

+o
(√

λh

)

with D =
√

λh

(√(
1+ c2

1
)(

1+ c−2
2
(
1+ c2

1
)))−1

h→0−→.

When h

ISu,1 ' ISl,1 ' PT1 −→ 1
1+c−2

2 (1+c2
1)

=
c−2

1
c2

1c−2
2 +c−2

1 +c−2
2

ISu,2 ' ISl,2 ' PT2 −→
(1+c2

1)c−2
2

1+c−2
2 (1+c2

1)
=

c−2
2 (c2

1+1)
c2

1c−2
2 +c−2

1 +c−2
2

Proof. See appendix
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When h is small in this setup, IS and PT give the same value. The contribution of market 2
decreases with the noise variance in market 2, and increases with the noise variance in market 1.
When the level of noise is equal in the two markets, PT2 > PT1 and market 2 is chosen as the
dominant market, which is in opposition with the structural model. In Figure 4, I compare the
measures for the model III computed numerically for h decreasing. Even if the model is changing
by reducing the delay parameter δ = h, market 1 remains dominant as it drives the efficient price.
At lower frequency, the IS of market 1 is almost 100% and the IS of market 2 is close to 0, even if
market 1 is the noisiest. When the values of h is small, the contribution of market 2 is bigger than
that of market 1, suggesting falsely that market 2 is dominant. The issues highlighted here are less
important with small noises variances or with small noises difference between the two markets. The
frequency at which the dominance commutes increases (see Figures A.2a and A.2b in appendix).

Figure 4: Model III: IS with sampling frequency and delay
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Note: The figure plots the IS model III. The horizontal axis represents M = 1/h. The PT (not plotted here)
has the same pattern

Remark: By fixing δ = 0 and ηth = 0., we obtain mt = mt−h +λhη1th and

p1th =mth +η1th + c1ε1th

p2th =mth + c2ε2th (23)
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corresponding to a Two-market model with overreaction. It is not very clear which market domi-
nates the price discovery in this setup. The market 1 incorporates mt but there is an overreaction
to information in the observed prices. The market 2 also incorporates timely mt . The computation
using the formula 32 in appendix gives directly PT as

PT1 =
c−2

1

c2
1c−2

2 (λhσ2 +1)+ c−2
1 + c−2

2
and PT2 =

c−2
2
(
c2

1
(
λhσ2 +1

)
+1
)

c2
1c−2

2 (λhσ2 +1)+ c−2
1 + c−2

2

We still see that the measures vary inversely proportional to noises. But the contribution of market
2 increases with the variance of the efficient price. For equal level of information uncorrelated-
noises, market 2 has a greater contribution than market 1. So the PT captures the “efficient” facet
of prices.

All the new facts just explained here are warnings about the interpretations when using existing
price discovery measures on High-Frequency data. It is thus of interest to develop a price discovery
measure that is adapted in high frequency data and clarify what aspect of the market is actually
captured.

4 Robust-to-Noise price discovery measures

The different analytical computations showed that at High-frequency the price discovery measures
are dominated by noises. In this sense, the measures seem to be better interpreted in terms of
noises avoidance. This point is also made by Yan and Zivot (2010) who suggest combining IS
and PT in one measure to reduce the noises effects. The issue here is related to the debate in the
literature about the property that those price discovery measures are actually capturing. My results
suggest that at lower frequency they might be capturing the speed at which markets incorporate
information while at a high frequency they are capturing which market is less noisy. This creates a
misleading interpretation caused only by the frequency of observations. To restore a consistency in
the definition of the measures at all frequency, I propose a correction of the measures to reduce the
effect of noises. For this, a look at the different formulas suggests that the measures are dominated
by a factor equal to the inverse variance of the market microstructure noises. I thus propose to
robustify the IS and the PT by multiplying them by the noise variance.

So the bounds on IS and the PT for the market 1 are multiplied by c2
1, and the bounds on IS

and PT for the market 2 are multiplied by c2
2 . I re-normalize the robust to-noise versions of the

measures to keep the sum to one:
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ISRu,1 =
c2

1ISu,1

c2
1ISu,1 + c2

2ISl,2
and ISRl,1 =

c2
1ISl,1

c2
1ISl,1 + c2

2ISu,2
(24)

ISRu,2 =
c2

2ISu,2

c2
1ISl,1 + c2

2ISu,2
and ISRl,2 =

c2
2ISl,2

c2
1ISu,1 + c2

2ISl,2
(25)

PT R1 =
c2

1PT1

c2
1PT1 + c2

2PT2
and PT R2 =

c2
2PT2

c2
1PT1 + c2

2PT2
(26)

Obviously, if Ω is diagonal, here too for each market, I have equality of its lower and upper
bounds (ISRu,1 = ISRl,1 and ISRu,2 = ISRl,2).

To compute the previous quantities, estimations of the microstructure noise variances c2
1 and

c2
2 are required. Fortunately, the literature on integrated volatility estimation in the presence of

microstructure noises provides good ones. At High-frequency, the realized volatility (the sum of
squared log return) divided by (2n) is a good approximation of the noise variance (see Andersen
et al., 2000; Zhang, 2010; Jacod et al., 2009). I thus consider the estimators

ĉ2
1 = (2n)−1

n

∑
t=1

∆p2
1t and ĉ2

2 = (2n)−1
n

∑
t=1

∆p2
2t

The properties of this estimator of the noise variance are proven in Zhang (2010). The intuition
behind the results is the following. Let’s Consider an observed price written as pth = mth + c0εth

with εth ∼ i.i.d N (0,1) and ∆mth = ηth = σhN (0,1), E (ηthεth) = 0, the variance of the intraday
return

(
σh = O(

√
h)
)

decreases with the sampling interval h= 1/n. The expectation of the realized
volatility is

E

(
n

∑
t=1

∆p2
t

)
=

n

∑
t=1

E
(
η

2
th + c2

0∆ε
2
th +2c0ηth∆εth

)
= nσ

2
h +2n× c2

0

= O(nh)+2n× c2
0

' 2n× c2
0

This development incidentally provides a way to evaluate the noise in the data. In fact, if one
is to consider only how markets avoid noises, the values of c2

1 and c2
2 estimated previously could

measure price discovery in the sense of “which market is not noisy”.
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4.1 Simulation

We analyze through Monte Carlo simulations the performances of the robust measures (ISR and
PTR) relatively to IS and PT . For this, I simulate the structural models I, II and III (12,21, 22). For
each model, I simulate a sample of 23 400 observations (to imitate a trading day in second), then the
data are sampled at a given frequency (1, 2, 5, 10, 60) and the measures are computed in a VECM.
The order of the VECM is chosen using the Akaike Information Criterion (AIC) which is typically
what people do in practice. Each design is replicated 1000 times and the numbers in Tables 1-3
are the averages results and standard deviations (in parenthesis) over the 1000 replications. The
gray-shaded columns of the Tables are the robust-to-noise estimates. The results are presented only
for market 1.

In model I, both markets incorporate mt , so a good estimate of price discovery in term of
“where information enter the price first” should be 0.5. When the two markets have the same level
of information-uncorrelated noises (Table 1, Panel A), all the measures perform well with values
close to 1/2. When the market 1 is noisier than market 2 (see Table 1, Panel B), the estimated
mid-bounds on IS and the PT (0.35 and 0.33) are far below 0.5 when data are sampled at High-
frequency (h = 1). Meanwhile, my proposed robust mid-bounds ISR is 0.48 and PTR is 0.47,
suggesting rightly that both markets are similar in incorporating mt . All the metrics perform quite
well at lower frequency.

