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Abstract

This paper proposes a simple and parsimonious semi-parametric testing procedure
for variance transmission. Our test focuses on conditional extreme values of the un-
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fying periods of significant causality in extreme variance, that are subsequently found
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1 Introduction

The detection of volatility (and more generally risk) transmission across assets and markets

and the understanding of the spillover mechanisms is key in finance and macroeconomics. A

main reason for this is that volatility spillovers are thought to have potential adverse effects

on financial stability, especially in the current context of increasing financial integration.

A pioneer work in this field is Granger et al. (1986) who introduce the concept of Granger-

causality in variance, that is defined in terms of incremental predictive ability. This paved

the way for a growing literature focused on developing statistical procedures to test for vari-

ance transmission (e.g. Engle and Ng, 1988; Engle et al., 1990; Cheung and Ng, 1996; Hong,

2001; Sensier and van Dijk, 2004; Hafner and Herwartz, 2008). Although highly predictable,

return variance is inherently unobservable and traditionally estimated by fitting parametric

econometric models such as GARCH. All these causality tests are easy to implement, but

sensitive to misspecifications in the conditional mean and variance equations and assume

that realizations in the upper and lower tails of the distribution are generated by the same

process.

As an alternative to the GARCH family of models, in recent years it has become common

practice to use high-frequency data when making inference about the variation of financial

asset prices. This opened the way for new causality in variance testing procedures that

exploit the success of (nonparametric) realized volatility measures in estimating the true

latent process of volatility. Corradi et al. (2012) develop a nonparametric density test for

conditional independence between two daily realized measures of volatility. Their approach

allows to control for the effect of jumps and microstructure noise in the log-price process

when testing for spillover effects in the integrated variance, hereafter IV , the continuous

part of the quadratic variation, hereafter QV .

However, Corradi et al. (2012) test for volatility transmission by looking at the whole

volatility distribution, without disentangling the tail dependence behaviour from that of

the center of the distribution. A different conditional density for IV when conditioning also

on another asset’s past IV instead of exclusively on the first asset’s past IV can be due to

spillovers in the center of the distributions or in the tails, the latter being of outmost concern

for financial markets participants. It is well known that financial market co-movements

increase during turbulent periods and they can be seen as a device that amplifies risk

instead of dispersing it during crisis periods (see Cappiello et al., 2014; Forbes and Rigobon,

2002; Baele, 2005). In the context of Granger causality testing, this comes down to saying

that causality between the tails of the distributions is generally quite different from causality

between the centers of the distributions and in empirical practice users could largely benefit
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from causality tests that allow to distinguish between the two. In other words, compared

to the approach of Corradi et al. (2012), an inferential procedure that is designed to check

for causality in the center (the tails) of the volatility distribution should be more powerful

when causality indeed operates in the center (the tails).

Our paper hence contributes to the existing literature by proposing a semi-parametric

testing procedure to check for causality in the upper tail of the volatility distribution (con-

ditional extreme variance) by making use of realized variance measures.1 The inference is

based on a Ljung and Box (1978)-type test statistics that checks for cross-lagged correlation

between realized variance exceedances. These can be defined as upper-tail event variables

that take the value one when the associated asset prices register periods of extreme volatil-

ity, i.e. when the realized variance measure goes beyond its conditional quantile, and zero

otherwise. In particular, the test directly exploits the asymptotic theory for high-frequency

realized measures and the fact that the realized variance is a highly persistent process

whose conditional quantiles are simple to estimate in a Heterogeneous Quantile Autore-

gressive framework (see Zikes and Barunik, 2014). Under standard regularity assumptions

including the IIDness of the microstructure noise, we show that the proposed test statistic

has an asymptotic chi-square distribution. The additional estimation steps do not influence

the asymptotic behavior of our test statistics, i.e., the asymptotic distribution of the test

based on realized measures and their estimated quantiles is the same as the one based on the

unobservable price variability measures and their quantiles. In particular, the estimation

risk vanishes asymptotically, if the intra-daily time dimension, M , used for the computation

of the realized measures of variance, and the daily sample-size T , go to infinity.

Our procedure has several appealing features. It doesn’t impose any assumptions on

the distributions of the financial returns since it is based only on non-parametric and semi-

parametric estimation methods. It insures a good power against alternatives of extreme

variance spillover by checking for causality in a reasonably large number of lags. Our

procedure is also very easy to implement, as realized measures of variation have gained

wide popularity in the financial econometrics literature and they can be easily computed

with free toolboxes such as the Oxford MFE Matlab Toolbox by Kevin Sheppard, while the

Heterogeneous Quantile Autoregressive model comes down to implementing a traditional

quantile regression model with averaged lagged endogenous variables. As a byproduct,

the user can rely on our testing procedure to identify causality in the discontinuous (jumps)

component of the unobservedQV in the case where there is no transmission in the continuous

1Remark that causality in the center of the volatility distribution can be easily tested relying on the
usual framework of Granger causality in mean applied to realized measures of volatility. As a will see in
the sequel, for causality in the upper tail of the volatility distribution, one should first define the statistical
meaning of extreme volatility.
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(IV ) component. For this, it suffices to choose in the first step a realized measure that is a

consistent estimator of the integrated variance and another for the quadratic variance in a

second step. Rejection of the null of no causality in the latter and no rejection in the former

would indicate that the spillovers occur mainly through the jump channel. Extensive Monte

Carlo simulations are subsequently conducted and the results show that our test has good

finite sample size and power properties even in realistic samples.

The issue addressed in this paper, albeit seemingly related to the recent literature on

causality in (extreme) quantiles (Hong et al., 2009; Jeong et al., 2012; Han et al., 2016),

is not redundant. Indeed, Hong et al. (2009) introduce a testing approach for causality in

downside risk to check for spillover effects in tail events for financial time series such as asset

returns. Their methodology is well suited to detect causality in extreme conditional vari-

ance, since variance spikes induce large fluctuations in asset returns. In contrast, our paper

focuses directly on volatility, which enables us to use realized measures of variance, i.e.,

model-free consistent estimators of the true latent process of variance. Second, the concept

of cross-quantilogram introduced by Han et al. (2016) can be applied to realized volatility

measures to check for causality in extreme variance, but it is built in an unconditonal setup,

while our conditional framework involves a state-dependent measure of extreme variance.

Moreover, their test statistics has a non-standard asymptotic distribution. Lastly, in con-

trast to Jeong et al. (2012) who address the issue of causality in quantiles, our methodology

goes beyond quantiles, as it looks at causality for exceedences, i.e., tail-events corresponding

to occurrences of variance spikes that exceed extreme conditional quantiles (of the variance

distribution).

The economic rationale of our testing approach relies on the economic content of asset

volatility as evidenced by Christiansen et al. (2012).2 The authors search for the drivers of

financial volatility for multiple asset classes (equities, foreign exchange, bonds and commodi-

ties) by relying on a data-rich forecasting methodology and a Bayesian Model Averaging

approach. They find, among others, that proxies for credit risk (the default spread as

measured by the yield spread between BAA and AAA rated bonds) and funding market

liquidity (the TED spread as measured by the difference between the 3-month LIBOR rate

and T-Bill rate) are strong predictors of financial volatility. The predictive content of these

factors is shown to be higher than the one conveyed by macroeconomic variables including

inflation rate and industrial production. This stylized fact seems to indicate that periods of

high volatility in financial assets are likely to coincide with high credit risk and tightened

liquidity conditions. Hence, the transmission of high (or large) volatility across markets

2See also, Schwert (1989), Diebold and Yilmaz (2012), Paye (2012) and Cappiello et al. (2014).
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can be viewed as the process of worldwide globalization of extreme credit and liquidity

problems. This economic content of volatility transmission is important for regulators in

quest of financial stability, and calls for an econometric tool to check for extreme volatility

transmission across assets and markets.

We illustrate our causality test in extreme variance in an application on volatility trans-

mission from the US equity market to six European markets. We find that the proposed test

is able to identify the periods of large fluctuations in the US financial system that spillover

to Europe and they are consistent with historical evidence. Our causality test in extreme

volatility is also useful to check the hypothesis that spillovers in volatility are related to the

volatility of macroeconomic variables (Hong, 2001; Cappiello et al., 2014). In the second

part of the application we hence tackle the link between the presence of causality and the

US monetary policy (through the shadow rate). We find that an increase in the causality

measure can be indeed associated with the variability of the US shadow rates and implicitly

instabilities in the monetary policy.

The rest of the paper is structured as follows. Section 2 introduces the null hypothesis

of Granger non-causality and the unfeasible test-statistic of causality in extreme integrated

variance. Section 3 details the steps of the feasible testing procedure and develops its

asymptotic properties. In Section 4 we study the small-sample properties of the proposed

testing procedure. An extension to the quadratic variance is considered in Section 5. An

empirical illustration on extreme variance transmission in equity markets is further presented

in Section 6. Section 7 concludes the paper, and all the proofs and mathematical derivations

are gathered in Appendix A.

2 Hypothesis of interest and unfeasible test-statistic

In this section we discuss the concept of Granger causality in extreme variance under a

general specification of the asset price process. We consider a frictionless arbitrage-free

market in which the logarithm of the latent (efficient) price pi(τ) of a given asset i at a

continuous time τ , τ ∈ [t − 1, t] with t a positive integer, is specified as a general semi-

martingale process on the probability space (Ω, F , P ) where Ω represents the possible

states of the world and Fτ is the σ-field reflecting the information at time τ :

dpi(τ) = µi(τ)dτ + σi(τ)dWi(τ) + ξi(τ)dNi(τ), (1)

where the drift term µi(τ) is a predictable process of locally bounded variation, σi(τ) is a

càdlàg process bounded away from zero almost surely with
∫ t
t−1

σ2
i (τ)dτ < +∞, ∀t > 0,

known as the instantaneous variance in absence of jumps, Wi(τ) is a standard Brownian
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motion, and Ji(τ) = ξi(τ)Ni(τ) denotes a finite activity jump process. In particular, Ni(τ)

is a counting process with finite instantaneous intensity λτ (0 ≤ λτ < ∞), and ξi(τ) is

a non-zero random variable representing the jump in price with instantaneous mean of

exp(ξi(τ))− 1.

This specification is a very general representation of an asset return process that encom-

passes many continuous time models used in standard asset pricing theory, such as stochastic

volatility models with possibly discontinuous sample paths (Todorov and Tauchen, 2011),

models with leverage effects (Bollerslev et al., 2006), and models with time-varying dynamics

for the jump process (Chan and Maheu, 2002).

The corresponding equispaced discrete-time intraday returns observed on the tth trading

day are given by

ri,t−1+j∆ = p∗i,t−1+j∆ − p∗i,t−1+(j−1)∆, (2)

p∗i,t−1+j∆ = pi,t−1+j∆ + εi,t−1+j∆, (3)

where p∗i,t−1+j∆ are the observed prices and εi,t−1+j∆ is the microstructure noise related

to market frictions, j = 1, 2, ...,M , M is the number of intraday returns over day t, and

∆ = 1/M is the fixed sampling interval.

