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Abstract

This paper proposes generalisations of the Realized GARCH model by
Hansen et al. (2012), in three different directions. First, heteroskedasticity
in the noise term in the measurement equation is allowed, since this is
generally assumed to be time-varying as a function of an estimator of the
Integrated Quarticity for intra-daily returns. Second, in order to account
for attenuation bias effects, the volatility dynamics are allowed to depend
on the accuracy of the realized measure. This is achieved by letting the
response coefficient of the lagged realized measure depend on the time-
varying variance of the volatility measurement error, thus giving more
weight to lagged volatilities when they are more accurately measured.
Finally, a further extension is proposed by introducing an additional
explanatory variable into the measurement equation, aiming to quantify
the bias due to the effect of jumps and measurement errors.

JEL Codes: C58, C22 ,C53.

Keywords: Realized GARCH, Realized Volatility, Realized Quarticity,
Measurement Error.

1 Introduction

In the econometric literature it is widely acknowledged that the use of
intra-daily information, in the form of realized volatility measures (Hansen
and Lunde, 2011), can be beneficial for forecasting financial volatility
on a daily scale. This is typically done by taking one of two different
approaches.

First, dynamic models are directly fitted to the time series of the realized
measure. Examples include the Heterogeneous AutoRegressive (HAR)
(Corsi, 2009) and Multiplicative Error Models (MEM) (Engle, 2002; Engle
and Gallo, 2006). A drawback of this approach is that the estimate is
given by the expected level of the realized measure, rather than by the
conditional variance of returns. As will be clarified in the next section,
realized measures are designed to consistently estimate the integrated
variance that, under general regularity conditions, can be interpreted as
an unbiased estimator of the conditional variance of returns, but will not
equal this latter desired quantity. In addition, two main sources of bias
can also arise, as a consequence of microstructure noise and jumps. In
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practical applications, an additional major source of discrepancy is due to
the fact that realized measures are usually built not taking into account
the contribution of overnight volatility, which is a relevant part of the
conditional return variance that is of interest to risk managers and other
professionals.

The second approach makes use of a volatility model, e.g. GARCH-
type models, where conditional variance is driven by one or more realized
measures. The main idea here is to replace a noisy volatility proxy,
e.g. the squared daily returns as employed in the traditional GARCH,
with a more efficient realized measure. Differently from the above-
mentioned approach, in this case both low frequency (daily returns)
and high frequency (realized measures) information is employed in the
model. Examples within this class include: the HEAVY model of Shephard
and Sheppard (2010) and the Realized GARCH model of Hansen et al.
(2012). These two models are closely related but, nevertheless, they are
characterised by some distinctive features. HEAVY models are designed
for the generation of multi-step ahead forecasts, guaranteed by the
inclusion of a dynamic updating equation for the conditional expectation of
the chosen realized measure. On the other hand, Realized GARCH models
include a measurement equation allowing, in a fully data driven fashion,
deeper insight on the statistical properties of the realized measure, and its
relationship with latent volatility, for the empirical problem of interest.

A complication arising with both approaches is that realized measures
are noisy estimates of the underlying integrated variance, generating a
classical errors-in-variables problem. This typically leads to the rise of
what is often called attenuation bias: the realized measure has lower
persistence than the latent integrated variance. Although it is evident
that correcting for this attenuation bias can potentially lead to improved
volatility forecasts, this issue has not received much attention in the
literature. Recently, Bollerslev et al. (2016) find, via employing a HAR
model, that allowing the volatility persistence to depend on the estimated
degree of measurement error allows a marked improvement in the model’s
predictive performance. In the same vein, Shephard and Xiu (2016) find
evidence that the magnitude of the response coefficients associated with
different realized volatility measures, in a GARCH-X model, is related to
the quality of the measure itself. Finally, Hansen and Huang (2016) observe
that the response of the current conditional variance to past unexpected
volatility shocks is negatively correlated with the accuracy of the associated
realized volatility measure.

In this framework, exploiting the flexibility of the Realized GARCH,
this paper develops a novel modelling approach that allows for correcting
the attenuation bias effect, in a natural and fully data driven way. To
this purpose, the standard Realized GARCH is extended by allowing the
variability of the measurement error to be time-varying, as a function of an
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estimator of the integrated quarticity of intra-daily returns. Consequently,
the volatility dynamics are allowed to depend on the accuracy of the
realized measure. Namely, the response coefficient of the lagged realized
volatility is proposed to depend on a measure of the latter’s accuracy, given
by the estimated variance of the volatility measurement error, flexibly
designed so that more weight is given to lagged volatilities that are
more accurately measured. Finally, the proposed modelling approach is
further extended to capture further potential effects, related to jumps and
measurement errors, by introducing into the measurement equation an
additional component, controlling the amount of bias that is generated by
noise and by jumps. This allows the separation of measurement error due
to microstructure noise and discretization, from that due to the impact of
jumps. A notable feature of the proposed model is that the jump correction
occurs only on days in which jumps are most likely to happen, while
resorting to the use of more efficient standard measures, such as realized
variances and kernels, in jumps-free periods.

The paper is organized as follows: in Section 2 the basic theoretical
framework behind the computation of realized measures is reviewed,
while Section 3 discusses the Realized GARCH model of Hansen et al.
(2012); Section 4 presents a time-varying parameter heteroskedastic
Realized GARCH model, that allows and accounts for attenuation bias
effects: a jumps-free setting is considered first, then a modification of the
proposed model, which aims to explicitly account for the impact of jumps
and microstructure noise, is discussed in Section 5; QML estimation of
the proposed models is discussed in Section 6, while Sections 7 to 9 are
dedicated to the empirical analysis; Section 7 presents the main features
of the data used for the analysis; Section 8 focuses on the in-sample
performance of the proposed models, compared to the standard Realized
GARCH model as benchmark, whereas the out-of-sample forecasting
performance is analysed in Section 9; Finally, section 10 concludes.

2 Realized measures: a short review

In recent years, the availability of high-frequency financial market data
has enabled researchers to build reliable measures of the latent daily
volatility, based on the use of intra-daily returns. In the econometric and
financial literature, these are widely known as realized volatility measures.
The theoretical background to these measures is given by the dynamic
specification of the price process in continuous time. Formally, let the
logarithmic price pt of a financial asset, be determined by the stochastic
differential process:

dpt = µtdt+ σtdWt + dJt 0 ≤ t ≤ T , (1)
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where µt, σt are the drift and instantaneous volatility processes,
respectively, whilst Wt is a standard Brownian motion; σt ia assumed to
be independent of Wt, while Jt is a finite activity jump process. Under
assumption of jump absence (dJt = 0) and a frictionless market the
logarithmic price pt follows a semi-martingale process.