In model II, the market 2 is slow and incorporates new information with a lag δ = 3s, and
market 1 noise’s variance is set to c2

1≡ 0.0002, bigger than c2
2≡ 0.0001 of market 2. Price discovery

happens in market 1, but the small values in Table 2, obtained for IS and PT falsely suggests that
it happens in market 2. By using the robust measures the good interpretation is restored with
values for ISR and PTR close to 0.89 and 0.76. The effect is more pronounced in Table 3 where
the first market drives the fundamental price. While the other measures suggest an equal role
for both markets in the price discovery process, the robust-to-noise measures are almost 0.99. The
estimated values presented here depend on the size of the noise and on the sampling frequency. The
performances of IS and PT are improved when the noise is reduced or when the difference in noises
between the two markets diminishes. But the qualitative result remains unchanged: the robust
measures are better than IS and PT to detect which market incorporates timely new information.

5 Empirical application

I study the daily relative part in the price discovery of assets of the Dow Jones Industrial Index
that are listed and traded on NYSE and NASDAQ. I focus on the trade prices coming from the
TAQ Database and covering the period from the 01 March to the 30 May 2011. Before using the
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Table 1: Simulation Results: Model I

Panel A: c2
1 = c2

2

h ISu,1 ISl,1 ISRu,1 ISRl,1 IS1 ISR1 PT1 PT R1

1s 0.65 0.35 0.50 0.50 0.50 0.50 0.50 0.50
(0.06) (0.06) (0.04) (0.08) (0.06) (0.06) (0.04) (0.04)

5s 0.77 0.22 0.50 0.49 0.50 0.50 0.49 0.49
(0.12) (0.11) (0.07) (0.22) (0.11) (0.15) (0.14) (0.14)

10s 0.83 0.17 0.50 0.50 0.50 0.50 0.50 0.50
(0.14) (0.14) (0.08) (0.31) (0.14) (0.20) (0.28) (0.28)

Panel B: c2
1 = 2c2

2

h ISu,1 ISl,1 ISRu,1 ISRl,1 IS1 ISR1 PT1 PT R1

1s 0.51 0.19 0.54 0.42 0.35 0.48 0.33 0.47
(0.06) (0.05) (0.05) (0.09) (0.06) (0.06) (0.04) (0.05)

5s 0.7 0.11 0.54 0.36 0.41 0.45 0.34 0.42
(0.13) (0.08) (0.07) (0.23) (0.1) (0.15) (0.15) (0.17)

10s 0.78 0.09 0.53 0.36 0.44 0.44 0.34 0.37
(0.15) (0.11) (0.08) (0.32) (0.13) (0.2) (0.3) (0.34)

30s 0.82 0.14 0.51 0.45 0.48 0.48 0.33 0.26
(0.2) (0.17) (0.1) (0.38) (0.18) (0.19) (2.76) (2.02)

Estimates for market 1 of the Information Share (IS) bounds, the PT share,
the robust ISR and PTR. It is computed on simulated prices of Model

I:
mth = mth−h +ηth, ηth v σhN (0,1),σh = T−0.5, panel A : c2

1 = c2
2 = 2.10−4

pith = mth + ciεith, εith ∼N (0,1), i = 1,2, panel B : c2
1 = 2c2

2 = 2.10−4

A path of T=23400 observations is generated, prices are sampled at each interval h and a VECM
is estimated with lag chosen by AIC. The values presented are the averages and the standard de-
viation (in parenthesis) over 1000 simulated paths.The gray shaded columns are robust measures.
The reference value is 0.50

22



Table 2: Simulation Results: Model II

h ISu,1 ISl,1 ISRu,1 ISRl,1 IS1 ISR1 PT1 PT R1

1s 0.39 0.29 0.90 0.88 0.34 0.89 0.16 0.76
(0.06) (0.06 ) (0.02) (0.03) (0.06) (0.03) (0.02) (0.03)

2s 0.33 0.19 0.84 0.77 0.26 0.81 0.14 0.69
(0.09) (0.07) (0.05) (0.10) (0.08) (0.08) (0.03) (0.06)

3s 0.30 0.14 0.80 0.66 0.22 0.73 0.13 0.63
(0.10) (0.08) (0.08) (0.17) (0.09) (0.13) (0.04) (0.13)

5s 0.30 (0.10 0.74 0.51 0.20 0.63 0.12 0.53
(0.12 (0.08) (0.11) (0.23) (0.10) (0.17) (0.06) (0.24)

10s 0.34 0.08 0.67 0.36 0.21 0.52 0.11 0.40
(0.18) (0.10) (0.16) (0.28) (0.14) (0.22) (0.11) (1.77)

The Table reports estimates for market 1 of the Information Share (IS) bounds, the PT share,
the robust ISR and PTR). It is computed on simulated prices of Model II: mth = mth−h + ηth,
p1th = mth + c1ε1th,p2th = mth−δ + c2ε2th, εith,(ηth/σh) ∼ N (0,1), i = 1,2, σh = T−0.5,c2

1 =
0.002, c2

2 = 0.0001, δ = 3. A path of T=23400 observations is generated, prices are sampled at
each interval h and a VECM is estimated with lag chosen by AIC. The values presented averages
and standard deviations (in parenthesis) over 1000 simulated paths.The gray shaded columns are
robust measures. The reference value is 1.
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Table 3: Simulation Results: Model III

h ISu,1 ISl,1 ISRu,1 ISRl,1 IS1 ISR1 PT1 PT R1

1s 0.47 0.49 1.00 1.00 0.48 1 0.01 1
(0.19) (0.19) (0.00) (0.00) (0.19) (0.00) (0.01) (0.00)

2s 0.25 0.26 1.00 1.00 0.26 1 0.01 0.99
(0.20) (0.20) (0.03) (0.04) (0.20) (0.03) (0.06) (0.02)

3s 0.22 0.22 0.99 0.99 0.22 0.99 0.01 1.00
(0.21) (0.21) (0.09) (0.09) (0.21) (0.09) (0.04) (0.51)

5s 0.18 0.18 0.98 0.98 0.18 0.98 0.01 0.61
(0.22) (0.22) (0.10) (0.10) (0.22) (0.10) (0.03) (11.57)

10s 0.24 0.23 0.98 0.97 0.24 0.98 0.00 0.99
(0.27) (0.27) (0.13) (0.09) (0.27) (0.11) (0.26) (0.21)

The Table reports estimates for market 1 of the Information Share bounds (ISu,ISl), the robust
IS bounds (ISlr,ISur), the PT and the robust PT (PTr). It is computed on simulated prices of
Model III: mth = mth−h+λhη1th, p1th = mth+η1th+c1ε1th,p2th = mth−δ +c2ε2th, εith,(ηth/σh)∼
N (0,1), i = 1,2, σh = λh = T−0.5,c2

1 = 0.002, c2
2 = 0.0001, δ = 3. A path of T=23400 observa-

tions is generated, prices are sampled at each interval h and a VECM is estimated with lag chosen
by AIC. The values presented averages and standard deviations (in parenthesis) over 1000 simu-
lated paths.The gray shaded columns are robust measures. The reference value is 1.
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data a cleaning job is done on the raw data: First, I suppress the data stamped before the opening
(9h30) and after the closing (16h00) of the market. I also remove the data between 9h35 because
the activity at the opening session creates a lot large values with respect to the daily continuous
activity I aim to study. Second, to handle the synchronicity problem, I fill the data with the last
trade price.

