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Abstract

This paper exploits the idea of pretesting to choose between competing portfolio strategies.

We propose a strategy that optimally trades off between between the risk of going for a false

positive strategy choice versus the risk of making a false negative choice.

Various different data driven approaches are proposed based on an optimal choice of

the pretested certainty equivalent. Our approach belongs to the class of shrinkage portfolio

estimators. However, contrary to previous approaches the shrinkage intensity is continuously

updated to incorporate the most recent information in the rolling window forecasting set-up.

We show that the bagged pretest estimator performs exceptionally well, especially when

combined with adaptive smoothing. The resulting strategy allows for a flexible and smooth

switch between the underlying strategies and is shown to outperform the corresponding

stand-alone strategies.
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‡Department of Economics, Universitätsstraße 1, D-78462 Konstanz, Germany. Phone: +49-7531-88-2660, fax:

-4450, email: Winfried.Pohlmeier@uni-konstanz.de.

mailto:ekaterina.kazak@uni-konstanz.de
mailto:Winfried.Pohlmeier@uni-konstanz.de


1 Introduction

Estimation risk is a well-known issue in empirical portfolio modeling. For a given performance

measure, estimation risk may cause a theoretically superior portfolio strategy to be inferior

compared to simple alternatives when it comes to a comparison of the performance measures

based on their estimated counterparts. The most prominent example is the equally weighted

(1/N) portfolio strategy, for which the null hypothesis of equal out-of-sample performance

compared to a more sophisticated, theory based strategy often cannot be rejected at conventional

significance levels (DeMiguel et al. (2009)).

In the recent literature on portfolio choice a lot of effort has been devoted to stabilizing

the portfolio weight estimates by means of regularization. Among others Jagannathan and Ma

(2003) propose to impose a norm-constraint directly to the portfolio optimization for stabilizing

the weight estimates in small samples; Ledoit and Wolf (2003), Ledoit and Wolf (2004), Ledoit

and Wolf (2014) wrote a series of papers focusing on the improved covariance matrix estimation,

which is a key ingredient in the portfolio optimization; Kourtis et al. (2012) proposed a shrinkage

approach for the inverse of the covariance matrix, which can be directly used in the most of

portfolio weight estimates; DeMiguel et al. (2014) introduced a VAR model to capture the serial

dependence in stock returns resulting in better out-of-sample portfolio performance.

Despite all the effort no general statement can be made whether any of the approaches

can outperform the equally weighted portfolio uniformly over all parameter constellations and

datasets. We address the problem from a different perspective. Instead of working with the

weight estimation directly we develop a flexible algorithm which optimally combines a given

set of weight estimates in a data-driven way with respect to a certain portfolio performance

measure. In particular, we use the pretest estimator as a statistical tool to choose an optimal

strategy with respect to the out-of-sample Certainty Equivalent net of the transaction costs. The

pretest estimator is based on the simple t-test commonly used in the literature (Ledoit and Wolf

(2008), DeMiguel et al. (2009)), where the investor decides on how to invest his wealth for the

next period based on the test outcome. Similar to shrinkage strategies which combine a given

portfolio strategy with the equally weighted portfolio by some optimality criterion (DeMiguel

et al. (2009), Frahm and Memmel (2010)), our pretest estimator uses the information about all

underlying strategies through the outcome of the performance test. However, contrary to the
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shrinkage approaches, our pretest strategy can be continuously updated to incorporate the most

recent information in the rolling window forecasting set-up. In the previous work Kazak and

Pohlmeier (2017) show that the existing portfolio performance tests are correctly sized, but for

realistic scenarios have a very low power. This implies that the pretest estimator cannot be used

directly and needs to be adjusted. Our first contribution is a novel approach of optimizing the

significance level for the pretest estimator.

We propose a fully data-driven and time-adaptive significance level choice, which optimizes a

trade-off between Type I and Type II error with respect to Certainty Equivalent. The second

contribution is introducing machine learning in the pretest estimation. To the best of our

knowledge this paper is the first one combining bagging with pretest estimation in the portfolio

context. We modify the classical pretest estimator replacing the indicator functions with the

bootstrapped probabilities, which helps to stabilize the pretest estimator and reduces portfolio

turnover. In an extensive empirical study we show that our proposed bagged pretest estimator

outperforms the underlying weight estimation strategies and other competitors and is robust to

different parameter constellations.

This paper is organized as follows. In Section 2 we use a simple motivating example which

illustrates the problem of an optimal strategy choice and propose the novel bagged pretest

estimator. Section 3 provides the reader with an empirical illustration of the proposed method.

Section 4 summarizes the main findings and gives an outlook on future research.
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2 Pretest Estimator

Consider a standard portfolio choice set-up with N risky assets. Let rt be an excess return vector

at time t with mean vector E [rt] = µ and variance-covariance matrix V [rt] = Σ. Moreover, let

ω(s) = ω(s)(µ,Σ) be the N × 1 vector of portfolio weights for strategy s, e.g. ω(g) = Σ−1ι
ιΣ−1ι

for

the global minimum variance portfolio (GMVP) minimizing the portfolio variance, ω(e) = 1
N ι

for the equally weighted portfolio and ω(tn) = Σ−1µ
ι′Σ−1µ

for the tangency portfolio, maximizing

the Sharpe Ratio. For strategy s the portfolio return at time t is given by rpt (s) = ω(s)′rt with

mean µp(s) = E [rpt (s)] = ω(s)′µ and variance σ2
p(s) = V [rpt (s)] = ω(s)′Σω(s).

