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Abstract

Estimates of high dimensional covariance matrices suffer from great instability. In this paper a

novel approach of robust covariance matrix estimation based on sparse factor modeling is presented.

Sparsity is obtained by both factor modeling and l1-regularization of the factor loadings matrix

that shrinks single factor loadings to zero. The positive aspect of this framework is the ability to

consider also weak factors that affect only a subset of the available time series. Hence, our sparse

factor model enhances the modeling flexibility in contrast to the standard approximate factor model

that allows only for strong factors, affecting the entire set of time series. In the theoretical part

of the paper, we derive the consistency of the factors and factor loadings estimators and establish

various risk bounds for the covariance matrix estimator based on our sparse factor model.

The new approach applied to portfolio modeling shows superior properties compared to alter-

native shrinkage strategies that are commonly used in the literature. More specifically, our sparse

factor model provides the lowest out-of-sample portfolio standard deviation across all considered

portfolio sizes. Additionally, it offers the highest out-of-sample portfolio returns and hence is also

superior in terms of certainty equivalent and sharpe ratio.
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bDepartment of Economics, Universitätsstraße 1, D-78462 Konstanz, Germany. Phone: +49-7531-88-2657,
fax: -4450, email: Maurizio.Daniele@uni-konstanz.de.
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1 Introduction

In the recent years, the importance of factor models as a dimension reduction technique has

considerably increased in the macroeconomic and finance literature. This is mainly driven by

the raising amount of available large datasets. The interesting aspect of factor models is their

ability to concentrate the information contained in a large number of economic variables in a

much smaller amount of latent factors. This dimension reduction has the great advantage that

the number of parameters to estimate and therefore the estimation noise is highly reduced.

In the present paper, we propose a robust covariance matrix estimator based on a sparse factor

model that allows for sparsity in the factor loadings matrix by shrinking single elements of the

factor loadings matrix to zero. Essentially, the amount of parameters that have to be estimated

in this setting decreases and the estimation noise is possibly reduced. On the other hand,

this framework allows for weak factors that affect only a subset of the available time series.

Hence, our sparse factor model enhances the modelling flexibility compared to the standard

approximate factor model those assumptions generally only allow for strong or pervasive factors

that affect the entire set of variables (see e.g. Bai and Ng (2002)). Furthermore, the strong

factor assumption is unrealistic if we consider the characteristics of real datasets. In fact, strong

factors imply a clear distinction of the eigenvalues of the common and idiosyncratic component,

where the former diverge with a fast rate of N . However, the eigenvalues of the covariance

matrix of real datasets do not show a clear separation, but decay in a smooth fashion. This

properties can be better modelled by a weak factor framework and hence our sparse factor

model allows for this flexibility.

In order to implement our sparse factor model, we refer to a penalized maximum likelihood

estimation approach, where we incorporate a l1 type of penalization on the factor loadings matrix

to introduce sparsity in the loadings. The maximum likelihood approach has the advantage of

estimating all parameters including the covariance matrix of the idiosyncratic error term Σu

simultaneously, compared to a PCA-based method. In fact, the PCA setting needs a separate

estimation of Σu, which on the other hand requires a consistent estimation of the factor loadings

and factors. However, this is potentially not possible, if the cross-sectional dimension N is

relatively small, as in this case a consistent estimation of the factors is no longer possible (see

e.g. Bai and Liao (2016)).
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In the theoretical part of the paper, we are able to show average consistency for the factor

loadings and idiosyncratic error covariance matrix estimators. The factors estimated based on

the GLS method are as well consistent. Furthermore, we derive several risk bounds for the

covariance matrix estimated based on our sparse factor model.

In the empirical application, we utilize the new approach for the estimation of large covariance

matrices of asset returns from stocks that are constituents of the S&P 500 index. Hereby,

we consider an empirical horse race that compares the performance of the global minimum

variance portfolio strategy based on our sparse factor model to popular portfolio strategies

that are commonly used in the literature. The forecasting results reveal that our sparse factor

model offers the lowest out-of-sample portfolio standard deviation across different portfolio

sizes compared to the considered competing methods. Additionally, it generates the highest

out-of-sample portfolio returns and hence provides the certainty equivalent and sharpe ratio.

The outline of the paper is as follows. In Section 2 we introduce the approximate factor model

approach and show how sparsity can be obtained with respect to the factor loadings by l1-

regularization. In Section 3 we show that our approach yields consistent parameter estimates of

the factor loadings for given regularity conditions and derive the risk bounds for the covariance

estimates based on the factor model. Implementation issues are discussed in Section 4, while

in Section 5 we show the performance of our approach when applied to the estimation of high

dimensional portfolios. Section 6 summarizes the main findings and gives an outlook on future

research.

Notation:

Let πmax(A) and πmin(A) denote the maximum and minimum eigenvalue of a matrix A. Further,

‖A‖ and ‖A‖F specify the spectral and Frobenius norms of A, respectively. They are defined

as ‖A‖ =
√

πmax(A′A) and ‖A‖F =
√

tr (A).
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2 Model

2.1 The Approximate Factor Model

The following analysis is based on the approximate factor model to obtain a lower dimensional

representation of a possibly high dimensional variance-covariance matrix to be estimated. Let

xit be the i − th observable variable at time t for i = 1, . . . , N and t = 1, . . . , T , such that N

and T denote the sample size in the cross-section and time series dimensions, respectively. The

representation of the approximate factor model is given by:

xit = λ′
ift + uit , (1)

where λi is a (r × 1)-dimensional vector of factor loadings for variable i and ft is a (r × 1)-

dimensional vector of latent factors at time t, where r denotes the number of factors common

to all variables in the model. Typically we assume that r is much smaller than the number

of variables N . Finally, the idiosyncratic component uit accounts for variable-specific shocks

which are not captured by the common component λ′
ift. Following Chamberlain and Rothschild

(1983) represents an approximate factor model allowing for limited cross-sectional correlations

among the idiosyncratic components. In matrix notation (1) is given by:

X = ΛF ′ + u , (2)

where X denotes a N × T matrix containing T observations for N strict stationary time series.

It is assumed that the time series are demeaned and standardized. F = (f1, . . . , fT )
′ is referred

as a T × r-dimensional matrix of unobserved factors, Λ = (λ1, . . . , λN )′ is a N × r matrix of

corresponding latent factor loadings and u is a (N × T )-dimensional matrix of idiosyncratic

shocks.

There are several approaches to estimate a factor model as given by (2). The principal compo-

nent analysis1 and the maximum likelihood approach (see i.e. Bai and Li (2016)) are the two

1 See i.e. Bai and Ng (2002) or Stock and Watson (2002b) for a detailed consideration of the PCA in the
approximate factor model
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most popular ones. In the following we pursue estimating the factor model by MLE. This allows

us to introduce sparsity in the factor loadings by penalizing the likelihood function. Moreover,

contrary to PCA all model parameters including the covariance matrix Σu can be estimated

jointly, while PCA-based second stage estimates of Σu require consistent estimation of Λ and

F in the first estimation stage. This, however, may be problematic for the case of a relatively

small N , because F can no longer be estimated consistently (Bai and Liao (2016)).

The quasi log-likelihood function for the data covariance matrix in the approximate factor model

is defined as:

L(Λ,ΣF ,Σu) = log
∣∣det

(
ΛΣFΛ

′ +Σu

)∣∣+ tr
[
Sx

(
ΛΣFΛ

′ +Σu

)−1
]
, (3)

where Sx = 1
T

∑T
t=1(xt− x̄)(xt− x̄)′ denotes the sample covariance matrix based on the observed

data, x̄ = 1
T

∑T
t=1 xt and ΣF is a low dimensional covariance matrix of the factors. Along the

lines of Lawley and Maxwell (1971)) we impose the following identification restrictions: ΣF = Ir

and Λ′Σ−1
u Λ is diagonal. Moreover, the diagonal entries of Λ′Σ−1

u Λ are assumed to be distinct

and arranged in a decreasing order.

The imposition of the identifying restrictions has the advantage, that the estimation of the

covariance matrix of the factors becomes redundant. Hence, the log-likelihood function reduces

to:

L(Λ,Σu) = log
∣∣det

(
ΛΛ′ +Σu

)∣∣+ tr
[
Sx

(
ΛΛ′ +Σu

)−1
]
. (4)

In a second step the factors ft can be estimated by generalized least squares (GLS):

f̂t =
(
Λ̂′Σ̂uΛ̂

)−1
Λ̂′Σ̂−1

u xt , (5)

where the estimates Λ̂ and Σ̂u are obtained from (4).
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2.2 The Sparse Approximate Factor Model

The sparse approximate factor model allows for sparsity in the factor loadings matrix Λ by

shrinking single elements of the factor loading matrix Λ to zero. This is obtained by the l1-norm

penalized MLE of (4) based on the following optimization problem:

min
Λ,Σu

[
log
∣∣det

(
ΛΛ′ +Σu

)∣∣+ tr
[
Sx

(
ΛΛ′ +Σu

)−1
]
+ µ

r∑

k=1

N∑

i=1

|λik|
]
, (6)

where µ ≥ 0 denotes regularization parameter. Note, that the number of factors r is prede-

termined and assumed to be non increasing with N . Sparsity is obtained by shrinking some

elements of Λ to zero, such that not all r factors in (1) load on each xit. Hence, this framework

allows for weaker factors (see e.g. Onatski (2012)) that affect only a subset of the N time series.