When σi(τ) is itself a stochastic process, a natural and general notion of return variability

is the quadratic variation process over a fixed time period [t − 1, t], say one day. Under a

general continuous time process as (1), this true ex-post measure of variance is given by

QVi,t =

t∫
t−1

σ2
i (τ)dτ +

∑
t−1<τ<t

(Ji(τ))2 (4)

≡ IVi,t + JVi,t,

where the integrated variance IVi,t and the cumulative squared jump JVi,t measure the

daily variance arising from the continuous and discontinuous parts of the log-price process,

respectively. Without loss of generality, here the object of econometric interest is the inte-

grated variance, but the main idea readily extends to the quadratic variation, and we defer

this discussion to Section 5. Our aim is to develop an inferential procedure to check for

the absence of transmission or causality between large (extreme) values of the integrated

variance. We choose to focus on the quadratic variation of the continuous diffusive process

as it has been shown to be the main channel of propagation of financial risk (see Corradi

et al., 2012; Soucek and Todorova, 2014, among others) whereas comovements in jumps

occur very seldom (see e.g. Jacod and Todorov, 2009; Bibinger and Winkelmann, 2015).
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2.1 Granger causality in extreme variance

Let IV1,t and IV2,t be the processes of integrated variance for two financial assets. We

denote by Fi,t (.), i = {1, 2}, the conditional cumulative distribution function of IVi,t and

by qi,t (α) ≡ F−1
i,t

(
α|F (i)

t−1

)
≡ F−1

i,t (α) the conditional quantile of IVi,t for an α confidence

level, which hence satisfies P (IVi,t > qi,t (α) |F (i)
t−1) = α, where F (i)

t−1 = {IVi,t−H , . . . , IVi,t−1}
represents the information set available at time t−1 for the ith asset, with H a user specified

lag-order. Note that, without loss of generality, we discuss only the case of large values of

α (for example α = 0.90, 0.95) as we focus on the upper tail of the conditional distribution

of IVi,t that is more relevant for volatility risk. In practice, α should be determined by

regulators or market participants depending on their objective function or risk aversion

level.

The null hypothesis of no Granger causality in extreme variance

H0 : P (IV1,t > q1,t (α) |F (1)
t−1) = P (IV1,t > q1,t (α) |Ft−1), (5)

with Ft−1 = (F (1)
t−1,F

(2)
t−1) the joint information set available at time t − 1, states that IV2,t

does not Granger cause IV1,t in its conditional extreme quantile of order α. Put differently,

information about extreme variance in the second asset, i.e. IV2,t goes beyond its conditional

quantile, is not useful to predict the occurrence of a future extreme variance in the first asset.

To reformulate (5) in terms of no Granger causality in mean, let us transform the inte-

grated variance process IVi,t into an exceedance (extreme variance) indicator

zi,t (α) =

{
1 if IVi,t ≥ qi,t (α)
0 otherwise.

(6)

The null hypothesis of absence of causality in extreme variance from the second asset to the

first can therefore be expressed as

H0 : E
(
z1,t (α)

∣∣∣G(1)
t−1

)
= E (z1,t (α) |Gt−1 ) , (7)

where Gt−1 = {G(1)
t−1,G

(2)
t−1} and G(i)

t−1 = {zi,t−H , . . . , zi,t−1} is the information set available at

time t− 1 for the ith asset.3

Notice that z1,t is an i.i.d. Bernoulli sequence since it is defined as a conditional quantile-

exception process. We exploit this information in the following subsection and propose a

Portmanteau-type statistic for the Granger causality in extreme variance hypothesis.

3A more general setup would be to define the information set G(i)t−1 as G(i)t−1 = {zi,1, . . . , zi,t−1}, hence
developing a test that is consistent against causality for all possible lags. We do not follow this alternative
for two reasons. First, it is expected that causality in extreme variance is a short-lived phenomenon in
financial markets, which should materialize in a few days. Second, considering the case with H →∞ would
complicate the asymptotic analysis.
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2.2 Infeasible test-statistic

We now propose a test-statistic for (7). For this, we draw upon the univariate Portmanteau

test statistics in Ljung and Box (1978) and exploit the cross-correlation structure of the

exceedance indicators associated with the extreme variance events in the two assets consid-

ered. Suppose that IVi,t and qi,t(α) are observable. Then we can construct the corresponding

exceedance indicators zi,t(α) and define their cross-lagged covariance of order j by

C (j) =


T−1

T∑
t=1+j

(z1,t(α)− π) (z2,t−j(α)− π), 0 ≤ j ≤ T − 1

T−1
T∑

t=1−j
(z1,t+j(α)− π) (z2,t(α)− π), 1− T ≤ j ≤ 0,

where π = 1 − α is the expected value of the indicator variables. The cross-correlation

function between z1,t(α) and z2,t(α) is defined as

ρ∗ (j) =
C (j)

π(1− π)
. (8)

It follows that the test-statistic Q∗ (H) for a fixed number of lags H takes the form

Q∗ (H) = T (T + 2)
H∑
h=1

ρ∗2 (h)

T − h
. (9)

3 Feasible test statistics and asymptotic theory

The test-statistic in (9) is valid only under the assumption that IVi,t and qi,t(α) are observ-

able. However, in practice, the integrated variance and its conditional quantile are latent

and must be estimated. In this section we discuss their estimation, define the feasible test-

statistic and tackle the impact of estimation uncertainty on the limit distribution of the

feasible test-statistic.

3.1 IV estimation

Since the integrated variance is not directly observable, any inferential procedure should be

based on suitable estimators of this quantity. A number of parametric and non-parametric

estimators of IVi,t are available in the literature. We choose to focus on non parametric

procedures so as to avoid any specific functional form assumptions about the stochastic pro-

cess(es) governing the local martingale and the drift process. They produce asymptotically

unbiased variance measures under quite general conditions. In particular, we rely on the

very rich literature on realized variance measures (see among others Andersen et al., 2003;

Barndorff-Nielsen and Shephard, 2004; Hansen and Lunde, 2006; McAleer and Medeiros,
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2008b; Barndorff-Nielsen et al., 2008; Andersen and Benzoni, 2009) and compute ex-post

estimates of variance by effectively exploiting the information inherent in observed high-

frequency intradaily data.

Two main questions generally arise when using realized measures: i) is the microstruc-

ture noise corrected and ii) how are jumps handled? Since we focus on causality in the

integrated variance of the price process, we tackle the second issue simply by considering

jump-robust realized variance measures, that have been shown to be consistent estimators

of the IV . At the same time, microstructure noise arises from many sources including

asynchronous trading, liquidity effects, bid/ask bounce, misrecordings, or price discreteness

and it can induce serial auto-correlation in intradaily data and / or prevalent zero returns.

As a consequence, the estimate of the integrated variation can be biased at high sampling

frequencies. Although jump-robust realized variances are generally not robust to noise (e.g.

the bipower variation of (Barndorff-Nielsen and Shephard, 2004), that is still the most pop-

ular jump-robust realized variance measure), estimators of IVi,t that attenuate or are robust

to microstructure noise have been proposed in the literature and include the median realized

variance in Andersen et al. (2012) and the quantile-based realized variance in Christensen

et al. (2010).

All these realized estimators of variance share the fundamental property that they have

been shown to consistently estimate the integrated variance as the number of intradaily

observations increases

IVi,t,M
p−→

M→∞
IVi,t, (10)

where IVi,t,M , t = 1, · · · , T denotes a given daily realized measure of integrated variance

based on M intradaily returns. Consequently, robust to microstructure noise or not, they

are all natural candidates to approximate the latent process of integrated variance when one

focuses on the problem of testing for causality in extreme IVi,t.

3.2 Conditional quantile estimation

The last ingredient needed to construct the feasible causality test in extreme integrated

variance is a model for the dynamics of IVi,t,M in their upper conditional distribution tail.

To this aim, we propose to rely on a semiparametric approach, namely the quantile autore-

gressive (QAR) framework of Koenker and Xiao (2006). Let qi,t,M (α; θi) be the conditional

quantile of IVi,t,M for a confidence level α, where θi is a finite dimensional vector of param-

eters,

qi,t,M (α; θi) = θi,1(α) +

p∑
j=1

θi,j+1(α)ν(IVi,t,M , Lj), Lj > 0 (11)
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with Lj > L′j if j > j′, ν(IVi,t,M , Lj) a linear function of the past realized variance up to Lj

and p the number of lag components. It is assumed here that the user is able to correctly

specify the QAR model (for the unobserved IVi,t) such that there exists a unique parameter

set θ0
i = θ0

i (α) for which

qi,t (α; θi) = θ0
i,1(α) +

p∑
j=1

θ0
i,j+1(α)ν(IVi,t, Lj), Lj > 0. (12)

Equation (12) ensures that the integrated variance and its realized measure have the same

tail dynamics. It defines a very large class of quantile models which embeds, among others,

the heterogeneous autoregressive quantile model (HARQ) of Zikes and Barunik (2014). This

model is an adaptation to the quantile regression framework of the heterogeneous autore-

gressive (HAR) model of Corsi (2009) as it relates the quantile of a given realized measure

of integrated variance to the values of the latter averaged over different time horizons (daily,

weekly and monthly). It is particularly relevant in our framework because it accounts for the

persistent behavior of the volatility. Accordingly, in the rest of the paper we will consider

the HARQ although the limit theory of our feasible test statistic holds for the entire QAR

class of models. The HARQ model for the realized variance estimates writes

qi,t,M (α; θi) = θi,1(α) + θi,2(α)IVi,t−1,M + θi,3(α)Vi,t−1:t−5,M + θi,4(α)Vi,t−1:t−22,M , (13)

with θi = θi(α) the vector of unknown parameters, and

ν(IVi,t,M , L) = Vi,t−1:t−L,M =
1

L

L∑
l=1

IVi,t−l,M . (14)

One can wonder whether the HARQ specification is appropriate. Actually, this is only a

weak assumption, that can be motivated by the high persistence of daily volatility that is

observed empirically. Indeed, the general data generating process in (1) is compatible in

some cases with an ARMA representation for the integrated variance (Meddahi, 2003), and

hence with an infinite-order AR representation if the process is invertible. Subsequently, the

infinite order AR process can be well approximated by a finite-lag long-memory AR model,

like the HAR (see Corsi, 2009). By analogy, the HARQ model appears to be appropriate

when focusing explicitly on tail dynamics (see Zikes and Barunik, 2014). Most importantly,

the HARQ model shows the ability to reproduce this stylized fact and appears to be a

simple and elegant way to accurately estimate and forecast conditional quantiles for realized

measures of variance.

The parameters of the HARQ model are easily estimated by minimizing the “tick” loss

function of Koenker and Bassett Jr (1978), i.e.,

θ̂i = arg min
θi

1

T

T∑
t=2

[
α− I

(
ui,t < 0

)]
ui,t, (15)
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ui,t = IVi,t,M − qi,t,M (α; θi) , (16)

with T the sample size and I (.) the usual indicator function. The estimation of the quantile

regression in (13) complicates the derivation of the limit distribution of the causality test.

We discuss this issue in Subsection 3.4 and show that the impact of parameter estimation

uncertainty vanishes asymptotically.

