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1 Introduction

Several realized volatility measures, such as the realized variance or the bipower variation, display

long-memory features with the typical slow decay pattern of the empirical autocorrelation function.1

Although long-memory processes are commonly observed in other �elds than in �nancial economet-

rics (see Baillie, 1996 and references therein) and that several models of long range dependence have

been proposed in the literature (Haldrup and Vera-Valdés, 2017), the fractional integration process

of order d, denoted I(d), has been extensively studied in econometrics and statistics since at least

Granger (1980) and Granger and Joyeux (1980). An example of an I(d) process is the fractional

white noise yt = (1� L)�d "t; where L denotes the lag operator, �0:5 < d < 0:5 and "t is a white
noise sequence. For 0 < d < 0:5; the process is long-memory with positive autocorrelation decaying

at a hyperbolic rate. For �0:5 < d < 0 the sum of absolute values of the autocorrelations tends to a

constant and the process is said to be antipersistent. The class of fractionally integrated processes

extends to ARFIMA(p; d; q) cases where "t admits a covariance stationary ARMA representation.

Several estimators of the long-memory parameters of series have been proposed in the literature

among which the log periodogram regression of Geweke and Porter-Hudak (1983), the Local Whittle

Likelihood Estimator of Robinson (1995) as well as the usual maximum likelihood estimator of an

ARFIMA(p; d; q) process that we for instance use in Section 2 of our paper. At the estimation

level, Corsi (2009) has proposed a univariate Heterogeneous Autoregressive model (hereafter HAR)

as an alternative way to approximate the long range dependence observed in volatility series. For

daily series, the HAR is a parsimonious restricted autoregressive model of lag order 22 with daily,

weekly and monthly e¤ects. The HAR model can easily be estimated by OLS and it performs well

in forecasting exercises.

The literature on the sources of long-memory is quite large, from the aggregation across heteroge-

neous series argument raised by Granger (1980) to the impact of structural changes that spuriously

lead to the detection as a fractional integrated process. Chevillon, Hecq and Laurent (2018, CHL18

hereafter) provide an alternative explanation that we consider in this paper. Indeed CHL18 inves-

tigate the mechanisms underlying the long-memory feature generated from a vector autoregressive

model (VAR hereafter). They start by assuming that the dynamic interactions between n daily

realized volatility measures Y (day)t �
�
Y
(day)
1;t ; : : : ; Y

(day)
n;t

�0
is generating by a VAR(1) such that

Y
(day)
t = �1Y

(day)
t�1 + ut; t = 1:::T (1)

with ut a n�dimensional martingale di¤erence sequence and �1 a n�n matrix of coe¢ cients. Then
for n ! 1; namely when the number of series increases, and under some regularity conditions on
values of �1 that are commonly established on real data, they prove that each marginalized individual

series (i.e. the �nal equation representation) is a fractional white noise (1�L)dY (day)it = uit processes

with the same d parameter. This last observation about the similarities of the values d for di¤erent

assets is in accordance with Andersen, Bollerslev, Diebold and Labys (2001) who found d = 0:4 for

1Among many others, see e.g. Andersen, Bollerslev, Diebold and Labys, 2001 for an application to exchange rates,

Corsi , Mittnik , Pigorsch and Pigorsch (2008) as well as Hillebrand and Meideiros (2016) for stock price applications.
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most exchange rate realized volatilities. CHL2018 provide two speci�c examples of those conditions

on �1. In the �rst parameterization, the �1;n matrix2 has diagonal elements converging to 1=2 as

n ! 1; and with vanishing o¤-diagonal elements. Importantly, the o¤-diagonal elements decrease
at an O

�
n�1

�
rate and the sum of each row equals 1 at all n. This means in practice that there exist

contagion e¤ects, that individually are tiny but jointly potentially important.Note that sparse type

regressions (e.g. Lasso) would probably erroneously put a zero at many of those small o¤-diagonal

elements. In the second example, one innovation dominates the others in terms of magnitude.

On the other hand though, many papers have also documented the existence of co-movements in

the volatility of asset returns. In integrated markets, common factors in volatility (see e.g. Engle, Ng

and Rothshild, 1990, Diebold and Nerlove, 1989) are the result of a common reaction of investors,

policy makers or central banks to news/shocks in some macroeconomic and �nancial variables.