In comparison to that, the standard assumption in approximate factor models (see e.g. Bai

and Ng (2002), Stock and Watson (2002a)), implies that the r largest eigenvalues of Λ′Λ are

growing with N , and is typically denoted as pervasiveness assumption. Intuitively, this allows

only for strong factors that impact the entire set of time series. Consequently, the sparsity in

the factor loadings matrix introduced by our model considerably weakens this assumption. In

particular, we have:

Assumption 2.1. There exists a c > 0 such that for all N ,

c−1 < πmin

(
Λ′Λ

Nβ

)
≤ πmax

(
Λ′Λ

Nβ

)
< c,

where 0 ≤ β ≤ 1.

The previous assumption implies that the r largest eigenvalues of Λ′Λ grow at O
(
Nβ
)
that

might be much slower than in the standard approximate factor model. On the other hand, it

still allows for strong factors as β gets closer to 1. Hence, our sparse factor model offers a

convenient generalization of the standard factor model. Further, Assumption 2.1 has a direct

implication on the sparsity of Λ. In fact, this can be deduced by upper bounding the spectral

norm of Λ according to the following expression:

‖Λ‖ ≤
√
r ‖Λ‖1 =

√
rmax

k≤r

N∑

i=1

|λik| = O
(
Nβ/2

)
.
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This result shows that imposing the weak factor assumption limits the amount of affected time

series across all factors and hence requires a non-negligible amount of zero elements in each

column of the factor loadings matrix. Nevertheless, the amount of non-zero factor loadings can

be arbitrarily small as β increases.

The pervasiveness assumption imposed by the standard approximate factor model, further im-

plies a clear separation of the eigenvalues of the data covariance matrix into two groups, corre-

sponding to the diverging eigenvalues of the common component and the bounded eigenvalues

of the idiosyncratic errors. Those characteristics can be observed in Figure 1, where both panels

illustrate the eigenvalue distribution of datasets that are simulated only based on strong factors

for sample sizes N = 200 and T = 450. The panels differ solely in the amount of included

factors, where the left panel includes one strong factor and the right one considers two factors.

Both graphs reveal a clear partition in their respective eigenvalue distributions, into sets of di-

verging eigenvalues corresponding to the amount of included strong factors and sets of bounded

eigenvalues associated to the idiosyncratic components.
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(a) Eigenvalues for simulated data with 1 strong

factor with N = 200 and T = 450
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(b) Eigenvalues for simulated data with 2 strong

factors with N = 200 and T = 450

Figure 1: Distribution of the eigenvalues based on strong factors

However, such a clear separation in the eigenvalue distribution of the covariance matrix is

typically not found in real datasets. An example offers a dataset that contains the monthly

asset returns of 200 stocks constituents of the S&P 500 stock index available for the entire

period of 450 months2, whose eigenvalue distribution is illustrated in Figure 2. The graph

2 The identical dataset is also used in our empirical application and hence is introduced in more detail in Section
5.
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shows a clear distinction of the first eigenvalue, however the remaining ones diverge at slower

rates and a clear separation between the common and idiosyncratic component as implied by

the standard approximate factor model is not possible. Hence, the weak factor framework

that allows for slower divergence rates in the eigenvalues of the common component is more

adequate for modelling the eigenvalue structures of real datasets. In fact, Figure 3 that shows

the eigenvalue distribution of a dataset that was generated by one strong factor and three weak

factors, closely models the decaying eigenvalue structure we observed for the S&P 500 asset

returns.

Figure 2: Eigenvalues for stock returns
based on the S&P 500 index with N = 200
and T = 450
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Figure 3: Eigenvalues for simulated data
with 1 strong factor and 3 weak factors with
N = 200 and T = 450

2.3 Estimation of the idiosyncratic error covariance matrix Σu

In order to allow for cross-sectional correlation in idiosyncratic error covariance matrix and

hence to be in the context of an approximate factor model, we use a slight adaptation of the

principal orthogonal complement thresholding (POET) estimator by Fan, Liao, and Mincheva

(2013). The POET estimator is based on soft-thresholding the off-diagonal elements of the

sample covariance matrix of the factor model residuals. Hence, it introduces sparsity in the

idiosyncratic covariance matrix and offers an solution to the singularity problem, generated by

sample covariance estimator, especially if we are in a high-dimensional setting, where N is close

or even greater than T . More specifically, the estimated idiosyncratic error covariance matrix
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Σ̂τ
u based on the POET method is defined as:

Σ̂τ
u = σ̂τ

ij , σ̂τ
ij =





ûii, i = j

S(ûij , τij), i 6= j

where ûij is the ij-th element of the sample covariance matrix Û of the estimated factor model

residuals, τij > 0 is an entry-dependent threshold3 and S denotes the soft-thresholding operator

that is defined as:

S(Z, β)i,j = sign(zi,j)(|zi,j | − β)+. (7)

In comparison to the paper by Fan et al. (2013) that use the residuals of a static factor model

based on the PCA estimator, we use the residuals obtained by our sparse factor model.

2.4 Data covariance matrix estimation based on the Sparse Approximate

Factor Model

In this section we introduce the variance-covariance estimator according to our sparse approx-

imate factor model. For this we consider the factor model representation in equation (1) and

calculate the true covariance matrix for X. This leads to the following expression:

ΣSF = V [X] = V
[
ΛF ′

]
+V [u]

= ΛΣFΛ
′ +Σu

In order to obtain an estimate for ΣSF we first need estimates for the factors F and factor

loadings Λ according to our sparse factor model. These estimates are obtained by applying the

estimation method introduced in the sections 2.2 and ?? for the dataset X. As an estimate

for the idiosyncratic errors u, we use the regression residuals and apply the utilize the soft-

thresholding method introduced in section 2.3.

3 We fix τij = 1√
N

+
√

log(N)
T

as specified by Fan et al. (2013) in all our applications.
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Using this results, we construct the estimated covariance matrix according to:

Σ̂SF = Λ̂Σ̂F Λ̂
′ + Σ̂τ

u, (8)

where Σ̂F denotes the sample estimator for the covariance matrix of the estimated dynamic

factors.
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3 Large Sample Properties and Risk Bounds

3.1 Consistency of the Sparse Factor Model Estimator

In order to establish the consistency estimators of the factor loading matrix Λ and the data

variance covariance matrix Σ we adopt the following typical assumptions:

Assumption 3.1. (i) {ut, ft}t≥1 is strictly stationary. In addition, E [uit] = E [uitfkt] = 0,

for all i ≤ N , k ≤ r and t ≤ T .

(ii) There exists r1, r2 > 0 and b1, b2 > 0, such that for any s > 0, i ≤ N and k ≤ r,

P (|uit| > s) ≤ exp(−(s/b1)
r1), P (|fkt| > s) ≤ exp(−(s/b2)

r2)

(iii) Define the mixing coefficient:

α(T ) = sup
A∈F0

−∞,B∈F∞
T

|P (A)P (B)−P (AB)| ,

where F0
−∞ and F∞

T denote the σ-algebras generated by {(ft, ut) : −∞ ≤ t ≤ 0} and

{(ft, ut) : T ≤ t ≤ ∞}

Strong mixing: There exist r3 > 0 and C > 0 satisfying: for all T ∈ Z+,

α(T ) ≤ exp(−CT r3)

(iv) There exist constants c1, c2 > 0 such that c2 ≤ πmin (Σu0) ≤ πmax (Σu0) ≤ c1.

The assumptions in 3.1 impose the regularity conditions on the data generating process and are

identical to those imposed by Bai and Liao (2016). Condition (i) imposes strict stationarity for

ut and ft and requires that both terms are not correlated. Condition (ii) requires exponential-

type tails, which allows to use large deviation theories for 1
T

∑T
t=1 uitujt−σu,ij and

1
T

∑T
t=1 fjtuit.

In order to allow for weakly serial dependence, we impose a strong mixing condition specified in

Condition (iii). Further, Condition (iv) implies bounded eigenvalues of the idiosyncratic error

covariance matrix, which is a common assumption on factor models.
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Theorem 3.1 (Consistency)

Under Assumption 2.1 and Assumption 3.1, the sparse factor model in (6) satisfies for T and

N → ∞, the following properties:

1

N

∥∥∥Λ̂− Λ0

∥∥∥
2

F
= Op

(
µ2DN

N
+ dT

)

and

1

N

∥∥∥Σ̂u − Σu0

∥∥∥
2

F
= Op

(
logN

T
+ dT

)
,

where dT =

(
logNβ

N +
√

logN
T

)
, for 0 ≤ β ≤ 1 and DN denotes the amount of non-zero elements

in Λ.