5.1 Descriptive analysis

The Dow Jones stocks data, on NYSE and NASDAQ, amount to 30 assets on a 3 month period for a
total of 22,444,752 observations. NYSE and NASDAQ are the two biggest exchanges in the world
by capitalization and trade value. NYSE remains by far the first with a capitalization of around 14
USD trillion in 2011 (around 16 USD trillion in 2014). During this year, the trade value was about
20 USD trillions, which represents an average daily amount of 55 USD billions. NASDAQ has a
market capitalization of 4.6 USD trillions, and a trade value of 13.5 USD trillions, corresponding
to an average daily amount of 37 USD billions8.

Concerning where the assets are traded, the domination is not that pronounced as shown by
the average daily statistics in Table B.1 in appendix. For JP Morgan (JMP) for example, around 5
millions of share are traded each day on NYSE, while 4.8 millions are traded on NASDAQ. This
pattern is the same for most of the stocks, that is to say that NYSE concentrates the biggest part of
share exchanged in a day. For few assets like PFE and GE, NASDAQ dominates the exchanges in
term of volume. If we look at the liquidity (we think of liquidity as the frequency of transactions),
NASDAQ dominates for almost all assets. For PFE we have around 16,153 trading times in one
day on NASDAQ, while we have only 7 080 trading times on NYSE. This is not in contradiction
with the analysis of volumes, it simply states that most of the trades of bigger size happens on
NYSE, while NASDAQ is characterized by a lot of trades of small quantities (details in table B.2
in appendix). For example, NASDAQ cumulates 43.3% of small size trades for American express
(AXP) and only 23.4% of big size trades, while NYSE cumulates 57.3% of big size trades.

Those descriptive statistics also show that, if prior-belief is that price discovery is completely
driven by the liquidity or by the volume of share traded, the answer is not straightforward as we
have for each market depending on the asset: high-volume and high-liquidity, high-volume and
low-liquidity, low-volume and high-liquidity.

8 Source: (http://www.i3investor.com/jsp/hti/usmarket.jsp).
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5.2 Results on markets contribution

Before looking at market dominance, I compute the IS and the PT measures for the assets at dif-
ferent sampling frequency with the VECM-lag chosen by AIC. I obtain the same type of patterns
described in Section 3 with the structural models. Figures A.2 and A.3 plot the results for American
Express (AXP) and Exxon Mobil Corporation (XOM). It shows that the evolution of the measures
with sampling frequency looks like the theoretical path up to a given frequency. It doesn’t show the
crossing of the lines, but this might be just that raw data are not frequent high enough to display all
the interesting features. We can only have convincing guess by looking at the limit of the lines. In
fact, for most of the stocks, the number of transactions per day is such that the interval h is between
4s and 7s.

Now, let’s consider the mid-quotes data at the microsecond frequency for Microsoft and Pfizer
on the December 12th 2013. This choices are imposed only by data accessibility, and we consider
NYSE ARca (market 1) and NASDAQ (market 2). This trading day corresponds to an amount of
424,876 observations for Microsoft, and 149090 for Pfizer. Figure A.4 shows the results of the
IS and the PT measures with respect to the sampling frequency. It confirms that the interpretation
of the results can change with the sampling frequency, and that the IS bounds tighten to the same
values at high frequency.

The results on markets’ contributions in Table 4 show that, for most of the stocks, NYSE ap-
pears to be the dominant market. The dominance of NYSE on NASDAQ is strong for MMM, NKE
and TRV. NASDAQ dominates the price discovery mechanism for BA, CAT, GS, IBM. The table
4 also reports the lower and the upper bounds on the IS. It shows that bounds are quite wide for
all assets (for example NYSE has a 28% to 85% contribution for American Express-AXP) which
clearly complicates the interpretation. Meanwhile the robust IS indicates that the contribution is
between 55% and 56% coherent with the numbers for PT and PTR. These results also indicates that
the markets’ structure have really changed during the recent years. For comparison, in Hasbrouck
(1995), NYSE concentrated most of the trades resulting in more than 90 % of the contribution to
price discovery.

We now compute the correlation of each market’s contribution to price discovery with its share
in different categories of transaction size. We see that (table 5) for all the exchanges the correlation
between their contribution and their market share in small-size transactions is 1/3. The correlation
with big-size trades is 0.27 for NYSE-listed share, while it is only -0.04 for the set of NASDAQ-
listed shares. The correlation of the ISR with the liquidity does not show a specific pattern. In
summary, price discovery happens generally on NYSE for the stocks under investigation, the con-
tribution of a market is correlated with its market share for small and medium size transactions. In
the results, The robust IS measures present another advantage over the IS. When the bounds on IS
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Table 4: Contribution to price discovery of the NYSE

ISu,1 ISl,1 ISRu,1 ISRu,1 IS1 ISR1 PT1 PT R1

NYSE-listed stocks
AXP 0.85 0.28 0.55 0.56 0.59 0.67 0.60 0.63
BA 0.64 0.14 0.36 0.39 0.47 0.33 0.39 0.40
CAT 0.79 0.21 0.48 0.50 0.54 0.52 0.51 0.53
CVX 0.89 0.31 0.63 0.60 0.57 0.72 0.63 0.65
DD 0.82 0.28 0.54 0.55 0.57 0.63 0.58 0.60
DIS 0.89 0.36 0.63 0.63 0.63 0.79 0.67 0.71
GE 0.79 0.36 0.53 0.58 0.64 0.71 0.62 0.68
GS 0.73 0.23 0.47 0.48 0.50 0.47 0.49 0.49
HD 0.88 0.33 0.59 0.60 0.62 0.75 0.64 0.69
IBM 0.74 0.25 0.48 0.49 0.53 0.51 0.51 0.52
JNJ 0.91 0.41 0.66 0.66 0.67 0.84 0.71 0.75
JPM 0.89 0.29 0.59 0.59 0.61 0.75 0.64 0.68
KO 0.87 0.29 0.58 0.58 0.60 0.72 0.63 0.66
MCD 0.87 0.40 0.63 0.63 0.62 0.75 0.66 0.69
MMM 0.94 0.54 0.75 0.74 0.67 0.88 0.75 0.78
MRK 0.84 0.36 0.58 0.60 0.63 0.74 0.64 0.69
NKE 0.84 0.45 0.62 0.65 0.64 0.74 0.65 0.69
PFE 0.72 0.32 0.47 0.52 0.62 0.64 0.58 0.63
PG 0.85 0.30 0.56 0.57 0.60 0.69 0.61 0.65
TRV 0.87 0.44 0.64 0.65 0.64 0.77 0.67 0.71
UNH 0.87 0.34 0.60 0.61 0.61 0.74 0.63 0.67
UTX 0.80 0.31 0.54 0.56 0.57 0.62 0.57 0.60
VZ 0.88 0.38 0.62 0.63 0.64 0.79 0.67 0.71
WMT 0.87 0.33 0.58 0.60 0.63 0.75 0.64 0.69
XOM 0.94 0.31 0.68 0.62 0.61 0.83 0.71 0.72
Total 0.84 0.33 0.69 0.60 0.57 065 0.58 0.62

Nasdaq-listed stocks
AAPL 0.64 0.08 0.42 0.19 0.36 0.30 0.32 0.33
CSCO 0.60 0.22 0.34 0.27 0.41 0.31 0.48 0.38
INTC 0.60 0.15 0.34 0.22 0.38 0.28 0.42 0.34
MSFT 0.60 0.16 0.33 0.22 0.38 0.28 0.44 0.35
Total 0.61 0.15 0.36 0.23 0.38 0.29 0.41 0.35
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Table 5: Correlation of the contribution to price discovery (ISR) with the NYSE share in different transactions size,
and with the liquidity (The number of trades per day).