However, one important implication underlying CHL2018, beyond the values of the coe¢ cient matrix

�1; is that rank(�1) = n because there are non-zero diagonal elements in �1 and o¤-diagonal ones

are small but di¤erent from zero: This would obviously contradicts the presence of a particular form

of commonalities, named common features in volatility3 , observed inter alia. by Engle and Marcucci

(2006), Engle and Susmel (1993), Hecq, Laurent and Palm (2016) and Anderson and Vahid (2007)

to quote a few.

Discriminating between those two approaches in a potentially high dimensional setting might be

unfeasible using conventional likelihood ratios or Wald tests. Consequently, this paper compares the

forecasting performances of two di¤erent modeling strategies: (i) on the one hand we consider a set of

univariate models potentially derived from a system with hidden correlations (ii) on the other hand

we take several multivariate models, possibly with common factors. For the former framework we

model the long-memory feature on individual series using both the maximum likelihood estimation of

autoregressive fractionally integrated moving average processes (ARFIMA(p; d; q) and the fractional

white noise ARFIMA(0; d; 0) as a special case) as well as the HAR models basically estimated by

ordinary least squares. For the second multivariate strategy, it should be noted that we must be

able to capture the long-memory features observed in the series. Consequently, we �rst look at

a multivariate version of the HAR model called the Vector HAR (VHAR henceforth, see Bubák,

Koµcenda and µZike�, 2011). Then we study the performance of the VHAR Index model (VHARI

henceforth; Cubadda, Guardabascio, Hecq 2016) in which we restrict the VHAR using a common

index structure. We will come back in Section 3 on the precise meaning of those speci�cations.

Note that we use these multivariate models and not, for instance, generic factor models based on

principal component analysis. There are two reasons for that. First the VHARI is nested within

the unrestricted VHAR, which is in turn restricted versions of a VAR with 22 daily lags. Hence,

the restrictions underlying the VHAR and the VHARI could in principle be tested for, whereas the

factor structure is typically postulated in dynamic factor models. Second, at the representation

theory level, the common factors obtained from the VHARI preserve the same temporal cascade

structure as in the univariate HAR with the weekly (monthly) index being equal to the weekly

2The subsript n denotes that the dimension of �1 increases with the system.
3De�ned intuitively to simplify matters as rank(�1) = k << n.
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(monthly) moving average of the daily index. This is an important property that is not shared by

most of the alternative factor methods (e.g., principal components, canonical correlations, etc).

The rest of the paper is as follows. Section 2 motivates our study by �rst looking at the presence

of long-memory features in the volatility in price return series of thirteen major US banks. We

estimate individual HAR and ARFIMA models on the whole sample. We also look at a simple

VAR(1) of series Y (day)t to have a �rst clue about the values of �1. Section 3 presents and brie�y

review the VHAR and the VHARI models. Section 4 compares the forecasting performance of the

di¤erent approaches. Section 5 concludes.

2 Data description

We have considered intraday data extracted from the NYSE �trade and quote� (TAQ) dataset

downloaded from Thomson Reuters. It contains the 250 most liquid assets quoted on New York

Stocks Exchange covering the period from 03/01/2006 to 31/12/2014 not including weekends and

holidays, for a sample of 2265 trading days. From the dataset, we focus in this study on the prices of

thirteen major banks. These are, in alphabetical order of the acronyms, (1) BAC: Bank of America

Corporation, (2) BBT: BB&T Corporation, (3) BK: Bank Of New York Mellon Corporation (The),

(4) C: Citigroup Inc., (5) COF: Capital One Financial Corporation, (6) JPM: J P Morgan Chase

& Co, (7) KEY: KeyCorp, (8) PNC: PNC Financial Services Group, Inc. (The), (9) RF: Regions

Financial Corporation, (10) STI: SunTrust Banks, Inc., (11) STT: State Street Corporation, (12):

USB U.S. Bancorp and (13) WFC: Wells Fargo & Company.

Data have been cleaned following the procedure proposed by Barndor¤-Nielsen et al (2009). It

consists of the following di¤erent steps:

Steps applied to all data

P1. Delete entries with a time stamp outside the 9:30 am to 4 pm window when the exchange is

open.