Hence, for log(N) = o(T ), we have

1

N

∥∥∥Λ̂− Λ0

∥∥∥
2

F
= op(1),

1

N

∥∥∥Σ̂u − Σu0

∥∥∥
2

F
= op(1).

Furthermore, for all t ≤ T :

∥∥∥f̂t − ft

∥∥∥ = op(1)

Theorem 3.1 shows under some regularity conditions average consistency for the factor loadings

and idiosyncratic error covariance matrix estimator based on our sparse factor model. Further,

the factors ft estimated based on GLS are also consistently estimated.

3.2 Consistency of the Data Covariance Matrix Estimator

This section takes a closer look to the asymptotic properties of the data covariance estimator

based on the sparse factor model, elaborated in section 2.4. Hereby, we first introduce the

relative matrix error norm, suggested by Fan et al. (2013), that is defined as

‖A‖Σ =
1√
N

∥∥∥Σ−1/2AΣ−1/2
∥∥∥
F

(9)
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The following theorem gives the convergence rates of the data covariance matrix estimator and

its inverse under different matrix norms.

Theorem 3.2 (Risk Bounds)

Under Assumption 2.1 and Assumption 3.1, the data covariance matrix estimator based on the

sparse factor model satisfies for T , N → ∞ and dT =

(
logNβ

N +
√

logN
T

)
, for 0 ≤ β ≤ 1, the

following properties:

1

N

∥∥∥Σ̂SF − Σ0

∥∥∥
2

F
= Op

(
µ2DN

N
+ dT +

(
1

N
+

logN

T

)
m2

N

)
,

1

N

∥∥∥Σ̂SF − Σ0

∥∥∥
2

Σ
= Op

(
µ2DN

N2
+

dT
N

+

(
1

N
+

logN

T

)
m2

N

N2

)

and

1

N

∥∥∥Σ̂−1
SF − Σ−1

0

∥∥∥
2
= Op

(
µ2DN

N
+ dT +

(
1

N
+

logN

T

)
m2

N

N

)

Theorem 3.2 shows that the covariance matrix estimator based on the sparse factor model is

consistently estimated if we consider either the Frobenius norm or the weighted quadratic norm.

In comparison to this result, a convergence under the Frobenius norm is hardly achievable based

on a factor model estimated using PCA. Fan et al. (2013) show that this fact occurs because of

the diverging eigenvalues of the factor loadings matrix.
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4 Implementation Issues

4.1 Majorized Log-Likelihood Function

In this section we elaborate the details regarding the implementation of our proposed sparse

factor model. If we take a closer look at our objective function in (6), we notice that it is cum-

bersome to solve that function numerically. This issue arises from the fact that the first term in

(6) log |det (ΛΛ′ +Σu)| is concave in Λ and Σu, whereas the second term tr
[
Sx (ΛΛ

′ +Σu)
−1
]

is convex. In order to solve this issue we are referring to a majorize-minimize EM algorithm

introduced by Bien and Tibshirani (2011). The idea of this optimization approach is to approx-

imate the numerically unstable concave part log |det (ΛΛ′ +Σu)| by its tangent plane, which

corresponds to the following expression:

log
∣∣∣det

(
Λ̂mΛ̂′

m + Σ̂u,m

)∣∣∣+ tr

[
2Λ̂′

m

(
Λ̂mΛ̂′

m + Σ̂u,m

)−1 (
Λ− Λ̂m

)]
, (10)

where the subscript m denotes the mth step in an iterative procedure that we elaborate in the

following sections. If we replace the concave part in (4) by the convex expression in (10), we

get the following majorized log-likelihood function:

L̄(Λ) = log
∣∣∣det

(
Λ̂mΛ̂′

m + Σ̂u,m

)∣∣∣+ tr

[
2Λ̂′

m

(
Λ̂mΛ̂′

m + Σ̂u,m

)−1 (
Λ− Λ̂m

)]

+ tr

[
Sx

(
ΛΛ′ + Σ̂u

)−1
] (11)

If we augment the previous majorized log-likelihood by a L1-regularization, we end up with the

following optimization problem for our sparse approximate factor model:

min
Λ,Σu

[
log
∣∣∣det

(
Λ̂mΛ̂′

m + Σ̂u,m

)∣∣∣+ tr

[
2Λ̂′

m

(
Λ̂mΛ̂′

m + Σ̂u,m

)−1 (
Λ− Λ̂m

)]

+tr

[
Sx

(
ΛΛ′ + Σ̂u

)−1
]
+ µ

r∑

k=1

N∑

i=1

|λik|
] (12)

As all three components in (12) are convex, the optimization is much simpler compared to the

original multi-modal problem.
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4.2 Projection Gradient Algorithm

In order to solve the estimation problem in (12) efficiently, we utilize a fast projected gradient

algorithm that has also been pointed out by Bien and Tibshirani (2011). More specifically, we

can further approximate the majorized log-likelihood L̄(Λ) in (11) by the following expression:

L̃(Λ) = 1

2t

∥∥∥Λ− Λ̂m + tÂ
∥∥∥
2

F

where t is the depth of projection4 and

Â = 2

[(
Λ̂mΛ̂′

m + Σ̂u,m

)−1
−
(
Λ̂mΛ̂′

m + Σ̂u,m

)−1
Sx

(
Λ̂mΛ̂′

m + Σ̂u,m

)−1
]
Λ̂m, (13)

which corresponds to the first derivative of L̄(Λ) with respect to Λ.

Hence, our final optimization problem corresponds to:

min
λik

1

2t

r∑

k=1

N∑

i=1

(
λik − λ̂ik,m + tÂik,m

)2
+ µ

r∑

k=1

N∑

i=1

|λik| . (14)

4.3 Solution for the Sparse Approximate Factor Model

In this section we propose an iterative procedure to find a solution for our sparse approximate

factor model.

The optimization of the objective function in equation (14) can be carried out by computing its

first derivative with respect to λik and setting it to zero. This yields the following result:

∂

λik

[
1

2t

r∑

k=1

N∑

i=1

(
λik − λ̂ik,m + tÂik,m

)2
+ µ

r∑

k=1

N∑

i=1

|λik|
]

=
1

t

r∑

k=1

N∑

i=1

(
λ̂ik − λ̂ik,m + tÂik,m

)
+ µ

r∑

k=1

N∑

i=1

νik = 0,

4 We set t = 0.01 in all our studies
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where νik denotes the subgradient of |λik|.

If we now solve for a specific λ̂ik, we get:

λ̂ik + t · µνik = λ̂ik,m − tÂik,m

λ̂ik = S
(
λ̂ik,m − tÂik,m, t · µ

)
, (15)

where S denotes the soft-thresholding operator and is defined as in equation (7). The result in

equation (15) can be used to obtain an updated estimate for the factor loadings λ̂ik,m+1 given

the estimate in the previous step λ̂ik,m.

In order to obtain an update for the estimate of the covariance matrix of the idiosyncratic error

Σu, we can rely on the EM algorithm elaborated by Bai and Li (2012), which yield the following

specification:

Σ̂u,m+1 = diag

[
Sx − Λ̂m+1Λ̂

′
m

(
Λ̂mΛ̂′

m + Σ̂u,m

)−1
Sx

]

Hence, in order to obtain an estimate of our sparse approximate factor model we can utilize the

following iterative procedure:

Iterative Algorithm

Step 1: Obtain an initial consistent estimate for the factor loading matrix Λ0 and the id-

iosyncratic error covariance matrix Σu , i.e. by using the unpenalized maximum

likelihood approach pointed out in Section ?? and set m = 1.

Step 2: Update λ̂ik,m−1, by

λ̂ik,m = S
(
λ̂ik,m−1 − tÂik,m−1, t · µ

)

Step 3: Update Σ̂u using the EM algorithm in Bai and Li (2012), according the following

formula

Σ̂u,m = diag

[
Sx − Λ̂mΛ̂′

m−1

(
Λ̂m−1Λ̂

′
m−1 + Σ̂u,m−1

)−1
Sx

]
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Step 4: If
∥∥∥Λ̂m − Λ̂m−1

∥∥∥ is small enough, stop the procedure.

Otherwise set m = m+ 1 and go back to Step 2.

Step 5: Get an estimate for the factors according to the following function:

f̂t =
(
Λ̂′Σ̂uΛ̂

)−1
Λ̂′Σ̂−1

u xt ,

where Λ̂ and Σ̂u denote the converged parameter estimates.