3.3 Feasible test-statistic

To construct the feasible test-statistic we replace the unknown IVi,t and qi,t sequences in (9)

with their estimated counterparts, the realized measures IVi,t,M and the estimated quantiles

qi,t,M(α; θ̂i). It follows that the feasible Granger-causality in extreme variance test-statistic

for a fixed number of lags H is

Q̂ (H) = T (T + 2)
H∑
h=1

ρ̂2 (h)

T − h
, (17)

where ρ̂ is the sample cross-lagged correlation function associated with the observed ex-

ceedance indicators z1,t,M(α; θ̂1) and z2,t,M(α; θ̂2).

Our testing procedure is semiparametric in nature, as it uses the information extracted

from the observed high-frequency intradaily returns to construct the nonparametric esti-

mators for the latent integrated variance process and a simple semiparametric quantile

regression to estimate the conditional quantile of the realized variance process. It is simple

to implement and intuitive and it can be applied to any type of financial assets that is liquid

enough so as to observe intradaily prices at a reasonable high frequency (e.g. every 1 or 5

minutes) that would insure good realized variance estimates in finite samples. Naturally,

any consistent (realized) measure of integrated variance can be considered. This generality

is asymptotically justified by the robustness of our test-statistic to microstructure noise (see

Subsection 3.4).

3.4 Asymptotic theory

We now derive the limit distribution of the feasible causality test in extreme variance under

the null hypothesis. Given that the true IVi,t and qi,t are unobservable and hence estimated,

deviations of Q̂(H) from Q(H) or equivalently differences between zi,t,M(α; θ̂i) and zi,t (α; θi)

may occur for two reasons. They can arise first from the approximation of the integrated

variance IVi,t by IVi,t,M , and second from the estimation of the quantile regression (13).

We provide some regularity conditions on the continuous time process and the conditional

quantiles of the realized measures and then show that under these mild assumptions, our

11



test statistic for causality in extreme variance has an asymptotic distribution which is free

of these two sources of estimation risk.

Assumption 1 max {gi,t (ε) , g12,t (ν, ξ)} ≤ U < ∞ ∀t, where gi,t (ε) is the conditional

density of IVi,t,M − qi,t,M (α; θ0
i ), i ∈ {1, 2}, and g12,t (ν, ξ) is the bivariate joint conditional

density of (IV1,t,M − q1,t,M (α; θ0
1) , IV2,t,M − q2,t,M (α; θ0

2)).

Assumption 2 Let Gi,t = {IVi,s,M , s ≤ t} be the information set available at time t for the

realized measure IVi,t,M , i ∈ {1, 2}, and Θi a compact set where the vector of parameters

θi lies. The quantile qi,t,M (α; θi) is differentiable in Θi and for all θi in a neighborhood of

θ0
i , the true unknown vector of parameters, such that ‖θi − θ0

i ‖ ≤ d for d sufficiently small,

‖∇qi,t,M (α; θi)‖ ≤ K (Gi,t), where K (Gi,t) is some stochastic function of the variables that

belongs to Gi,t and E
[
K (Gi,t)3] ≤ K0 <∞ for some constant K0.

Assumption 3 The drift term of the logarithmic price process in (1) is locally bounded

with E |µi,t|2k < ∞, the diffusive function is càdlàg with E |σi,t|2k < ∞, and the jump sizes

ξi (t) are i.i.d. with E |ξi (t)|2k <∞, for some k ≥ 2. The microstructure noise is i.i.d. with

symmetric distribution around zero and has finite 2kth moment for some k ≥ 2.

Assumptions 1 and 2 are regulatory conditions about the assumed dynamics of the quan-

tiles of the realized measures of variance. They allow us to contain parameter estimation

uncertainty in the HARQ model (see also assumptions AN1(a) and AN2(a) in Cappiello

et al., 2014). In particular, we are able to bound the expected value of the error from ap-

proximating the exceedance indicators zi,t,M(α; θi) by their sample estimates, zi,t,M(α; θ̂i).

We now establish the asymptotic distribution of Q̂ (H).4

Assumption 3 corresponds to Assumption 6 in Corradi et al. (2012). These conditions

help them to bound the integrated variance estimation error, Ni,t,M = IVi,t − IVi,t,M , by

establishing the existence of a sequence bM with bM →∞ as M →∞, such that E |Ni,t,M |k =

O(b
−k/2
M ) for some k ≥ 2. Hence, under Assumption 1, the kth moment of the absolute

estimation error that arises from approximating the integrated variance IVi,t by IVi,t,M is

bounded. For example, bM = M when the integrated variance is approximated by the

realized bi(tri)power variation.

Proposition 1 Let Assumptions 1-3 hold. Under the null hypothesis of absence of causality

in extreme variance as stated in (7), if T
1

k−1 b
−1/2
M → 0, as T,M →∞, we have

Q̂ (H) ∼ χ2
H , (18)

4Another way to construct a causality test in extreme variance would have been based on continuous
quantile exceedance variables, IVi,t,M × zi,t,M (α; θ̂i). However, these variables are expected to be het-
eroskedastic and the limit distribution of the test should no longer be the standard χ2 distribution. One
advantage of our current framework is that the test is easy to implement and its asymptotic properties are
simple to derive.
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where χ2
H is the chi-square distribution with H degrees of freedom.

The proposition shows that it suffices that M grows faster than a power of T (or simply

M → ∞ regardless of T ’s rate of convergence if all moments exist, i.e. k = ∞) for the

contribution of the measurement error to vanish asymptotically and the feasible test-statistic

to be χ2 distributed. The proof of Proposition 1 is based on the following decomposition of

our test-statistic

Q̂ (H) = Q∗ (H) + (Q̂ (H)−Q (H)) + (Q (H)−Q∗ (H)) , (19)

where Q∗ (H) is the infeasible test statistic defined in (9), that is based on the true unknown

integrated variance processes IVi,t and their true conditional quantiles. At the same time,

Q (H) corresponds to another infeasible test statistic that is based on the realized measure

IVi,t,M and its true quantile qi,t,M (α; θ0
i ). In other words, Q (H) supposes that the HARQ

model is estimated without error such that the test-statistic can be formed as if the true

parameters θ0
i were known and were equal to their estimates θ̂i. The following three Lemmas

provide a sketch of the proof (see Appendix A for a full proof).

Lemma 1 Under the null hypothesis of absence of causality in extreme variance, as T →∞,

Q∗ (H) ∼ χ2
H , (20)

where χ2
H is, as expected, the chi-square random variable with H degrees of freedom.

Lemma 2 Under Assumptions 1 and 2, as T →∞,

Q̂ (H)−Q (H) = op (1) . (21)

Lemma 3 Under Assumption 2 and 3, if T
1

k−1 b
−1/2
M → 0, as T,M →∞,

Q (H)−Q∗ (H) = op (1) . (22)

Lemma 1 establishes the asymptotic distribution of the infeasible test statistic Q∗ (H), which

turns out to be the same as the one of the feasible test statistic Q̂ (H). This equivalence in

terms of asymptotic distribution holds because estimation error vanishes or it is bounded

asymptotically. Lemma 2 shows that this is the case for the error arising from the estimation

of the HARQ model, and Lemma 3 confirms the boundedness of the error arising from

approximating the true integrated variance process IVi,t by its realized couterpart IVi,t,M .

Consequently, the proposed test for Granger causality in extreme variance is easy to compute

and also to interpret as it has a standard asymptotic distribution.
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4 Finite sample properties

This section is devoted to the analysis of the finite sample properties of our causality test.

We tackle the size properties in the first part of the section, while the second part focuses

on the power analysis.

4.1 The size of the test

For each asset i ∈ {1, 2}, we follow Aı̈t-Sahalia and Mancini (2008) and simulate the process

of efficient log-returns as ri,t+j∆ = r
(c)
i,t+j∆ + r

(d)
i,t+j∆, with j = 1, 2, · · · ,M0, ∆ = 1/M0, and

where M0 = 23, 400 is the number of intraday returns for a 1 second sampling frequency

and a trading day of 6.5 hours. The corresponding process of efficient log-prices pi,t+j∆ is

obtained by assuming an initial value equal to log (100) such that the observed log-price

process is equal to p∗i,t+j∆ = pi,t+j∆ + εi,t+j∆, with εi,t+j∆ the i.i.d.N microstructure noise

with mean µεi = 0 and standard deviation σεi = 0.1%.

The continuous part of the intraday log-returns is given by

r
(c)
i,t+j∆ =

√
IVi,t+1vi,t+j∆, for i ∈ {1, 2} (23)

with vi,t+j∆ two independent Gaussian strong white noise processes with mean 0 and vari-

ance σ2
vi,t+j∆

= 1/M0, and IVi,t+1 the daily integrated variances. The dynamics of IVi,t+1

is specified as in McAleer and Medeiros (2008a) so as to entail a realistic asset price pro-

cess. Relevant stylized facts in volatility dynamics such as long-range dependence, non-

stationarity, non-normality, presence of clusters of volatility are taken into account (see Fig-

ure 1). In particular, each log-volatility follows a stationary three-regime smooth-transition

heterogeneous autoregressive (HARST) model

IVi,t = exp(σ2
i,t), (24)

σi,t = β′0yi,t +
2∑

m=1

β′myi,tf(r
(22)
i,t−1, γm, cm) + εi,t,

where yt = (1, σi,t−1, σi,t−1:t−5, σi,t−1:t−22), with σi,t−1:t−L = L−1
L∑
l=1

σi,t−l, and where the

innovations εi,t are independent Gaussian strong white noises of variance σ2
εi

= 0.252. Be-

sides, f(r
(22)
i,t−1, γm, cm) is the logistic transition function with the transition variable r

(22)
i,t−1

given by the cumulative daily closing return over the last month. γ1 = γ2 = 4 are the

slope parameters of f(·), whereas c1 = −10 and c2 = 13 are its threshold parameters.

β0 = (0.01, 0.95, 0, 0) corresponds to the background persistent first-order autoregressive dy-

namics of the log-volatility process which can be labeled as the turbulent regime, for which

f(r
(22)
i,t−1, γm, cm) ≈ 0, with m ∈ {1, 2}. At the same time, β1 = (−0.35,−0.58, 0.27, 0.21)
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allows the process to rapidly recover after periods of very negative returns, i.e. r
(22)
t−1 < c1,

such that σi,t ≈ (β0 + β1)′yi,t + εi,t correspond to the calm regime, with f(r
(22)
i,t−1, γ1, c1) ≈ 1

and f(r
(22)
i,t−1, γ2, c2) ≈ 0. Finally, β2 = (0.03, 0.3,−0.2,−0.18) corresponds to the case where

returns are very positive, i.e. r
(22)
t−1 > c2. Hence, σi,t ≈ (β0 + β1 + β2)′yi,t + εi,t give the

dynamics of log-volatility in a secondary turbulent regime, with f(r
(22)
i,t−1, γm, cm) ≈ 1.