Consider the Certainty Equivalent (CE) as a portfolio performance measure, which is given

by CE(ω(s)) = µp(s)− γ
2σ

2
p(s) with γ being the risk aversion coefficient of the investor. The CE

is the return which makes the investor indifferent between investing into the risky portfolio or

receiving the certainty equivalent return U(CE(ω(s))) = E [U(rp(s))], with U(·) being the utility

function of the investor (Merton and Samuelson, 1992). Our analysis below concentrates on the

CE as performance measure, because of its simple return interpretation. However, our proposed

pretest strategies can be easily generalized for the Sharpe Ratio or any other popular portfolio

evaluation criterion, whenever there exists an appropriate statistical performance test. In the

following strategy s is said to outperform strategy s̃ if the difference in certainty equivalents is

non-negative ∆0(s, s̃) = CE(ω(s))− CE(ω(s̃)) ≥ 0.

Given the population parameters (µ,Σ) the dominant strategy according to a chosen portfolio

evaluation criteria is known. However, in empirical applications the first two moments of the

return process have to be estimated and the estimation risk has to be taken into account.

Furthermore, investment decision is a dynamic process, therefore the financial or forecasting

risk has to be accounted for as well. In empirical work the actual performance of the competing

portfolio allocation strategy is often evaluated based on the out-of-sample Certainty Equivalent,

which takes into account both estimation and forecasting risk (Kazak and Pohlmeier, 2017).

In the following we consider a typical rolling window set-up, where for the period t + 1 the

out-of-sample portfolio return r̂pt+1(s) is based on a one-step forecast of the portfolio weights

ω̂t+1|t(s) with period {t−T, . . . , t} as an estimation window. We adopt the standard assumption

for static models that the last available estimate ω̂t(s) is used to compute the out-of-sample

return for the next period: r̂pt+1(s) = ω̂t+1|t(s)
′rt+1 = ω̂t(s)

′rt+1. The estimation window is
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shifted one period ahead H times resulting in the H × 1 vector of the out-of-sample portfolio

returns r̂p(s). Different portfolio strategies are then evaluated based on the out-of-sample

Certainty Equivalent ĈEop(ω̂(s)) given by:

ĈEop(ω̂(s)) = µ̂op(s)−
γ

2
σ̂2
op(s), (1)

where: µ̂op(s) =
1

H

H∑
h=1

r̂pt+h(s) =
1

H

H∑
h=1

ω̂t+h−1(s)′rt+h,

σ̂2
op(s) =

1

H − 1

H∑
h=1

(
r̂pt+h(s)− µ̂op(s)

)2
.

The driving force of the portfolio performance based on the out-of-sample CE is the estimation

noise, i.e. theoretically superior strategies usually do not perform well in practice as the estimation

error dominates the theoretical gain. Depending on the size of the portfolio N , length of the

estimation window T portfolio performance varies dramatically.

2.1 Motivating Example

As an illustrative example consider an investor who chooses among three different strategies and

wants to rebalance his portfolio monthly. Based on the monthly excess returns of 100 industry

portfolios from K.R.French database1 he estimates the weights of the following strategies:

1. GMVP based on the plug-in covariance matrix estimator

ω̂(g) =
Σ̂−1ι

ιΣ̂−1ι
, (2)

where Σ̂ = 1
T

∑T
t=1(rt − r̄)(rt − r̄)′ and ι is an N × 1 vector of ones.

2. Tangency portfolio with a shrunken covariance matrix

ω̂(tn) =
Σ̂−1(λ)µ̂

ιΣ̂−1(λ)µ̂
, (3)

where µ̂ = 1
T

∑T
t=1 rt and Σ̂(λ) = Σ̂ + λIN with λ = 0.05N and IN - identity matrix of

size N.

1The data is taken from K.R.French website and contains monthly excess returns from 01/1953 till 12/2015.
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3. Equally weighted portfolio

ω̂(e) = ω(e) =
1

N
ι. (4)

For the portfolio evaluation the length of the out-of-sample period is set to H = 500 and the

risk aversion parameter to γ = 1. Transaction costs at period t which an investor has to pay

every month after portfolio rabalancing are computed as follows:

TCt(s) = c ·
N∑
j=1

|ω̂j,t+1(s)− ω̂j,t+(s)|, (5)

where TCt(s) denotes transaction costs at period t, ω̂j,t+ - portfolio weight before rebalancing at

t+ 1 and c - cost per transaction (5 basis points, DeMiguel et al. (2009)). The out-of-sample

CE is then computed based on the net portfolio returns r̂p,nett (s) = r̂pt (s)− TCt(s) in the very

similar way to (1). For a more general comparison for a given pair of (N,T ) we randomly draw

N assets from the available asset space and compute the out-of-sample CE for each of the 500

random draws.

The right panel of Figure 1 depicts the average out-of-sample CE for a grid of portfolio sizes

and the in-sample estimation window length T of 15 years (180 months). The equally weighted

portfolio (in red) does not require weight estimation and is therefore stable across the portfolio

sizes N . The out-of-sample CE of GMVP (black line) is deteriorating with the increase in N

as the the empirical variance-covariance matrix of the returns adds more and more estimation

noise. The tangency portfolio (gray line) with shrunken covariance matrix performs very well

for all N . However, on the left panel with a smaller estimation window length T = 120 the

performance of the tangency portfolio worsens dramatically (note the difference in scaling of

the y-axes). Tangency portfolio is known to produce extremely unstable weight estimates for

the smaller estimation windows, while the performance of the GMVP and the equally weighted

portfolio is cosiderably less sensitive. Moreover, in some circumstances it is better to keep the

estimation window length smaller, e.g. due to structural breaks in the financial markets only

the recent information should be included in the weight estimation.