Step 6: Re-estimate the covariance matrix of the idiosyncratic errors based on the procedure

introduced in Section 2.3.

4.4 Selecting the number of factors

In order to obtain an estimate for the number of latent factors r we use the method by Onatski

(2010). This approach utilizes the difference in subsequent eigenvalues and chooses the largest

r̂ that belongs to the following set:

{r̂ ≤ rmax : πr̂((X
′X)/T )− πr̂+1((X

′X)/T ) > ξ},

where ξ is a fixed positive constant, rmax is an upper bound for the possible number of factors

and πr((X
′X)/T ) denotes the r̂th largest eigenvalue of the covariance matrix of X.

The author takes for the choice of ξ the empirical distribution of the eigenvalues of the data

sample covariance matrix into account5. Hence, the method is also a robust estimator for the

case if we are confronted with correlated error terms. On the other hand, the estimation of the

number of factors based on the empirical distribution of the eigenvalues of the sample covari-

ance matrix, requires a clear separation of the eigenvalues from the common and idiosyncratic

component. Hence, the performance may depend on the degree of differentiability of the two

components. Nevertheless, the main reason of choosing the method by Onatski (2010) arises

from the fact that it is to the best of our knowledge the only method that does not explicitly

require that all factors are strong and have eigenvalues that diverge with a rate of N . Therefore,

it is suitable for our setting that allows also for weak factors with a slower divergence rate.

5 We refer to the paper of Onatski (2010) for the detailed procedure to determine ξ.
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4.5 Tuning parameter choice

It is great importance to select an optimal value for the shrinkage parameter µ, as it controls

the amount of sparsity in the factor loadings matrix and impacts the efficiency of our estimator.

In our case we estimate µ based on a bayesian type of information criterion, according to the

following formula:

IC(µ) = L
(
Λ̂, F̂

)
+ 2κµ

N + T

N · T log

(
N · T
N + T

)
(16)

where κµ denotes the number of non-zero elements in the factor loading matrix Λ for a given

value of µ and L
(
Λ̂, F̂

)
is the value of the log-likelihood function in equation (3), evaluated at

the estimated factors and factor loadings. The penalty function in (16) is identically specified

as in the ICp1 criterion by Bai and Ng (2002) and has the property of converging to zero as both

N and T increase to infinity. Hence, the penalization vanishes as the sample sizes increase and

a smaller value for µ is selected. The characteristics of our information criterion are therefore

convenient with respect to the asymptotic properties we require for the regularization parameter

µ. In fact, we need µ = o(1) in order to achieve estimation consistency, as elaborated in Section

3. To select the optimal µ, we estimate the criterion in (16) for a grid of different values for

µ and choose the one that minimizes our information criterion. For the grid of the shrinkage

parameter we consider the interval µ = (0, µmax), where µmax denotes the highest value for the

shrinkage parameter such that all imposed model restrictions are still fulfilled.
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5 An Application to Portfolio Choice

In this section we apply our new approach for the estimation of large covariances of asset returns.

In an empirical horse race we compare the performance of the global minimum variance portfolio

strategy based on our sparse factor model approach to popular alternative portfolio strategies

with regularized variance-covariance estimators.

5.1 Data and Description of the Forecasting Experiment

The dataset comprises the monthly excess return data of stocks of the S&P 500 index, that

were constituents of the index in April, 2015. The excess returns are obtained by subtracting

the corresponding one-month T-Bill rate from the asset returns. We consider the time period

from January, 1974 until April, 2015, which yields T = 496 monthly returns for each of the

205 available stocks6. As different investment dimension we use the following portfolio sizes:

N ∈ {30, 50, 100, 150, 200}. Out of the 205 stocks, we then select the individual subsamples N

at random and keep the selected asset fixed for the entire forecasting experiment.

In order to estimate the portfolio weights for each strategy, we apply a rolling window approach

with h = 60 months, corresponding to 5 years of past data. Thus, in time t we use the last 60

months from t−59 until t for our estimation. Using the estimated portfolio weights we compute

the out-of-sample portfolio return r̂s,t+1 for the period t + 1 for method s. All portfolios are

rebalanced on a monthly basis. This generates a series of T − h out-of-sample portfolio returns.

These results are used to estimate the mean µs and variance σ2
s of the portfolio returns for each

strategy, according to the following formulas:

µ̂s =
1

T

T∑

t=h+1

r̂t,s and σ̂2
s =

1

T − 1

T∑

t=h+1

(r̂t,s − µ̂s)
2 (17)

We repeat this procedure 100 times to avoid that the out-of-sample results depend on the

initially randomly selected stocks and make sure that only distinct portfolios are considered for

each forecasting experiment. Hence, all results that we later report are average outcomes across

the 100 forecasting experiments.

6 The return data are retained from Thompson Reuters Datastream.
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5.2 Criteria for Performance Evaluation

For our analysis, we consider several evaluation criteria in order to compare the performance of

the previously introduced models.

1. Standard Deviation (SD): The out-of-sample standard deviation is defined as the

square root of the variance σ̂2 in equation (17).

In terms of the GMV portfolio is designed to minimize the portfolio variance, therefore

this measure is of great importance.

2. Average Return (AV): The out-of-sample average return is expressed as µ̂ in equation

(17).

3. Certainty Equivalent (CE): The CE is defined as

ĈEs = µ̂s −
γ

2
· σ̂2

s , (18)

where γ specifies the risk aversion of the investor. Similar as in DeMiguel, Garlappi,

Nogales, and Uppal (2009a) we set γ = 2. The CE determines the risk-free rate that an

investor is willing to accept instead of investing into a particular risky portfolio strategy.

4. Sharpe Ratio (SR): The Sharpe ratio is calculated using the following formula:

ŜRs =
µ̂s

σ̂s
. (19)

To analyse the properties of the estimated portfolio weights over time, we consider the following

measures:

5. Min: Minimum portfolio weight

6. Max: Maximum portfolio weight

7. SD-W: Standard deviation of the portfolio weights computed as

N∑

i=1

(
ω̂i,t,s − µ̂ω̂t,s

)2
,

19



where µ̂ω̂t,s =
1
N

∑N
i=1 ω̂i,t,s.

8. MAD: Mean absolute deviance from the 1/N portfolio

MADt,s =
N∑

i=1

∣∣∣∣ω̂i,t,s −
1

N

∣∣∣∣

5.3 Considered estimation models

This section discusses the different strategies in portfolio optimization, that are used and com-

pared to our sparse factor model.

1. Naive portfolio (1/N)

The first strategy that we consider is the naive portfolio, which comprises an identical portfolio

weight of ω1/N = 1
N in each of the N risky assets. Therefore, it is not necessary to estimate

any moments of the data to gather the portfolio weights. Since this moments estimation causes

in many application a high risk and error, it is difficult to beat the naive portfolio. DeMiguel,

Garlappi, and Uppal (2009b) find that the mean-variance portfolio and most of its extensions

cannot significantly outperform this portfolio. For this reason we use this strategy as good

benchmark for the following portfolio allocation models.

2. Sample-based GMV portfolio

The portfolio weights based on the sample covariance matrix of the asset returns are also

considered. The main problem using this approach arises for the case when the number of

assets N is larger or close to the time series dimension T , since the resulting sample covariance

is very ill-conditioned, singular and therefore not invertible.

3. Approximate Factor Model

In order to have a comparison to a standard factor model with a dense factor loadings matrix,

we utilize the approximate factor model as introduced by Chamberlain and Rothschild (1983).

An estimate for the covariance matrix using this model, denoted as Σ̂AFM, is similarly obtained

as pointed out in section 2.4. The main difference lies in the fact that the necessary estimates

for the factors F and factor loadings Λ are obtained by principal component analysis. A precise
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description of the estimation of an approximate factor model can be found in Bai and Ng (2002).

Similar as in our sparse approximate factor model, we use the number of factors selected by

Onatski (2010) to estimate this model.

4. Dynamic Factor Model

To allow for some dynamics in the latent factors, we consider also a dynamic factor model

originally proposed by Geweke (1977). Specifically, the dynamic factor model is represented by

the following equation:

xit = B′
i(L)ft + εit (20)

where Bi(L) = (bi1 + bi2L+ · · ·+ bipL
p) and L corresponds to the lag operator such that, ∀p,

Lpft = ft−p.

In this setup ft is a q× 1-dimensional vector of dynamic factors, i.e. ft = (f1t, f2t, . . . , fqt)
′ that

offer their own dynamic structure according to a VAR process and bij , where j = 1, . . . , p are

the corresponding q-dimensional factor loadings.

In order to estimate the dynamic factor model in (20) we use the two step procedure by Doz,

Giannone, and Reichlin (2011). To be able to estimate the model it is necessary to know the

number of dynamic factor beforehand. We use the consistent method by Bai and Ng (2007) to

determine q.