The discontinuous jump component of the efficient log-returns process r
(d)
i,t+j∆ is defined

as a Poisson-type (finite-activity) jump process

r
(d)
i,t+j∆ = ci,t+j∆I

(
U (0, 1) <

λi
M0

)
, (25)

where the jump size ci,t+j∆ is assumed to be normally distributed with mean µci = −0.01%

and standard deviation σci = 1, I (.) is an indicator function, U (0, 1) is the uniform distri-

bution over [0, 1], and λi = 0.5, which implies on average a jump every two days.

Under the null hypothesis there is no causality in extreme volatility from IV2,t to IV1,t

with respect to Ft−1. We hence examine the size of our test in finite samples by generating

from the above DGP independent sequences of M0 = 23, 400 1-second intradaily high-

frequency log-returns for each of the two financial assets and for each day t = 1, ..., T in

the sample, where T ∈ {500; 1, 000; 2, 000}, i.e. two to eight years of daily data. The daily

integrated variance IVi,t is subsequently estimated by the bipower variation,

BVi,t,M =
π

2

M∑
j=2

|ri,t+j∆|
∣∣ri,t+(j−1)∆

∣∣ (26)

based on M equally spaced intraday returns. As the sampling frequency M decreases, the

microstructure market effects diminish but the realized measure is less accurate as it is based

on fewer observations. Therefore, in the simulations design we set M ∈ {390; 78; 26; 13} that

corresponds to a sampling frequency of 1, 5, 15 and 30 minutes, respectively. Without loss

of generality, we examine the size of the test for two quantile levels, α ∈ {0.9; 0.95}, in the

upper right tail of the variance process and we set the maximum lag-order H ∈ {3; 5; 10}.5

Table 1 in Appendix B displays the empirical size of the Granger-causality test in extreme

volatility for a given value of the quadruplet (α,H, T,M). The results are based on 1, 000

simulations. The nominal significance level of the test is set to η = 5%. Overall we find that

the causality test in extreme variance is adequately sized, i.e. the rejection frequencies are

close to the retained significance level. The asymptotic chi-square distribution thus provides

a good approximation for the finite-sample distribution of our test statistic. The choice of

5A rule of thumb for the choice of the maximum lag order in Portmanteau test-statistics has been
proposed by RJ Hindman, who suggests the use of H = 10. This choice seems reasonable for the financial
markets, where news is generally integrated very fast in the decisions taken by market participants.
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M and H appears to have a rather limited impact on the size of the test for a given quantile

α and sample size T .

In the spirit of a robustness check analysis, the finite-sample properties of our test are

also investigated by relying on a jump-robust realized measure that also attenuates the effect

of microstructure noise, which is the median realized variance of Andersen et al. (2012) :

medRVi,t,M =
π

6− 4
√

3 + π

(
M

M − 2

)M−1∑
j=2

med(| ri,t+(j−1)∆ |, | ri,t+j∆ |, | ri,t+(j+1)∆ |)2.

We find that the size of the test is not influenced by choice of the realized measure of variance

since the rejection frequencies are strictly identical to those obtained with the BV measure.

4.2 The power of the test

To analyze the empirical power, we simulate the intradaily data for the second time series

by assuming the data generating process (DGP) described above. In contrast, we modify

the DGP of the first series such that the dynamics of the daily integrated process in (24)

incorporates causality in volatility under the alternative hypothesis (e.g. see Figure 2). In

particular, we consider that

IV1,t = exp(σ2
1,t), (27)

σ1,t = γσ2,t−1:t−J + δ
(
β′0y1,t +

2∑
m=1

β′my1,tf(r
(22)
1,t−1, γm, cm)

)
+ ε1,t, (28)

with γ and δ positive parameters. Note that with γ = 0 and δ = 1 the DGP simplifies

to the framework considered in the size analysis. We set δ to 0.5 in order to keep the two

daily log-volatility series on reasonable scales. Besides, we fix J to 5 as it seems natural to

assume that the recent past extreme events in the variance of an asset (within the previous

week) influence the occurrence of extreme events in the variance of another asset, whereas

the impact of remote events, say a month before, can be assumed to be negligible. Note

that in (28) we introduce dependence in the whole distribution of the log-volatilities instead

of only in the conditional upper quantile. This has minor consequences for the power of the

test as causality is implicitly present in the extreme right tail of the variance, but it allows

us to keep the already complex DGP reasonable. We use different values for the intensity of

causality by setting the γ parameter to 0.5 and 0.8, respectively. The larger γ, the stronger

the causality of σ2,t for σ1,t.

Tables 2 and 3 in Appendix B display the rejection frequencies over 1, 000 simulations

for γ = 0.5 and J = 5 in the case of the BV and medRV measures, respectively. The

results indicate that our test of causality in extreme variance has appealing power properties
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irrespective of the realized measure considered. The larger T is, for the same α, H and

M , the better the power is. The optimal number of lags in the Portmanteau statistic

corresponds to the true dependence horizon, J , used in the DGP. The power results also

suggest that in an empirical application where the true J is unknown it is preferable to

overestimate the number of lags rather than to underestimate it. Overall, we observe two

distinct patterns. First, for a given value of α, the empirical power decreases when both

M and T decrease. This result is expected, because an accurate approximation of the daily

latent process of integrated variance requires sampling intradaily data at high frequencies

(M → M0). Moreover, one needs a large sample of daily observations (T → ∞) for the

Ljung-Box test statistics to accurately capture causality in daily variance (and register a

power close to 1). Second, for a given value of the triplet (H,T,M) the empirical power

decreases when the tail-risk level 1 − α decreases. This result is also expected and arises

from the low number of tail-events between which causality is tested. To give more insight

about the power properties of our new test, we report in Tables 4 and 5 the empirical power

obtained when the parameter γ is set to 0.8 for each of the two realized measures. In all

configurations, the higher γ, the stronger the causality from σ2,t to σ1,t, which is confirmed

by the larger power values relatively to those displayed in Tables 2 and 3 (for γ = 0.5).

5 Causality testing in quadratic variation

Our causality test in extreme variance in (17) can be easily extended to define the concept

of causality in quadratic variation. This setting is general enough to allow not only for

microstructure noise but also jumps in the continuous time variance process. In practice

it is expected that jumps contain only few predictive information about the future level of

volatility in its conditional tail, but we argue that the use of the proposed causality test both

on IV and QV may help disentangle the sources of extreme volatility spillover in empirical

applications. The null hypothesis in (5) becomes

H0 : P (QV1,t > q1,t|F (1)
t−1) = P (QV1,t > q1,t|Ft−1),

or equivalently

H0 : E
(
z1,t (α)

∣∣∣F (1)
t−1

)
= E (z1,t (α) |Ft−1 ) ,

where the exceedance indicators zi,t (α) take the value 1 if QVi,t goes beyond its conditional

quantile.

The feasible test procedure now relies in the first step on consistent (realized) estimators

of the quadratic variation of a price process. The 5-min realized variance (RV) is the most
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commonly used realized measure in the literature, but robust estimators that allow for the

use of higher intraday sampling frequencies as the sub-sampled, two-scales, kernel, pre-

averaged RV can also be considered. The conditional quantile of the realized measure of

quadratic variation can be subsequently modelled by a HARQ specification analog to the

one discussed in Section 3.2.

A key point in the development of this extension is to prove that the asymptotic theory

in Section 3.4 still holds and hence our (feasible) causality test in quadratic variation is χ2

distributed. For this, Assumptions 1 and 2 can be easily restated in terms of QVi,t and a

new regularity condition, with respect to the jump process, is introduced:

Assumption 4 The intensity of the Poisson counting process λτ is strictly stationary and

the jump size satisfies the moments existence condition E|ξi(τ)|2k <∞ for some k ≥ 2.

Under this assumption it can be shown that the kth moment of the estimation error on

the discontinuous part of the model decays to zero at a fast enough rate, E
∣∣∣N (d)

i,t,M

∣∣∣k =

O(b
−k/2
M ) for some k ≥ 2, where N

(d)
i,t,M = JVi,t,M − JVi,t (see Zikes and Barunik, 2014, for a

more thorough discussion). It follows by the same arguments as in Proposition 1 that the

feasible test-statistic has the same χ2 limit distribution as the unfeasible one, i.e. estimation

uncertainty does not impact the limit distribution of our test-statistic when it is used to

check for Granger causality in extreme quadratic variation either.

5.1 Finite-sample properties

To study the finite sample properties of our causality test in the case of the quadratic

variation we modify the DGP used in Section 4 so as to facilitate the introduction of causality

in the jump process under the alternative hypothesis. To be more precise, we keep the

definition of the continuous part of the intraday log-returns in (23) and (24) but we make

the hypothesis that there is at most one jump per day and it occurs at a random time within

the day. Indeed, the discontinuous Poisson-type jump component is generated at the daily

level and reshaped into 1 second sampling frequency by drawing the intraday jump time

from an uniform distribution. We set λi = 0.25 which is equivalent to an average rate of

occurrence of a jump every four days. Besides, the jump size is assumed to be normally

distributed with mean µci = −0.01% and standard deviation σci = 2.

The daily quadratic variation, QVi,t, is subsequently estimated by the realized kernel,

RKi,t,m =
H∑

h=−H

K(
h

H + 1
)γh, (29)
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with γh =
∑M

j=|h|+1 ri,t+j∆ri,t+(j−|h|)∆, and K(.) a Parzen kernel weight function, based on

M equally spaced intraday returns.6

The finite sample size results based on 1000 replications are reported in Table 6. We

observe a quite accurate approximation of the nominal level (set to η = 5%) irrespective

of the quadruplet (α,H, T,M). The additional estimation steps from estimating the latent

quadratic variations or their conditional quantiles do not significantly influence the finite

sample properties of the test. These results go along the lines of our findings for the causality

test in integrated variance.

To investigate the finite sample power properties of the test, we simulate the price process

under two different alternative hypotheses. We first allow for extreme variance transmission

through both the continuous and jump components and then we suppose that spillovers

go only through the discontinuous jump channel. This analysis is expected to shade some

light on the ability of our test to distinguish between the two sources of extreme variance

transmission in small samples.

The IV spillovers are generated by setting γ = 0.5 in (28), see Section 4. As for the jump

component, we draw the sizes of the jump processes from a multivariate normal distribution

with identical means, µc, and variances, σc, (as in the size analysis) and correlation equal

to 0.8. We then construct the two sequences of daily jump series by supposing that a jump

in the second asset will transmit to the first asset in the following day at a randomly drawn

intraday time. From an empirical perspective this is a quite mild assumption, as jumps are

generally believed to spillover fast when they do transmit to other assets / markets. Note

that we do not focus here on intraday transmission of extreme volatility, in which case the

hypothesis of spillovers in jumps (within the day) would be even more realistic.7 Still, our

test can be used on intradaily data as long as the user makes sure the assets / markets are

liquid enough to construct consistent realized measures of variance on intradaily subintervals.

Conversely, a user interested in extreme variance transmission at lower frequencies than the

daily one could also implement our test, and in this case we recommend her the test for

causality in IV .

Table 7 reports the power results under the first alternative hypothesis, i.e. when the

source of causality is double. The test has good power properties against this alternative,

and it becomes more powerful as M and T increase and α decreases. H = 3 appears to

be the optimal lag length, that is justified by the fact that although spillovers in IV are

6A robustness check analysis based on the realized variance has been performed and it supports the
findings obtained with RKi,t,m that are detailed below (these tables are available upon request).