P2. Delete entries with a bid, ask or transaction price equal to zero.

Steps applied only to quote data

Q1. When multiple quotes have the same timestamp, replace all these with a single entry with the

median bid and median ask price.

Q2. Delete entries for which the spread is negative.

Q3. Delete entries for which the spread is more than 50 times the median spread on that day.

Q4. Delete entries for which the mid-quote deviated by more than 10 mean absolute deviations from

a rolling centered median (excluding the observation under consideration) of 50 observations

(25 observations before and 25 after).

Steps applied only to trade data
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T1. If multiple transactions have the same time stamp: use the median price.

T2. Delete entries with prices that are above the ask plus the bid-ask spread. Similar for entries

with prices below the bid minus the bid-ask spread.

T3. Delete entries for which the price deviated by more than 10 mean absolute deviations from a

rolling centered median (excluding the observation under consideration) of 50 observations (25

observations before and 25 after). 4

At the end of the procedure, the number of trades has been reduced from around 225 millions

to slightly more than 105 millions. Notice that, although only trade prices are considered in the

analysis, the above cleaning procedure also involves quote data. The reason of this choice is to

obtain the more coherent trade prices as possible.

Then, prices have been sampled at 5-minute frequency using the previous point interpolation

method and from the correspondent returns, two di¤erent realized volatility measures have been

computed: the 5-minute Realized Variance (RV) and the 5-minute Median Truncated Realized

Variance (MedRV) such as

RVt �
MX
j=1

r2t;j ;

MedRVt �
�

6� 4
p
3 + �

�
M

M � 2

�M�1X
j=2

med (jrt;j jjrt;j�1jjrt;j+1j)2 :

where rt;j are the high frequency intra-day returns, observed for M intra-day 5-min periods we have

considered each day. Figures 1 and 2 display the levels as well as the log levels of the 13 realized

variance series, similar patterns emerge for the MedRV and are not reported to save space. We plot

both levels and log-levels of RV series. We can see later that this distinction has an impact on the

interpretation of the factors that we extract from those variables. Indeed although taking the logs

seems natural to get variables with properties closer to the Gaussian distribution, the aggregation

of the levels is easier when the goal is to obtain an index from the (weighted) sum of individual

volatilities. In Figures 1 and 2, "whole sample" denotes the period 03/01/2006 to 31/12/2014. In

the forecasting exercise of Section 4, we will only report forecasting performances for the post-crisis

period 03/01/2008 to 31/12/2014. While our study stays valid for highly volatile periods, a model

con�dence set approach was not able to statistically distinguish the di¤erent clusters when such a

huge crisis period is included in the sample. This issue has also been noticed by Hecq, Laurent and

Palm (2012) for instance.

The slow decay of the ACF is obvious on every series and is not reported here. Table 1 illustrates

that for the log of the 13 realized volatility series5 , both the HAR and the fractional white noise

4Both Q4 and T3 are very closely related to the procedure by Brownlees and Gallo (2006). Indeed, the median is

used in place of the trimmed sample mean, �pi(k), and the mean absolute deviation from the median in place of si(k).
5Similar results are obtained on MedRV. Also we only report the results for the logs of the series while we compare

forecasting performances of both levels and log levels in the forecasting section.
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Figure 1: Levels of realized variance series - whole sample
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Figure 2: Logs of realized variance series - whole sample
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models �t pretty well that feature. We provide OLS estimates (but the intercept to save space) of

the following HAR equation:

y
(day)
i;t = �i0 + �

(day)
i1 y

(day)
i;t�1 + �

(w)
i2 y

(w)
i;t�1 + �

(m)
i3 y

(m)
i;t�1 + �i;t;

y
(day)
i;t = lnY

(day)
i;t = lnRVi;t;

y
(w)
i;t =

1

5

4X
k=0

y
(day)
i;t�kday; y

(m)
i;t =

1

22

21X
j=0

y
(day)
i;t�kday;

for i = 1:::13 returns

where * denotes a rejection of the null hypothesis at a 1% signi�cance level.