In that case the Quadratic Variation (QV ) of log-returns rt = pt − pt−1

coincides with the Integrated Variance (IV ), given by:

IVt =

∫ t

t−1
σ2
sds . (2)

In the absence of jumps, microstructure noise and measurement error,
Barndorff-Nielsen and Shephard (2002) show that IV is consistently
estimated by Realized Volatility (RV ):

RVt =

M∑
i=1

r2
t,i , (3)

where
rt,i = pt−1+i∆ − pt−1+(i−1)∆

is the i-th ∆-period intraday return, M = 1/∆. Although IV and
the conditional variance of returns do not coincide, there is a precise
relationship between these two quantities: under standard integrability
conditions (Andersen et al., 2001) show that:

E(IVt|Ft−1) = var(rt|Ft−1) ,

where Ft−1 denotes the information set at time (t − 1). In other words,
the optimal forecast of IV can be interpreted as the conditional variance of
returns and the difference between these two quantities is given by a zero
mean error.

Barndorff-Nielsen and Shephard (2002) show that RV consistently
estimates the true latent volatility, when ∆ −→ 0, but in practice, due to
data limitations, the following results hold:

RVt = IVt + εt (4)

and
εt ∼ N(0, 2∆IQt) (5)

where IQt =
∫ t
t−1 σ

4
sds is the Integrated Quarticity (IQ). IQ, in turn, can

be consistently estimated as:

RQt =
M

3

M∑
i=1

r4
t,i . (6)
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On the other hand, if jumps are present, QV will differ from IV , with
the difference given by the accumulated squared jumps. Formally, let

dJt = ktdqt ,

where kt = pt − pt− is the size of the jump in the log-price pt and qt is a
counting process, with possibly time-varying intensity λt, such that:

P (dqt = 1) = λtdt .

Then, under the assumptions in Andersen et al. (2007):

RVt →
p
QV = IV +

∑
t−1≤s≤t

k2(s) .

Hence, RV is a consistent estimator of QV , but not of IV . An
alternative here is to use jump-robust estimators, such as the Bipower
and Tripower Variation (Barndorff-Nielsen and Shephard, 2004), minRV or
medRV (Andersen et al., 2012), that are consistent for IV even in the
presence of jumps. In the empirical applications carried out in this work,
among the different proposals arising in the literature, focus here is put on
the medRV estimator, mainly for theoretical reasons: specifically, Andersen
et al. (2012) show that in the jump-free case “the medRV estimator has better
theoretical efficiency properties than the tripower variation measure and displays
better finite-sample robustness to both jumps and the occurrence of “zero” returns
in the sample”. In addition, unlike the Bipower Variation measure, for the
medRV estimator an asymptotic limit theory in the presence of jumps is
available.

The medRV estimator proposed by Andersen et al. (2012) is:

medRVt =
π

6− 4
√

3π

(
M

M − 2

)M−1∑
i=2

med (|rt,i−1|, |rt,i|, |rt,i+1|)2 . (7)

Nevertheless, in the jump-free case, these jump-robust estimators are
substantially less efficient than the simple RV estimator: i.e. Bipower and
Tripower Variation, medRV and minRV are all asymptotically normal, with
asymptotic variance proportional (up to different scale factors) to the IQ
(Andersen et al., 2012). Further, in presence of jumps, this quantity will
be not consistently estimated by RQ; thus, some alternative jump-robust
estimator will be needed. Among several proposals in the literature, for
the same reasons discussed above, focus here is on the medRQ estimator
proposed by Andersen et al. (2012):

medRQt =
3πM

9π + 72− 52
√

3

(
M

M − 2

)M−1∑
i=2

med (|rt,i−1|, |rt,i|, |rt,i+1|)4 .

(8)
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A further issue is how to consistently estimateQV in the presence of market
microstructure frictions. In this direction, several estimators are proposed
in the literature to mitigate the influence of market microstructure noise,
such as the Two Time Scales approach of Zhang et al. (2005), the Realized
Kernel of Barndorff-Nielsen et al. (2008) and the pre-averaged RV of Jacod
et al. (2009), among others. In this paper, the Realized Kernel (RK),
developed by Barndorff-Nielsen et al. (2008), is employed, specified as:

RK =

H∑
h=−H

K

(
h

H + 1

)
ζH , ζH =

M∑
j=|h|+1

rt,irt,i−|h| , (9)

where K(·) is a kernel weight function and H a bandwidth parameter†.

3 Realized GARCH models

The Realized GARCH (RGARCH), introduced by Hansen et al. (2012),
extends the class of GARCH models by first replacing squared returns, as
the driver of the volatility dynamics, with a more efficient proxy, such as
an RV measure. With this change alone, the resulting specification can
be seen as a GARCH-X model, where the realized measure is used as an
explanatory variable. A second extension is that the Realized GARCH
“completes” the GARCH-X, by adding a measurement equation that
explicitly models the contemporaneous relationship between the realized
measure and the latent conditional variance.

Formally, let {rt} be a time series of stock returns and {xt} be a time
series of realized measures of volatility. Focus here is on the logarithmic
RGARCH model, defined via:

rt = µt +
√
ht zt (10)

log(ht) = ω + β log(ht−1) + γ log(xt−1) (11)
log(xt) = ξ + ϕ log(ht) + τ(zt) + ut (12)

Here ht = var(rt|Ft−1) is the conditional variance, Ft−1 the historical
information set at time t−1. To simplify the exposition, in the reminder it is
assumed that the conditional mean µt = E(rt|Ft−1) = 0. The innovations
zt and ut are assumed to be mutually independent, with zt

iid∼ (0, 1) and

ut
iid∼ (0, σ2

u).
The function τ(zt) can accommodate leverage effects, since it captures

the dependence between returns and future volatility. A common choice
(see e.g. Hansen et al. (2012)), found to be empirically satisfactory, is:

τ(zt) = τ1 zt + τ2(z2
t − 1) .

†For detail about the optimal choice of the kernel type and the bandwidth selection see
Barndorff-Nielsen et al. (2009).
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Substituting the measurement equation into the volatility equation, the
model implies an AR(1) representation for log(ht):

log(ht) = (ω + ξγ) + (β + ϕγ)log(ht−1) + γ wt−1 , (13)

where wt = τ(zt) + ut and E(wt) = 0. The coefficient (β + ϕγ) reflects the
persistence in (the logarithm of) volatility, whereas γ represents the impact
of both the lagged return and realized measure on future (log-)volatility.

To ensure the volatility process ht is stationary the required restriction
is β + ϕγ < 1.

Compared to the linear RGARCH, the log-linear specification has two
main advantages: first, it is more flexible, since no constraints on the
parameters are required in order to ensure positivity of the conditional
variance, which holds automatically by construction; and second, the
logarithmic transformation substantially reduces, but does not eliminate,
the heteroskedasticity of the measurement equation error term. For these
reasons, this paper exclusively focuses on the log-linear specification of the
Realized GARCH model.

4 Time Varying Coefficient Heteroskedastic Realized
GARCH models with dynamic attenuation bias

In this section a generalization of the basic Realized GARCH specification
is proposed that accounts and allows for the natural heteroskedasticity of
the measurement error ut, as well as for dynamic attenuation bias.