NYSE-Listed NASDAQ-Listed

small trade 0.33 0.30
medium trade 0.10 0.19

big trade 0.27 -0.04
Liquidity 0.33 0.27

Table 6: Macroeconomic announcements days on the period 2011 March 1st to May 31st

Macroeconomics Announcement Source Release dates

GDP (Advance, preliminary, final) estimate BEA March 25, April 28, May 26
Personal Income, Personal Consumption Expenditures BEA March 28, April 29, May 27
International Trade Balance in Goods and Services BEA March 10, April 12, May 11
Nonfarm Payroll Employment BLS March 4, April 21, May 6
Producer Price Index PPI BLS March 16, April 14, May 12
Consumer Price Index CPI BLS March 17, April 15, May 13
Industrial Production, Capacity Utilization FRB May 17, April 15, March 17
Consumer Credit FRB March 7, April 7, May 6
Federal Funds Rate FRB March 15, April 27

are wide, the robust IS provides very close bounds that facilitate the interpretation.

5.3 Macroeconomics announcements days

The release of Macroeconomic indicators constitute some of the times where fundamental infor-
mation arrive in the markets. Interesting insights could thus be investigated by looking at how the
different markets behave the days of major macroeconomic news compared to normal days. For
this, I identify a set of events from the literature (Andersen et al., 2003; Frijns et al., 2015) and
the corresponding dates at which they are released in the sample. I mention that almost all the an-
nouncements here happen at 8:30 AM, which is before the markets open. An important comparison
of the markets could be done for the news that are released during the trading session, to see for
example which market reacts quickly. However, this would required a very long sample as they are
typically published only one day per month. Table 6 presents the macroeconomics indicators that I
consider and the announcement dates in the sample.

We compute the measures for the announcement days and for the non-announcements days,
I obtain that on average NASDAQ’s contribution to information share is slightly bigger the days
where there is a news (from 0.41 to 0.42). The contribution of NYSE is still greater than for the
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Table 7: Markets’ contribution to Price discovery on the days of Macroeconomic announcements

NYSE NASDAQ
ISu ISl IS PT ISu ISl IS PT

Announcement 0.84 0.32 0.58 0.57 0.68 0.16 0.42 0.43
Non Announcements 0.84 0.33 0.59 0.58 0.67 0.16 0.41 0.42

NASDAQ but slightly decreases compared to non-announcement days. Since the changes in the
numbers are to small it is difficult to convince of a particularity for these news days. If we believe
the contribution of NASDAQ has significantly increased, it is difficult to explain why but a reason
might be found in the liquidity of NASDAQ. Traders wanting to exploit quickly those public pre-
scheduled news, could prefer to do so on the most liquid market. More details, per asset, on which
market increases its contribution to price discovery can be found in table B.3.

Conclusion

Among the assets traded on markets places, some are strongly related by arbitrage relationships.
This is the case of securities and their derivatives, and assets listed simultaneously in many coun-
tries. To determine in which market the efficient price is determined, some measures of price
discovery were proven useful in the literature. In this paper, I started by studying the behavior
of the popular prices discovery metrics in their relationship with sampling frequency and market
microstructure noises. I showed analytically, in some standard microstructure models, that the
Information Share measure (IS) of Hasbrouck (1995) and the Permanent-Transitory component
measure (PT) of Harris et al. (2002b) are driven by non-informative noises when the sampling
interval is small. The IS is identified only between bounds and, when the frequency is low, the
bounds are too wide to provide straight conclusions. When the frequency is particularly high, the
IS bounds tighten and converge to a unique value which is the same as the PT. But this value is
dominated by noises and is not affected by the informative innovation. Using data of NYSE TAQ
database, I examined if my conclusions are in line with the data. I observed that indeed the data
seem to present the patterns I highlighted. The frequency of the transaction prices might not be
high enough to show certain features, but the analysis with mid-quotes of Microsoft confirms my
theoretical conclusions.

The price discovery measures are typically used to decide which price is close to the funda-
mental price. The “closeness” involves two interesting dimensions, the “speed” at which a market
incorporates news and the “noise-avoidance” in the mechanism. The two dimensions are economi-
cally relevant but confusions come from that a market is not necessarily the best in both dimensions.

29



A market can be the fastest and the noisiest. At lower frequency the measures capture a mix of the
two aspects, while at high frequency, my results showed that they rather capture the avoidance of
noise. This is a serious problem because first, many papers use and think of price discovery as the
rapidity to process new information. Second, the measures are used in regression to investigate the
determinant of a market’s efficiency. Those papers conclude for example that market with relative
small bid-ask spread are dominating price discovery process. If price discovery were to measure
only how markets avoid noises, this conclusion amounts to stating that “Noise is small in this mar-
ket because noise is small”. I then presented new measures of price discovery, that I named Robut
IS (ISR) and Robust PT (PTR), that disentangle the two dimensions and clarify the interpretation.
They are good at detecting “which market incorporates quickly new information”. My overall con-
tribution constitutes many steps forward into the debate on what the price discovery measures are
actually capturing.

In the application, I investigated the relative contribution of NYSE and NASDAQ to the price
formation of Dow Jones assets. The robust measures seem to improve a little bit on the IS and PT.
I found that NYSE captures the big part of volume traded, but NASDAQ is the most liquid with a
high level of activity. This implies that NASDAQ mostly runs the orders of small quantities while
NYSE runs big quantities orders. In terms of contribution to price discovery for the assets under
investigation, NYSE is generally dominant. The contribution of a market appears to be positively
correlated with its liquidity. I also computed the correlation between market’s contribution and
markets share in each category of trade size. It reveals that the contribution of a market is correlated
with its share in small size transactions. For NASDAQ listed stocks, there is no correlation with
market’s share in big size transactions, so large quantities trades do not convey information. I
analyze the performance of the measures the days with major macroeconomic announcements and
the contribution of NASDAQ to price discovery increases only slightly the days with news. As the
announcements considered here are typically done when the market is closed, it is not possible to
conclude about the behavior of price discovery measures around the news. There are more insights
to investigate with a good database of news released during trading session.
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A Figures

Figure A.1: Model III: IS performance with noise and frequency
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Note: The figure plots the IS model III. The horizontal axis represents M = 1/h. The PT (not plotted here)
has the same pattern
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Figure A.2: IS and PT measures by sampling frequency for American Express