Summing up: No general statement can be done with respect to the optimal strategy for a

given portfolio space and the estimation window length. In this paper we develop a data driven

procedure for an optimal strategy choice, which outperforms the underlying weight estimation
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Figure 1: Out-of-sample CE for underlying strategies
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Lines on the plots represent the average out-of-sample CE computed on net portfolio returns over a 500 randomly
drawn portfolios of size N (x-axis). For each randomly drawn portfolio the out-of-sample CE is computed over an
out-of-sample evaluation horizon of H = 500 observations, risk aversion parameter γ = 1. The left panel depicts
the average out-of-sample CE with the weights of GMVP (in black) from (2), tangency portfolio (in gray) from
(3), and equally weighted portfolio (in red) from (4) computed over an estimation window length of T = 120
observations. The right panel plots the average out-of-sample CE for T = 180.

strategy regardless of the parameter constellations.

2.2 Machine Learning and Pretest

We use the pretesting as a statistical tool helping the investor to decide between different

strategies in a data-driven way. Assume for the sake of simplicity that the investor has to decide

between two alternative strategies s and s̃. The difference in the out-of-sample CE’s between

the two strategies is defined as

∆op(s, s̃) =CEop(ω̂t(s))− CEop(ω̂t(s̃)),

CEop(ω̂t(s)) =µop(s)−
γ

2
σ2
op(s), with

µop(s) = E
[
r̂pt+1(s)

]
= E [ω̂t(s)]

′ µ,

σ2
op(s) = V

[
r̂pt+1(s)

]
= E

[
ω̂t(s)

′Σ ω̂t(s)
]

+ µ′V [ω̂t(s)]µ.
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The goal is to chose either strategy s or strategy s̃ depending on the test outcome. Null and

alternative hypotheses take the usual one-sided form:

H0 : ∆op(s, s̃) ≤ 0 and H1 : ∆op(s, s̃) > 0. (6)

Let the pretest estimator of the portfolio weights forecasts for t + 1 be such that it depends

either on strategy s in case the null is rejected or on s̃ otherwise:

ωt(s, s̃, α) = 1l
(
∆̂op(s, s̃) > ∆∗(α)

) (
ωt(s)− ωt(s̃)

)
+ ωt(s̃), (7)

with the estimated CE difference ∆̂op(s, s̃) = ĈEop(s)− ĈEop(s̃) and the critical value ∆∗(α)

for significance level α. In other words the pretest estimator chooses the strategy s if it is

significantly better than the alternative and the sensitivity of the pretest estimator depends on

α: the lower is the chosen nominal level, the stricter is the pretest rule and the greater should

be the difference ∆̂op(s, s̃) for choosing the strategy s over s̃.

There are two main difficulties arising from applying the pretest estimator defined in (7) in

practice. First of all, at time period t the investor does not know the out-of-sample CE difference

∆̂op(s, s̃) and therefore the test decision from (6) is unknown. Secondly, in empirical applications

an investor has to decide on α, which influences the performance of the pretest estimator, e.g.

for α = 50% the CE of strategy s has to be just slightly larger than the CE of s̃ in order to

be chosen, whereas for the commonly used levels of significance of 1% and 5% the difference

∆̂op(s, s̃) has to be fairly large for the null rejection. Kazak and Pohlmeier (2017) show that

in realistic scenarios the empirical power of the portfolio performance tests is very low, which

implies that even if the strategy s is truly superior, the pretest estimator is not able to choose

the dominating strategy. Therefore going for the conservative α-level is not a reasonable choice,

as in the presence of low power it will force the pretest estimator to choose s̃ even in cases

when s is dominating. In particular, the problem of the low power calls for an optimal trade-off

between Type I and Type II error. In this paper we propose a feasible pretest estimator with a

data-driven and time adaptive significance level choice.
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(i) Within-Sample Pretest Strategy

We solve the first issue of unfeasible testing by constructing the pretest weight estimator based

on the in-sample CE difference which is available at time t. First, at time t the weights ω̂t(s) are

estimated based on the sample {t− T, . . . , t}. The estimated within sample CE for the strategy

s is computed as

ĈEin,t(s) = ĈEin(s|t− T, ..., t) = ω̂t(s)
′r̄t −

γ

2
ω̂t(s)

′Σ̂tω̂t(s), (8)

where r̄t denotes the sample mean and Σ̂t the sample covariance matrix of the returns based on

the estimation window {t− T, . . . , t}. The in-sample test statistic deciding between s and the

benchmark s̃ is defined as

tin,t(s, s̃) =
ĈEin,t(s)− ĈEin,t(s̃)

S.E.
[
ĈEin,t(s)− ĈEin,t(s̃)

] ,
where the standard error for the CE difference is computed via Delta method (DeMiguel et al.,

2009). For the multivariate comparison where the investor chooses between M alternatives

s1, ..., sM and a benchmark strategy s̃ and for a given significance level α the pretest estimator

based on the in-sample CE is defined as

1l (si, α) = 1l [max [tin,t(s1, s̃), ..., tin,t(sM , s̃), t
∗(α)] = tin,t(si, s̃)] , i = 1, ...,M,

ω̂in,t(S, α) = ω̂in,t(s1, .., sM , s̃, α) =
M∑
i=1

1l (si, α)ω̂t(si) +

(
1−

M∑
i=1

1l (si, α)

)
ω̂t(s̃), (9)

where S = {s1, .., sM , s̃}, t∗(α) is the corresponding critical value for the nominal level α: the

(1 − α) quantile of the standard normal distribution. In other words, the pretest estimator

chooses the strategy with the largest standardized difference from the benchmark s̃ and which

at the same time crosses the threshold t∗(α).