In a jump-free world any consistent estimator of the IV can be written
as the sum of the conditional variance plus a random innovation. Since
the variance of this innovation term is function of the IQ, it seems natural
to model the variance of the noise ut in equation (??) as function of the
RQ. Thus, it is assumed that the measurement noise variance is time-
varying, i.e. ut

iid∼ (0, σ2
u,t). In order to model the time-varying variance

of the measurement noise, the specification

σ2
u,t = exp

{
δ0 + δ1log

(√
RQt

)}
(14)

is considered, where the exponential formulation guarantees the positivity
of the estimated variance, without imposing constraints on the parameters
δ0 and δ1. The resulting model is denoted the Heteroskedastic Realized
GARCH (HRGARCH). It is easy to see that the homoskedastic Realized
GARCH is nested within this class, i.e. set δ1 = 0, and that this restriction
can be tested by means of a simple Wald statistic.

In order to account for dynamic attenuation effects in the volatility
persistence, in the sense of Bollerslev et al. (2016), the basic HRGARCH
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specification is further extended, allowing for time-varying persistence in
the volatility equation. This is achieved by letting γ, the impact coefficient
of the lagged realized measure, depend on the time-varying variance of
the measurement noise ut. In line with Bollerslev et al. (2016), the impact
of past realized measures on current volatility is expected to be down-
weighted in periods in which the efficiency of the realized measure is
low. The resulting model is called the Time Varying Heteroskedastic Realized
GARCH (TV-HRGARCH).

Focusing on a log-linear specification, the volatility updating equation
of the TV-HRGARCH is given by

log(ht) = ω + β log(ht−1) + γt log(xt−1) (15)

where
γt = γ0 + γ1 σ

2
u,t−1 (16)

and σ2
u,t follows the specification in (14). Accordingly, as its fixed

coefficients counterpart, the TV-HRGARCH can be represented in terms
of a time-varying coefficients AR(1) model for log(ht)

log(ht) = (ω + ξγt) + (β + ϕγt)log(ht−1) + γtwt−1. (17)

5 Accounting for bias from jumps and measurement
errors

So far focus is on a simplified setting without the possibility of jumps.
Consideration is now given to a variant of the proposed modelling
approach, featuring a jumps component as an additional variable in the
measurement equation, to capture that source of bias. This is achieved
by adding the log-ratio between RV and a jump-robust realized measure,
as an explanatory variable. In the empirical application, as anticipated
in Section 2, the medRV estimator proposed by Andersen et al. (2012) is
employed.

Generally, letCt = xt/x
J
t be the ratio between a realized measure xt and

a jump-robust realized measure xJt . In the limit, this ratio will converge
in probability to the ratio between QV and IV . Values of Ct > 1 are
interpreted as providing evidence of jumps occurring at time t, while the
discrepancy between the two measures is expected to disappear in absence
of jumps, leading to values of Ct ≈ 1. Naturally, sampling variability will
play a role here and values Ct < 1 will be possible, in a small proportion
of cases. This is compatible with the fact that the observed Ct is given
by the combination of a latent signal C̄t ≥ 1 and a measurement error,
thus explaining observed values of Ct below the threshold of 1. A simple
way to avoid observations below 1 is to truncate the distribution of Ct
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at this threshold, setting all the values below the truncation point equal
to 1 (see e.g. Andersen et al. (2007)). However, this does not guarantee
consistent filtering of the measurement error (the truncation on the left
tail is somewhat arbitrary and the right tail would be untouched) with
the potential drawback of introducing an additional source of bias into the
analysis. Therefore, taking into account the limited empirical incidence of
values of Ct < 1, it is decided to work with uncensored values of Ct.

After adding the bias correction variable Ct, the proposed modified
measurement equation is:

log(xt) = ξ + ϕlog(ht) + ηlog(Ct) + τ(zt) + u∗t (18)

or equivalently

log(x∗t ) = ξ + ϕlog(ht) + τ(zt) + u∗t , (19)

where log(x∗t ) = log(xt/C
η
t ).

The specification in (19) implies that when xt = xJt , xt corresponds to
x∗t , so no bias correction is applied. In this way, in the jumps free case,
the dynamics of the predicted volatility are still driven by the standard RV
estimator, or some noise-robust variant such as the Realized Kernel (RK),
that in this situation are known to be much more efficient than jump-
robust estimators. On the other hand, assuming η > 0 (as systematically
confirmed by our empirical results), when xt is greater than xJt , in the spirit
of Barndorff-Nielsen and Shephard (2004) and Andersen et al. (2007), it
follows that there is evidence of an upward bias, due to the presence of
jumps, meaning that xt should be reduced, in order to be consistent for
the latent IV . This result is achieved, thanks to the correction variable Ct,
which, in this case, takes values higher than one and consequently makes
x∗t < xt.

Considering the chosen RGARCH and the AR(1) representation for the
log-conditional variance, it follows that:

log(ht) = (ω + ξγ) + (β + ϕγ)log(ht−1) + γ w∗t−1 , (20)

where
w∗t = τ(zt) + u∗t

and
u∗t = log(x∗t )− ξ − ϕlog(ht)− τ(zt). (21)

By substituting equation (21) in (20), the log-conditional variance can be
alternatively written as

log(ht) = ω + β log(ht−1) + γ log(xt−1)− γη log(Ct−1) (22)
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or equivalently

log(ht) = ω + β log(ht−1) + γ log(x∗t−1). (23)

In this modified framework, it then turns out that the log-conditional
variance log(ht) is driven not only by past values of the realized measure
but also, with opposite sign, by past values of the associated bias. The
additional parameter η allows to adjust the contribution of Ct−1. From a
different point of view, equation (19) suggests that the volatility updating
equation can be rewritten in a form similar to that of the standard RGARCH
model, with the substantial difference that the volatility changes are driven
instead by the bias-corrected measure xt−1/C

η
t−1; the amount of correction

is determined by the estimated scaling parameter η.
This specification, of course, extends to the HRGARCH and TV-

HRGARCH models, with the additional modification that, in order to
account for the presence of jumps, the RQ estimator in the specification
of σ2

u,t must be replaced by a jump-robust estimator, as will be more
extensively discussed in the empirical section. In the remainder, to
distinguish models incorporating the bias correction variable Ct in the
measurement equation, these models will be denoted by addition of the
superscript “ ∗ ", namely: RGARCH∗, HRGARCH∗ and TV-HRGARCH∗.

6 Quasi Maximum Likelihood Estimation

The model parameters can be estimated by standard Quasi Maximum
Likelihood (QML) techniques. Let Yt indicate any additional explanatory
variable eventually included in the measurement equation. Following
Hansen et al. (2012), the quasi log-likelihood function, conditionally on past
information Ft−1 and Yt, is given by

L(r, x;θ) =
T∑
t=1

log f(rt, xt|Ft−1, Yt)

where θ = (θh,θx,θσ)
′

with θh, θx and θσ respectively being the vectors
of parameters appearing in the volatility equation (θh), in the level of the
measurement equation (θx) and in the noise variance specification (θσ).

An attractive feature of the Realized GARCH structure is that the
conditional density f(rt, xt|Ft−1, Yt) can be easily decomposed as

f(rt, xt|Ft−1) = f(rt|Ft−1)f(xt|rt;Ft−1, Yt).