Factor models with observed factors

Further, we consider two additional factor model approaches that are common in the finance

literature. The difference to the previously presented methodology lies in the specification and

estimation of the factors. In comparison to the approximate factor case, the models in this

section are not estimating the factors from the time series data, but they utilize a concrete

specification for the factors. A positive aspect of this methodology compared to the latent

factor model case is the reduction of the estimation noise as the factor parameters have not to

be estimated. On the other hand, there is the sever possibility that the factor specification is

not capturing properly the data generating process and leads to a model misspecification.

The first model we are focusing on is the single index model by Sharpe (1963) and the second
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one is the 3-factor model by Fama and French (1993).

5. The Single Index Model

The single index model by Sharpe (1963) is defined by the following equation:

xit = α+ βi1f1t + εit, (21)

where t = 1, . . . , T and i = 1, . . . , N .

In equation (21) the factor f1t represents the excess return on the proxy for the US equity

market portfolio at time t. This proxy is defined as a value-weighted return of all Center for

Research in Security Prices (CRSP) firms incorporated in the US and listed on the AMEX,

NASDAQ, or the NYSE. In order to obtain excess returns the corresponding one-month T-Bill

rate is subtracted from all returns. The estimator for the variance-covariance matrix of the

single index model is obtained by the following expression:

Σ̂SFM = β̂1Σ̂f1β̂
′
1 + D̂

where Σ̂f1 denotes the sample variance-covariance matrix of the market excess returns, β̂1

represents the OLS estimates of the factor loadings and D̂ is a diagonal matrix of the OLS

residual variances of regression model (21).

6. Fama and French 3-Factor Model (FF)

The Fama and French 3-factor model offers an extension to the single index model by Sharpe

(1963) and is defined by the following expression:

Xt = β1f1t + β2f2t + β3f3t + εt (22)

The first factor f1 is identically defined as in equation (21) and corresponds to the excess returns

on the proxy for the US equity market portfolio, i.e. the market premium.

The second factor f2 defined as SMB is composed as the average returns on the three small

portfolios minus the average returns on the three big portfolios. In particular, it defines a zero-

cost portfolio that is long in stocks with a small market capitalization and short in stocks with a
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large market capitalization7 . The third factor f3 denoted as HML comprises a zero-cost portfolio

that is long in stocks with a high book-to-market value and short in low book-to-market stocks

8.

If we put equation 22 into matrix notation we get the following expression:

X = βF ′ + ε (23)

where F = [f1, f2, f3] with dimension T × 3 and β = [β1, β2, β3] with dimension N × 3.

The estimator for the variance-covariance matrix for the 3-factor model by Fama and French

(1993) ΣFF is equal to the following equation:

Σ̂FF = β̂Σ̂F β̂
′ + D̂

where Σ̂F denotes the covariance matrix of the three factors and D̂ represents a diagonal matrix

that contains the variances of the OLS residuals covariance matrix on its main diagonal.

Covariance Matrix Estimation Strategies

In the following sections we draw our attention to methods that introduce efficient variance-

covariance matrix estimators. Hereby, we focus on two shrinkage strategies by Ledoit and

Wolf (2003) and Kourtis, Dotsis, and Markellos (2012) and the design-free estimator by Abadir,

Distaso, and Žikeš (2014).

7. Ledoit and Wolf (2003)

The authors propose a shrinkage approach that offers a combination of sample covariance matrix

Σ̂X with the covariance matrix of a target estimator Σ̂target that is well-conditioned. They create

their covariance estimator according to the following definition:

Σ̂LW = αΣ̂X + (1− α)Σ̂target (24)

7 It is important to note that securities with a long position in a portfolio are expected to rise in value and on
the other hand securities with short positions in a portfolio are expected to decline in value.

8 A detailed definition of the factors can be found on the website of Kenneth R. French. See
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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where α ∈ (0, 1) is a constant, which corresponds to the shrinkage parameter. The authors show

that using this method can be interpreted as shrinking the sample covariance matrix towards

the estimator Σ̂target.

The covariance matrix from a 1-factor model conduces as a target estimator.

From equation (24) we can see that it is essential to determine an estimator for the shrinkage

intensity α. Hereby, Ledoit and Wolf (2003) come up with a procedure that relies on minimiz-

ing the Frobenius norm of the difference between the shrinkage estimator Σ̂LW and the true

covariance matrix.

8. Kourtis et al. (2012)

The estimation method by Kourtis et al. (2012) is directly shrinking the inverse of the sample-

based variance-covariance matrix Σ̂X towards a well-conditioned target matrix Ω̂, according to

the following equation:

Σ̂−1
K = c1Σ̂

−1
X + c2Ω̂ (25)

The authors consider three different targets for Ω̂:

1. The identity matrix I, which offers a very simple constant structure

2. The inverse of the covariance matrix resulting from a 1-factor model by Sharpe

(1963)

3. A combination of both targets, which yields

Σ̂−1
K = c1Σ̂

−1
X + c2IN + c3Σ̂

−1
f1

(26)

The authors show that the resulting weights are a three-fund strategy, i.e. a linear combination

of the sample-based weights ω̂, the equally weighted portfolio weights ω̂1/N and those of the

1-factor model ω̂f . In order to select an optimal quantity for the shrinkage coefficients in the

equations 25 respectively 26, the authors are minimizing the out-of-sample portfolio variance

using the non-parametric method of cross-validation.

It is important to mention that this portfolio strategy is also applicable for the case when
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N > T . In order to obtain reliable results for the inverse of Σ̂X the authors use the Moore-

Penrose pseudo-inverse. For our empirical application we report the results for the three fund

strategy, which offered the best performance in terms of certainty equivalent and Sharpe ratio

across all datasets, compared to the first two shrinkage targets individually.

9. Abadir et al. (2014)

The design-free estimator for the variance-covariance matrix by Abadir et al. (2014) yields

to improve the estimation of the eigenvalues P for the sample covariance matrix of X, that

is a possible source of ill-conditioning compared to the orthogonal eigenvectors Γ that are

not affected by this problem by construction. The authors consider the following spectral

decomposition of Σ̂X

V [X] = Σ̂X = Γ̂P̂ Γ̂′ (27)

In order to obtain an improved estimator for P the data series X is split into two subsample as

in (28)

X =

(
X1
N×n

, X2
N×(T−n)

)
(28)

Calculating the sample covariance matrix for the first n observations yields

V [X1] = Σ̂1 =
1

n
X1MnX

′
1 = Γ̂1P̂1Γ̂

′
1 (29)

where Mn = In− 1
n1n1

′
n is the de-meaning matrix of dimension n and 1n denotes a n× 1 vector

of ones. The spectral decomposition of Σ̂1 yields the matrix of eigenvectors Γ̂1 and the diagonal

matrix of eigenvalues P̂1.

In the second step an improved estimator for the P is computed from the remaining orthogo-

nalized observations

P̃ = diag
(
V
[
Γ̂′
1X2

])
= diag

(
Γ̂′
1Σ2Γ̂1

)
(30)
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The new estimator for the variance-covariance matrix is now obtained according to

Σ̂A = Γ̂P̃ Γ̂′ (31)

Weight Shrinking Strategies

The following asset allocation methods are focusing on directly shrinking the estimated portfolio

weights.

10. Frahm and Memmel (2010)

The first portfolio strategy that we are considering, comprises the method by Frahm and Mem-

mel (2010). The authors propose a shrinkage procedure that shrinks the sample-base GMVP

weights ω̂ towards the weights of the 1/N portfolio, according to the following equation:

ω̂FM = c ω1/N + (1− c)ω̂

In the previous equation c is the shrinkage parameter and is defined as c = min (cs, 1), where

cs =
N−3

T−N+2
1
φ̂
. Hereby, φ̂ =

ω̂′
1/N

Σ̂ω̂1/N−ω̂′Σ̂ω̂

ω̂′Σ̂ω̂
and defines the relative portfolio variance difference

between the 1/N and the GMV portfolio. Since this portfolio method is considering the GMV

portfolio using the sample based covariance matrix estimate Σ̂X it is not computable for the

case when the number of assets N is larger than the number of observations T , since for this

case Σ̂X will be singular.

11. Pollak (2011)

Finally, we use the portfolio-choice approach proposed by Pollak (2011). He considers also a

method that shrinks the estimated GMVP weights ω̂ towards the portfolio weights of the 1/N

approach ω1/N . The combined portfolio weights are constructed according to

ω̂P = g
(
D
(
ω̂, ω1/N

))
ω1/N +

[
1− g

(
D
(
ω̂, ω1/N

))]
ω̂, (32)

where g(x) = 1
(1+b·x) andD

(
ω̂, ω1/N

)
=
√(

ω̂ − ω1/N

)′
S
(
ω̂ − ω1/N

)
. The variable b is a positive

constant that takes the value 0.5 in the original specification of the article. In our analysis we
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let b vary from 0 to 10 and select those value that is maximizing the insample Sharpe Ratio.