We also report the �R2 as well as the p� value of the Ljung-Box �2 test for the null hypothesis
that the �rst 10 lags are zero. Note that the maximum likelihood estimates of d̂ are rather close

to 0.5. It should be noted that ML bounds the parameter estimate at that value. We have also

considered the estimation for the series in �rst di¤erences before we recover "unbounded" values

d̂ + 1: In every case we obtain estimated values for d + 1 between 0.5 and 0.54 with a signi�cant

di¤erence to 0.5 in only one case at 1%.

Finally, let us have a look at VAR coe¢ cient matrices in order to �gure out how close we are

from CHL18 observations. Estimating VARs for the log of the 13 realized variances as well as for

the log of MedRV we obtain VAR(5), VAR(1) and VAR(2) for respectively AIC, BIC and HQIC

using pmax = 22 days: Table 2 provides results for the VAR(1) coe¢ cient matrix chosen by SBC

for the logs of the realized variances. We indeed observe as in the model proposed by CHL18 a large

value for the diagonal elements and relatively small and often non signi�cant o¤-diagonal elements.

Moreover we notice that we strongly reject the overall Granger non-causality hypothesis in each

equations. P-values in each equation < 0.0001 for the null hypothesis that all the variables but the

lags of the dependent variable are jointly equal zero.

Next section introduces di¤erent forms of multivariate VHAR models.

3 The Vector Heterogeneous Autoregressive model and its

factor extensions

The Vector Heterogeneous Autoregressive model (VHAR, see inter alia, in Bubák et al. (2011), and

Souµcek and Todorova (2013)) reads as follows for the levels of the n series:

Y
(day)
t = �0 +�

(day)Y
(day)
t�1day +�

(w)Y
(w)
t�1day +�

(m)Y
(m)
t�1day + "t; t = 1; 2; :::; T; (2)

where (day), (w), and (m) denote, respectively, time horizons of one day, one week (5 days a week),

and one month (assuming 22 days within a month) such that

Y
(w)
t =

1

5

4X
j=0

Y
(day)
t�jday; Y

(m)
t =

1

22

21X
j=0

Y
(day)
t�jday:
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Innovations "t are i.i.d. with E("t) = 0, E("t"0t) = � (positive de�nite), �nite fourth moments.

Clearly the VHAR (2) involves (n2 � 3) parameters and is therefore much more parsimonious than
a VAR with 22 unrestricted daily lags: Still a VHAR is an interesting model to consider when no

factors are present as it is able to generate long-memory like features and has contagion e¤ects

between volatilities. System (2) can easily be estimated my multivariate least square regressions,

which means using OLS equation by equation if no cross equation restrictions are present.

Let us further assume that (2) can be rewritten as follows

Y
(day)
t = �0 + �

(day)!0Y
(day)
t�1day + �

(w)!0Y
(w)
t�1day + �

(m)!0Y
(m)
t�1day + "t; (3)

where ! is a n � q full-rank matrix. In terms of parameters, (3) needs 4(n � q) � q2 instead of
n2 � 3 in (2). Following Reinsel (1983), we label (3) as the VHAR-index (VHARI) model. To some
extent, the VHARI model is related to the pure variance model of Engle and Marcucci (2006) in the

sense that a reduced-rank restriction is imposed to the mean parameters of a multivariate volatility

model. However, a fundamental di¤erence between (3) and the common volatility model (see also

Hecq, Laurent and Palm, 2016) stems from the fact that the former has in general a di¤erent left

null space for the loading matrices of the factors � =
�
�(day) : �(w) : �(m)

�
: Obviously, common

volatility is allowed in the VHARI model if there exists a full-rank n � s (with s < q) matrix such
that �0� = 0:

Beyond the important aspect in terms of parsimony that is shared with many factor models,

there are two further motivations for using (3). First, the indexes f (day)t = !0Y
(day)
t�1day obtained from

(3) satisfy the property

f
(w)
t =

1

5

4X
j=0

f
(day)
t�jday; f

(m)
t =

1

22

21X
j=0

f
(day)
t�jday: (4)

as for the observed univariate realized volatilities. Hence, the temporal cascade structure of the

HAR model is preserved meaning that the weekly (monthly) index is equal to the weekly (monthly)

moving average of the daily index. This would not be generally the case with either traditional

reduced-rank regression models as in Engle and Marcucci (2006) or principal component methods.