We now address the problem of the significance level choice. From the purely statistical

perspective, increasing the nominal level in order to improve on the power of the test is not

meaningful. From the investors perspective, however, there is a well-defined portfolio performance

measure, such that the trade-off between the Type I and Type II error of the pretest estimator can

be optimized with respect to it. We propose to choose a significance level α, which maximizes the
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in-sample CE difference. In particular, at each period t the pretest weight estimates are computed

according to (9) on the grid of (0,1) α-values of length J . For every ω̂in,t(S, αj), j = 1, .., J

the in-sample CE of the pretest estimator is computed similarly to (8):

ĈEin,t(S, αj) = ω̂in,t(S, αj)′r̄t −
γ

2
ω̂in,t(S, αj)′Σ̂tω̂in,t(S, αj). (10)

Finally, the in-sample CE optimizing significance level α∗t+1 is chosen for the test, determining

the strategy for the next period t+ 1:

α∗in,t+1 = arg max
α

ĈEin,t(S, αj). (11)

The above procedure is repeated with every shift of the estimation window. In practice this

results in a very unstable series of significance level choices {α∗in,t+1, ...α
∗
in,t+H}, as the choice of

α∗in,t+1 is data driven and also depends on the instable estimates of the portfolio weights. On the

other hand, the sequence of α∗in’s along the rolling estimation window takes into account changes

of the return process across time, e.g. volatility regimes. In order to mitigate the instability

problem we suggest to adaptively smooth the α∗in-series according to

αst+1 = (1− λ)α∗in,t+1 + λαst , (12)

where the tuning parameter λ is chosen to control the degree of smoothness. The adaptive

smoothing takes into account not only the latest optimal choice α∗in,t+1 but also the previous

estimates with geometrically decaying weights. The smoothing parameter λ is chosen via a grid

search in the similar fashion as the α∗in,t+1: for a given couple (α∗in,t+1, α
s
t ) the in-sample CE is

computed on the grid of λ’s and the optimal λ is the one maximizing the in-sample CE of the

pretest estimator ĈEin,t(S, αst+1).

(ii) Out-of-Sample Pretest Strategy

Another feasible pretest estimator may be obtained by performing a pseudo-out-of-sample

exercise which is commonly used for parameter training in machine learning. The goal of the

pretest estimator is to choose an optimal strategy in a data-driven way which results in the

highest out-of-sample CE. Choosing the strategy based on the in-sample comparison does not
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necessarily provide a good out-of-sample choice: the pretest estimator as defined in (9) does not

take into account transaction costs and the forecasting risk. A feasible out-of-sample pretest

estimator might be obtained by dividing the within-sample period into two parts, where the

first part is used for the weight estimation and the second part is used for the pseudo-out-of-

sample return computation. The optimal strategy is then defined as the one having the largest

pseudo-out-of-sample CE net of the transaction costs. In particular, the weights for the strategy

s are computed based on the sample of length T/2: {t − T, .., t − T/2}. The out-of-sample

portfolio returns are computed in the rolling window of length T/2 and the transaction costs

are subtracted from the out-of-sample returns at each time point t as in (5). The resulting

pseudo-out-of-sample CE is similar to (1):

ĈE
∗
op,t(ω̂(s)) = µ̂∗op,t(s)−

γ

2
σ̂∗2op,t(s), (13)

where: µ̂∗op,t(s) =
1

T/2

−T∑
h=−T/2+1

r̂pt+h(s) =
1

T/2

−T∑
h=−T/2+1

ω̂t+h−1(s)′rt+h,

σ̂∗2op,t(s) =
1

T/2− 1

−T∑
h=−T/2+1

(
r̂pt+h(s)− µ̂op,t(s)

)2
.

The out-of-sample pretest estimates of portfolio weights are computed based on the difference in

the pseudo-out-of-sample CE:

top,t(si, s̃) =
ĈE

∗
op,t(s)− ĈE

∗
op,t(s̃)

S.E.
[
ĈE

∗
op,t(s)− ĈE

∗
op,t(s̃)

] , (14)

1l op(si, α) = 1l [max [top,t(s1, s̃), ..., top,t(sM , s̃), t
∗(α)] = top,t(si, s̃)] , i = 1, ...,M, (15)

ω̂op,t(S, α) = ω̂op,t(s1, .., sM , s̃, α) =
M∑
i=1

1l op(si, α)ω̂t(si) +

(
1−

M∑
i=1

1l op(si, α)

)
ω̂t(s̃). (16)

The pseudo-out-of-sample CE from (13) is used only for the computations of the indicator

functions, and the out-of-sample pretest estimator chooses the weight estimates computed on the

whole in-sample estimation window. The optimal significance level choice for the out-of-sample

pretest estimator can be done in the very same way as in (12) using a grid search. Note that the

out-of-sample portfolio returns used in the pseudo-out-of-sample CE are net of the transaction

costs and therefore the pretest estimator takes into account the amount of rebalancing or turnover.

Also note, that the estimation window used in (13) is reduced to half the size of the initial
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estimation window, which results in adding more estimation noise to the problem and making

the weight estimates very unstable. Moreover, this pretest estimator is a sharp thresholding

strategy choosing only one strategy for investing in the next period. In the rolling window

scenario this may lead to large turnover costs, if the pretest estimator switches between different

strategies frequently with the rolling estimation window.

(iii) Bagged Pretest Strategy

As a solution we propose to stabilize the pretest estimator using bagging. In order to do so,

the in-sample estimation window is bootstrapped B times smoothing the indicator functions

of the pretest estimator by the bootstrapped probabilities. The computation of the bagged

out-of-sample pretest estimator can be summarized in a following algorithm2:

Bagging the pretest estimator

1. At the period t define the estimation window of length T : {rt−T , ..., rt}.

2. Divide the sample into two parts and compute the pseudo-out-of-sample CE net of the
transaction costs according to (13) and the out-of-sample test statistic according to
(14) for each pair of strategies (si, s̃), i = 1, ...,M .

3. For a grid of J α values compute the out-of-sample pretest weight estimates according
to (16) and choose α∗op,t+1 which results in the largest out-of-sample CE on the grid.