(a) IS bounds AXP
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Note: The figures plot 6 chosen day in the database. For each day the data are sampled at different fre-
quency and the measures at computed in a VECM with lag selected by AIC. The horizontal axis represents
the sampling frequency M.
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Figure A.3: IS and PT measures by sampling frequency for Exxon Mobil Corporation (XOM)

(a) IS bounds for XOM
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Note: The figures plot 6 chosen day in the database. For each day the data are sampled at different fre-
quency and the measures at computed in a VECM with lag selected by AIC. The horizontal axis represents
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20s
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Figure A.4: IS and PT measures by sampling frequency

Microsoft
0

2
0

4
0

6
0

8
0

1
0

0
1

2
0

PT measure

M

45 90 180 270 360 450 540 630

PT1 PT2

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

IS measure

M

45 90 180 270 360 450 540 630

Is1u is1l is2u is2l

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

PT measure

M

45 90 180 270 360 450 540 630

PT1 PT2
0

2
0

4
0

6
0

8
0

1
0

0
1

2
0

IS measure

M

45 90 180 270 360 450 540 630

Is1u is1l is2u is2l

Pfizer

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
PT measure

M

50 150 250 350 450 550 650 750

PT1 PT2

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

IS measure

M

50 150 250 350 450 550 650 750

Is1u is1l is2u is2l

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

PT measure

M

45 90 180 270 360 450 540 630

PT1 PT2
0

2
0

4
0

6
0

8
0

1
0

0
1

2
0

IS measure

M

45 90 180 270 360 450 540 630

Is1u is1l is2u is2l
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B Tables

Table B.1: Average daily number and volume of transactions by markets and assets

Volume Liquidity

Stocks NYSE NASDAQ NYSE NASDAQ

AXP 1,390,154 1,333,287 5,675 9,175
BA 761,827 939,104 4,265 7,518
CAT 1,509,825 1,258,157 8,587 9,909
CVX 1,638,540 1,387,986 9,221 11,646
DD 1,197,841 932,970 5,618 7,544
DIS 2,205,886 1,279,417 7,123 8,919
GE 7,303,315 7,452,367 8,162 18,419
GS 852,376 957,759 5,407 7,373
HD 1,885,715 1,489,919 5,804 9,231
IBM 1,065,407 979,830 6,294 7,523
JNJ 2,606,299 1,614,322 8,618 10,354
JPM 5,036,588 4,866,551 11,438 22,572
KO 1,833,110 1,282,143 6,942 9,534
MCD 1,217,757 835,071 5,398 6,390
MMM 877,629 506,236 5,389 4,154
MRK 2,028,357 2,106,988 4,626 9,580
NKE 808,253 479,999 4,164 3,713
PFE 6,601,470 7,418,801 7,080 16,153
PG 2,010,251 1,732,199 5,725 10,131
TRV 803,587 478,962 3,893 3,877
UNH 1,331,712 974,829 5,753 7,084
UTX 852,967 766,713 4,778 6,367
VZ 2,261,393 2,160,213 5,614 10,639
WMT 2,136,040 1,521,625 6,743 9,916
XOM 4,649,096 2,546,214 15,937 17,663

NYSE Arca NASDAQ NYSE Arca NASDAQ

AAPL 2,318,123 3,944,326 17,123 27,099
CSCO 7,573,610 13,954,385 14,945 22,991
INTC 6,455,527 16,635,294 15,125 30,653
MSFT 5,513,734 14,580,294 14,825 27,540

Note: The period is from the 01/03 to 30/05/2011. liquidity=number of transactions per day; vol-
ume=volume of trades per day.
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Table B.2: Averages daily share of each market in transactions, by category of transactions size,

Small size Medium size Big size

Stock NYSE NASDAQ NYSE NASDAQ NYSE NASDAQ

AXP 0.32 0.68 0.51 0.49 0.71 0.29
BA 0.32 0.68 0.55 0.45 0.65 0.35

CAT 0.41 0.59 0.66 0.34 0.72 0.28
CVX 0.37 0.63 0.69 0.31 0.79 0.21
DD 0.35 0.65 0.66 0.34 0.81 0.19
DIS 0.39 0.61 0.67 0.33 0.86 0.14
GE 0.29 0.71 0.28 0.72 0.57 0.43
GS 0.40 0.60 0.60 0.40 0.58 0.42
HD 0.33 0.67 0.55 0.45 0.71 0.29
IBM 0.41 0.59 0.62 0.38 0.69 0.31
JNJ 0.41 0.59 0.59 0.41 0.78 0.22
JPM 0.30 0.70 0.38 0.62 0.66 0.34
KO 0.33 0.67 0.68 0.32 0.79 0.21

MCD 0.38 0.62 0.67 0.33 0.79 0.21
MMM 0.52 0.48 0.75 0.25 0.81 0.19
MRK 0.28 0.72 0.36 0.64 0.56 0.44
NKE 0.47 0.53 0.72 0.28 0.80 0.20
PFE 0.30 0.70 0.27 0.73 0.48 0.52
PG 0.32 0.68 0.61 0.39 0.75 0.25

TRV 0.44 0.56 0.77 0.23 0.85 0.15
UNH 0.38 0.62 0.63 0.37 0.75 0.25
UTX 0.37 0.63 0.68 0.32 0.76 0.24
VZ 0.31 0.69 0.33 0.67 0.67 0.33

WMT 0.35 0.65 0.57 0.43 0.78 0.22
XOM 0.41 0.59 0.69 0.31 0.83 0.17

Total 0.37 0.63 0.58 0.42 0.73 0.27

Note: Let DM the average transactions size in a day: Small size≡ quantity<DM, medium
size: ≡ DM ≤ quantity≤ 2DM, big size: ≡ quantity > 2DM.
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Table B.3: NYSE contribution by asset on the days of Macroeconomic announcements

ISRu ISRl ISR PT R
A N A N A N A N

AXP 0.85 0.85 0.26 0.28 0.55 0.57 0.54 0.56
BA 0.65 0.63 0.15 0.14 0.40 0.39 0.37 0.35
CAT 0.80 0.78 0.22 0.20 0.51 0.49 0.49 0.47
CVX 0.89 0.89 0.28 0.33 0.59 0.61 0.61 0.63
DD 0.82 0.82 0.27 0.28 0.55 0.55 0.55 0.54
DIS 0.89 0.90 0.32 0.38 0.61 0.64 0.61 0.65
GE 0.83 0.78 0.38 0.36 0.60 0.57 0.57 0.52
GS 0.75 0.71 0.25 0.23 0.50 0.47 0.49 0.46
HD 0.86 0.88 0.29 0.35 0.57 0.62 0.56 0.61
IBM 0.76 0.73 0.26 0.24 0.51 0.49 0.50 0.47
JNJ 0.89 0.91 0.39 0.42 0.64 0.67 0.64 0.67
JPM 0.90 0.88 0.28 0.29 0.59 0.59 0.59 0.59
KO 0.87 0.87 0.27 0.30 0.57 0.58 0.57 0.58
MCD 0.87 0.87 0.40 0.40 0.63 0.63 0.64 0.62
MMM 0.93 0.94 0.51 0.55 0.72 0.75 0.72 0.77
MRK 0.85 0.84 0.33 0.38 0.59 0.61 0.57 0.58
NKE 0.85 0.84 0.48 0.44 0.66 0.64 0.64 0.62
PFE 0.75 0.71 0.31 0.33 0.53 0.52 0.49 0.46
PG 0.84 0.85 0.27 0.31 0.55 0.58 0.54 0.57
TRV 0.85 0.88 0.40 0.46 0.63 0.67 0.62 0.66
UNH 0.87 0.87 0.34 0.34 0.60 0.61 0.60 0.60
UTX 0.80 0.81 0.30 0.31 0.55 0.56 0.53 0.55
VZ 0.86 0.89 0.34 0.41 0.60 0.65 0.59 0.64
WMT 0.87 0.86 0.33 0.33 0.60 0.60 0.59 0.58
XOM 0.94 0.94 0.31 0.31 0.62 0.62 0.69 0.68
Total 0.84 0.84 0.32 0.33 0.58 0.59 0.57 0.58