7Co-jumps, i.e. jumps that occur at the same time on different assets / markets, have become a topical
issue in financial econometrics, but their study is out of the scope of the paper. See, for example, Gnabo
et al. (2014) for a recent test to identify co-jumps.

19



observed over the following week, jumps transmit only from one day to another.

In this rich setting, we can also investigate the power of our causality test in integrated

variance under the alternative hypothesis of causality in both the continuous and discon-

tinuous components of the quadratic variation. In Table 8 we report the results when IV

is estimated by the bipower variation. The test appears to have slightly better power prop-

erties than that in Table 2 but its power remains relatively low in small samples of up to

1000 observations. In contrast, the causality test in quadratic variation (see Table 7) has

much better power properties under this alternative hypothesis of double causality.

Table 9 reports the power of the test under the second alternative hypothesis, i.e. of

causality only in the jump process. The test appears to exhibit good power properties,

similar to those observed in the case of double causality (see Table 7). The only notable

difference between the two is that now the lower H the better, i.e. the power improves as

we get closer to the lead of one day at which we assumed that jumps spillover in the DGP.

As a by-product in this framework, we can investigate the size of the causality test in

integrated variance when jump transmission is allowed for. The rejection frequencies are

reported in Table 10. The test is well-sized when the sampling frequency is high (M ≥ 78),

but is tends to overreject at low frequencies. One reason behind this may be that a lower

number of intraday returns is not able to fully compensate for the impact of a large jump

and hence in some cases the causality in jumps may drive the test result.

6 Empirical Application

This section illustrates our causality testing procedure in an application on extreme volatility

transmission between US and European Financial markets. We test in a first step for the

presence of causality from the US equity market to several European equity markets over

the period from January 4, 2000 to September 23, 2016. To this end, we use the bipower

variation realized measure of variance defined in (26). In a second step, we investigate

whether the presence of causality in extreme volatility can be linked to some business cycle

and/or financial conditions.

For much of the 20th century, global finance was more patchwork than network. But

the past thirty years have seen that picture change spectacularly and global finance is

now a well-connected network. Within some limits, such connectivity acts as a shock-

absorber and links in the system behave as a mutual insurance device that help distribute

and disperse risk. But when shocks are sufficiently large, connectivity may instead serve as

a shock-transmitter. Risk-sharing becomes risk spreading and links in the system play the

role of a mutual incendiary device that amplifies risk. Understanding the robustness and
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magnitude of links between business cycle state variables and extreme volatility transmission

represents an important empirical question in finance since it is a consequential input for

asset allocation decisions, risk management and macroprudential policies.

We start the empirical investigation by checking for the presence of extreme causality

dynamically from the US equity market (by relying on the SP500 index) to six European

equity markets (the FTSE, DAX, CAC, AEX, IBEX and MIB indices are representative for

UK, Germany, France, Holland, Spain and Italy, respectively). The analysis is performed

in a dynamic setup based on 696 rolling windows (defined by a weekly step), each one

including 500 observations (which is the equivalent of two years of stock-market data). We

set α to 95%, H to 10 lags and use the 5-minutes bi-power variation realized measure of

variance. The causality test in extreme variance from US to Europe (proposed in Section

3) is implemented for each of the six European countries separately.

Figure 3 presents the test-statistic Q̂(H)t−500:t from 2002 to 2016 for each European

country and the critical χ2
95%(H) value for a significance level η = 5%, represented by a

horizontal dashed line. Two important observations can be made. First, extreme volatility

contagion is not constant but time-varying: periods of extreme variance transmission and

periods when there is no transmission alternate. It is clear for the naked eye that, for

example, during the global financial crisis the extreme volatility in US was transmitted to all

European countries. Second, extreme volatility contagion from the US equity market is not

homogeneous across European Equity Markets suggesting an imperfect financial integration

in Europe and Eurozone more specifically. For example, Italy and Spain seems more subject

to US spillovers than Germany or UK. Also, some countries appear to be more affected by

US contagion over the periods 2003-2004 and 2015-2016.

Next, we investigate whether extreme volatility transmission could be linked to macroe-

conomic development. While the behavior of aggregate volatility and its business cycle

dependence are well documented (e.g. Schwert, 1989; Diebold and Yilmaz, 2012; Paye,

2012), empirical analyses of volatility transmission factors are less common. Based on the

previous observation that contagion peaked for some countries during 2003-2004, 2008-2009

and 2015-2016, we choose to focus on the US monetary business cycles and gauge their cor-

relation with extreme volatility transmission between US and European financial markets.

Indeed these periods were marked by intense changes in the stance of the US monetary

policy.

Historically, the Federal Reserve (hereafter, the Fed) has used the federal funds rate as

the primary instrument of monetary policy, lowering the rate to provide more stimulus and

raising it to slow economic activity and control inflation. But between December 2008 and

December 2015, the federal funds rate has been near zero, so that lowering it further to
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produce more stimulus has not been an option. Consequently, the Fed has relied on uncon-

ventional policy tools such as large-scale asset purchases (commonly known as quantitative

easing or QE) and forward guidance to amend long-term interest rates and influence the

economy. In this“zero lower bound” environment, a number of researchers used shadow rate

models to quantify the stance of monetary policy (e.g. Krippner, 2013). We therefore use

the shadow rates to proxy the US monetary business stance. When the estimated shadow

fed funds rate is at least 25 basis points, the effective federal funds rate is used. Figure

4 presents the US shadow (fed fund) rate and the 2-year rolling range of this rate. This

Figure illustrates the US monetary cycles over the period with successive waves of easing

(2000-2003 and 2007-2013) and tightening (2004-2006 and 2013-2016).

In a regression model we relate the level of inter-market dependence to the shadow rates

while conditioning upon the presence (absence) of causality. Along the lines of Christiansen

et al. (2012), we also include, as control variables, the TED spread (hereafter TEDS) cal-

culated as the spread between 3-month LIBOR based on USD and 3-month Treasury Bill.

The data spans the period from January 4, 2000 to September 23, 2016 and it has been

collected from three sources: i) the realized measures of variance are taken from the realized

library” at Oxford-Man Institute, ii) the control variable and the effective federal funds rate

are found in the Federal Reserve Economic database, and iii) the shadow rates come from

Krippner (2013) updates.

To check if the presence of causality in variance is related to the dynamics of the shadow

rates variable, we estimate the following regression

log Q̂(H) = β0 + β1SRIQ̂(H)>χ2
95%

(H) + β2SR + δ1TEDS + ε,

where Q̂(H) is the vector of causality in extreme variance test-statistics, and SR is the

associated vector of ranges of the US shadow rate. SR is computed over the same rolling

windows (of 500 observations) where we applied our causality test so as to capture the

variability, and to some extent the instability, of the monetary policy over each subsample

where we applied our causality test.

Table 11 presents the estimation results for the US shadow rate along with the associated

HAC t-statistics for each country pair. Given the strong persistence of the variables, the

HAC t-statistics are computed by following Sun (2004) with a bandwidth of 0.1. The

results of interest in Table 11 are the slope parameters β1 associated with the causality

regime. They are generally positive and significant, indicating that the dynamics of the

shadow rates is strongly related with the presence of causality from US to European equity

markets. In particular, more variability in the shadow rates is accompanied by an increase

in the log of the test-statistic, i.e., a stronger rejection of the non-causality. This can be due

22



either to changes in the monetary policy as a reaction to the business cycle development

and/or to monetary policy decisions that subsequently affect the financial markets such

as the “taper tantrum” episode in 2013 suggests. This result is even stronger, as the tail

interaction term actually captures all existing dependence between the presence of causality

in variance and the dynamics of the shadow rates. The non-significance of β2 indeed reflects

the absence of relationship in the center of the distribution. Besides, except for Germany,

the control variable does not appear to be significant, which indicates that funding risks on

the US market are not related to the presence of causality in extreme variance toward the

European markets. In a nutshell, extreme volatility transmission seems to be intimately

related to the dynamics of the US shadow rate and hence the US monetary policy.

7 Conclusion

We proposed a Granger-causality test in extreme variance. As the variance is unobserved,

our testing strategy is based on realized measures of the integrated variance. In partic-

ular, the test relies on the cross-lagged correlation between tail-event indicator functions

derived from a quantile HAR model for realized measures of variance associated with each

of the two financial series considered. The feasible testing procedure is semiparametric and

asymptotically free of estimation risk that may arise from the approximation of the inte-

grated variance by realized measures, or from the estimation of its conditional quantiles

in the HARQ specification. The resulting Ljung-Box type test-statistic has a traditional

chi-square asymptotic distribution and it is simple to implement. Extensive Monte-Carlo

simulations show that our test has good finite-sample properties. In particular, it exhibits

high power for both the IV and QV realized measures regardless of way causality is specified

under the alternative hypothesis, i.e. causality in the continuous and / or the discontinuous

jump component of the quadratic variation. A natural extension of our Granger causality

test in extreme variance focuses on the whole quadratic variation by using, for instance, the

realized variance estimator.

Finally, we propose an empirical illustration that looks into extreme volatility transmis-

sion from the US equity market to six European ones from 2002 to 2016. Without loss

of generality, the bi-power variation realized measure is used. Our test identifies periods

where causality in extreme variance is significant and relates the intensity of the volatility

transmission to the US monetary business cycle, in particular through the shadow rates.

The US monetary policy hence contributes to set the tone not only for credit conditions

worldwide in terms of volumes and prices but also for extreme volatility transmission across

the world.
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A Appendix A: Proof of Lemmas

A.1 Proof of Lemma 1

Lemma 1: Under the null hypothesis of absence of causality in extreme variance, as T →∞

Q∗ (H) ∼ χ2
H , (30)

where χ2
H is the chi-square random variable with H degrees of freedom.

Proof : The infeasible test statistic Q∗ (H) is defined as

Q∗ (H) = T (T + 2)
H∑
h=1

ρ∗2 (h)

T − h
, (31)

with ρ∗ (h) the cross-lagged correlation of order h between z1,t (α) and z2,t (α). Note that

{z1,t (α)} is independent of {z2,s (α) , s < t}. Moreover, both z1,t (α) and z2,t (α) are i.i.d.

sequences, because they are defined as quantile-exception processes. This can be regarded
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by analogy with the risk-management literature where the IIDness property of a quantile-

exception process is used to backtest quantile or value-at-risk models (Christoffersen, 1998).