4. For a grid of λ values compute the smoothed αsop,t+1 using the previous optimal
significance level and choose the one maximizing the out-of-sample CE of the pretest
estimator.

For every bootstrap iteration b = 1, ..., B compute (5) and (6):

5. Randomly sample the rows of the in-sample T ×N data with replacement and repeat
step (2) for the out-of-sample test statistic computation.

6. For a significance level chosen in (4) compute the indicator functions 1l bop(si, α
s
op,t+1)

for every strategy i and bootstrap iteration b.

7. The bagged probability of the strategy si is then defined as p̂(si, α
s
op,t+1) =

1
B

∑B
b=1 1l bop(si, α

s
op,t+1) using (15).

8. Finally the bagged out-of-sample pretest weight estimator for the period t+1 is defined
as an average of the weights estimated on the whole sample weighted by the bootstrap

2Note, that monthly returns do not posses any significant SACF or SPACF patterns, therefore the i.i.d.
bootstrap of Efron (1992) is appropriate to use. For the returns of higher frequencies one should use the moving
block bootstrap by Politis and Romano (1992).
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probabilities:

ω̂Bop,t(S, αsop,t+1) =
M+1∑
i=1

p̂(si, α
s
op,t+1)ω̂t(si). (17)

The proposed out-of-sample bagged pretest estimator is novel by providing the investor with

a fully data driven way of an optimal portfolio allocation strategy choice according to a specific

performance measure. For instance, if the investor is looking for a strategy with the highest

out-of-sample Sharpe Ratio, the proposed bagging algorithm can be easily adapted. Moreover,

the algorithm takes into account the amount of transaction costs and is time adaptive through

the significance level choice.

Bagging is a powerful way of variance reduction for the unstable estimators, e.g. it is widely

used for stabilizing classification and regression trees which are based on sharp thresholding.

Bühlmann et al. (2002) show that bagging reduces the variance of the plug-in pretest estimator

and the same intuition holds in the portfolio context. For a fixed strategy si let Fsi(·) denote

the cumulative distribution function of the out-of-sample test statistic from (14). The mean and

the variance of the pretest indicator function is:

E [1l (top(si, s̃) > t∗(α))] = 1− E [(top(si, s̃) ≤ t∗(α))] = 1− Fsi(t∗(α)),

V [1l (top(si, s̃) > t∗(α))] = (1− Fsi(t∗(α)))Fsi(t
∗(α)),

where t∗(α) denotes the threshold corresponding to the significance level α, i.e. for a fixed

significance level α = 50% the threshold is exactly zero and the variance of the pretest indicator

is 1/4 for a symmetric Fsi . Note that the pretest estimator is unstable in the sence that it

assumes values 0 or 1 with positive probability. Following Corollary 2.1 of Bühlmann et al.

(2002) the variance of the pretest bagged pretest indicator for α = 50% is

V

[
1

B

B∑
b=1

1l bop(si, 50%)

]
= V [Fsi(top(si, s̃))]→ V [U ] ,

where U denotes a [0, 1]-uniformly distributed random variable and its variance equals 1/12,

which is three times smaller than the variance of the pretest indicator function. The variance

of the indicators in the portfolio context translates into the amount of portfolio rebalancing
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imposed by pretesting: smaller variance of the indicator functions implies less turnover. In

other words using bagging helps to stabilize the problem and reduce transaction costs, as the

bootstrapped probabilities smooth the transition between the strategies along the rolling window.

(iv) Sequential Performance Weighting Strategy

As a competitor for the bagged pretest estimator we consider a sequential relative performance

weighting inspired by the approach of Shan and Yang (2009) used in the forecast combinations.

The idea behind this approach is very similar to boosting. First, at each period t the relative

performance of different strategies is measured by the exponential function of the in-sample CE.

Then the time-adaptive weight dt,i for the strategy i is computed according to (18), where the

initial values for the weights are fixed to d0,i = 1
M+1 . The resulting weight estimator is denoted

as ω̂SPt (S):

dt,i =
dt−1,i exp(ĈEin,t(si))∑M+1

j=1 dt−1,j exp(ĈEin,t(sj))
, (18)

ω̂SPt (S) =
M+1∑
j=1

dt,iω̂t(si), i = 1, ...,M + 1 (19)

where S = {s1, .., sM , s̃} is a space of the underlying strategies and dt,i are the time-adaptive

coefficients used to weight the relative performance of the underlying strategies. This approach

is computationally very easy and is adapting the weights with the every shift of the estimation

window. It is also a smooth combination of the underlying strategies, potentially requiring less

rebalancing and reducing transaction costs.
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3 Empirical Evidence

In this section we provide empirical evidence on the performance of our pretested portfolio

strategies introduced in the previous section. We continue with the example from Section 2.1 and

consider the GMVP, tangency and the equally weighted portfolios as the underlying competing

strategies. We use data on monthly excess returns from K.R.French database3 of a 100 industry

portfolio. In the analysis below for a given portfolio size N we randomly draw N out of 100

unique assets and report the average portfolio performance over 500 random draws. For bagging

the number of bootstrap iterations is set to B = 200, the out-of-sample evaluation window is

fixed to H = 500 observations and the risk aversion parameter is set to γ = 1.

Table 1: Out-of-sample CE for T = 120.