ISl = (ISu + ISl)/2,,A=announcement, N=Non announcement
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C Analytical formulas of the measures

We present calculations by skipping some details. The detailed calculations can be found (Online
here)

C.1 General results

Consider pt =
(

p1t p2t

)′
admitting the VMA(1) : ∆pt = et +Θet−1

With Ω = var (εt) =

(
σ11 σ12

σ12 σ22

)
and Ψ(1) = I +Θ =

(
c 1+d

c 1+d

)
.

The goal is to solve for Θ and Ω given the structural parameters. Let

C0 ≡ var(∆pt) =

(
v2

1 v12

v12 v2
2

)
and C1 ≡ cov(∆pt ,∆p

′
t−h) =

(
m1 m12

m21 m2

)
(27)

Using the VMA(1) 8 gives

C0 = Ω+ΘΩΘ
′ (28)

C1 = ΘΩ (29)

By multiplying 28 by Θ and using 29 then

C1−ΘC0 +ΘC1Θ
′ = 0 (30)

ΘC1Θ
′ =

(
−1+ c 1+d

c d

)(
m1 m12

m21 m2

)(
−1+ c c

1+d d

)

=


c2m1 +d2m2 + cd (m12 +m21)+ c(−2m1 +m12 +m21)+d (2m2−m12−m21)

+m1 +m2−m12−m21

c2m1 +d2m2 + cd (m12 +m21)+ c(−m1 +m21)+d (m2−m12)

c2m1 +d2m2 + cd (m12 +m21)+ c(−m1 +m12)+d (−m21 +m2)

c2m1 +d2m2 + cd (m12 +m21)


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Set Q = c2m1 +d2m2 + cd (m12 +m21) then

ΘC1Θ
′ =


Q+ c(−2m1 +m12 +m21)+d (2m2−m12−m21)+m1 +m2−m12−m21

Q+ c(−m1 +m21)+d (m2−m12)

Q+ c(−m1 +m12)+d (m2−m21)

Q


We stack the lines to ease the presentation ΘC0.

Using equation 30

0 = ΘC1Θ
′+C1−ΘC0

=


Q+ c

(
−2m1 +m12 +m21− v2

1
)
+d (2m2−m12−m21− v12)

+2m1 +m2−m12−m21 + v2
1− v12

Q+ c(−m1 +m21− v12)+d
(
m2−m12− v2

2
)
+m12 + v12− v2

2

Q+ c
(
−m1 +m12− v2

1
)
+d (m2−m21− v12)+m21

Q− cv12−dv2
2 +m2


Subtracting the 2nd from the 3rd line

d
(
m12−m21 + v2

2− v12
)

= c
(
−m12 +m21 + v2

1− v12
)
+m12−m21− v2

2 + v12 (31)

d = c

(
−m12 +m21 + v2

1− v12
)

m12−m21 + v2
2− v12

+
m12−m21− v2

2 + v12

m12−m21 + v2
2− v12

(32)

= cF +G

with

F =
−m12 +m21 + v2

1− v12

m12−m21 + v2
2− v12

and G =
m12−m21− v2

2 + v12

m12−m21 + v2
2− v12

(33)

Which is plugged into the quadratic equation (4th line):

c2m1 +d2m2 + cd (m12 +m21)− cv12−dv2
2 +m2 = 0 (34)
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0 = c2m1 +d2m2 + cd (m12 +m21)− cv12−dv2
2 +m2

= c2m1 +(cF +G)2 m2 + c(cF +G)(m12 +m21)− cv12− (cF +G)v2
2 +m2

= c2 (m1 +F2m2 +F (m12 +m21)
)
+ c
[
2FGm2 +G(m12 +m21)− v12−Fv2

2
]

+G2m2−Gv2
2 +m2

c2 + c

[
2FGm2 +G(m12 +m21)− v12−Fv2

2
]

m1 +F2m2 +F (m12 +m21)
+

G2m2−Gv2
2 +m2

(m1 +F2m2 +F (m12 +m21))

∆ =

[
2FGm2 +G(m12 +m21)− v12−Fv2

2
m1 +F2m2 +F (m12 +m21)

]2

−4
G2m2−Gv2

2 +m2

(m1 +F2m2 +F (m12 +m21))�

�

�

�
c = −1

2
2FGm2 +G(m12 +m21)− v12−Fv2

2
m1 +F2m2 +F (m12 +m21)

± 1
2

√
∆ (35)

d = cF +g

then

Ω = Θ
−1C1 = −

(
−1+ c d

c −1+d

)−1(
m1 m12

m21 m2

)
(36)

The PT measure We have computed ψ ≡
(

ψ11 ψ12

)
=
(

c 1+d
)

PT1 =
c

1+ c+d
and PT2 =

1+d
1+ c+d

(37)

The information share bounds The total IS is

ψΩψ
′ =

(
c 1+d

)
Ω

(
c

1+d

)
=

[
c2

σ11 +2σ12c(1+d)+(1+d)2
σ22

]
(38)

43



The IS bounds for market 1 are

IS1u = (ψ11
√

σ11 +ψ12ρ
√

σ22)
2
/ψΩψ

=
(

c
√

σ11 +(1+d)σ12 (
√

σ11)
−1
)2

/ψΩψ (39)

IS1l =

(
ψ11
√

σ11

√
(1−ρ2)

)2

/ψΩψ

= c2
σ11
(
1−σ

2
12/σ11σ22

)
/ψΩψ

and for market 2

IS2u = (ψ12
√

σ22 +ψ11ρ
√

σ11)
2
/ψΩψ

=
(
(1+d)

√
σ22 + cσ12 (

√
σ22)

−1
)2

/ψΩψ (40)

IS2l =

(
ψ12
√

σ22

√
(1−ρ2)

)2

/ψΩψ

= (1+d)2
σ22
(
1−σ

2
12/σ11σ22

)
/ψΩψ

C.2 Model I: A two-market “Roll” model.

