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Abstract

When various risk measures are computed, it is often assumed that the conditional mean of an asset

return is constant. However, it is well documented that the predictability of returns increases as the

horizon of prediction increases. This paper assesses the impact of ignoring such possible predictability of

returns on computing risk measures, especially Value-at-Risk(VaR). For this purpose, we study the term

structure of VaR when the conditional mean of returns is actually time-varying, and when one assumes

it to be time-varying and constant. First we compute VaR analytically when one knows parameter

values, and show that the impact of ignoring time-variability of the conditional mean is non-negligible.

Simulation studies show that, when one has a parameter uncertainty, estimating a model with time-

varying conditional mean yields VaR that is closer to the true VaR, even though a model with constant

conditional mean is often times not statistically rejected. In the empirical studies, we estimate a GARCH-

in-Mean model which has a time-varying conditional mean and a GARCHmodel with constant conditional

mean. We compare their predictive ability by Diebold-Mariano test and show that the GARCH-in-Mean

model outperforms GARCH model for horizons over 10 days.

1 Introduction

Good risk management is nowadays a major concern for regulators and financial institutions. Many financial

institutions compute every day the Value-at-Risk(VaR) of their units of trading in order to assess their risk

exposures. In the framework of Basel II Accord, the regulator decides the capital requirement based on their

10-day VaR at 1% level, and now Expected Shortfall (ES) draws more attention in Basel III Accord. There

are other risk measures, such as CoVaR (Adrian and Brunnermeier, 2011) and SRISK (Brownlees and Engle,

2017) which are computed.

The traditional way to compute these measures is to model the distribution of the return of time t + 1

given the information available at time t (Christoffersen, 2012), and to compute one-step and multi-step

ahead VaR by resampling the residual with an assumption that they are i.i.d.1. In modeling the conditional

distribution of a return, its conditional variance is commonly assumed to be time-varying using GARCH or

other specifications. On the other hand, its conditional mean is often assumed to be constant because of the

difficulty of detecting its variability at the daily level.

∗Toulouse School of Economics, e-mail:nour.meddahi@tse-fr.eu
†Corresponding author: Toulouse School of Economics, e-mail: yamashita.mamiko@tse-fr.eu
1See for instance Engle (2011).
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However, it is well known that when one increases the horizon of prediction, the predictability of asset

returns increases; a popular predictor is the dividend yield (dividend-price ratio).2 Consequently, computing

VaR at long horizons by assuming the constant mean could be problematic. The main goal of this paper is

to assess whether ignoring possible long horizon predictability of the returns has an impact on computing

VaR.

For this purpose, we start the analysis by considering a return model where the expected return is driven

by a persistent autoregressive process of order one. The daily (realized) return equals the expected return

plus a noise, which is assumed to have a large variance relative to the variance of the expected return,

homeskedastic and being Normally distributed. The large variance assumption is realistic and makes that

the return follows an ARMA(1,1) process, whose autoregressive root is very close to the moving-average one,

making the return look like a white noise. Such approach is popular in the asset pricing literature at the

monthly or quarterly frequencies.3 The homoscedasticity and Normality assumptions are made in order to

be able to compute VaR analytically at any horizon. The homoscedasticity assumption is relaxed later.

For this model, we first compute VaR by knowing the true model and by observing the state variable.

These assumptions are unrealistic but we use these VaR as the benchmark and call the “oracle VaR”. We then

consider two other models. The first one corresponds to the i.i.d. case with normal shocks, where an agent

has a misspecified model in mind. The second one considers the ARMA (1,1) representation implied by the

model where an agent has the true model but does not observe the state variable. ARMA(1,1) representation

allows an agent to get a proxy of the state variable using the past value of returns. In a first step, we

take the parameters as known and compute analytically VaR. At very short horizons, we find that the three

specifications lead to similar VaR. However, when we increase the horizon, including the 10-days used by

regulators, we find differences. In particular, the VaR implied by the ARMA is quite close to the oracle one.

However, the VaR implied by the i.i.d. model is quite different from the oracle one when the state variable

is far from its unconditional mean. In addition, the difference increases with the horizon. The intuition is

simple. When the state is bad, the i.i.d. model will underestimate the VaR because it will ignore that the

future states are also bad due to the high persistence and it is bad from the perspective of the regulator.

On the other hand, when the state is good, the i.i.d. model will over-estimate the VaR, which is bad from

the perspective of the financial institution. In addition, when the state variable is far from its unconditional

mean, the future values of the state variable will mean-revert. However the i.i.d. model will ignore this mean

reversion and will provide the same VaR whatever the state variable.