Assuming a Gaussian specification for zt and ut, such as zt
iid∼ N(0, 1)
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and ut
iid∼ N(0, σ2

u), the quasi log-likelihood function is:

L(r, x; θ) = −1

2

T∑
t=1

log(2π) + log(ht) +
r2
t

ht︸ ︷︷ ︸
`(r)

+ −1

2

T∑
t=1

log(2π) + log(σ2
u) +

u2
t

σ2
u︸ ︷︷ ︸

`(x|r)

. (24)

Since the standard GARCH models do not include an equation for xt,
the overall maximized log-likelihood values are not comparable to that
returned from the estimation of standard GARCH-type models; the former
will always be larger. Nevertheless, the partial log-likelihood value of the
returns component, `(r) =

∑T
t=1 log f(rt|Ft−1), can be still meaningfully

compared to the maximized log-likelihood value achieved for a standard
GARCH type model.

7 The Data

To assess the performance of the proposed models, an empirical application
to four stocks traded on the Xetra Market in the German Stock Exchange
is conducted. This section presents the salient features of the data
analysed. The following assets are considered: Allianz (ALV), a financial
services company dealing mainly with insurance and asset management;
Bayerische Motoren Werke (BMW), a company engaged in vehicle and
engine manufacturing; Metro Group (MEO), a cash and carry group and
RWE (RWE), a company providing electric utilities.

The original dataset included tick-by-tick data on transactions (trades
only) in the period 02/01/2002 to 27/12/2012. The raw data are cleaned,
using the procedure described in Brownlees and Gallo (2006), then
converted to an equally spaced series of five-minute log-returns, which
are aggregated on a daily basis to: compute a time series of 2791 daily
open-to-close log-returns; two different realized volatility measures: RV
and RK; as well as the jump-robust medRV estimator. Only continuous
trading transactions during the regular market hours 9:00 am - 5:30 pm are
considered.

Table 1 reports some descriptive statistics for daily log-returns (rt), RV ,
RK and medRV ; as well as for the bias correction variables related to RVt
and RKt, denoted by CRVt and CRKt , respectively. For ease of presentation,
the values associated with RV,RK are multiplied by 100.

The daily returns range have standard deviation typically around 0.020
and are slightly skewed, negatively so for ALV, BMW and MEO, but
positively for RWE. Furthermore, the high kurtosis values indicate much
heavier tails than the normal distribution, as expected. As expected, all
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Table 1: Summary statistics

Min. 1Qu. Med. Mean 3Qu. Max. S.dev. Skew. Kurt.

rt

ALV -0.147 -0.010 0.000 -0.001 0.008 0.135 0.021 -0.066 8.402
BMW -0.135 -0.010 0.000 0.000 0.010 0.153 0.020 -0.039 7.497
MEO -0.150 -0.010 -0.001 -0.001 0.009 0.122 0.019 -0.377 8.900
RWE -0.108 -0.009 0.000 -0.001 0.008 0.097 0.016 0.065 7.415

RVt × 100

ALV 0.002 0.011 0.021 0.050 0.047 1.732 0.089 6.999 93.681
BMW 0.004 0.016 0.028 0.045 0.051 0.842 0.057 5.254 49.634
MEO 0.004 0.016 0.026 0.045 0.048 1.047 0.060 5.030 48.277
RWE 0.003 0.012 0.020 0.034 0.035 1.011 0.046 6.635 92.977

RKt × 100

ALV 0.002 0.011 0.021 0.049 0.047 1.730 0.089 7.012 94.289
BMW 0.004 0.016 0.028 0.045 0.050 0.842 0.056 5.289 50.367
MEO 0.004 0.015 0.025 0.044 0.047 1.041 0.059 5.077 49.355
RWE 0.003 0.012 0.019 0.033 0.035 1.009 0.045 6.703 96.421

medRVt × 100

ALV 0.002 0.010 0.019 0.045 0.043 1.606 0.083 7.241 99.614
BMW 0.003 0.014 0.025 0.041 0.046 0.773 0.052 4.999 44.906
MEO 0.002 0.013 0.023 0.040 0.042 1.032 0.053 5.395 61.048
RWE 0.002 0.011 0.018 0.031 0.032 0.876 0.042 5.991 75.030

CRVt = RVt
medRVt

ALV 0.760 1.000 1.100 1.134 1.219 2.655 0.195 1.536 7.596
BMW 0.738 0.996 1.093 1.126 1.213 3.131 0.191 1.867 11.612
MEO 0.744 1.015 1.120 1.162 1.263 3.704 0.223 2.355 17.469
RWE 0.742 1.003 1.092 1.127 1.213 2.751 0.187 1.635 8.842

CRKt = RKt
medRVt

ALV 0.747 0.989 1.090 1.123 1.208 2.654 0.193 1.567 7.835
BMW 0.736 0.984 1.080 1.114 1.196 3.126 0.190 1.889 11.761
MEO 0.741 1.005 1.105 1.148 1.243 3.670 0.221 2.399 17.998
RWE 0.742 0.988 1.076 1.111 1.195 2.747 0.185 1.684 9.111

Summary statistics of daily log-returns rt, daily Realized Variance RVt∗ (∗: ×100),
daily Realized Kernel RKt∗ (∗: ×100), daily medRVt∗ (∗: ×100), bias correction variable
CRV

t for RVt and bias correction variable CRK
t for RKt . Sample period: January 2002 –

December 2012. Min.: Minimum; 1Qu.: First Quartile; Med.: Median; Mean; 3Qu.: Third
Quartile; Max.: Maximum; S.dev.: Standard deviation; Skew.: Skewness; Kurt.: Kurtosis.

RV and RK series present very strong positive skew; medRV has smaller
standard deviations thanRV,RK, which may be expected as a jump-robust
estimator.

The bias correction variables CRVt , CRKt have mean slightly above
one and positive skewness. Their minimums are ≈ 0.75 and maximums
∈ [2.66, 3.70]. This preliminary analysis suggests that the impact of jumps
is more important and prevalent compared to the measurement error bias.
These aspects are also confirmed by the distributional information on Ct
presented in Table 2. Only approximately 5% of observations have Ct
below 0.90, suggesting that the incidence of the measurement error in the
observed Ct series is rather limited, compared to that of jumps.

Figure 1 displays the daily returns for the four analysed stocks. These
reveal three periods of high volatility common to the four stocks: the

13



Table 2: Ct distribution for RV and RK

Distribution of CRV
t Distribution of CRK

t

ALV BMW MEO RWE ALV BMW MEO RWE

0% 0.760 0.738 0.744 0.742 0.747 0.736 0.741 0.742

5% 0.894 0.893 0.900 0.895 0.887 0.883 0.892 0.883

10% 0.930 0.930 0.941 0.931 0.923 0.919 0.929 0.919

25% 1.000 0.996 1.015 1.003 0.989 0.984 1.005 0.988

50% 1.100 1.093 1.120 1.092 1.090 1.080 1.105 1.076

75% 1.219 1.213 1.263 1.213 1.208 1.196 1.243 1.195

90% 1.375 1.354 1.428 1.359 1.362 1.342 1.410 1.343

95% 1.492 1.475 1.565 1.477 1.472 1.463 1.542 1.453

100% 2.655 3.131 3.704 2.751 2.654 3.126 3.670 2.747

Figure 1: Time series of daily log-returns

Daily log-returns for the stocks ALV (top-left), BMW (top-right), MEO (bottom-left) and
RWE (bottom-right) for the sample period 02/01/2002 – 27/12/2012.

first relates to the dot com bubble in 2002; the second is the financial
crisis starting in mid 2007 and peaking in 2008; the crisis in Europe then
progressed from the banking system to a sovereign debt crisis, with the
highest turmoil level in the late 2011, the 3rd period. These are clearly
evident in Figure 2, time plots of the daily 5-minute RV series.