Second, premultiplying both side (3) by !0 yields

f
(day)
t = !0�0 + !

0�(day)f
(day)
t�1day + !

0�(w)f
(w)
t�1day + !

0�(m)f
(m)
t�1day + !

0"t; (5)

which shows that the indexes themselves follow a VHAR model. When q = 1 the unique index

is generated by an univariate HAR model. This property is not shared by alternative methods

to aggregate time series (e.g., averages, principal components, canonical correlations, etc.) since

the resulting linear combination would generally follow a rather complicated ARMA structure; see

Cubadda, Hecq and Palm (2009), Hecq, Laurent and Palm (2016) and the references related to the

�nal equation representation of multivariate models therein.

In order to estimate the parameters of model (3), we resort to a switching algorithm (see details

about the estimation technique and Monte Carlo evaluations in Cubadda, Guardabascio and Hecq,

2017) that is widely applied in cointegration analysis (see Boswijk and Doornik, 2004, and the
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references therein). The strategy consists in alternating between estimating ! for a given value of �

and �, and estimating � and � for a given value of !. In details, the procedure goes as follows:

1. Conditional to an (initial) estimate of the !, estimate � and � by OLS on (3).

2. Premultiplying both the sides of (3) by ��1=2 one obtains

��1=2(Y
(d)
t � �0) = ��1=2�(d)!0Y (d)t�1d +�

�1=2�(w)!0Y
(w)
t�1d +�

�1=2�(m)!0Y
(m)
t�1d +�

�1=2"t:

Applying theVec operator to both sides of the above equation and using the propertyVec(ABC) =

(C 0 
A)Vec(B) one gets

Vec
h
��1=2(Y

(d)
t � �0)

i
=
�
Y
(d)0

t�1d 
 �
�1=2�(d)

�
Vec(!0) +

�
Y
(w)0

t�1d 
 �
�1=2�(w)

�
Vec(!0)

+
�
Y
(m)0

t�1d 
 �
�1=2�(m)

�
Vec(!0) + Vec

�
��1=2"t

�
; (6)

from which we can �nally estimate by OLS the ! coe¢ cients conditional to the previously

obtained estimates of the parameters � and �.

3. Switch between steps 1 and 2 till numerical convergence occurs.

As shown by Boswijk (1995), the proposed switching algorithm has the property to increase

the Gaussian likelihood in each step. Note that a numerical stability problem may arise when the

number of series is very large. A possible solution is to resort to a properly "regularized" estimate of

the autocorrelation matrix function of series Y (d)t instead on the natural one that is implicitly used

in our procedure (see Bernardini and Cubadda (2015) for details).

In order to identify the number of factors q, one can use the usual information criteria proposed

by Schwarz (BIC), Hannan-Quinn (HQIC) and Akaike (AIC). We propose some variants of them

that are based on the theoretical framework developed by Takeuchi (1976). In short, this author

extends the AIC by relaxing the strong assumption that the set of the candidate models includes the

true model. This extension is relevant in our case for at least two reasons. First, HAR processes are

generally seen as an approximation to long-memory processes (Corsi, 2009). Second, the residuals of

HAR models are typically non-Gaussian and heteroskedastic (e.g., Corsi, Audrino and Reno, 2012;

Corsi, Mittnik, Pigorsch and Pigorsch, 2008), whereas our switching algorithm aims at maximizing

the Gaussian likelihood. In the Appendix, we develop a Takeuchi-type modi�cation to the traditional

information criteria for our VHARI models. We denote the modi�ed criteria as MAIC, MHQIC,

and MBIC.