The above analyses assume that the parameters are known, which is unrealistic. We therefore make

a simulations-based analysis to assess the impact of parameter uncertainty. We simulate a realistic model

and then estimated an i.i.d. and ARMA (1,1) model. An interesting result is that in the simulations, the

confidence interval of the autoregressive coefficient is often times so wide as to include the value zero, which

means the i.i.d. assumption is not rejected. However, when one computes the VaR implied by the two

estimated models, they are close to the oracle one when the horizon is short, but the i.i.d. starts to be

different from the oracle one when the horizon increases, including the 10-days-ahead case. In contrast, the

VaR computed with the ARMA (1,1) model is closed to the oracle one, even if the ARMA(1,1) parameters

are not significantly different from those of the i.i.d. model. In addition, the difference between the two

models increases with horizon.

2See Fama and French (1988). Other predictors include interest rates and other macro variables. Ludvigson and Ng (2007)

extracts the information from a large set of macro and financial variables using the principal components following Stock and

Watson (2002).
3See for instance Campbell (2001), Barberis (2000) and Pástor and Stambaugh (2012).
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Then we consider a model with time-varying volatility. We consider a Heston and Nandi (2000) model

because it is affine and allows us to compute the VaR at any horizon by a numerical method as in Duffie,

Pan, and Singleton (2000) and Duffie and Pan (2001). We do the same analysis as for the first model,

that is, we consider a model with a constant mean (which we call GARCH model) and another model with

time-varying mean (GARCH-in-Mean model). We make the analysis when one knows the parameter values,

and then conduct simulation analysis to take into account the parameter uncertainty. The results obtained

are similar to the constant volatility model. It is better to assume that the mean is time-varying, even if it

is not statistically different from zero, when one computes the VaR at a long horizon.

Finally we consider a model which takes into account Realized Variance (RV). We follow the model

proposed by Christoffersen, Feunou, Jacobs, and Meddahi (2014) which is an extension of Heston-Nandi

GARCH model. It is also affine and thus we compute VaR analytically. We again confirm the result that

assuming the time-varying conditional mean is better to compute VaR especially at long horizon.

Then we provide an empirical analysis with series of SPDR S&P 500 Index of about 2500 observations.

We estimate a model with time-varying conditional mean (GARCH-in-Mean model) and another model

with constant conditional mean (GARCH model) proposed by Heston and Nandi (2000) and compute VaR of

horizons of 10 days, 22 days and 66 days. By Diebold-Mariano test, we reject the null hypothesis that the two

models have equal predictive ability for horizons over 10 days, and the result is in favor of GARCH-in-Mean

model.

The paper is incomplete. We would like to make a robust control analysis (Sargent and Hansen, 2001) in

order to take into account statistically parameter uncertainty.

2 Normal and constant volatility model

Suppose an agent is interested in VaR of his portfolio. For simplicity, he possesses a diversified portfolio that

can be approximated as aggregate assets such as S&P 500 Index. Let Pt be the price of the asset at day t

and Rt+τ |t =
Pt+τ−Pt

Pt
be the return of holding this asset from day t until day t+ τ . The τ day ahead α-level

VaR is defined as

Pr(Rt+τ |t ≤ −V aR|It) = α

and we focus on the 1% VaR throughout this paper.4

In order to compute the VaR, we introduce a model of its log returns, denoted by yt.

2.1 Data Generating Process

2.1.1 Model

Let us define yt = logPt − logPt−1. Let us assume that yt and its conditional mean, µt follow a VAR(1)

process:

Correct model (M0)

yt = µt−1 + ut (1)

µt = c+ θµt−1 + wt (2)(
ut

wt

)
∼ iid. N

(
0,

(
σ2
u, σuw

σuw, σ2
w

))
(3)

4Since in Basel II, the banks are required to compute 1% VaR.
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This is a state space model and widely applied to the dynamics of the asset returns, such as Campbell

(2001), Barberis (2000) and Pástor and Stambaugh (2012). The state variable µt is usually assumed to be

unobservable to the agent. We denote by µ and σµ as the mean and variance of µt.

The τ -day ahead VaR is determined by the distribution of the future log returns denoted by yt+1:t+τ :

yt+1:t+τ = logPt+τ − logPt =

τ∑

j=1

yt+j.