The statistical distance D
(
ω̂, ω1/N

)
has the form of a regular Euclidean distance, only that it

is extended by the matrix S. In this case, S is a diagonal matrix that contains the reciprocal

of the maximum sample variance of all components of ω̂, that is obtained using a bootstrap

procedure, on its main diagonal. S is designed to reduce the distance between the portfolio

weights if there is a significant uncertainty in the GMVP estimate and to increase the distance

if the estimation uncertainty is small.

5.4 Results of the Forecasting Experiment

The results for our first simulation study are reported in Table 1 and represent the average

outcomes for each performance measure across the 1000 different forecasting experiments. If

we look at the results we can see that our sparse factor model offers the lowest out-of-sample

portfolio standard deviation across all subsamples. At the same time it generates the highest

portfolio returns and consequently offers also the best performance in terms of CE and SR

compared to all other methods. Furthermore, we can see that the CE results for our method

do not depend on the imposed value for the risk aversion factor γ.

Furthermore, we can observe that an increase of the investment dimension causes a high im-

provement of the out-of-sample portfolio performance of our sparse factor model. Hereby, we

can see that increasing N from 30 to 200 yields a reduction of the portfolio standard deviation

of about 6% and an increase in the CE of approximately 18%. This result shows that our model

is capable to manage the problems in estimation resulting from the cause of dimensionality. In

comparison to that, we observe that the CE of the approach by Fama and French (1993) which

offers the second lowest standard deviation decreases by 4%. The reason for that lies in the

decrease of the average portfolio return which turns out to be higher than the improvement in

the standard deviation. In comparison to that, the generated portfolio returns from our method

increase with the asset space.

Also in our simulation study we can confirm the statement by DeMiguel et al. (2009b) that

the equally weighted portfolio is hardly to beat. For low dimensions (N = 30 and N = 50) we

can see that apart from our estimator only the single factor model generates a higher average

SR compared to the 1/N portfolio, although it is very close to it. In terms of standard devia-
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tion, only our method and 3 factor model by Fama and French (1993) offer throughout lower

quantities compared to the 1/N portfolio. The picture changes slightly if we move to higher

asset dimensions (N > 50). We can observe that the method by Abadir et al. (2014) has also

advantages in terms of all performance measures compared to the equally weighted portfolio.

It is also interesting to compare our method to the general approximate factor model with a

dense factor loadings matrix and to the dynamic factor model. The simulation results show

that none of both methods provide better estimation results compared to the 1/N portfolio.

Furthermore, Table 2 shows several properties of the estimated portfolio weights for the different

For our main empirical analysis we are considering the period from January 1974 until April

2015, but it is also important to verify during which subperiods of the entire time span our

FLasso estimator is improving most in terms of portfolio standard deviation compared to the

competing methods. In our analysis we are especially focusing on the periods before and after

the recent financial crisis in 2007.

The results are illustrated in Figure 4, where the portfolio standard deviation at time t incor-

porates the out-of-sample portfolio returns until t (e.g. the out-of-sample portfolio standard

deviation in January 1995 incorporates the out-of-sample portfolio returns from January 1979

until January 1995). The graphs indicate that our FLasso estimator offers also for different

subperiods the lowest portfolio standard deviation compared to the FF3F and A estimators.

Furthermore, the difference is more pronounced if the recent financial crisis period is included.

Hence, in comparison to our sparse factor model the FF3F and A estimators are more severely

affected by the crisis and as a result they provide more volatile portfolio estimates. Overall, we

also observe a slightly decreasing portfolio standard deviation for an increasing sample size N .

28



6 Conclusions

This paper takes a closer look at a novel variance-covariance matrix estimator based on a

sparse factor model that allows for sparsity in the factor loadings matrix, by shrinking single

factor loadings to zero. Hence, this setting reduces the amount of parameters that have to be

estimated and might lead to a reduction of the estimation noise. Further, the sparse factor

model framework allows for weak factors that affect only a subset of the available time series.

This framework is therefore more general compared to the standard approximate factor model

that allows only for strong factors, affecting a big contingent of available time series. In the

theoretical part of the paper, we are able to show average consistency under the frobenius norm

for the factor loadings and idiosyncratic error covariance matrix estimators based on our sparse

factor model. The factors estimated using the GLS method are as well consistent. Furthermore,

we derive several risk bounds for the covariance matrix estimator based on our sparse factor

model.

In an empirical horse race we compare the performance of the global minimum variance portfolio

based on our sparse factor model to alternative portfolio strategies that are commonly used in

the literature. The forecasting results reveal that our sparse factor model offers the lowest

average out-of-sample portfolio standard deviation across different portfolio sizes. At the same

time it generates the highest certainty equivalent and sharpe ratio compared to all considered

portfolio strategies. The performance gains of our sparse factor model are especially pronounced

during the recent financial crisis. Hence, it has a stabilizing impact on the portfolio weights,

during highly volatile periods.

At this stage, we focus on a static factor model representation and hence do not incorporate

any dynamics in the factors. However, our portfolio forecasting experiment shows especially for

small samples sizes, a lower portfolio standard deviation for the dynamic factor model compared

to the approximate factor model. This leads to the conclusion that there might be efficiency

gains, by modelling directly dynamics in the factors. Further, an extension of our sparse factor

model to consider dynamic factors might not be very cumbersome and could be obtained using

the Kalman smoother estimator. The efficiency of any factor model based estimator is also

highly influenced by the amount of included factors in the model. In a strong factor setting

this issue is not severe as many consistent estimators for the number of factors are provided
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in the literature. However, in many real data applications the strong factor assumption is

hardly observed and hence the number of factors might be inconsistently estimated. Therefore,

it would interesting to analyse the performance of our sparse factor model if the number of

included factors is lower or higher than the true one. Both issues are left for future research.
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A Appendix

A.1 Proofs

Proof: Theorem 3.1 (Consistency)

Define the penalized likelihood

Lp(Λ,Σu) = Q1(Λ,Σu) +Q2(Λ,Σu) +Q3(Λ,Σu), (33)

where
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Therefore, we can see that equation (33) can be written as
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(34)

Define the set,

Ψδ = {(Λ,Σu) : δ
−1 < πmin

(
Λ′Λ

Nβ

)
≤ πmax

(
Λ′Λ

Nβ

)
< δ, for 0 ≤ β ≤ N

δ−1 < πmin (Σu) ≤ πmax (Σu) < δ
}

We introduce a lemma that will be necessary for the forthcoming derivations

Lemma A.1 (i) maxi,j≤N

∣∣∣ 1T
∑T

t=1 uitujt −E [uitujt]
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)
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(ii) maxi≤r,j≤N
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(√
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)

Proof. See Lemmas A.3 and B.1 in Fan, Liao, and Mincheva (2011).

Lemma A.2

sup
(Λ,Σu)∈Ψδ

|Q3(Λ,Σu)| = O
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Proof. The unpenalized likelihood
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can be decomposed in a similar fashion as in Lemma A.2. in Bai and Liao (2016).

The first term in equation (35) can be written as:
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Now, we consider the second term 1
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. Hereby, Sx is defined as:
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Hence, we get:
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where A1 =
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Subsequently, we look at the terms A1 −A5, respectively.
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Using Lemma A.1 and the fact that πmax
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By the equations (38) and (39), we can see that the second term on the right hand side is
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By the definition of Q3(Λ,Σu) we have

sup |Q3(Λ,Σu)| = O
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T

)

Lemma A.3
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Proof. If we consider equation (34) at the true parameter values, we get
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Hence, by (33) and (40), we have

Q1(Λ̂, Σ̂u) +Q2(Λ̂, Σ̂u) = Lc(Λ̂, Σ̂u)−Q3(Λ̂, Σ̂u)
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Therefore, by Lemma A.2 we have
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Lemma A.4
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Proof. By equation (41) and the definition of Q1(Λ̂, Σ̂u) and Q2(Λ̂, Σ̂u), we get

B1 +B2 ≤ dT , (42)

where B1 and B2 are defined as
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In the following we will first analyse the term B2 which can be further decomposed into
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Hence, by equation (44), we can see that B3 is of the same order as the first term in equation

(43). In the next step we want to take a closer look to the third term in (43), which can be

39



similarly expressed as
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1

N
log
∣∣∣Σ̂u

∣∣∣+ 1

N
tr
(
SuΣ̂

−1
u

)
− 1

N
log |Σu0| −

1

N
tr
(
SuΣ

−1
u0

)
≤ dT (45)

Using the same argument as in the proof of Lemma B.1. in Bai and Liao (2016), we get
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Hence, we can conclude the proof by the following derivation:
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Proof. If we consider equation (42) and Lemma A.4, we have
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Hence, the result follows by equations (43) and (44)
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∥∥∥
2

F
− 1

N
µ
√

DN

∥∥∥Λ̂− Λ0

∥∥∥
F
≤ dT

Solving for
∥∥∥Λ̂− Λ0

∥∥∥
F
yields

∥∥∥Λ̂− Λ0

∥∥∥
F
≤ µ

√
DN +

√
µ2DN + 4NdT

≤ µ
√
DN +

√
NdT
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Proof: Theorem 3.2 (Risk Bounds)

Σ = Λ0Λ
′
0 +Σu0 (46)

Σ̂SF = Λ̂Λ̂′ + Σ̂τ
u, (47)

where Σ̂τ
u corresponds to the POET estimator of Fan et al. (2013). Similar as in Fan et al.