4 Forecasting

Table 3 and 4 compare the VHAR with di¤erent VHARI factor restrictions and individual fractional

white noise processes estimated either by MLE or from the HAR approximation. The latter model

being used as the benchmark. The number of indexes q has been determined using information

criteria. One important purpose of the empirical analysis is to test the adequacy of the VHARI
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restrictions compared to both univariate HAR model and the VHAR model. Hence, for both RV

and MedRV, it has been performed a direct out-of-sample h�step ahead forecast for h = 1; 5; 22,

using a rolling window of 500 observations. As in Cubadda, Hecq and Guardabascio (2017), the

goodness of the forecasts has been evaluated trough the average relative mean squared forecast

errors (ARMSFE). It is de�ned as

ARMSFEm =
1

n

nX
i=1

(
MSFEm;i
MSFEHAR;i

)� 100

wherem denotes the model (e.g. VHARI or VHAR) and n represents the assets, 13 in our example.In

Tables 3 and 4, we also report the quartiles of the number of factors distribution that are obtained by

the various information criteria. In addition, it has been performed the model con�dence set (MCS)

suggested by Hansen et al. (2011) to �nd the set of multivariate models which forecast equally well.

The analysis consists in testing for the null hypothesis of equal predictive ability (EPA) at the 20%

level and it is implemented using a block bootstrap scheme with 5000 resamples. In tables, the

models within the superior set are denoted with a star.

From the values of the ARMSFE in Table 3 it emerges that individual processes outperforms

multivariate ones at any time horizons. Considering the MCS, results are less clear cut. For instance

with h = 1; every model is in the same cluster although multivariate models have a ARMSFE at

about 30% higher than the HAR model. In Table 4, taking the logs provides a clearer pattern. For

h = 1 ane h = 5 univariate models, boh using HAR and FWN, form a �rst cluster whose acuracy is

signi�cantly di¤erent from multivariate versions. There are no signi�cant di¤erences for h = 22:

5 Conclusions

Hesitating between two forms of multivariate models generating the behavior of the volatility of 13

asset returns, we are tempted to conclude that we would face a high dimensional process with high

diagonal elements and small o¤-diagonal ones. MCS does not �nd signi�cant di¤erences between

levels of the series. However, univariate models outperforms multivariate ones when series are in

logs. This would favor the large dimensional VAR with small contagion e¤ects as the underlying

generating mehanism of realized volatility measures.
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Table 1: Univariate models for log of realized volatility

d �1 �2 �3 �R2 Q(10)

BAC ARFIMA(0,d,0) 0:497� � � � 0:83 0:306

HAR � 0:491� 0:263� 0:219� 0:83 0:594

BBT ARFIMA(0,d,0) 0:496� � � � 0:85 0:049

HAR � 0:416� 0:347� 0:215� 0:85 0:108

BK ARFIMA(0,d,0) 0:496� � � � 0:82 0:109

HAR � 0:449� 0:307� 0:214� 0:82 0:103

C ARFIMA(0,d,0) 0:497� � � � 0:85 0:054

HAR � 0:441� 0:339� 0:195� 0:84 0:000

COF ARFIMA(0,d,0) 0:497� � � � 0:86 0:003

HAR � 0:421� 0:367� 0:190� 0:86 0:037

JPM ARFIMA(0,d,0) 0:497� � � � 0:82 0:135

HAR � 0:498� 0:266� 0:205� 0:82 0:782

KEY ARFIMA(0,d,0) 0:497� � � � 0:85 0:107

HAR � 0:444� 0:305� 0:230� 0:86 0:252

PNC ARFIMA(0,d,0) 0:496� � � � 0:84 0:058

HAR � 0:432� 0:342� 0:201� 0:84 0:028

RF ARFIMA(0,d,0) 0:497� � � � 0:86 0:000

HAR � 0:418� 0:356� 0:203� 0:86 0:000

STI ARFIMA(0,d,0) 0:496� � � � 0:85 0:005

HAR � 0:415� 0:353� 0:209� 0:85 0:011

STT ARFIMA(0,d,0) 0:490� � � � 0:82 0:015

HAR � 0:371� 0:384� 0:216� 0:82 0:049

USB ARFIMA(0,d,0) 0:497� � � � 0:85 0:014

HAR � 0:452� 0:343� 0:179� 0:85 0:347

WFC ARFIMA(0,d,0) 0:498� � � � 0:85 0:006

HAR � 0:481� 0:286� 0:209� 0:85 0:294
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Table 2: VAR(1) estimated matrix for log of realized volatility