Finally, Figure 3 shows the bias correction variables Ct over time.
This fluctuates approximately around a base level ≈ 1, with an evident
positive skewness due to the the upward peaks (jumps) while downward
variations due to measurement noise appear to be much less pronounced
and negligible.

14



Figure 2: Daily Realized Volatility

Daily Realized Volatility computed using a sampling frequency of 5 minutes. ALV
(top-left), BMW (top-right), MEO (bottom-left) and RWE (bottom-right). Sample period
02/01/2002 – 27/12/2012.

8 In-sample estimation

This section discusses the in-sample performance of the proposed models.
The full data is employed here and focus is on the log-linear specification.
For ease of exposition, sections 8.1 and 8.2 present the estimation results
obtained for the jump free models (RGARCH, HRGARCH and TV-
HRGARCH) and for the modified models in which the impact of jumps
and of noise due to sampling variability are considered in the measurement
equation (RGARCH∗, HRGARCH∗ and TV-HRGARCH∗).
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Figure 3: Time series of daily bias correction variable CRVt

Daily bias correction variable Ct = RVt/medRVt for the stocks ALV (top-left), BMW (top-
right), MEO (bottom-left) and RWE (bottom-right) for the sample period 02/01/2002 –
27/12/2012.

8.1 Estimation results for RGARCH, HRGARCH and TV-
HRGARCH

The estimation results for the HRGARCH and TV-HRGARCH models, and
for comparison also the standard RGARCH model, are in Table 3. The top
panel reports parameter estimates and robust standard errors, while the
second panel shows corresponding values of the log-likelihood L(r, x) and
partial log-likelihood `(r), together with Bayesian Information Criterion
(BIC), for the four analysed stocks.

The parameter ω is in most cases not significant, except for the TV-
HRGARCH model, where the value of ω is considerably greater than
other models, since it is influenced by the dynamics of the time-varying
coefficient γt. The parameter β is always slightly higher for HRGARCH
than RGARCH and TV-HRGARCH, whereas ϕ takes values closer to
one both for the RGARCH and for RGARCH models which account
for heteroskedasticity in the variance of the noise ut, but also for the
attenuation bias effects. These results are in line with the findings in
Hansen et al. (2012), since ϕ ' 1 suggests the log-transformed realized
measure xt, is roughly proportional to the log-conditional variance. The
parameters of the leverage function τ(z) are always significant, with τ1

negative and τ2 positive, as expected.
The parameter δ1 is always positive and significant, at the 0.05 level.

This means that, as expected, RQt positively affects the dynamics of the
variance of the error term ut in the measurement equation. This also
implies that σ2

u,t tends to take on higher values in periods of turmoil
and lower values when volatility tends to stay low. The coefficient γ,
which summarizes the impact of the realized measure on future volatility,
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ranges from ≈ 0.25 to 0.40 for both RGARCH and HRGARCH. For the
TV-HRGARCH this effect is explained, in an adaptive fashion, by the time
varying γt, which is a function of the past noise variance σ2

u,t−1. Since γ1

is always positive and log(xt) is negative, when the lagged variance of the
error term of the realized measure σ2

u,t−1 is high, the impact of the lagged
log-transformed realized measure log(xt−1) on log(ht) will be negative and
lower than what would have been implied by the same value of log(xt−1)
in correspondence of a lower value of σ2

u,t−1. Said differently, the impact
of xt−1 on ht will be down-scaled towards zero when σ2

u,t−1 increases.
Equivalently, variations in ht (∇ht = ht−ht−1) will be negatively correlated
with the values of γt and σ2

u,t−1. These results are in line with the recent
findings of Bollerslev et al. (2016).

In terms of fit to the data, from the second panel of Table 3 it emerges
that the TV-HRGARCH features the lowest value of the BIC for the four
examined stocks. Looking at L(r, x), the TV-HRGARCH model improves
over the standard RGARCH‡ in all series, as expected; the improvement is
similar, but less pronounced, from the HRGARCH to the RGARCH. Simple
likelihood ratio tests reveal that both HRGARCH and TV-HRGARCH give
rise to significant improvements over the benchmark RGARCH model in
all series. Further, the partial returns log-likelihood `(r) component also
shows all positive differences over RGARCH, though these are smaller in
scale, where the TV_HRGARCH prevails in three cases out of 4 (for BMW
the HRGARCH is preferred).

As a robustness check, all the models are re-estimated using the 5-
minute Realized Kernel as volatility proxy. The results and conclusions
reported above are highly similar to those obtained using the 5-minuteRV ,
and so not reported to save space.

Figure 4 compares the constant variance σ2
u estimated by RGARCH

with the time-varying variance σ2
u,t given by the HRGARCH model

estimated using the 5 minute Realized Volatility§. For the four analysed
stocks the trend of σ2

u,t follows the dynamics of the realized measure,
being higher in turbulent periods and lower in calmer periods, while the
constant variance σ2

u estimated within the RGARCH (red line in the plots)
is approximately equal to the average level of the time-varying variance of
the measurement noise.

Figure 5 displays the time plot of the γt coefficient for the four

‡Differently from Hansen et al. (2012) positive values are obtained for the log-likelihood.
This is mainly due to the fact that they use percentage log-returns, which approximately
fall in the range (-30, 30). It follows that the conditional variances are often above 1,
returning positive log-variances that multiplied by -1 in the log-likelihood, explaining the
comparatively large negative log-likelihoods that they typically get.

§We do not report results for models using the RK as volatility proxy, since these are
virtually identical to those reported here for the 5 minute RV .
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Figure 4: Constant versus time-varying variance of the noise ut of the
HRGARCH fitted using the 5 minute RV

The Figure shows the constant variance σ2
u (red-line) estimated with RGARCH together

with the time-varying variance σ2
u,t (black-line) estimated with HRGARCH. Both models

have been fitted taking the 5-minutes RV as volatility proxy. Sample period 02 January
2002 - 27 December 2012.

Figure 5: Time-varying coefficient γt given by the TV-HRGARCH model

The Figure shows the time-varying coefficient γt = γ0 + γ1σ
2
u,t−1 for the sample period 02

January 2002 - 27 December 2012.

19



considered stocks. It is evident that when the variance of the measurement
error is high, γt is also high, leading to a less substantial increase of ht
compared to days in which, ceteris paribus, σ2

u,t is low and the realized
measure provides a stronger more reliable signal. Further, the value of γt
tends to be higher than the value of the time invariant γ estimated within
the RGARCH and HRGARCH models.

8.2 Estimation results for RGARCH∗, HRGARCH∗ and TV-
HRGARCH∗

The estimation results for RGARCH∗, HRGARCH∗ and TV-HRGARCH∗

are reported in Table 4. Since jumps are accounted for in these models, in
equation (14) RQt is replaced with the jump-robust estimator medRQt.