In the following, we consider three different value of VaR computed by three different agents: (i) an agent

equipped with a misspecified model and assumes a constant conditional mean, (ii) an agent with the correct

model and observes µt, and (iii) an agent with the correct model but does not observe µt. For all agents, the

conditional distribution of yt+1:t+τ becomes Normal, but the conditional mean and the conditional variance

are not always the same due to the difference in their beliefs in the model and their information set. In any

case, because of the normality, they can compute VaR by the formula below:

V aR(Rt+τ |t|M, It) = 1− exp
(
E(yt+1:t+τ |M, It)− 2.33

√
V ar(yt+1:t+τ |M, It)

)

where M denotes the model which the agent assumes, and It denotes the information set of the agent at date

t.

2.1.2 Parameter values

We calibrate the model by matching the first and second moments of yt with the data as well as the estimation

results of Pástor and Stambaugh (2012) (PS(2012) henceforth). The data are log returns of S&P 500 daily

index, 1990/01/02-2015/12/31 with 6553 observations. The key parameters are (i) θ, (ii)
σ2
µ

σ2
y
which we denote

by R2, and (iii) σuw . Firstly θ governs how persistent µt is. Secondly R2 decides the impact of µt on the

variation of yt. Finally σuw governs the correlation between the two error terms, which is likely to be negative

according to Pástor and Stambaugh (2009).

PS(2012) shows the estimation results in Figure 4 in their paper. According to it, the posterior distribution

of Corr(u,w) and θ are at its peak at around Corr(u,w) = −0.9 and θ = 0.9.5 The posterior distribution of

R2 is sensitive to the prior. Different three prior leads to different modes at R2 = 0.06 or around 0.10.

It is straightforward to connect the daily model that we consider and the annual model in PS(2012). Let

us consider the h−day aggregated process, y
(h)
t , i.e., y

(h)
i ≡ y(i−1)h+1 + y(i−1)h+2 + · · · + yih =

∑h−1
j=0 yih−j .

Then, there exists µ
(h)
i such that (y

(h)
i , µ

(h)
i ) follows a VAR(1) process:

y
(h)
i = µ

(h)
i−1 + u

(h)
i

µ
(h)
i = c(h) + θhµ

(h)
i−1 + w

(h)
i(

u
(h)
i

w
(h)
i

)
∼ iid. N

(
0,

(
σ
2(h)
u , σ

(h)
uw

σ
(h)
uw , σ

2(h)
w

))

where all the parameters and variables are expressed as those in the daily model.6

5See Pástor and Stambaugh (2009) for the discussion why Corr(u,w) is likely to be negative.
6c(h) = (1− θh)µh. u

(h)
i = 1

1−θ

∑h−1
j=1 (1− θj)wih−j +

∑h−1
j=0 uih−j and w

(t)
i = 1−θt

1−θ

∑i−1
j=0 θ

jwih−j . Also, the other compo-

nents of variance-covariance matrix are the following: σ
2(h)
w =

(

1−θh

1−θ

)2 (
1−θ2h

1−θ2

)

σ2
w and σ

(h)
uw =

(

1−θh

1−θ

)2
(

(θ − θh)σ2
µ + σuw

)

.

The variance of ut is σ
2(h)
u = Vτ,full(h)
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Especially, the AR coefficient of aggregated µt is θ
h and the variance of aggregated conditional mean is

σ2(h)
µ =

(
1− θh

1− θ

)2

σ2
µ

which enables us to connect the estimation of PS(2012) and our calibration. We first pick θ = 0.999 (so that

its counterpart of annually aggregated return is θ250 = 0.78) and the annual R2 = 0.06 (one of the posterior

mode of PS(2012)).

The calibrated parameter values are summarized in Table 1.

Table 1: Calibrated parameter values

Parameter c θ σ2
µ σ2

u σuw

2.678e-7 0.999 1.290e-4 1.937e-7 -4.000e-6

2.2 Case 1: Agent with misspecified i.i.d. model

First, as a benchmark, let us consider when an agent wrongly assumes that yt is i.i.d..

Misspecified iid model (Miid)

yt = µ+ σyũt, (4)

ũt ∼ i.i.d. N(0, 1) (5)

The key difference between the correct model and the misspecified iid model is that the agent believes that

the conditional mean does not vary over time. Other features of the correct model, such as the Normality

of the innovation and the constant volatility remain the same. In addition, the agent knows correctly the

unconditional mean and variance of yt, i.e., µ and σ2
y . Therefore, the agent is wrong only by missing the

time-variation of the conditional mean.

Based on Miid, the agent derives the “wrong” conditional distribution of yt+1:t+τ as follows:

yt+1:t+τ |Miid ∼ N
(
µτ, σ2

yτ
)

(6)

Here, the conditional mean and the conditional variance of yt+1:t+τ are both linear in τ , and they are shown

in the left panels of Figure 1. The right panels show the per-period mean and variance, i.e., we divide the

conditional mean and variance by τ . The per-period mean and variance are both constant.