�̂1 =0BBBBBBBBBBBBBBBBBBBBBBBBBB@

0:523 �0:046 �0:025 0:018 �0:062 0:020 �0:017 �0:077 0:124 0:063 �0:048 �0:018 �0:059
�0:086 0:310 0:070 �0:076 0:068 0:034 0:032 �0:018 0:006 0:022 0:052 �0:011 �0:012
0:036 0:072 0:393 �0:035 0:035 0:115 �0:013 �0:016 �0:043 0:000 0:122 0:004 0:001

0:117 0:010 0:012 0:540 0:067 0:074 0:100 0:047 0:077 0:112 0:041 0:073 0:105

0:045 0:183 0:098 0:131 0:497 0:140 0:049 0:164 0:074 0:153 0:130 0:109 0:213

0:056 0:018 0:189 �0:007 0:017 0:388 �0:101 0:001 �0:103 �0:071 0:062 0:006 0:026

0:030 0:107 0:032 0:095 0:030 0:021 0:450 0:124 0:177 0:128 0:070 0:093 0:047

�0:055 0:009 �0:045 �0:043 0:089 �0:062 0:021 0:303 �0:051 �0:022 0:056 0:070 0:008

0:170 0:096 0:013 0:118 �0:024 0:028 0:186 0:051 0:484 0:156 0:003 0:087 0:069

0:064 �0:039 �0:027 0:078 �0:024 �0:042 0:053 �0:013 0:159 0:300 �0:067 �0:025 0:012

0:000 0:037 0:149 0:022 0:045 0:037 0:055 0:084 �0:034 �0:037 0:349 0:065 0:061

0:031 0:096 0:013 �0:034 0:033 0:035 0:086 0:125 0:049 0:079 0:050 0:357 0:046

�0:003 0:083 0:023 0:114 0:189 0:094 0:044 0:129 0:009 0:046 0:082 0:125 0:436

1CCCCCCCCCCCCCCCCCCCCCCCCCCA

Table 3: Forecast comparison for levels of MedRV - post crisis period

ARMSFE q̂

Method/Criterion h = 1 h = 5 h = 22 [Q1 Q2 Q3] Mode

VHARI/BIC 137,9* 108,3 110,5* [ 1 2 3 ] 3

VHARI/HQIC 136,3* 112,0 106,6* [ 3 4 6 ] 3

VHARI/AIC 134,6* 111,0 109,9* [ 7 8 9 ] 8

VHAR 135,5* 118,0 111,9*

VHARI (R)/BIC 135,0* 102,4 107,7* [ 1 2 2 ] 2

VHARI (R)/HQIC 131,1* 104,0 105,5* [ 1 3 3 ] 3

VHARI (R)/AIC 130,3* 110,9 105,3* [ 13 13 13 ] 13

VHAR (R) 130,3 110,9 105,3

FWN 97,3* 100,1* 95,6*

HAR 100* 100* 100*

Note: h is the forecasting horizon. ARMSFE is the average of the mean

square forecast errors relative to the HAR univariate forecasts.

Qi indicates the i-th quartile of the number of factors distribution.

In bold, the method with the lowest ARMSFE for each h.

The methods within the superior set of models have been denoted with a star.
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Table 4: Forecast comparison for logs of MedRV - post crisis period

ARMSFE q̂

Method/Criterion h = 1 h = 5 h = 22 [Q1 Q2 Q3] Mode

VHARI/BIC 121,6 108,4 111,5* [ 1 2 2 ] 2

VHARI/HQIC 117,9 110,1 120,6 [ 3 3 4 ] 3

VHARI/AIC 117,7 110,8 118,3* [ 6 6 7 ] 6

VHAR 118,8 117,2 114,2*

VHARI (R)/BIC 137,6 115,1 106,9* [ 1 1 2 ] 1

VHARI (R)/HQIC 122,7 111,7 112,8* [ 2 3 4 ] 2

VHARI (R)/AIC 115,2 111,2 111,4* [ 5 8 9 ] 8

VHAR (R) 115,3 111,3 111,5*

FWN 99,8* 99,2* 101,3*

HAR 100* 100* 100*

Note: h is the forecasting horizon. ARMSFE is the average of the mean

square forecast errors relative to the HAR univariate forecasts.

Qi indicates the i-th quartile of the number of factors distribution.

In bold, the method with the lowest ARMSFE for each h.

The methods within the superior set of models have been denoted with a star.
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