N = 10 N = 20 N = 30 N = 40 N = 50 N = 60 N = 70 N = 80 N = 90

GMVP 0.0069 0.0070 0.0070 0.0072 0.0069 0.0064 0.0055 0.0045 0.0023
Tangency -0.0545 -0.8500 -0.6386 -0.1405 -1.0088 -1.2433 -0.1927 -43.9858 -0.2068
1/N 0.0068 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069

α = 5% 0.0073 0.0073 0.0041 0.0071 0.0071 0.0067 -0.0085 -0.0130 0.0008
αs
in 0.0070 0.0070 -0.0087 0.0044 -0.4950 -0.2427 -0.0104 -0.3138 0.0000
αs
in B 0.0072 0.0073 0.0073 0.0061 0.0072 0.0072 0.0071 0.0069 -0.0017
αs
op 0.0041 -0.1294 -0.0190 -0.0002 -0.0483 -0.1552 -0.0124 -0.4365 -0.0121
αs
op B 0.0073 0.0074 0.0074 0.0075 0.0074 0.0075 0.0074 0.0074 0.0074

Seq. Perf. 0.0073 0.0074 0.0074 0.0067 0.0076 0.0075 0.0073 0.0072 0.0066

Figures in the table correspond to the average out-of-sample CE computed on net portfolio returns over a 500
randomly drawn portfolios of size N . For each randomly drawn portfolio the out-of-sample CE is computed over
an evaluation horizon of H = 500 observations, risk aversion parameter γ = 1, in-sample estimation window
length T = 120. α = 5% denotes the pretest estimator based on the in-sample test statistic as in (9) with a
fixed significance level of 5%, αs

in allows for a flexible significance level choice according to (12) and αs
in B is the

bagged version of αs
in. αs

op and αs
op B denote the out-of-sample significance level choice and the one combined

with bagging as in (17). Seq. Perf. corresponds to (19). Numbers in bold correspond to the largest CE for a
given portfolio size N .

Table 1 reports the average out-of-sample Certainty Equivalent net of transaction costs for the

underlying strategies (first block), pretest estimators (second block) and sequential performance

weighting (last row) for the in-sample estimation window length of 10 years (120 monthly

observations) with different portfolio sizes N in the corresponding columns. As before, with

the increase in N the out-of-sample CE of the GMVP decreases, CE of the tangency portfolio

is negative resulting from the extreme weight estimates and the CE of the equally weighted

portfolio is stable across N . The forth row corresponds to the CE of the pretest estimator based

3The data is taken from K.R.French website and contains monthly excess returns from 01/1953 till 12/2015.

14



on the in-sample test statistic as in (9) with a fixed significance level of 5%. Here the pretest

estimator chooses the strategy which standardized in-sample CE difference from the 1/N is

greater than the 95% quantile of the standard normal distribution. This pretest estimator is

working quite well for smaller asset spaces, however for N ≥ 30 its performance deteriorates and

the CE of the pretest estimator is no longer greater than the values of the underlying strategies,

potentially suffering from the low power property of the underlying portfolio performance tests.

Allowing for a flexible significance level choice according to (12) based on the in-sample CE

is quite unstable across N and is not performing very well. However, combining this pretest

estimator with bagging (αsinB) outperforms the underlying strategies up to N = 80 having a

greater out-of-sample CE than the best of the stand-alone strategies. The next row (αsop) reports

the average out-of-sample CE for the pretest estimator with adaptively smoothed out-of-sample

significance level choice, which takes into account transaction costs, but suffers from the short

evaluation period of T/2. Out-of-sample pretest estimator is very unstable across N and is not

outperforming the underlying strategies, however it always outperforms the worst underlying

strategy. Notably, the bagged out-of-sample pretest estimator (αsopB) performs extremely well,

producing the largest out-of-sample CE for all portfolio sizes N always greater than the best

underlying strategy. The sequential performance weighting results in the average out-of-sample

CE which is as good as the bagged out-of-sample pretest estimator, except for N = 90, where it

is not able to beat the equally weighted portfolio benchmark.

Note, that our portfolios of different size are designed such that the asset spaces for the

smaller portfolios are true subsets of the larger ones. This guarantees that the theoretical CE

of a larger portfolio always has to dominate the CE of a smaller portfolio. For the empirical

portfolios this dominance frequently does not hold even for regularized portfolio estimates, as

the increase in estimation noise due to the increase in portfolio dimension dominates the increase

in the theoretical gains. A typical example is the sequence of CEs for the GMVP (first row of

Table 1). For our bagged pretest estimator, however, we do not find any decrease in performance

with increasing portfolio dimension and estimation noise.

The proposed bagged out-of-sample pretest estimator is performing very well even in the

presence of the estimation noise and is preferred to the sequential relative performance weighting.

Figure 2 depicts the boxplots of the out-of-sample CE’s of the considered strategies across the 500
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Figure 2: Boxplots of the out-of-sample CE for T = 120.
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Each boxplot corresponds to the distribution of the out-of-sample CE computed on net portfolio returns over a
500 randomly drawn portfolios of size N . For each randomly drawn portfolio the out-of-sample CE is computed
over an evaluation horizon of H = 500 observations, risk aversion parameter γ = 1, in-sample estimation window
length T = 120. X-axes denote different ways of computing portfolio weights: G from (2), TN from (3), 1/N from
(4), 5% denotes the pretest estimator based on the in-sample test statistic as in (9) with a fixed significance level
of 5%, in allows for a flexible significance level choice according to (12), inB is the bagged version of in. op and
opB denote the out-of-sample significance level choice and the same pretest estimator combined with bagging as
in (17). SP corresponds to (19).

random draws of portfolios of a given size N . The boxplot of the bagged out-of-sample pretest

estimator denoted by opB shows how stable is this strategy and how few negative outliers does it

have in comparison to other ones. For instance, for N ≥ 40 the out-of-sample CE’s of the pretest

estimators despite of having very similar medians are very different from each other in terms of

the number of negative outliers. Comparing boxplots in with inB and op with opB shows that

bagging always helps to stabilize the out-of-sample performance of the pretest estimators and

works exceptionally well in the combination with the time-adaptive out-of-sample significance

level choice. In particular, the out-of-sample CE of the proposed estimator is almost as stable as

the equally weighted portfolio and at the same time it outperforms the 1/N benchmark in mean

and has a very few outliers in comparison with the sequential performance weighting from (19).