Here mth = mth−h +ηth, the is innovation ηth = σhN (0,1) and σ (h)converges to zero withh

p1th =mth + c1ε1th (41)

p2th =mth + c2ε2th

With εit ∼N (0,1) , E (ηthεit) = 0, i=1,2. c1,c2 > 0
Equation 33 gives G =−1, F = c2

1c−2
2 , thus 1+d = cc2

1c−2
2

In the 2nd degree equation 34

∆ = c−4
1 σ

4
h

[
σ

2
h +4

(
c−2

1 + c−2
2
)−1
]

c = −1
2

c−2
1 σ

2
h +

1
2

c−2
1 σh

√
σ2

h +4
(
c−2

1 + c−2
2
)−1

set κ =−1
2σ2

h +
σh
2

√
σ2

h +4
(
c−2

1 + c−2
2
)−1

then
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c = c−2
1 κ and 1+d = c−2

2 κ

using 36 , with K=
[
1− c−2

1 κ− c−2
2 κ

]−1
, Ω = K

(
c2

1
(
1− c−2

2 κ
)

κ

κ c2
2
(
1− c−2

1 κ
) )

The PT measure we have
(

c 1+d
)
=
(

c−2
1 κ c−2

2 κ

)
so

PT1 =
c−2

1

c−2
1 + c−2

2
and PT2 =

c−2
2

c−2
1 + c−2

2

The IS bounds The total IS 38 is here ψΩψ ′ = Kκ2 (c−2
1 + c−2

2
)
. Using 39 and 40:

The bounds for market 1 are

• IS1u =
c−2

1

(c−2
1 +c−2

2 )(1−c−2
2 κ)

and IS1l = c−2
1 K−1

(c−2
1 +c−2

2 )(1−c−2
1 κ)

And for market 2

• IS2u =
c−2

2

(c−2
1 +c−2

2 )(1−c−2
1 κ)

and IS2l = c−2
2 K−1

(c−2
1 +c−2

2 )(1−c−2
2 κ)

The Lemma 1 and the Propositions 1,2,3 are proven.

C.3 Model II: The Roll model with a delayed market

The prices system is

mth = mth−h +ηth

p1th = mth + c1ε1th

p2th = mth−δ + c2ε2th

The second market is delayed of δ .
To specify the how h moves with respect to δ , we set δ = b× l, h = k× l. l is a short time pace

and there is a white noise ul , with var (µl) = σ2 and
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mtkl = mtkl−l +utkl

= mtkl−2l +utkl +utkl−l
...

mtkl = mtkl−kl +
k−1

∑
j=0

utkl− jl

Thus mth = mth−h +ηth with ηth = ∑
k−1
j=0 utkl− jl and var (ηth) = hσ2.

∆p1th = ∆mth + c1∆ε1th = ∑
k−1
j=0 utkl− jl + c1∆ε1th

∆p2th = ∆mth−δ + c2∆ε2th = ∑
k+b−1
j=b utkl− jl + c2∆ε2th

Then we easily compute

C0 =

(
hσ2 +2c2

1 (h−δ )σ2

(h−δ )σ2 hσ2 +2c2
2

)
and C1 =

(
−c2

1 0
δσ2 −c2

2

)
We compute F,G from 33

F =
−δσ2 +hσ2 +2c2

1− (h−δ )σ2

δσ2 +hσ2 +2c2
2− (h−δ )σ2 =

c2
1

δσ2 + c2
2

G =
δσ2−hσ2−2c2

2 +(h−δ )σ2

δσ2 +hσ2 +2c2
2− (h−δ )σ2 =

−c2
2

δσ2 + c2
2

Thus d
(
δσ2 + c2

2
)
= cc2

1− c2
2

Which is plugged into the elements of 35:

(
δσ

2 + c2
2
)2 (

2FGm2 +Gm12− v12−Fv2
2
)

= −σ
2 [(

δσ
2 + c2

2
)(

σ
2
δ (h−δ )+h

(
c2

1 + c2
2
))

+2c2
1c2

2δ
]

(
δσ

2 + c2
2
)2 (

G2m2−Gv2
2 +m2

)
= c2

2σ
2 [

σ
2
δ (h−δ )+hc2

2
]

(
δσ

2 + c2
2
)2 (

m1 +F2m2 +Fm12
)

= −c2
1

[(
δσ

2)2
+δσ

2c2
2 + c2

1c2
2 + c4

2

]
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∆ =

σ2 [(δσ2 + c2
2
)(

σ2δ (h−δ )+h
(
c2

1 + c2
2
))

+2c2
1c2

2δ
]

c2
1

[
(δσ2)

2
+δσ2c2

2 + c2
1c2

2 + c4
2

]
2

+4
c2

2σ2 [σ2δ (h−δ )+hc2
2
]

c2
1

[
(δσ2)

2
+δσ2c2

2 + c2
1c2

2 + c4
2

]

c = −1
2

σ2 [(δσ2 + c2
2
)(

σ2δ (h−δ )+h
(
c2

1 + c2
2
))

+2c2
1c2

2δ
]

c2
1

[
(δσ2)

2
+δσ2c2

2 + c2
1c2

2 + c4
2

] ± 1
2

√
∆

d =

−1
2

σ2 [(δσ2 + c2
2
)(

σ2δ (h−δ )+h
(
c2

1 + c2
2
))

+2c2
1c2

2δ
]

c2
1

[
(δσ2)

2
+δσ2c2

2 + c2
1c2

2 + c4
2

] ± 1
2

√
∆

 c2
1

δσ2 + c2
2
−

c2
2

δσ2 + c2
2

then using 36

Ω = (1− c−d)−1

(
−c2

1 (−1+d)−dδσ2 dc2
2

cc2
1 +(−1+ c)δσ2 −(−1+ c)c2

2

)

And then the PT and the IS are computed by replacing in 39, 40, 37.

The PT measure
PT1 =

c
1+ c+d

and PT2 =
1+d

1+ c+d
(42)

The information share bounds The total IS is

ψΩψ
′ =

(
c 1+d

)
Ω

(
c

1+d

)
=

[
c2

σ11 +2σ12c(1+d)+(1+d)2
σ22

]
= c2× (−1+ c+d)−1 (c2

1 (−1+d)+dδσ
2)+2dc2

2 (1− c−d)−1 c(1+d)− (1− c−d)−1 (−1+ c)c2
2

The IS bounds for market 1 are

IS1u =

(
c2 (−1+ c+d)−1 (c2

1 (−1+d)+dδσ2
)
+

(1+d)2(dc2
2(1−c−d)−1)

2

((−1+c+d)−1(c2
1(−1+d)+dδσ2))

/+4c(1+d)dc2
2 (1− c−d)−1

)
c2× (−1+ c+d)−1 (c2

1 (−1+d)+dδσ2
)
+2dc2

2 (1− c−d)−1 c(1+d)− (1− c−d)−1 (−1+ c)c2
2

IS1l =

c2 (−1+ c+d)−1 (c2
1 (−1+d)+dδσ2

)(
1− (1+d)2(dc2

2(1−c−d)−1)
2

(c2
1(−1+d)+dδσ2)((−1+c)c2

2)

)
c2× (−1+ c+d)−1 (c2

1 (−1+d)+dδσ2
)
+2dc2

2 (1− c−d)−1 c(1+d)− (1− c−d)−1 (−1+ c)c2
2
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and for market 2

IS2u = 1−
c2 (−1+ c+d)−1 (c2

1 (−1+d)+dδσ2
)(

1− (1+d)2(dc2
2(1−c−d)−1)

2

(c2
1(−1+d)+dδσ2)((−1+c)c2

2)

)
c2× (−1+ c+d)−1 (c2

1 (−1+d)+dδσ2
)
+2dc2

2 (1− c−d)−1 c(1+d)− (1− c−d)−1 (−1+ c)c2
2

IS2l = 1−

(
c2 (−1+ c+d)−1 (c2

1 (−1+d)+dδσ2
)
+

(1+d)2(dc2
2(1−c−d)−1)