Hence, it follows from Hannan (1976) and Roy (1989) that as T →∞
√
T (ρ∗ (1) , ρ∗ (2) , ..., ρ∗ (H))′ ∼ N (0, IH) , (32)

with IH the identity matrix of dimension H, and therefore

T (T + 2)

T − h
ρ∗2 (h) ∼ χ2

1, ∀h = 1, ..., H, (33)

which completes the proof. �

A.2 Proof of Lemma 2

Lemma 2: Under Assumptions 2 and 3, as T →∞

Q̂ (H)−Q (H) = op (1) . (34)

Proof : Recall that Q̂ (H) is the feasible test statistic based on the cross-lagged corre-

lation between the estimated event variables z1,t,M(α; θ̂1) and z2,t,M(α; θ̂2), while Q (H) is

the infeasible counterpart based on the cross-lagged correlation between z1,t,M (α; θ0
1) and

z2,t,M (α; θ0
2). We denote ρ (h) the cross-lagged correlation of order h, h = 1, . . . , H, be-

tween z1,t,M (α; θ0
1) and z2,t,M (α; θ0

2), which is the unfeasible counterpart of ρ̂ (h) as defined

in (8). Ĉ (h) is the cross-lagged covariance associated with ρ̂ (h), and C (h) its unfeasible

counterpart associated with ρ (h). Consequently, we have that

Q̂ (H)−Q (H) =
1

π2 (1− π)2

H∑
h=1

T (T + 2)

(T − h)

(
Ĉ (h)2 − C (h)2

)
. (35)

The rest of the proof proceeds by showing that Ĉ (h)2 − C (h)2 = op (1). Note that

Ĉ (h)2 − C (h)2 = A+B, (36)

with

A =
(
Ĉ (h)− C (h)

)2

, (37)

B = 2
(
Ĉ (h)− C (h)

)
C (h) . (38)

Using the definition of both Ĉ (h) and C (h), the difference Ĉ (h)−C (h) can be written as

Ĉ (h)− C (h) = T−1

T∑
t=1

{
It

(
θ̂1, θ̂2

)
− It

(
θ0

1, θ
0
2

)}
, (39)

with

It

(
θ̂1, θ̂2

)
= z1,t,M

(
α; θ̂1

)
z2,t−h,M

(
α; θ̂2

)
, (40)
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It
(
θ0

1, θ
0
2

)
= z1,t,M

(
α; θ0

1

)
z2,t−h,M

(
α; θ0

2

)
. (41)

For the rest of the proof we build on Cappiello et al. (2014, Proof of Theorem 1). Let

ui,t = IVi,t,M − qi,t,M (α, θ0
i ) be the true quantile residuals, and δi,t

(
θ̂i

)
= qi,t,M

(
α, θ̂i

)
−

qi,t,M (α, θ0
i ). Since zi,t,M

(
α, θ̂i

)
= I

(
IVi,t,M ≥ qi,t,M

(
α, θ̂i

))
, we have zi,t,M

(
α, θ̂i

)
=

I
(
ui,t ≥ δi,t

(
θ̂i

))
and zi,t,M (α, θ0

i ) = I (ui,t ≥ 0). It follows that∣∣∣It (θ̂1, θ̂2

)
− It

(
θ0

1, θ
0
2

)∣∣∣ =
∣∣∣z1,t,M

(
α, θ̂1

)
z2,t−h,M

(
α, θ̂2

)
− z1,t,M

(
α, θ0

1

)
z2,t−h,M

(
α, θ0

2

)∣∣∣ (42)

=
∣∣∣I(u1,t ≥ δ1,t

(
θ̂1

))
I
(
u2,t−h ≥ δ2,t−h

(
θ̂2

))
− I (u1,t ≥ 0) I (u2,t−h ≥ 0)

∣∣∣ .
Now suppose that δi,t

(
θ̂i

)
< 0, ∀t (the same reasoning applies for δi,t

(
θ̂i

)
> 0). Using

the fact that ab− cd = (a− c)d+ c(b− d) + (a− c)(b− d), we obtain (42)∣∣∣It (θ̂1, θ̂2

)
− It

(
θ0

1, θ
0
2

)∣∣∣ =
∣∣∣(I(u1,t ≥ δ1,t

(
θ̂1

))
− I (u1,t ≥ 0)

)
I (u2,t−h ≥ 0) +

+I (u1,t ≥ 0)
(
I
(
u2,t−h ≥ δ2,t−h

(
θ̂2

))
− I (u2,t−h ≥ 0)

)
+

+
(
I
(
u1,t ≥ δ1,t

(
θ̂1

))
− I (u1,t ≥ 0)

)
×

×
(
I
(
u2,t−h ≥ δ2,t−h

(
θ̂2

))
− I (u2,t−h ≥ 0)

)∣∣∣ (43)

= I
(
δ1,t

(
θ̂1

)
≤ u1,t ≤ 0

)
I (u2,t−h ≥ 0) +

+I (u1,t ≥ 0) I
(
δ2,t−h

(
θ̂2

)
≤ u2,t−h ≤ 0

)
+

+I
(
δ1,t

(
θ̂1

)
≤ u1,t ≤ 0

)
I
(
δ2,t−h

(
θ̂2

)
≤ u2,t−h ≤ 0

)
≤ 2I

(
δ1,t

(
θ̂1

)
≤ u1,t ≤ 0

)
+ I
(
δ2,t−h

(
θ̂2

)
≤ u2,t−h ≤ 0

)
.(44)

By applying the mean value theorem to the expectation of the first term in (44) we have

E
(
I
(
δ1,t

(
θ̂1

)
≤ u1,t ≤ 0

))
= Pr

(
δ1,t

(
θ̂1

)
≤ u1,t ≤ 0

)
(45)

=

∣∣∣∣∣
∫ 0

δ1,t(θ̂1)
g1,t (u1) du1

∣∣∣∣∣ (46)

=
∣∣∣−g1,t (ε)∇q1,t,M (α, θ∗1)

(
θ̂1 − θ0

1

)∣∣∣ (47)

where g1,t (.) is the p.d.f. of the quantile residuals IV1,t,M−q1,t,M (α, θ0
1), δ1,t(θ̂1) < ε < 0, and

θ∗1 lies between θ̂1 and θ0
1. Then, using Assumptions 1 and 2 and the fact that θ̂1 − θ0

1

p−→ 0

as shown by Koenker and Xiao (2006)

E
(
I
(
δ1,t

(
θ̂1

)
≤ u1,t ≤ 0

))
≤

∣∣∣UK (G1,t)
(
θ̂1 − θ0

1

)∣∣∣ (48)

≤
∣∣∣UK0

(
θ̂1 − θ0

1

)∣∣∣ = op (1) (49)

Taking expectation in (44) and using (49), it follows that E
∣∣∣It(θ̂1, θ̂2

)
− It

(
θ0

1, θ
0
2

)∣∣∣ =

o(1). Since E
(
It

(
θ̂1, θ̂2

)
− It

(
θ0

1, θ
0
2

))
≤
∣∣∣E(It(θ̂1, θ̂2

)
− It

(
θ0

1, θ
0
2

)) ∣∣∣ ≤ E
∣∣∣It(θ̂1, θ̂2

)
− It

(
θ0

1, θ
0
2

)∣∣∣,
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by Jensen inequality and by the law of large numbers, T−1
T∑
t=1

{It
(
θ̂1, θ̂2

)
− It (θ0

1, θ
0
2)} p−→

E
(
It

(
θ̂1, θ̂2

)
− It

(
θ0

1, θ
0
2

))
= o (1) and Ĉ (h)−C (h) = op(1). It can be easily deduced that

A = op(1), and B = op(1) and therefore Ĉ (h)2 −C (h)2 = op (1). This completes the proof.

�

A.3 Proof of Lemma 3

Lemma 3: Under Assumption 3, if T
1

k−1 b
−1/2
M → 0, as T,M →∞, we have

Q (H)−Q∗ (H) = op (1) . (50)

Proof : The infeasible test statistic Q∗ (H) is based on the cross-lagged correlation (or

covariance) between z1,t (α) and z2,t (α), the tail-event variables for the true processes of

integrated variance. Using the same reasoning as in the proof of Lemma 2, we have

Q (H)−Q∗ (H) =
1

π2 (1− π)2

H∑
h=1

T (T + 2)

(T − h)

(
C (h)2 − C∗ (h)2) , (51)

where again C (h) is the cross-lagged covariance of order h between z1,t,M(α; θ0
1) and z2,t,M(α; θ0

2),

the tail-event variables for the realized measure of integrated variance and C∗ (h) is the

same statistic but involving z1,t (α) and z2,t (α). We then proceed by showing that C (h)2−
C∗ (h)2 = op(1). As above, we rewrite C (h)2 − C∗ (h)2 as

C (h)2 − C∗ (h)2 = A1 + A2, (52)

with

A1 = (C (h)− C∗ (h))2 , (53)

A2 = 2 (C (h)− C∗ (h))C∗ (h) . (54)

Now, let us study the asymptotic behavior of C (h)− C∗ (h). We have that

C (h)− C∗ (h) = T−1

T∑
t=1

{
It
(
θ0

1, θ
0
2

)
− I∗t

(
θ0

1, θ
0
2

)}
, (55)

with

It
(
θ0

1, θ
0
2

)
= z1,t,M

(
α; θ0

1

)
z2,t−h,M

(
α; θ0

2

)
, (56)

I∗t
(
θ0

1, θ
0
2

)
= z1,t

(
α; θ0

1

)
z2,t−h

(
α; θ0

2

)
. (57)

Equivalently,

C (h)− C∗ (h) = B1 +B2, (58)

with

B1 = T−1

T∑
t=1

(
z1,t,M

(
α; θ0

1

)
− z1,t

(
α; θ0

1

))
z2,t−h,M

(
α; θ0

2

)
, (59)
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B2 = T−1

T∑
t=1

(
z2,t−h,M

(
α; θ0

2

)
− z2,t−h

(
α; θ0

2

))
z1,t

(
α; θ0

1

)
. (60)

By the triangular inequality and the correct specification of the QAR model, it follows that

|C (h)− C∗ (h) | ≤ |B1|+ |B2|, (61)

where

|B1| =

∣∣∣∣∣T−1

T∑
t=1

(I (y1,t,M ≤ 0)− I (y1,t ≤ 0)) I (y2,t−h,M ≤ 0)

∣∣∣∣∣ , (62)

|B2| =

∣∣∣∣∣T−1

T∑
t=1

(I (y2,t−h,M ≤ 0)− I (y2,t−h ≤ 0)) I (y1,t ≤ 0)

∣∣∣∣∣ , (63)

from the definition of exceedances, with I (.) the indicator function, and

y1,t = θ0
1,1 +

p∑
j=1

θ0
i,j+1ν(IV1,t, Lj)− IV1,t,

y1,t,M = θ0
1,1 +

p∑
j=1

θ0
1,j+1ν(IV1,t,M , Lj)− IV1,t,M ,

y2,t,M = θ0
2,1 +

p∑
j=1

θ0
2,j+1ν(IV2,t,M , Lj)− IV2,t,M ,

y2,t−h = θ0
2,1 +

p∑
j=1

θ0
2,j+1ν(IV2,t−h, Lj)− IV2,t−h,

y2,t−h,M = θ0
2,1 +

p∑
j=1

θ0
2,j+1ν(IV2,t−h,M , Lj)− IV2,t−h,M .