Results for ω are again not significant in most cases. The estimates
of ϕ, τ1, τ2 are also apparently unaffected by using x∗t . The coefficient η,
related to the bias correction variable Ct, is always positive and statistically
significant and its values ranges from 0.25 to 0.4 for RGARCH∗ and
HRGARCH∗ and, slightly higher, from 0.3 to 0.47 for the TV-HRGARCH∗.
Given that 0 < η < 1, the impact of the rescaled realized measure
log(xt/C

η
t ) is determined along the same lines as for log(xt). Therefore, the

amount of smoothing is not arbitrarily chosen, but data driven through the
estimated parameter η. A quite interesting aspect is that for RGARCH∗ the
variance σ2

u∗ of the measurement equation error u∗t is reduced over that for
the RGARCH model for each series, providing evidence of an improved
goodness of fit in the modified measurement equation and efficiency of
the bias corrected realized measure x∗t. Therefore, correcting the upward
and downward bias through the variable Ct in the measurement equation
reduces the variability and thus improves the efficiency of the realized
estimator.

For HRGARCH∗ and TV-HRGARCH∗ the parameter δ1 is always
statistically significant and positive, giving empirical confirmation to the
intuition that the variance of the measurement error is time-varying and
in accordance with the asymptotic theory suggesting that this is positively
related to the IQ.

The impact of the past realized measure on future volatility is increased,
with the exception of the RGARCH∗ for the asset MEO, by the introduction
of the bias correction variableCt, as the coefficient γ always takes on higher
values; this confirms the idea that accounting for jumps further reduces
the attenuation bias effect on γ. Also, for the TV-HRGARCH∗ model the
coefficient γ1 is positive (even if lower than the ones showed for the TV-
HRGARCH), confirming that more weight is given to the realized measure
when it is more accurately measured. Thus, this class of models provide
stronger persistence when the measurement error is relatively low.

The second panel of Table 4 shows that, even in this framework,
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the model with time-varying persistence provides the lowest BIC values.
Focusing on L(r, x), the TV-HRGARCH∗ is still the dominant model
since it maximizes the log-likelihood. The partial returns log-likelihood
component `(r) for ALV and MEO the TV-HRGARCH∗ proves more
powerful and for BMW this holds for the HRGARCH∗, while for RWE the
RGARCH∗ prevails.

Estimation results are also obtained using the Realized Kernel as
volatility proxy that, as in the previous case, are virtually identical to those
based on 5-minutes Realized Volatility, and so not reported here.

Table 5: BIC in-sample comparison

ALV BMW MEO RWE

RV

RGARCH -11940.116 -11877.120 -11587.795 -13070.588
HRGARCH -11989.418 -11976.674 -11645.411 -13157.144
TV-HRGARCH -12043.935 -12022.571 -11696.293 -13184.844
RGARCH∗ -12008.103 -11907.799 -11643.514 -13102.043
HRGARCH∗ -12045.874 -11965.144 -11683.655 -13166.604
TV-HRGARCH∗ -12074.879 -11979.131 -11713.837 -13167.470

RK

RGARCH -11910.095 -11853.344 -11521.500 -13041.133
HRGARCH -11963.895 -11947.007 -11597.809 -13128.268
TV-HRGARCH -12013.475 -11986.876 -11637.261 -13148.254
RGARCH∗ -11992.565 -11890.365 -11612.761 -13085.465
HRGARCH∗ -12031.170 -11942.638 -11653.035 -13145.653
TV-HRGARCH∗ -12060.500 -11956.648 -11682.216 -13145.546

BIC values for the analysed models using the 5-min RV (first panel) and the 5-min RK

(second panel). Best models are reported in bold.

To clarify the results, Table 5 reports the comparison of the BIC values
for the estimated models according to RV (first panel) and RK (second
panel): the models with optimum BIC are exactly the same when using
each realized measure. Interestingly, for ALV and MEO, which have the
highest number of jumps, the BIC is minimized by the TV-HRGARCH∗,
whereas for BMW and RWE the TV-HRGARCH model is optimal. This
scenario is repeated when using the log-likelihood and RV (see Table 6);
highly similar results are obtained, but not reported, using the RK instead.
The partial returns likelihood, `(r), reported in small font under each
L(r, x) value has the best results achieved by models allowing for bias
effects in the measurement equation, in particular HRGARCH∗ for BMW
and TV-HRGARCH∗ for ALV and MEO, while for RWE the TV-HRGARCH

22



prevails, using both the realized measures considered in our analysis.

Summarizing: the introduction of heteroskedasticity and time-varying
persistence, as well as the bias correction for jumps and measurement
errors, has positive effects on the estimated volatility, since the log-
likelihood and the partial log-likelihood of the returns component tend to
be maximized by this class of models. Consequently, the proposed models
show notable improvements in volatility fitting over standard RGARCH,
in sample.

Table 6: Log-likelihood and partial log-likelihood using 5-minutes RV

ALV BMW MEO RWE

RGARCH 6001.795 5970.296 5825.634 6567.031
7605.335 7466.828 7460.021 7986.446

HRGARCH 6030.413 6024.041 5858.409 6614.276
7606.093 7468.052 7460.750 7988.292

TV-HRGARCH 6061.639 6050.956 5887.817 6632.093
7608.968 7466.639 7466.254 7990.691

RGARCH∗ 6039.755 5989.603 5857.461 6586.725
7606.606 7467.651 7461.572 7989.563

HRGARCH∗ 6062.608 6022.243 5881.498 6622.973
7606.523 7468.990 7461.340 7988.720

TV-HRGARCH∗ 6081.077 6033.203 5900.556 6627.373
7610.151 7467.012 7467.222 7988.765

In bold models maximizing the log-likelihood L(r, x). In blue models maximizing the
partial log-likelihood `(r), reported in small font under the corresponding L(r, x) value.

9 Out-of-sample Analysis

In this section the out-of-sample predictive ability of the models, estimated
in sections 8.1 and 8.2, is assessed via a rolling window forecasting exercise,
using a window of 1500 days. Furthermore, the framework is extended to
models that allow only for “significant” jumps. The out-of-sample period
starts 02 January 2008 and includes 1270 daily observations, covering the
credit crisis and the turbulent period from November 2011 to the beginning
of 2012.
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In order to assess the forecasting performance of the proposed models
the predictive log-likelihood and the QLIKE loss function are employed.
Further, the Model Confidence Set (MCS) of Hansen et al. (2011) is used to
evaluate the comparative predictive ability of all the models, considering
confidence levels 75% and 90%; the Tmax statistic, based on a block-
bootstrap procedure of 5000 re-samples, is employed to test the hypothesis
of equal predictive ability, where the optimal block length has been chosen
through the method described in Patton et al. (2009).

9.1 Testing for significant jumps

On the basis of theoretical results in Barndorff-Nielsen and Shephard (2006)
the following test statistic can be used to identify “significant” jumps in a
given price series:

ZTPQt =
RVt −BPVt√
(θ − 2) 1

M TPQt

, (25)

where BPV and TPQ are the realized bipower variation and realized
tripower quarticity, respectively, while θ = (π/2)2 + π − 3 ' 2.61, M is
the sampling frequency.