The source of the superior performance of the bagged pretest estimator is the reduction
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Table 2: Turnover for T = 120.

N = 10 N = 20 N = 30 N = 40 N = 50 N = 60 N = 70 N = 80 N = 90

GMVP 0.0749 0.1413 0.2036 0.2680 0.3365 0.4160 0.5127 0.6415 0.8293
Tangency 0.9084 1.4565 1.1571 0.7946 1.7806 1.5813 1.1478 6.4067 1.0036
1/N 0.0217 0.0222 0.0225 0.0225 0.0226 0.0226 0.0227 0.0227 0.0227

α = 5% 0.0367 0.0437 0.0789 0.0641 0.0609 0.0848 0.1673 0.2719 0.1914
αs
in 0.0485 0.0559 0.1685 0.1184 0.4787 0.5698 0.2326 0.6230 0.2454
αs
in B 0.0301 0.0362 0.0401 0.0689 0.0499 0.0546 0.0642 0.0712 0.1585
αs
op 0.1241 0.3858 0.2446 0.2049 0.2674 0.5261 0.2833 0.6939 0.2216
αs
op B 0.0264 0.0305 0.0319 0.0331 0.0336 0.0332 0.0341 0.0353 0.0382

Seq. Perf. 0.0364 0.0502 0.0669 0.1007 0.0982 0.1157 0.1352 0.1575 0.1872

Figures in the table correspond to the average turnover over a 500 randomly drawn portfolios of size N . For each
randomly drawn portfolio the out-of-sample CE is computed over an evaluation horizon of H = 500 observations,
in-sample estimation window length T = 120. α = 5% denotes the pretest estimator based on the in-sample test
statistic as in (9) with a fixed significance level of 5%, αs

in allows for a flexible significance level choice according
to (12) and αs

in B is the bagged version of αs
in. αs

op and αs
op B denote the out-of-sample significance level choice

and the one combined with bagging as in (17). Seq. Perf. corresponds to (19).

in transaction cost. Table 2 reports the average turnover4 of the considered strategies. As

expected, the equally weighted portfolio produces the smallest turnover among the considered

strategies, the turnover of the GMVP and the tangency portfolio increases with the increase in

N . Bagging the pretest estimators reduces turnover and the average turnover of the proposed

bagged out-of-sample pretest estimator (αsop B) is as small as the one of the equally weighted

portfolio. The average turnover of sequential performance weighting turns out to be considerably

larger and steeply increases with the portfolio size N . Moreover, our novel approach outperforms

the sequential relative performance weighting also in terms of the out-of-sample Sharpe Ratio

(SR) based on the net returns. Figure 3 in Appendix depicts the boxplots of the Sharpe Ratios

across the 500 random portfolios of size N . Similarly to the out-of-sample CE, bagging stabilizes

the SR and reduces the number of outliers. Furthermore, the results are robust to the in-sample

estimation window length. Tables 3 and 4 report the average out-of-sample CE and turnover

of the considered strategies for T = 180. In this case, the tangency portfolio and the GMVP

perform well and the proposed bagged pretest estimator is performing as good as the best

underlying strategy. Figures 5 and 4 report the boxplots of the out-of-sample CE and SR for

different portfolio sizes N and T = 180, where again, the most stable strategy with less outliers

is the bagged out-of-sample pretest estimator, performing very well for all randomly drawn

4Turnover of a strategy s is computed as TO(s) = 1
H

∑H
t=1

(∑N
j=1 |ω̂j,t+1(s)− ω̂j,t+(s)|

)
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portfolios.

4 Conclusions

This paper introduces a novel pretest estimator with a data-driven and time adaptive significance

level choice. Our pretest estimator is designed to choose an optimal portfolio allocation strategy

among M alternatives and the equally weighted portfolio as a benchmark strategy. Equally

weighted portfolio is known as one of the toughest benchmarks in the empirical finance, i.e. it is

very difficult for a more sophisticated theory based strategy to outperform the naive 1/N in

both in-sample and out-of-sample comparisons. However, for certain datasets and parameter

constellations it is possible for other strategies to be better than the equally weighted portfolio

according to a certain portfolio evaluation criteria. Our proposed pretest estimator uses the

weight estimates of the competing strategies and chooses the one, maximizing the predetermined

criterion. We have constructed an estimator which results in the highest out-of-sample CE based

on the net portfolio returns, the algorithm however can be easily adjusted to other performance

measures.

Our estimator takes into account transaction costs and with the help of machine learning

techniques computes the optimal portfolio weights. It first evaluates the pseudo-out-of-sample

CE and chooses an optimal significance level in a time adaptive way. With bagging it smooths

the indicator functions of the pretest estimator, which stabilizes the performance and reduces the

turnover costs. We show that our estimator is robust to different portfolio sizes and in-sample

estimation window lengths. We also provide evidence that the proposed estimator outperforms

the underlying strategies with respect to the out-of-sample Certainty Equivalent and Sharpe

Ratio.