(2013), we consider the weighted quadratic norm introduced by Fan, Fan, and Lv (2008) and

which is defined as:

‖A‖Σ = N−1/2
∥∥∥Σ−1/2AΣ−1/2

∥∥∥
F

Lemma A.6

1

N

∥∥∥Σ̂SF − Σ
∥∥∥
2

Σ
= Op

(
µ2DN

N2
+

dT
N

+

(
1

N
+

logN

T

)
m2

N

N2

)

Proof. The weighted quadratic norm of the difference between the estimated covariance matrix

Σ̂SF and the true one Σ can be expressed as:

∥∥∥Σ̂SF − Σ
∥∥∥
2

Σ
≤
∥∥∥Λ̂Λ̂′ − Λ0Λ

′
0

∥∥∥
2

Σ
+
∥∥∥Σ̂τ

u − Σu0

∥∥∥
2

Σ
(48)

If we consider C = Λ̂− Λ0 we can introduce the following definitions:

CΛ̂′ = Λ̂Λ̂′ − Λ0Λ̂
′

Λ0C
′ = Λ0Λ̂

′ − Λ0Λ
′
0

Using the previous definitions, we can rewrite the first term in (48) in the following form

∥∥∥Λ̂Λ̂′ − Λ0Λ
′
0

∥∥∥
2

Σ
=
∥∥∥CΛ̂′ + Λ0C

′
∥∥∥
2

Σ

≤
∥∥∥CΛ̂′

∥∥∥
2

Σ
+
∥∥Λ0C

′
∥∥2
Σ
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Hence, equation (48) can be expressed as:

∥∥∥Σ̂SF − Σ
∥∥∥
2

Σ
≤
∥∥∥CΛ̂′

∥∥∥
2

Σ
+
∥∥Λ0C

′
∥∥2
Σ
+
∥∥∥Σ̂τ

u − Σu

∥∥∥
2

Σ
(49)

Now we analyse each term in (49) separately:

∥∥∥CΛ̂′
∥∥∥
2

Σ
= N−1tr

(
Σ−1/2CΛ̂′Σ−1/2Σ−1/2Λ̂C ′Σ−1/2

)

= N−1tr
(
C ′Σ−1CΛ̂′Σ−1Λ̂

)

≤ N−1
∥∥∥Λ̂′Σ−1Λ̂

∥∥∥
∥∥Σ−1

∥∥ ‖C‖2F = Op

(
N−1 ‖C‖2F

)

Similarly, we get ‖Λ0C
′‖2Σ == Op

(
N−1 ‖C‖2F

)
. Hence, by Lemma C.12. in Fan et al. (2013)

we get:

∥∥∥Σ̂SF − Σ
∥∥∥
2

Σ
≤ Op

(
N−1 ‖C‖2F

)
+Op

(∥∥∥Σ̂τ
u − Σu

∥∥∥
2

Σ

)

= Op

(
N−1

[
µ2DN +N

(
1

N
+

√
logN

T

)])
+Op

(∥∥∥Σ̂τ
u − Σu

∥∥∥
2

Σ

)

= Op

(
µ2DN

N
+

1

N
+

√
logN

T
+

(
1

N
+

logN

T

)
m2

N

N

)

Under the Frobenius norm we have:

Lemma A.7

1

N

∥∥∥Σ̂SF − Σ
∥∥∥
2

F
= Op

(
µ2DN

N
+ dT +

(
1

N
+

logN

T

)
m2

N

)

Proof.

∥∥∥Σ̂SF − Σ
∥∥∥
2

F
≤
∥∥∥CΛ̂′

∥∥∥
2

F
+
∥∥Λ0C

′
∥∥2
F
+
∥∥∥Σ̂τ

u − Σu

∥∥∥
2

F
, (50)
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where the second term can be bounded by

∥∥Λ0C
′
∥∥2
F
= tr

(
Λ′
0Λ0C

′C
)

≤ ‖Λ0‖2 ‖C‖2F = Op

(
‖C‖2F

)

Furthermore, the first term in (50) has the same upper bound. Hence, again by using Lemma

C.12. in Fan et al. (2013) we get:

∥∥∥Σ̂SF − Σ
∥∥∥
2

F
≤ Op

(
‖C‖2F

)
+Op

(∥∥∥Σ̂τ
u − Σu

∥∥∥
2

F

)

≤ Op

(
µ2DN +NdT

)
+Op

(
N

(
1

N
+

logN

T

)
m2

N

)

Inverse of the covariance matrix

Define,

Ĝ =

(
Ir + Λ̂′

(
Σ̂τ
u

)−1
Λ̂

)−1

G0 =
(
Ir + Λ′

0Σ
−1
u0Λ0

)−1

Lemma A.8 (i)
∥∥∥Ĝ
∥∥∥ = Op (1)

(ii)
∥∥∥Ĝ−1 −G−1

0

∥∥∥ = Op

(
‖C‖+

∥∥∥∥
(
Σ̂τ
u

)−1
− Σ−1

u

∥∥∥∥
)

Proof.

(i) Theorem 3.1 in Fan et al. (2013) implies

∥∥∥∥
(
Σ̂τ
u

)−1
∥∥∥∥ = Op(1). Then, by the definition

of Ĝ we have
∥∥∥Ĝ
∥∥∥ ≤

(
Op(1)

∥∥∥Λ̂
∥∥∥
2
)−1

= Op(1).

(ii) By the definition of Ĝ and G0, we have: Ĝ−1 − G−1
0 = Λ̂′

(
Σ̂τ
u

)−1
Λ̂ − Λ′

0Σ
−1
u0Λ0.

Hence, the previous quantitiy can be decomposed according to:

Ĝ−1 −G−1
0 = C ′

(
Σ̂τ
u

)−1
Λ̂ + Λ′

0Σ
−1
u0C + Λ′

0

((
Σ̂τ
u

)−1
− Σ−1

u0

)
Λ̂ (51)
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If we bound all three terms on the right hand side of equation (51), we get:

∥∥∥Ĝ−1 −G−1
0

∥∥∥ ≤ ‖C‖Op(1) +

∥∥∥∥
(
Σ̂τ
u

)−1
− Σ−1

u0

∥∥∥∥Op(1)

= Op

(
µ
√

DN +
√

NdT +

(
1√
N

+

√
logN

T

)
mN

)

Lemma A.9

1

N

∥∥∥Σ̂−1
SF − Σ−1

∥∥∥
2
= Op

(
µ2DN

N
+ dT +

(
1

N
+

logN

T

)
m2

N

N

)

Proof. Using the Sherman-Morrison-Woodbury inverse formula, we get

∥∥∥Σ̂−1
SF − Σ−1

∥∥∥
2
=

6∑

i=1

Li,

where

L1 =

∥∥∥∥
(
Σ̂τ
u

)−1
− Σ−1

u0

∥∥∥∥
2

L2 =

∥∥∥∥∥

[(
Σ̂τ
u

)−1
− Σ−1

u0

]
Λ̂

[
Ir + Λ̂′

(
Σ̂τ
u

)−1
Λ̂

]−1

Λ̂′
(
Σ̂τ
u

)−1
∥∥∥∥∥

2

L3 =

∥∥∥∥∥

[(
Σ̂τ
u

)−1
− Σ−1

u0

]
Λ̂

[
Ir + Λ̂′

(
Σ̂τ
u

)−1
Λ̂

]−1

Λ̂′Σ−1
u0

∥∥∥∥∥

2

L4 =

∥∥∥∥∥Σ
−1
u0

(
Λ̂− Λ0

) [
Ir + Λ̂′

(
Σ̂τ
u

)−1
Λ̂

]−1

Λ̂′Σ−1
u0

∥∥∥∥∥

2

L5 =

∥∥∥∥∥Σ
−1
u0

(
Λ̂− Λ0

) [
Ir + Λ̂′

(
Σ̂τ
u

)−1
Λ̂

]−1

Λ′
0Σ

−1
u0

∥∥∥∥∥

2

L6 =

∥∥∥∥∥Σ
−1
u0Λ0

([
Ir + Λ̂′

(
Σ̂τ
u

)−1
Λ̂

]−1

−
[
Ir + Λ′

0Σ
−1
u Λ0

]−1

)
Λ′
0Σ

−1
u0

∥∥∥∥∥

2
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In the following, we bound each of the six terms, separately.