However, the simulation-based evidence reported in Huang and
Tauchen (2005) suggests that the ZTPQt statistic defined in (25) tends to
over-reject the null hypothesis of no jumps for large critical values. These
findings suggest the use of the ratio jump statistic:

ZRTPQt
=

(RVt −BPVt)/RVt√
(θ − 2) 1

M
TPQt

BPV 2
t

(26)

where ZRTPQt
is very closely approximated by a standard normal

distribution as M →∞.

In our empirical application BPV and TPQ estimators are replaced by
medRV and medRQ, respectively and consequently θ = 2.96 (Andersen
et al., 2012), namely

ZJt =
(RVt −medRVt)/RVt√

0.96 1
M

medRQt

medRV 2
t

(27)

In this context, in order to consider the further possible scenario in
which only “significant” jumps are modelled, the measurement equation
is specified as

log(xt) = ξ + ϕ log(ht) + η log(Ct) I(ZJt) + τ(zt) + ũt (28)
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where I (ZJt) is an indicator function equal to 1 if the null hypothesis of
no jumps is rejected and 0 otherwise. Therefore in jumps-free periods the
measurement equation xt corresponds to that of the standard RGARCH.
The models within this class are denoted as RGARCH-J, HRGARCH-J and
TV-HRGARCH-J.

9.2 Forecasting comparison

Before summarizing the out-of-sample evidence provided by the predictive
log-likelihood and the QLIKE loss function, it is interesting to look at
Table 7, illustrating the summary statistics of the Ct ratio, only for days
in which jumps are significant, based on the ZJt statistic in (27) at the 1%
significance level. Since models including the bias correction variable Ct in
the measurement equation allow for both small and large jump variations,
focus is on a cut-off of 0.99 to test the presence of jumps in order to consider
only days characterised by highly significant jumps¶.

¶The proportion of jumps is a function of the significance level α that is employed.
Although the use of α = 0.05 identifies more significant jumps, the results provided by
the out-of-sample analysis are practically the same.
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Table 7: Summary statistics of Ct for significant jumps at 1% level

ALV BMW MEO RWE

CRV
t

Prop. 0.054 0.041 0.069 0.051
Min. 1.358 1.352 1.371 1.362
1Qu. 1.482 1.507 1.475 1.494
Med 1.547 1.596 1.547 1.547
Mean 1.616 1.635 1.656 1.595
3Qu. 1.646 1.710 1.712 1.686
Max. 2.655 2.426 3.704 2.180
S.dev 0.232 0.205 0.371 0.166

ALV BMW MEO RWE

CRK
t

Prop. 0.047 0.036 0.064 0.043
Min. 1.355 1.389 1.392 1.357
1Qu. 1.478 1.505 1.473 1.493
Med 1.549 1.594 1.551 1.549
Mean 1.620 1.651 1.661 1.602
3Qu. 1.657 1.716 1.720 1.697
Max. 2.654 2.424 3.670 2.161
S.dev 0.243 0.207 0.377 0.169

Summary statistics for significant jumps determined by the bias correction variable Ct

using 5-min RV (first panel) and 5-min RK (second panel) at the significance level of
α = 0.01 according to the test statistic ZJt specified in (27). Prop.: proportion of days with
significant jumps.

The first row of the top and bottom panel in Table 7 reveals that MEO and
ALV are the assets showing the highest proportion of forecast sample days
with significant jumps, whereas BMW is affected by relatively fewer jumps.
However, BMW shows an average value ofCt higher than that for ALV and
RWE, where the latter exhibits the lowest mean, and standard deviation,
meaning that the impact of jumps is less marked than other stocks (both
using RV and RK in estimation), even if it presents a proportion of
significant jumps very close to that for ALV.
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Table 8: Predictive log-likelihood and predictive partial log-likelihood
using 5-minute RV .

ALV BMW MEO RWE

RGARCH 2568.420 2430.166 2444.677 2887.809
3334.337 3131.385 3199.957 3562.323

HRGARCH 2583.630 2451.359 2488.939 2925.647
3334.156 3132.354 3200.557 3561.528

TV-HRGARCH 2602.690 2466.983 2505.271 2932.639
3336.313 3130.976 3206.451 3565.076

RGARCH∗ 2583.520 2439.665 2468.083 2907.078
3334.529 3131.750 3200.824 3562.610

HRGARCH∗ 2598.877 2453.199 2502.194 2934.486
3334.595 3132.383 3201.749 3561.946

TV-HRGARCH∗ 2607.071 2457.562 2517.105 2934.071
3336.773 3131.430 3207.527 3562.597

RGARCH-J 2573.770 2433.761 2454.004 2894.117
3333.654 3131.507 3200.087 3562.042

HRGARCH-J 2587.530 2447.852 2488.987 2924.222
3333.760 3132.045 3200.776 3561.484

TV-HRGARCH-J 2604.238 2452.133 2495.016 2921.216
3334.679 3131.239 3204.609 3561.791

The table reports the predictive log-likelihood and the predictive partial log-likelihood
in smaller font underneath. In bold the preferred model according to predictive log-
likelihood. In blue the best model in terms of predictive partial log-likelihood of returns.
Out-of-sample period 02 January 2008 – 27 December 2012.

The first criterion for assessing predictive accuracy is, as in Hansen et al.
(2012), the predictive log-likelihood, given for time t+ 1 by:

ˆ̀(r, x)t+1 = −1

2

[
log(2π) + log(ĥt+1) +

r2
t+1

ĥt+1

]
− 1

2

[
log(2π) + log(σ̂2

u) +
u2
t+1

σ̂2
u

]
. (29)

Subsequently, the aggregated predictive log-likelihood is computed by
summing the density estimates for each day in the forecast period.

Table 8 shows the values of the predictive log-likelihood, and of the
predictive partial log-likelihood (reported in smaller font under each
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predictive log-likelihood value), corresponding to all models employed.
The models that allow for upward and downward bias, i.e. those including
the “full” bias correction variable Ct in the measurement equation,
maximize both the predictive log-likelihood and partial predictive log-
likelihood in 3 cases out of 4. In particular for ALV and MEO, the
stocks with the highest proportion of jumps, the specification that allows
for heteroskedasticity and time-varying persistence, TV-HRGARCH∗, is
favoured by both measures; for RWE the HRGARCH∗ is favoured by
predictive likelihood, but TV-HRGARCH is favoured by partial predictive
likelihood. Finally, for BMW the HRGARCH∗ is favoured by partial
predictive likelihood, while the TV-HRGARCH is favoured by predictive
likelihood. Though not reported, results when employing the RK instead
of RV , favour exactly the same models in all cases. In all cases one of the
models proposed in this paper is favoured.

Table 9: MCS p-values of predictive log-likelihood using 5-min RV as
volatility proxy. For each stock in red models ∈ 75% MCS and in blue
models ∈ 90% MCS. The p-values refer to the denied predictive log-
likelihoods.