In the following we focus on the asymptotic behavior of |B1| and derive that of |B2| by

analogy. From Zikes and Barunik (2014) and by Cauchy-Schwarz inequality,

|B1| ≤ T−1

T∑
t=1

|I (y1,t,M ≤ 0)− I (y1,t ≤ 0)| |I (y2,t−h,M ≤ 0)| . (64)

Using the expression of y1,t,M in terms of estimation error and by the linearity of ν(.),

y1,t,M = y1,t − (IV1,t,M − IV1,t) +

p∑
j=1

θ0
1,j+1

(
ν(IV1,t,M , Lj)− ν(IV1,t, Lj)

)
= y1,t −N1,t,M +

p∑
j=1

θ0
1,j+1ν(N1,t,M , Lj)

we obtain

|B1| ≤ T−1

T∑
t=1

∣∣∣∣∣I
(
y1,t −N1,t,M +

p∑
j=1

θ0
i,j+1ν(N1,t,M , Lj)) ≤ 0

)
− I (y1,t ≤ 0)

∣∣∣∣∣ |I (y2,t−h,M ≤ 0)| ,
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where ν(N1,t,M , L) = L−1
L∑
l=1

N1,t−l,M in the case of the HARQ model. Equivalently,

|B1| ≤ T−1

T∑
t=1

I (−u ≤ y1,t ≤ u) |I (y2,t−h,M ≤ 0)| . (65)

The upper bound u is equal to

u = sup
t
|N1,t,M |+

p∑
j=1

θ1,j+1ν(sup
t
|N1,t,M | , Lj), (66)

where θ1,j = sup θ0
1,j for j = 1, . . . , p and they are well defined in a compact set Θ1. Given

Assumption 3, we further have that ∀s ≥ 0, as T , M →∞

Pr

(
sup
t
T−

1
k−1 b

1/2
M |N1,t−s,M | > ε

)
≤

T∑
t=1

Pr
(
T−

1
k−1 b

1/2
M |N1,t−s,M | > ε

)
≤ ε−kT 1− k

k−1 b
k/2
M E |N1,t−s,M |k

≤ ε−kT−
1

k−1 b
k/2
M O

(
b
−k/2
M

)
≡ o(1),

where the second inequality arises from the Markov inequality. Consequently,

sup
t
|N1,t−s,M | = Op

(
T

1
k−1 b

−1/2
M

)
, ∀s ≥ 0. (67)

Based on Equations (65, 66, 67), we can state that there exists a positive constant c

such that

|B1| ≤ T−1

T∑
t=1

I
(
−cδT

1
k−1 b

−1/2
M ≤ y1,t ≤ cδT

1
k−1 b

−1/2
M

)
|I (y2,t−h,M ≤ 0)|

≡ B
′

1, (68)

with

δ = 1 +

p∑
j=1

θ1,j+1

Lj
(69)

in the particular case of the HARQ model. By conditioning on a set on which (68) holds,

we use Markov and Hölder inequalities to write

Pr
(
B
′

1 > a
)
≤ 1

a
T−1

T∑
t=1

Pr
(
−cδT

1
k−1 b

−1/2
M ≤ y1,t ≤ cδT

1
k−1 b

−1/2
M

)1/2

×

×E
(
I (y2,t−h,M ≤ 0)2)1/2

≡ o(1)

for a positive constant a. This holds since

Pr
(
−cδT

1
k−1 b

−1/2
M ≤ y1,t ≤ cδT

1
k−1 b

−1/2
M

)
→ 0 (70)
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as T
1

k−1 b
−1/2
M → 0 when T,M →∞ and because

E
(
I (y2,t−h,M ≤ 0)2)1/2

=
(
π (1− π) + π2

)1/2
= 1− α1/2 <∞. (71)

Note that I (y2,t−h,M ≤ 0) is Benouilli distributed with parameter π = 1 − α regardless of

the fact that the IV is estimated. This follows from the definition of the true conditional

quantile, that insures 1− α% of IID exceedances in all cases.

It follows that |B1| = op (1), and the same reasoning leads to |B2| = op (1). Consequently,

supθ∈Θ |C(h) − C∗(h)| = op(1) and hence it can be easily deduced that C (h)2 − C∗ (h)2 =

op(1). This completes the proof. �
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B Appendix B: Tables and Figures

Daily integrated variance

0 200 400 600 800 1000 1200 1400 1600 1800 20000

2

4

6

8

10

12

14

16

18
Bipower variation realized measure

0 200 400 600 800 1000 1200 1400 1600 1800 20000

2

4

6

8

10

12

14

16

18

Figure 1: Simulated daily IV and BV realized measure with M = 390
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Figure 2: BV realized measures of the two assets with M = 390 and γ = 0.5
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Figure 3: Causality in variance test
Note: This figure presents the test-statistic (computed on two-year rolling windows s = 500), Q̂(H)t−s:t,
for t going from 2002 to 2016.
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Figure 4: Shadow Rate Dynamics (Krippner 2013 updates)
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Table 1: Empirical size of the causality test in extreme variance for the BPV measure

α = 90%

M = 390 M = 78 M = 26 M = 13
H = 3

T = 500 0.060 0.048 0.042 0.036
T = 1000 0.050 0.045 0.047 0.048
T = 2000 0.053 0.050 0.054 0.052

H = 5
T = 500 0.054 0.041 0.036 0.040
T = 1000 0.051 0.049 0.061 0.050
T = 2000 0.054 0.061 0.055 0.049

H = 10
T = 500 0.052 0.032 0.050 0.039
T = 1000 0.039 0.038 0.050 0.046
T = 2000 0.049 0.057 0.056 0.043

α = 95%

M = 390 M = 78 M = 26 M = 13
H = 3

T = 500 0.048 0.063 0.059 0.058
T = 1000 0.046 0.059 0.059 0.042
T = 2000 0.052 0.062 0.049 0.036

H = 5
T = 500 0.046 0.061 0.042 0.055
T = 1000 0.054 0.070 0.070 0.055
T = 2000 0.063 0.064 0.067 0.045

H = 10
T = 500 0.060 0.080 0.063 0.072
T = 1000 0.059 0.064 0.072 0.059
T = 2000 0.051 0.067 0.046 0.042

Notes: For a given value of the quadruplet (α,H, T,M) the Table
displays the empirical size of the Granger-causality test in extreme
variance, with α the confidence level, T the sample size (in days),
M the number of intraday returns used to compute the realized
measure of integrated variance, and H the maximum lag-order for
the causality test. The nominal significance level η is set to 5%.
The rejection frequencies are computed over 1000 simulations. The
size results for the medRV measure are strictly identical to those
reported above.
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Table 2: Empirical power of the causality test in extreme variance for the BPV measure
with γ = 0.5

α = 90%

M = 390 M = 78 M = 26 M = 13
H = 3

T = 500 0.255 0.267 0.275 0.257
T = 1000 0.489 0.471 0.464 0.413
T = 2000 0.784 0.780 0.736 0.697

H = 5
T = 500 0.432 0.456 0.415 0.348
T = 1000 0.775 0.747 0.719 0.619
T = 2000 0.968 0.953 0.944 0.902

H = 10
T = 500 0.362 0.375 0.335 0.310
T = 1000 0.681 0.679 0.639 0.562
T = 2000 0.946 0.935 0.919 0.872

α = 95%

M = 390 M = 78 M = 26 M = 13
H = 3

T = 500 0.254 0.236 0.237 0.235
T = 1000 0.356 0.352 0.344 0.321
T = 2000 0.556 0.511 0.509 0.487

H = 5
T = 500 0.382 0.367 0.337 0.318
T = 1000 0.562 0.559 0.539 0.507
T = 2000 0.815 0.785 0.758 0.706

H = 10
T = 500 0.368 0.355 0.327 0.335
T = 1000 0.485 0.492 0.483 0.481
T = 2000 0.754 0.724 0.713 0.687

Notes: For a given value of the quadruplet (α,H, T,M) the Table dis-
plays the empirical power of the Granger-causality test in extreme
variance, with α the confidence level, T the sample size (in days), M
the number of intraday returns used to compute the realized mea-
sure of integrated variance, and H the maximum lag-order for the
causality test. The nominal significance level η is set to 5%. The
rejection frequencies are computed over 1000 simulations.
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Table 3: Empirical power of the causality test in extreme variance for the medRV measure
with γ = 0.5

α = 90%

M = 390 M = 78 M = 26 M = 13
H = 3

T = 500 0.276 0.253 0.265 0.248
T = 1000 0.491 0.462 0.470 0.432
T = 2000 0.780 0.757 0.738 0.708

H = 5
T = 500 0.444 0.403 0.378 0.332
T = 1000 0.761 0.737 0.726 0.628
T = 2000 0.962 0.963 0.947 0.908

H = 10
T = 500 0.377 0.352 0.330 0.297
T = 1000 0.691 0.674 0.649 0.570
T = 2000 0.936 0.936 0.931 0.891

α = 95%

M = 390 M = 78 M = 26 M = 13
H = 3

T = 500 0.253 0.247 0.225 0.239
T = 1000 0.404 0.362 0.342 0.315
T = 2000 0.565 0.501 0.511 0.491

H = 5
T = 500 0.368 0.364 0.357 0.329
T = 1000 0.586 0.567 0.542 0.482
T = 2000 0.810 0.767 0.752 0.710

H = 10
T = 500 0.366 0.369 0.335 0.342
T = 1000 0.497 0.474 0.490 0.471
T = 2000 0.756 0.721 0.712 0.700

Notes: For a given value of the quadruplet (α,H, T,M) the Table dis-
plays the empirical power of the Granger-causality test in extreme
variance, with α the confidence level, T the sample size (in days), M
the number of intraday returns used to compute the realized mea-
sure of integrated variance, and H the maximum lag-order for the
causality test. The nominal significance level η is set to 5%. The
rejection frequencies are computed over 1000 simulations.