Despite its very promising performance of the pretest bagging strategy we see still potential

to further improve this approach. For example, one path of further improvement can be the of

more powerful performance tests in the pretest stage. Moreover, the analysis in this paper is

based on the monthly return data. In future work it needs to be shown whether our findings

can be generalized to portfolio strategies estimated at higher frequencies where autocorrelation

plays a major role and transaction costs play an even larger role.
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A Appendix

Figure 3: Boxplots of the out-of-sample SR for T = 120.
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Each boxplot corresponds to the distribution of the out-of-sample SR computed on net portfolio returns over a
500 randomly drawn portfolios of size N . For each randomly drawn portfolio the out-of-sample CE is computed
over an out-of-sample evaluation horizon of H = 500 observations, risk aversion parameter is γ = 1, in-sample
estimation window length T = 120. X-axes denote different ways of computing portfolio weights: G from (2),
TN from (3), 1/N from (4), 5% denotes the pretest estimator based on the in-sample test statistic as in (9) with
a fixed significance level of 5%, in allows for a flexible significance level choice according to (12), inB is the
bagged version of in. op and opB denote the out-of-sample significance level choice and the same pretest estimator
combined with bagging as in (17). SP corresponds to (19).
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Figure 4: Boxplots of the out-of-sample SR for T = 180.
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Each boxplot corresponds to the distribution of the out-of-sample SR computed on net portfolio returns over a
500 randomly drawn portfolios of size N . For each randomly drawn portfolio the out-of-sample CE is computed
over an out-of-sample evaluation horizon of H = 500 observations, risk aversion parameter is γ = 1, in-sample
estimation window length T = 180. X-axes denote different ways of computing portfolio weights: G from (2),
TN from (3), 1/N from (4), 5% denotes the pretest estimator based on the in-sample test statistic as in (9) with
a fixed significance level of 5%, in allows for a flexible significance level choice according to (12), inB is the
bagged version of in. op and opB denote the out-of-sample significance level choice and the same pretest estimator
combined with bagging as in (17). SP corresponds to (19).

Table 3: Out-of-sample CE for T = 180.

N = 10 N = 20 N = 30 N = 40 N = 50 N = 60 N = 70 N = 80 N = 90

GMVP 0.0069 0.0069 0.0068 0.0067 0.0066 0.0064 0.0060 0.0056 0.0052
Tangency 0.0060 0.0075 0.0075 0.0076 0.0076 0.0076 0.0076 0.0075 0.0076
1/N 0.0068 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069

α = 5% 0.0074 0.0075 0.0075 0.0076 0.0076 0.0076 0.0076 0.0075 0.0076
αs
in 0.0074 0.0075 0.0075 0.0076 0.0076 0.0076 0.0076 0.0075 0.0076
αs
in B 0.0074 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075
αs
op 0.0067 0.0072 0.0073 0.0075 0.0077 0.0078 0.0078 0.0077 0.0072
αs
op 0.0073 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075

Seq. Perf. 0.0073 0.0074 0.0074 0.0075 0.0075 0.0075 0.0074 0.0073 0.0073

Figures in the table correspond to the average out-of-sample CE computed on net portfolio returns over a 500
randomly drawn portfolios of size N . For each randomly drawn portfolio the out-of-sample CE is computed
over an out-of-sample evaluation horizon of H = 500 observations, risk aversion parameter is γ = 1, in-sample
estimation window length T = 180. α = 5% denotes the pretest estimator based on the in-sample test statistic as
in (9) with a fixed significance level of 5%, αs

in allows for a flexible significance level choice according to (12) and
αs
in B is the bagged version of αs

in. αs
op and αs

op B denote the out-of-sample significance level choice and the same
pretest estimator combined with bagging as in (17). Seq. Perf. corresponds to (19).
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Figure 5: Boxplots of the out-of-sample CE for T = 180.
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Each boxplot corresponds to the distribution of the out-of-sample CE computed on net portfolio returns over a
500 randomly drawn portfolios of size N . For each randomly drawn portfolio the out-of-sample CE is computed
over an out-of-sample evaluation horizon of H = 500 observations, risk aversion parameter is γ = 1, in-sample
estimation window length T = 180. X-axes denote different ways of computing portfolio weights: G from (2),
TN from (3), 1/N from (4), 5% denotes the pretest estimator based on the in-sample test statistic as in (9) with
a fixed significance level of 5%, in allows for a flexible significance level choice according to (12), inB is the
bagged version of in. op and opB denote the out-of-sample significance level choice and the same pretest estimator
combined with bagging as in (17). SP corresponds to (19).

Table 4: Turnover for T = 180.

N = 10 N = 20 N = 30 N = 40 N = 50 N = 60 N = 70 N = 80 N = 90

GMVP 0.0673 0.1238 0.1733 0.2227 0.2718 0.3213 0.3757 0.4334 0.4995
Tangency 0.0529 0.0232 0.0225 0.0224 0.0225 0.0226 0.0226 0.0226 0.0226
1/N 0.0218 0.0223 0.0225 0.0225 0.0226 0.0226 0.0226 0.0227 0.0227

α = 5% 0.0226 0.0226 0.0227 0.0226 0.0226 0.0227 0.0226 0.0227 0.0227
αs
in 0.0235 0.0226 0.0227 0.0226 0.0226 0.0227 0.0226 0.0227 0.0227
αs
in B 0.0220 0.0225 0.0228 0.0228 0.0230 0.0231 0.0231 0.0232 0.0235
αs
op 0.0524 0.0626 0.0750 0.0847 0.0877 0.0869 0.0786 0.0574 0.0227
αs
op 0.0220 0.0226 0.0228 0.0228 0.0229 0.0230 0.0230 0.0230 0.0231

Seq. Perf. 0.0244 0.0316 0.0396 0.0476 0.0557 0.0627 0.0675 0.0733 0.0758

Figures in the table correspond to the average turnover over a 500 randomly drawn portfolios of size N . For
each randomly drawn portfolio the average turnover is computed over an out-of-sample evaluation horizon of
H = 500 observations, in-sample estimation window length T = 180. α = 5% denotes the pretest estimator based
on the in-sample test statistic as in (9) with a fixed significance level of 5%, αs

in allows for a flexible significance
level choice according to (12) and αs

in B is the bagged version of αs
in. αs

op and αs
op B denote the out-of-sample

significance level choice and the same pretest estimator combined with bagging as in (17). Seq. Perf. corresponds
to (19).
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