The “iid VaR” is

V aR(Rt+τ |t|Miid) = 1− exp
(
µtτ − 2.33

√
σ2
yτ
)
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Figure 1: Conditional mean and variance of yt+1:t+τ assuming Miid

0 50 100 150 200 250

−
0

.1
0

0
.0

0
0

.1
0

0
.2

0
Mean

k

0 50 100 150 200 250

0
e

+
0

0
4

e
−

0
4

Per−period mean

k

0 50 100 150 200 250

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

Variance

0 50 100 150 200 250

0
.0

0
0
1
1
5

0
.0

0
0
1
2
5

Per−period variance

2.3 Case 2: Agent with correct model with observable µt (Oracle)

Now let us consider an agent who has the correct model in mind (M0) and who observes the conditional

expected return or who has a perfect predictor of it. We call this as the “oracle” case and denote by

IFull
t ≡ {µt, yt}. Then

yt+1:t+τ |IFull
t ∼ N(Eτ,oracle, Vτ,oracle) (7)

where

Eτ,oracle = µτ + (µt − µ)Pτ

Pτ =
1− θτ

1− θ

Vτ,oracle = τ

(
σ2
u +

2σuw

1− θ
Aτ +

σ2
w

(1− θ)2
Bτ

)

where Aτ = 1− 1− θτ

τ(1 − θ)
,

Bτ = 1− 2(1− θτ )

τ(1 − θ)
+

1− θ2τ

τ(1− θ2)

The mean is decomposed into two parts: the first term is µτ which is the unconditional mean of yt+1:t+τ and

it is identical to the mean of yt+1:t+τ with Miid. The second term, (µt − µ)Pτ depends on the realization

of µt. Since Pτ > 0 for all τ , E(yt+1:t+τ |IFull
t ) > µτ if and only if µt > µ, and thus the deviation of
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E(yt+1:t+τ |IFull
t ) from µτ is caused only by a deviation of µt from µ. Also, from dPτ

dτ > 0, the deviation of

E(yt+1:t+τ |IFull
t ) increases as τ increases.

Figure 2 shows the conditional mean of yt+1:t+τ given realization of µt.

Figure 2: Conditional mean of yt+1:t+τ for Oracle case (Eτ,oracle)
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Now let us look at the variance. First, the three terms in Vτ,oracle(τ) are called “i.i.d. uncertainty”,

“mean reversion”, and “future µt+j(j = 1, · · · τ − 1) uncertainty” by Pástor and Stambaugh (2012).

Figure 3: Conditional variance of yt+1:t+τ for oracle: Vτ,oracle
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Finally the “oracle VaR” is given by

V aR(Rt+τ |IFull
t ) = 1− exp

(
Eτ,oracle − 2.33

√
Vτ,oracle

)
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2.4 Case 3: Agent with correct model with unobserved µt: ARMA(1,1) ap-

proach

Now let us consider an agent who has the correct model (M0) but who does not observe {µt}. One of the ways

to compute VaR is to use a proxy of µt using some information available. Here, we consider the case where

an agent extracts the information from the past log returns denoted by yt = {yt, yt−1, yt−2, · · · }. Meddahi

(2002) shows how this can be done by introducing an ARMA(1,1) representation.

Meddahi (2002) shows that, if yt follows the correct model M0, as shown in equations 1 to 3, there exists

a real number γ and a white noise process {ηt} with variance σ2
η that satisfies the below equations:7

ARMA(1,1) representation

yt = c+ θyt−1 + ηt − γηt−1 (8)

ηt ∼ i.i.d. N(0, σ2
η) (9)

where the conditional mean c+ θyt − γηt is in the information set yt.
8 Defining it as mt, we have

yt = mt−1 + ηt

mt =
c

1− γ
+ (θ − γ)

∞∑

j=0

γjyt−j

At time t, the agent has the information yt and thus can compute mt as a proxy of µt. It is straightforward

to show that mt is Normally distributed with mean µ and variance σ2
m, with 0 ≤ σ2

m ≤ σ2
µ.

9 Let πm be the

fraction of the variance, πm =
σ2
m

σ2
µ

with 0 ≤ πm ≤ 1. πm indicates a degree of information content of yt on

µt since the conditional distribution of mt given the realization of µt is given by

mt|µt ∼ N((1− πm)µ+ πmµt, σ2
µπm(1− πm))

The mean term implies that, mt is in expectation a weighted average of µ and reaslized µt. When πm is

larger, mt becomes closer to µt in expectation. When πm = 0, we have no information on µt, so we have

mt = µ. πm = 1 means that µt is observed. The conditional distribution of µt given the realization of mt is

given by

µt|mt ∼ N(mt, σ2
µ(1− πm)).