2

((−1+c+d)−1(c2
1(−1+d)+dδσ2))

/+4c(1+d)dc2
2 (1− c−d)−1

)
c2× (−1+ c+d)−1 (c2

1 (−1+d)+dδσ2
)
+2dc2

2 (1− c−d)−1 c(1+d)− (1− c−d)−1 (−1+ c)c2
2

C.4 Model III: two markets with public and private information

We have λh,σ (h) h→0−→ 0 and

mt =mt−h +λhη1th +ηth (43)

p1th =mth +η1th + c1ε1th

P2th =mth−h + c2ε2th

thus

C0 =

(
(λh +1)2 +1+σ2

h +2c2
1 −λh

−λh λ 2
h +σ2

h +2c2
2

)
and C1 =

(
−(λh +1)− c2

1 0
λh (λh +1)+σ2

h −c2
2

)
(44)

Using the equation 33

F = c−2
2

[
(λh +1)2 +σ

2
h + c2

1

]
and G =−c−2

2
(
σ

2
h +λ

2
h + c2

2 +λh
)

For h' 0 we consider the development at the order of λh and σh. That is
F = c−2

2
(
1+ c2

1
)

, G =−
(
1+ c−2

2 λh
)

thus d = c−2
2
(
1+ c2

1
)

c−
(
1+ c−2

2 λh
)

and we have

C0 =

(
2λh +2+2c2

1 −λh

−λh 2c2
2

)
and C1 =

(
−1− c2

1 0
λh −c2

2

)
In equation 34

m1 +F2m2 +F (m12 +m21) = −
(
1+ c2

1
)[

1+ c−2
2
(
1+ c2

1
)
− c−2

2 λh
]
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2FGm2 +G(m12 +m21)− v12−Fv2
2 =

(
c−2

2 λh
)(

2
(
1+ c2

1
)
−λh

)

G2m2−Gv2
2 +m2 = −c2

2
(
2+ c−2

2 λh
)2

∆ =
(
c−2

2 λh
)2 (

2
(
1+ c2

1
)
−λh

)2−4c2
2
(
2+ c−2

2 λh
)2 (

1+ c2
1
)[

1+ c−2
2
(
1+ c2

1
)
− c−2

2 λh
]

= c−4
2 λ

2
h

(
4
(
1+ c2

1
)2

+λ
2
h −4

(
1+ c2

1
)

λh

)
−4
(
4+4c−2

2 λh + c−4
2 λ

2
h
)

c2
2
(
1+ c2

1
)[

1+ c−2
2
(
1+ c2

1
)]

+4
(
4+4c−2

2 λh + c−4
2 λ

2
h
)

c2
2
(
1+ c2

1
)

c−2
2 λh

c =
c−2

2 λh(1+c2
1)+

√
λh(1+c2

1)(1+c−2
2 (1+c2

1))

(1+c2
1)[1+c−2

2 (1+c2
1)−c−2

2 λh]

d = c−2
2
(
1+ c2

1
)

c−
(
1+ c−2

2 λh
)

= c−2
2
(
1+ c2

1
) c−2

2 λh(1+c2
1)+

√
λh(1+c2

1)(1+c−2
2 (1+c2

1))

(1+c2
1)[1+c−2

2 (1+c2
1)−c−2

2 λh]
− c−2

2 λh−1

1+d = c−2
2

c−2
2 λh(1+c2

1)+
√

λh(1+c2
1)(1+c−2

2 (1+c2
1))

[1+c−2
2 (1+c2

1)−c−2
2 λh]

− c−2
2 λh

We go at the order
√

λh

c =

√
λh√

(1+c2
1)(1+c−2

2 (1+c2
1))

and 1+d =
c−2

2 (1+c2
1)
√

λh√
(1+c2

1)
√

1+c−2
2 (1+c2

1)

The variance 36 Ω = [c+d]−1

(
d
(
1+ c2

1
)
−(1+d)c2

2

−c
(
1+ c2

1
)

(−1+ c)c2
2

)

The PT measure

PT1 =
1

1+ c−2
2
(
1+ c2

1
) and PT2 =

c−2
2
(
1+ c2

1
)

1+ c−2
2
(
1+ c2

1
)

The information share bounds The total IS is ψΩψ ′=− [c+d]−1 c2 (1+ c2
1
)(

1+ c−2
2
(
1+ c2

1
))

The bounds for market 1 are

• IS1u = KD2

ψΩψ

(1+c2
1)

d and IS1l =− KD2

ψΩψ

(
1+ c2

1
)( c+d
−1+c

)
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• IS2u = K
ψΩψ

c2

(−1+c)

(
1+ c2

1
)2 c−2

2 and IS2l =− K
ψΩψ

(c+d)
d (1+d)2 c2

2

To summarize we have K = [c+d]−1 =
[
D
(
1+ c−2

2
(
1+ c2

1
))
−1
]−1

, c = D ,
1+d = c−2

2
(
1+ c2

1
)

D , ψΩψ =−Kλh

with D =
√

λh

(√(
1+ c2

1
)(

1+ c−2
2
(
1+ c2

1
)))−1

and D
h→0
−→ 0

IS1u = − 1
c−2

2 (1+c2
1)D−1

× 1
(1+c−2

2 (1+c2
1))

= 1
1+c−2

2 (1+c2
1)

= PT1

IS1l =

(
D(1+c−2

2 (1+c2
1))−1

D−1

)
1

1+c−2
2 (1+c2

1)
= 1

1+c−2
2 (1+c2

1)
= PT1

IS2u =
−(1+c2

1)c−2
2

(−1+D) ×
1

(1+c−2
2 (1+c2

1))
=

(1+c2
1)c−2

2
1+c−2

2 (1+c2
1)

= PT2

IS2l = 1
(1+c−2

2 (1+c2
1))

[D(1+c−2
2 (1+c2

1))−1]
Dc−2

2 (1+c2
1)−1

c−2
2
(
1+ c2

1
)

=
(1+c2

1)c−2
2

1+c−2
2 (1+c2

1)
= PT2

We obtain also here that the IS bound and PT are similar at high frequency.

C.5 Proof of Proposition 3

Proof. If 1≥ α1 then

κ =−σ2h
2

+
σh
2

√
4c′21 c′22 hα1

(
c′21 hα1−α2 + c′22

)−1 '−σ2h
2

+σc
′
1c
′
2h0.5+α1

(
c
′2
1 hα1−α2 + c

′2
2

)−1/2

−→ 0

K =
[
1−κh−α1

(
c
′−2
1 + c

′−2
2 hα1−α2

)]−1

=

[
1−
(
−1

2
σ

2h+σc
′
1c
′
2h0.5+α1

(
c
′2
1 hα1−α2 + c

′2
2

)−1/2
)

h−α1
(

c
′−2
1 + c

′−2
2 hα1−α2

)]−1

w

[
1−
(
−1

2
σ

2hh−α1 +σc
′
1c
′
2h0.5+α1h−α1

(
c
′2
1 hα1−α2 + c

′2
2

)−1/2
)(

c
′−2
1 + c

′−2
2 hα1−α2

)]−1

w

[
1+

1
2

σ
2c
′−2
1 h1−α1−σc1c2h0.5c

′−1
2 c

′−2
1

]
−→ 1
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