MCS p-values
ALV BMW MEO RWE

RGARCH 0.0088 0.0258 0.0006 0.0098
HRGARCH 0.0182 0.0934 0.0030 0.2584
TV-HRGARCH 0.7772 1.0000 0.1118 0.9412
RGARCH∗ 0.2371 0.0792 0.0014 0.0714
HRGARCH∗ 0.3718 0.0970 0.1118 1.0000
TV-HRGARCH∗ 1.0000 0.1708 1.0000 0.9412
RGARCH-J 0.0088 0.0418 0.0010 0.0202
HRGARCH-J 0.0088 0.0522 0.0022 0.0830
TV-HRGARCH-J 0.7772 0.0934 0.0070 0.0268

In order to evaluate if the differences in the maximized log-likelihood
of the considered models are statistically relevant, the Model Confidence
Set approach of Hansen et al. (2011) is employed. Table 9 shows the
MCS p-values associated to the predictive log-likelihood (multiplied by
-1), where the 5-min RV is used. Interestingly, for MEO (which has
the largest proportion of jumps) the only model coming into the MCS at
the more restrictive 0.75 confidence level is the TV-HRGARCH∗, while
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the HRGARCH∗ and the TV-HRGARCH enter at 0.90 level. On the
other hand, for BMW (which has the lowest proportion of jumps) the
model that allows for both heteroskedasticity and time-varying persistence
uniquely falls in the 75% MCS, with its bias corrected version, the TV-
HRGARCH∗, entering into the 90% MCS. For the asset ALV all the time-
varying specifications enter into the set of superior models at the 0.75 level,
as well as the HRGARCH∗, while the RGARCH∗ falls into the MCS at the
0.90 level. Finally, for RWE four models are included into the 75% MCS:
the HRGARCH and TV-HRGARCH, together with the corresponding
counterparts corrected for jumps and measurement errors. The results, not
reported to save space, are highly similar when employing theRK insytead
of theRV in all models. Therefore, the standard RGARCH never enters into
the set of superior models (as in Table 9), nor do the models capturing only
significant jumps.

As a further criterion for assessing and comparing the forecasting
accuracy of the fitted models, the QLIKE loss function is employed.
This choice is motivated by the consideration that, compared to other
robust alternatives, this loss function is more powerful in rejecting poorly
performing predictors (Liu et al., 2015). The QLIKE loss has been computed
according to the formula:

QLIKE =
1

T

T∑
t=1

log(ĥt) +
xt

ĥt
(30)

where the 5-minute RV and RK are again chosen as volatility proxy‖. The
significance of differences in the QLIKE values across different models is
again tested by means of the Model Confidence Set (MCS) approach of
Hansen et al. (2011).

‖Results are highly similar also when employing the 5-min medRV as volatility proxy
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Table 10: Average values of QLIKE loss using 5-min RV as volatility proxy
(top) and MCS p-values (bottom). For each stock in bold minimum loss, in
red model ∈ 75% MCS and in blue model ∈ 90% MCS

QLIKE
ALV BMW MEO RWE

RGARCH -6.9639 -6.6661 -6.9402 -7.2539
HRGARCH -6.9634 -6.6650 -6.9408 -7.2533
TV-HRGARCH -6.9667 -6.6687 -6.9472 -7.2580
RGARCH∗ -6.9645 -6.6673 -6.9419 -7.2543
HRGARCH∗ -6.9641 -6.6661 -6.9428 -7.2540
TV-HRGARCH∗ -6.9668 -6.6673 -6.9465 -7.2548
RGARCH-J -6.9644 -6.6660 -6.9408 -7.2538
HRGARCH-J -6.9641 -6.6653 -6.9413 -7.2533
TV-HRGARCH-J -6.9658 -6.6656 -6.9434 -7.2534

MCS p-values
ALV BMW MEO RWE

RGARCH 0.0634 0.0856 0.0158 0.0478
HRGARCH 0.0688 0.0406 0.0288 0.0462
TV-HRGARCH 0.9004 1.0000 1.0000 1.0000
RGARCH∗ 0.1546 0.3380 0.0612 0.0478
HRGARCH∗ 0.1254 0.1574 0.2654 0.0478
TV-HRGARCH∗ 1.0000 0.3380 0.7216 0.0478
RGARCH-J 0.1254 0.0738 0.0290 0.0478
HRGARCH-J 0.1254 0.0534 0.0556 0.0462
TV-HRGARCH-J 0.4498 0.0678 0.0882 0.0462

Observing the average values of the QLIKE loss function for each
considered model, shown in top panel of Table 10, the lowest value is
obtained by the TV-HRGARCH model, except for ALV where it is the TV-
HRGARCH∗. Moreover, in order to assess the significance of differences
across different models, the bottom panel of Table 10 displays the MCS
p-values, representing the probability that a particular model belongs to
the MCS at the considered confidence level of 0.75 and 0.90. The MCS
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p-values show that the TV-HRGARCH is always included in the MCS, at
both confidence levels; for RWE, which has the lowest mean and maximum
value of Ct for significant jumps (Table 7), it is the only model in the
MCS at the 0.75 level. The standard RGARCH never comes into the set
of superior models, nor does the HRGARCH, for all examined assets.
Within the class of models which allow for upward and downward bias
effects in the measurement equation, the RGARCH∗ is included into the
MCS at the level 0.75 for BMW, and at the level 0.90 for ALV, whereas the
HRGARCH∗ falls into the 75% MCS only for MEO and into the 90% MCS
for ALV and BMW. The TV-HRGARCH∗ is always included in the set of
superior models at the more restrictive 0.75 level, excepting for RWE. On
the other hand, the models considering significant jumps come into the set
of superior models only for the stock ALV and in particular the RGARCH-J
and the HRGARCH-J enter into the 90% MCS, while the TV-HRGARCH-J
is included in the 75% MCS.

As a robustness check, the above results are repeated using instead
the 5-minute RK as volatility proxy: the results are highly similar and
qualitatively the same conclusions are reached; thus these results are not
reported here.

10 Conclusion

A new class of realized volatility models, accounting for heteroskedasticity
in measurement error and temporal variation in the volatility persistence
is proposed. The latter novelty explicitly reduces the magnitude of the
attenuation bias. Further, the presence of jumps and measurement errors
arising from the sampling variability lead to extending the proposed
modelling approach, through the use of a bias correction variable
controlling the amount of upward (jumps) and downward (measurement
errors) bias, in a data-driven fashion.

The empirical analysis illustrates that the proposed modelling approach
outperforms the standard Realized GARCH, both for in-sample fit and in
out-of-sample forecasting of volatility and return distributions. The models
allowing for both heteroskedasticity and time-varying persistence show a
higher predictive capability, in maximizing the predictive log-likelihood
and in minimizing the QLIKE loss function, and always entering into the
Model Confidence Set at the different confidence levels considered.

The time-varying model regulating the bias, generated by jumps and
measurement errors, better reproduces the dynamic properties of volatility
of the stocks characterised by a high proportion of jumps, while models
that account only for significant jumps show a relatively lower predictive
performance than the competitors. Furthermore, the use of different
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realized volatility measures confirms the robustness of our findings.
The models developed in this paper can easily be used in other financial

applications, such as forecasting of Value at Risk and Expected Shortfall,
where the latter is currently receiving a lot of attention in the literature.
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