L2 ≤
∥∥∥∥
(
Σ̂τ
u

)−1
− Σ−1

u0

∥∥∥∥
2 ∥∥∥Λ̂ĜΛ̂′

∥∥∥
2
∥∥∥∥
(
Σ̂τ
u

)−1
∥∥∥∥
2

By Lemma A.8 follows that L2 ≤ Op(L1). Similarly, L3 is also Op(L1).

Further,

L4 ≤
∥∥Σ−1

u0

∥∥2 ‖C‖2
∥∥∥Ĝ
∥∥∥
2 ∥∥∥Λ̂′Σ−1

u0

∥∥∥
2

Hence, also by Lemma A.8

L4 ≤ ‖C‖2 Op (1)Op (1) = Op

(
‖C‖2

)

Similarly, L5 = Op (L4). Finally,

L6 ≤
∥∥Σ−1

u0Λ0

∥∥4
∥∥∥Ĝ−G0

∥∥∥
2

By Lemma A.8 we have,

L6 ≤ Op(1)
∥∥∥Ĝ−1 −G−1

0

∥∥∥
2

= Op

(
µ
√
DN +

√
NdT +

(
1√
N

+

√
logN

T

)
mN

)

Adding up the terms L1 − L6 gives

1

N

∥∥∥Σ̂−1
SF − Σ−1

∥∥∥
2
= Op

(
µ2DN

N
+ dT +

(
1

N
+

logN

T

)
m2

N

N

)
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A.2 Tables

Table 1: Estimation results for the Portfolio Application

Model 1/N GMVP FLasso AFM DFM SFM FF3F LW K A FM P

N = 30

AV 0.0084 0.0075 0.0086 0.0074 0.0075 0.0085 0.0081 0.0077 0.0081 0.0079 0.0079 0.0081

CE 0.0062 0.0031 0.0065 0.0049 0.0052 0.0062 0.0059 0.0053 0.0058 0.0056 0.0054 0.0056

SR 0.1766 0.1123 0.1868 0.1475 0.1553 0.1768 0.1727 0.1581 0.1678 0.1658 0.1586 0.1619

SD 0.0477 0.0665 0.0458 0.0498 0.0484 0.0478 0.0469 0.0489 0.0483 0.0474 0.0500 0.0498

N = 50

AV 0.0084 0.0082 0.0088 0.0075 0.0075 0.0084 0.0079 0.0080 0.0081 0.0081 0.0080 0.0084

CE 0.0062 -0.0055 0.0068 0.0050 0.0052 0.0062 0.0058 0.0057 0.0058 0.0059 0.0029 0.0016

SR 0.1797 0.0706 0.1973 0.1510 0.1564 0.1799 0.1736 0.1651 0.1687 0.1717 0.1127 0.1026

SD 0.0467 0.1165 0.0446 0.0496 0.0479 0.0468 0.0458 0.0486 0.0479 0.0470 0.0712 0.0817

N = 100

AV 0.0084 - 0.0092 0.0078 0.0070 0.0084 0.0078 0.0082 0.0081 0.0081 - -

CE 0.0063 - 0.0073 0.0055 0.0048 0.0063 0.0058 0.0060 0.0059 0.0061 - -

SR 0.1825 - 0.2112 0.1627 0.1500 0.1827 0.1740 0.1753 0.1740 0.1785 - -

SD 0.0462 - 0.0435 0.0479 0.0468 0.0463 0.0448 0.0466 0.0463 0.0456 - -

N = 150

AV 0.0084 - 0.0094 0.0082 0.0066 0.0084 0.0077 0.0082 0.0080 0.0083 - -

CE 0.0062 - 0.0075 0.0060 0.0045 0.0063 0.0057 0.0062 0.0060 0.0063 - -

SR 0.1817 - 0.2182 0.1747 0.1438 0.1819 0.1730 0.1811 0.1774 0.1864 - -

SD 0.0460 - 0.0429 0.0466 0.0459 0.0460 0.0444 0.0453 0.0452 0.0445 - -

N = 200

AV 0.0084 - 0.0095 0.0086 0.0063 0.0084 0.0076 0.0083 0.0078 0.0083 - -

CE 0.0063 - 0.0077 0.0065 0.0043 0.0063 0.0057 0.0063 0.0058 0.0063 - -

SR 0.1822 - 0.2238 0.1883 0.1394 0.1824 0.1728 0.1864 0.1732 0.1883 - -

SD 0.0459 - 0.0426 0.0459 0.0454 0.0459 0.0440 0.0444 0.0450 0.0440 - -

Note: Our sparse approximate factor model (FLasso) is compared to the equally weighted portfolio (1/N), the GMVP, the

approximate factor model (AFM), the dynamic factor model (DFM), the single factor model by Sharpe (1963) (SFM), the 3

factor model by Fama and French (1993), the estimators by Ledoit and Wolf (2003) (LW), Kourtis et al. (2012) (K), Abadir

et al. (2014) (A), Frahm and Memmel (2010) (FM) and Pollak (2011) (P).
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Table 2: Estimated weights for the Portfolio Application

Model 1/N GMVP FLasso AFM DFM SFM FF3F LW K A FM P

N = 30

Min 0.0333 -1.0988 -0.1907 -0.5123 -0.4828 0.0295 -0.0669 -0.5176 -0.6166 -0.1776 -0.7379 -0.7162

Max 0.0333 1.0253 0.1996 0.4584 0.3353 0.0448 0.1121 0.3198 0.5534 0.3392 0.6503 0.6694

SD 0.0000 0.1366 0.0197 0.0670 0.0543 0.0010 0.0088 0.0648 0.0249 0.0500 0.0502 0.0597

MAD 0.0000 0.1075 0.0157 0.0522 0.0421 0.0007 0.0069 0.0506 0.0196 0.0397 0.0395 0.0469

N = 50

Min 0.0200 -2.7950 -0.1461 -0.4305 -0.4127 0.0176 -0.0701 -0.4237 -1.0228 -0.1492 -1.8535 -2.3299

Max 0.0200 2.7290 0.1634 0.3798 0.2158 0.0270 0.0884 0.2629 1.0182 0.3004 2.2202 2.3992

SD 0.0000 0.2255 0.0158 0.0505 0.0394 0.0006 0.0073 0.0513 0.0214 0.0400 0.1016 0.1405

MAD 0.0000 0.1777 0.0126 0.0394 0.0307 0.0004 0.0058 0.0399 0.0169 0.0318 0.0800 0.1106

N = 100

Min 0.0100 - -0.1626 -0.3204 -0.2557 0.0089 -0.0558 -0.3158 -0.2538 -0.1020 - -

Max 0.0100 - 0.1146 0.2179 0.1806 0.0134 0.0612 0.1886 0.2371 0.2450 - -

SD 0.0000 - 0.0105 0.0315 0.0238 0.0003 0.0052 0.0339 0.0171 0.0269 - -

MAD 0.0000 - 0.0083 0.0246 0.0185 0.0002 0.0041 0.0263 0.0136 0.0213 - -

N = 150

Min 0.0067 - -0.1401 -0.1778 -0.2016 0.0060 -0.0431 -0.2203 -0.1768 -0.0752 - -

Max 0.0067 - 0.0920 0.1482 0.1753 0.0089 0.0435 0.1320 0.2003 0.1696 - -

SD 0.0000 - 0.0078 0.0231 0.0171 0.0002 0.0040 0.0255 0.0139 0.0204 - -

MAD 0.0000 - 0.0063 0.0180 0.0133 0.0001 0.0032 0.0198 0.0111 0.0161 - -

N = 200

Min 0.0050 - -0.1084 -0.1430 -0.1733 0.0045 -0.0325 -0.1561 -0.1053 -0.0562 - -

Max 0.0050 - 0.0603 0.1048 0.1169 0.0067 0.0349 0.1027 0.1136 0.1372 - -

SD 0.0000 - 0.0062 0.0183 0.0132 0.0002 0.0033 0.0203 0.0115 0.0164 - -

MAD 0.0000 - 0.0050 0.0142 0.0103 0.0001 0.0026 0.0157 0.0091 0.0129 - -

Note: Our sparse approximate factor model (FLasso) is compared to the equally weighted portfolio (1/N), the GMVP, the

approximate factor model (AFM), the dynamic factor model (DFM), the single factor model by Sharpe (1963) (SFM), the 3

factor model by Fama and French (1993), the estimators by Ledoit and Wolf (2003) (LW), Kourtis et al. (2012) (K), Abadir et al.

(2014) (A), Frahm and Memmel (2010) (FM) and Pollak (2011) (P).
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A.3 Figures
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(b) N = 100
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(c) N = 150
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Figure 4: SD for different subperiods
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