39



Table 4: Empirical power of the causality test in extreme variance for the BPV measure
with γ = 0.8

α = 90%

M = 390 M = 78 M = 26 M = 13
H = 3

T = 500 0.496 0.474 0.424 0.380
T = 1000 0.770 0.753 0.732 0.670
T = 2000 0.957 0.947 0.944 0.917

H = 5
T = 500 0.694 0.668 0.610 0.532
T = 1000 0.935 0.929 0.896 0.859
T = 2000 0.989 0.990 0.989 0.980

H = 10
T = 500 0.604 0.573 0.520 0.472
T = 1000 0.887 0.885 0.866 0.794
T = 2000 0.983 0.981 0.981 0.978

α = 95%

M = 390 M = 78 M = 26 M = 13
H = 3

T = 500 0.356 0.366 0.337 0.328
T = 1000 0.555 0.539 0.534 0.499
T = 2000 0.779 0.767 0.722 0.682

H = 5
T = 500 0.527 0.512 0.483 0.458
T = 1000 0.763 0.739 0.741 0.687
T = 2000 0.928 0.917 0.902 0.870

H = 10
T = 500 0.478 0.477 0.469 0.425
T = 1000 0.675 0.661 0.655 0.602
T = 2000 0.877 0.880 0.845 0.842

Notes: For a given value of the quadruplet (α,H, T,M) the Table dis-
plays the empirical power of the Granger-causality test in extreme
variance, with α the confidence level, T the sample size (in days), M
the number of intraday returns used to compute the realized mea-
sure of integrated variance, and H the maximum lag-order for the
causality test. The nominal significance level η is set to 5%. The
rejection frequencies are computed over 1000 simulations.
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Table 5: Empirical power of the causality test in extreme variance for the medRV measure
with γ = 0.8

α = 90%

M = 390 M = 78 M = 26 M = 13
H = 3

T = 500 0.508 0.492 0.431 0.407
T = 1000 0.769 0.774 0.731 0.670
T = 2000 0.951 0.953 0.945 0.921

H = 5
T = 500 0.724 0.686 0.612 0.552
T = 1000 0.948 0.936 0.900 0.864
T = 2000 0.987 0.987 0.992 0.980

H = 10
T = 500 0.615 0.599 0.520 0.485
T = 1000 0.900 0.887 0.855 0.815
T = 2000 0.983 0.983 0.977 0.975

α = 95%

M = 390 M = 78 M = 26 M = 13
H = 3

T = 500 0.366 0.375 0.358 0.310
T = 1000 0.541 0.543 0.543 0.486
T = 2000 0.785 0.775 0.730 0.698

H = 5
T = 500 0.528 0.519 0.495 0.449
T = 1000 0.754 0.740 0.725 0.686
T = 2000 0.923 0.922 0.908 0.864

H = 10
T = 500 0.476 0.473 0.463 0.444
T = 1000 0.655 0.685 0.646 0.630
T = 2000 0.887 0.868 0.868 0.838

Notes: For a given value of the quadruplet (α,H, T,M) the Table dis-
plays the empirical power of the Granger-causality test in extreme
variance, with α the confidence level, T the sample size (in days), M
the number of intraday returns used to compute the realized mea-
sure of integrated variance, and H the maximum lag-order for the
causality test. The nominal significance level η is set to 5%. The
rejection frequencies are computed over 1000 simulations.
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Table 6: Empirical size of the causality test in extreme variance for the RK measure

α = 90%

M = 390 M = 78 M = 26 M = 13
H = 3

T=500 0.044 0.039 0.044 0.043
T=1000 0.043 0.033 0.045 0.041
T=2000 0.042 0.046 0.052 0.047

H = 5
T=500 0.042 0.044 0.043 0.052
T=1000 0.041 0.044 0.046 0.047
T=2000 0.054 0.053 0.052 0.063

H = 10
T=500 0.038 0.043 0.036 0.058
T=1000 0.049 0.046 0.046 0.042
T=2000 0.058 0.036 0.062 0.047

α = 95%

M = 390 M = 78 M = 26 M = 13
H = 3

T=500 0.060 0.070 0.068 0.060
T=1000 0.047 0.048 0.055 0.051
T=2000 0.052 0.050 0.045 0.045

H = 5
T=500 0.046 0.047 0.047 0.054
T=1000 0.052 0.061 0.063 0.065
T=2000 0.059 0.063 0.055 0.036

H = 10
T=500 0.068 0.065 0.054 0.058
T=1000 0.052 0.049 0.051 0.054
T=2000 0.050 0.055 0.056 0.052

Notes: For a given value of the quadruplet (α,H, T,M) the Table
displays the empirical size of the Granger-causality test in extreme
quadratic variation, with α the confidence level, T the sample size
(in days), M the number of intraday returns used to compute the
realized measure of quadratic variation, and H the maximum lag-
order for the causality test. The nominal significance level η is set to
5%. The rejection frequencies are computed over 1000 simulations.
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Table 7: Empirical power of the causality test in extreme variance for the RK measure

α = 90%

M = 390 M = 78 M = 26 M = 13
H = 3

T=500 0.764 0.740 0.683 0.591
T=1000 0.978 0.974 0.940 0.909
T=2000 1.000 0.999 0.999 0.994

H = 5
T=500 0.743 0.700 0.637 0.556
T=1000 0.975 0.962 0.935 0.890
T=2000 0.999 0.999 1.000 0.994

H = 10
T=500 0.636 0.603 0.571 0.498
T=1000 0.948 0.929 0.909 0.828
T=2000 0.999 0.998 0.999 0.991

α = 95%

M = 390 M = 78 M = 26 M = 13
H = 3

T=500 0.498 0.475 0.435 0.403
T=1000 0.768 0.716 0.690 0.618
T=2000 0.957 0.948 0.921 0.870

H = 5
T=500 0.46 0.426 0.384 0.367
T=1000 0.741 0.688 0.654 0.600
T=2000 0.954 0.937 0.916 0.858

H = 10
T=500 0.412 0.400 0.357 0.334
T=1000 0.652 0.600 0.581 0.508
T=2000 0.922 0.887 0.862 0.786

Notes: For a given value of the quadruplet (α,H, T,M) the Table
displays the empirical power of the Granger-causality test in ex-
treme quadratic variation, with α the confidence level, T the sample
size (in days), M the number of intraday returns used to compute
the realized measure of quadratic variation, and H the maximum
lag-order for the causality test. Under the alternative hypothesis,
we allow for causality in both the IV and the jump processes. The
nominal significance level η is set to 5%. The rejection frequencies
are computed over 1000 simulations.
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Table 8: Empirical power of the causality test in extreme variance for the BV measure

α = 90%

M = 390 M = 78 M = 26 M = 13
H = 3

T=500 0.296 0.279 0.285 0.293
T=1000 0.508 0.507 0.509 0.490
T=2000 0.786 0.811 0.806 0.768

H = 5
T=500 0.491 0.431 0.368 0.351
T=1000 0.782 0.725 0.683 0.631
T=2000 0.963 0.952 0.947 0.909

H = 10
T=500 0.410 0.349 0.332 0.304
T=1000 0.711 0.659 0.639 0.591
T=2000 0.945 0.934 0.929 0.893

α = 95%

M = 390 M = 78 M = 26 M = 13
H = 3

T=500 0.263 0.265 0.278 0.251
T=1000 0.375 0.342 0.403 0.350
T=2000 0.532 0.530 0.558 0.526

H = 5
T=500 0.382 0.381 0.342 0.302
T=1000 0.583 0.550 0.544 0.481
T=2000 0.814 0.786 0.732 0.698

H = 10
T=500 0.356 0.363 0.342 0.311
T=1000 0.518 0.489 0.473 0.444
T=2000 0.750 0.741 0.685 0.667

Notes: For a given value of the quadruplet (α,H, T,M) the Table dis-
plays the empirical power of the Granger-causality test in extreme
integrated variance, with α the confidence level, T the sample size
(in days), M the number of intraday returns used to compute the
realized measure of integrated variance, and H the maximum lag-
order for the causality test. Under the alternative hypothesis, we
allow for causality in both the IV and the jump processes. The
nominal significance level η is set to 5%. The rejection frequencies
are computed over 1000 simulations.
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Table 9: Empirical power of the causality test in extreme variance for the RK measure

α = 90%

M = 390 M = 78 M = 26 M = 13
H = 3

T=500 0.602 0.555 0.473 0.416
T=1000 0.921 0.874 0.803 0.708
T=2000 1.000 0.991 0.971 0.944

H = 5
T=500 0.554 0.490 0.417 0.362
T=1000 0.877 0.839 0.747 0.643
T=2000 1.000 0.988 0.957 0.918

H = 10
T=500 0.438 0.368 0.335 0.273
T=1000 0.804 0.737 0.624 0.528
T=2000 0.991 0.971 0.928 0.866

α = 95%

M = 390 M = 78 M = 26 M = 13
H = 3

T=500 0.391 0.345 0.305 0.284
T=1000 0.638 0.591 0.526 0.450
T=2000 0.904 0.852 0.789 0.709

H = 5
T=500 0.308 0.284 0.249 0.214
T=1000 0.585 0.530 0.470 0.405
T=2000 0.875 0.823 0.746 0.643

H = 10
T=500 0.284 0.274 0.216 0.196
T=1000 0.491 0.438 0.377 0.307
T=2000 0.779 0.739 0.636 0.532

Notes: For a given value of the quadruplet (α,H, T,M) the Table dis-
plays the empirical power of the Granger-causality test in extreme
quadratic variation, with α the confidence level, T the sample size
(in days), M the number of intraday returns used to compute the
realized measure of quadratic variation, and H the maximum lag-
order for the causality test. Under the alternative hypothesis, there
is no causality in the IV but we allow for spillovers in the jumps
process. The nominal significance level η is set to 5%. The rejection
frequencies are computed over 1000 simulations.
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Table 10: Empirical size of the causality test in extreme variance for the BV measure

α = 90%

M = 390 M = 78 M = 26 M = 13
H = 3

T=500 0.040 0.044 0.056 0.069
T=1000 0.045 0.046 0.073 0.095
T=2000 0.042 0.060 0.114 0.153

H = 5
T=500 0.047 0.046 0.055 0.067
T=1000 0.053 0.047 0.065 0.086
T=2000 0.048 0.058 0.107 0.141

H = 10
T=500 0.047 0.040 0.052 0.057
T=1000 0.055 0.049 0.053 0.074
T=2000 0.048 0.052 0.093 0.106

α = 95%

M = 390 M = 78 M = 26 M = 13
H = 3

T=500 0.057 0.076 0.098 0.100
T=1000 0.053 0.065 0.078 0.099
T=2000 0.051 0.066 0.09 0.106

H = 5
T=500 0.060 0.070 0.077 0.080
T=1000 0.062 0.069 0.082 0.096
T=2000 0.055 0.069 0.079 0.099

H = 10
T=500 0.069 0.065 0.094 0.087
T=1000 0.054 0.060 0.074 0.076
T=2000 0.054 0.062 0.086 0.080

Notes: For a given value of the quadruplet (α,H, T,M) the Table
displays the empirical size of the Granger-causality test in extreme
integrated variance, with α the confidence level, T the sample size
(in days), M the number of intraday returns used to compute the
realized measure of integrated variance, and H the maximum lag-
order for the causality test. Under the alternative hypothesis, there
is no causality in the IV but we allow for spillovers in the jumps
process. The nominal significance level η is set to 5%. The rejection
frequencies are computed over 1000 simulations.
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Table 11: Regression results

β0 β1 β2 δ1

FTSE 2.488 0.181 -0.033 0.019
(19.94) (10.81) (-0.858) (1.107)

DAX 2.516 0.197 -0.051 0.047
(14.14) (8.331) (-1.340) (3.338)

CAC 2.809 0.179 -0.093 0.035
(10.70) (8.064) (-1.368) (1.079)

AEX 2.661 0.193 -0.072 0.031
(16.58) (6.818) (-1.606) (1.174)

IBEX 2.392 0.175 -0.004 -0.002
(22.33) (9.275) (-0.132) (-0.098)

MIB 2.858 0.226 -0.107 -0.053
(20.33) (12.16) (-2.738) (-1.338)

Notes: The estimated regression is log Q̂(H) = β0 +
β1SRIQ̂(H)>χ2

95%
(H)

+β2SR+δ1TEDS+ε, with SR repre-

senting the range of the US shadow rate and TEDS
a control variable. The test statistic Q̂(H)t is ob-
tained by setting α to 95% and H = 10 lags in a
rolling windows setup with T = 500 on 5-minutes bi-
power variation. HAC t-statistics are computed by
following Sun (2004) with a bandwidth of 0.1 and
displayed between parentheses.
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