The variance term implies that, as πm becomes larger, we have more precise information on µt. With the

calibrated parameter values, πm = 0.267. It is possible, though we do not consider in this paper, to increase

πm by considering additional information, called predictor variables in the literature, such as dividend-price

ratio (Fama and French (1988)), interest rates and other macro variables. Ludvigson and Ng (2007) extracts

the information from a large set of macro and financial variables using the principal components following

Stock and Watson (2002).

7The new parameters, γ and ση has explicit forms: γ =
−(1−

√
1−4φ2)

2φ
with φ being the ACF(1) of (1 − θL)yt, and

σ2
η =

θσ2
u−σuw

γ
.

8mt = c+ θyt − γηt = c+ θyt − γ(yt −mt−1) = c+ (θ − γ)yt + γmt−1. Therefore (1− γL)mt = c+ (θ − γ)yt
9Actually σ2

m = σ2
y − σ2

η .
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Note that yt is the infinite past history. When the past history is finite, one can use Kalman filter to

obtain the proxy of µt.

The conditional distribution of yt+1:t+τ given yt is below:
10

yt+1:t+τ |yt ∼ N(Eτ,ARMA, Vτ,ARMA) (10)

where

Eτ,ARMA = µτ + (mt − µ)Pτ

Vτ,ARMA = Vτ,oracle + P 2
τ σ

2
µ(1 − πm)

The conditional expectation of yt+1:t+τ has a similar form to that in the oracle case. The only difference is

that we havemt instead of µt. The conditional variance has also a link with the oracle case; unobservability of

µt means uncertainty, and it gives the additional term in the conditional variance (P 2
τ σ

2
µ(1−πm)). Naturally,

with larger πm, this additional term is smaller.

Figure 4 shows the conditional mean of yt+1:t+τ . The solid lines correspond to the mean and per-period

mean of yt+1:t+τ when one uses mt instead of µt. The line 2 is when mt is at the mean (µ). The line 1 (3)

is when mt is at the quantile 5% (95%) value. The dotted lines are the conditional mean of yt+1:t+τ when

one can observe µt, and the line a (b) is when µt is at the quantile 5% (95%). Since the variance of mt is

lower than µt, the variations of the mean of yt+1:t+τ is also smaller when one cannot observe µt. This lack

of variation shows the lack of information.

10The mean and variance are derived from

E(yt+1:t+τ |yt) = E[E(yt+1:t+τ |IFull
t )|yt]

V ar(yt+1:t+τ |yt) = V ar[E(yt+1:t+τ |IFull
t )|yt] +E[V ar(yt+1:t+τ |IFull

t )|yt]

9



Figure 4: Eτ,ARMA and Eτ,oracle
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Oracle: µ at Q5%,
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Note of the figure: The left panel shows Eτ,ARMA and the right panel shows Eτ,ARMA/τ . The solid lines

correspond to the case where one uses mt according to the realization of mt. The dotted lines corresponds

to the oracle case: the upper line is when µt is at quantile 95%, whereas the lower line is when µt is at 5%

quantile.

Next we study the lower and upper bound of the 95% confidence interval of Eτ,oracle given the information

yt. Since Eτ,oracle is a function of µt which is the only random variable,

Eτ,oracle|yt ∼ N(µτ + (mt − µ)Pτ , P 2
τ σ

2
µ(1 − πm))

because of the conditional distribution of µt given yt. Let us denote by Eτ,oracle|yt
and Vτ,oracle|yt

the mean

term and variance term above.

The three panels of Figure 5 shows them according to three different realizations of mt: 5% quantile

(upper-left panel), mean (upper-right panel)and 95% quantile (lower panel). The dotted lines corresponds

to Eτ,oracle when µt is at 5% and 95% quantiles and the mean, and therefore they are the bounds when

agents have no information on µt. The solid line corresponds to Eτ,ARMA and the two gray lines show the

upper and lower bound of the 95 % confidence interval given the realization of mt derived from Eτ,oracle|yt

and Vτ,oracle|yt
. For example, the lines 1a and 1b shows the upper and lower bound of the confidence set

of Eτ,oracle when mt realizes at 5% quantile. Comparing the dotted lines and the gray lines, the confidence

interval shifts downwards because of mt is low. Moreover, the width of the confidence set decreases because

the information from yt resolves some uncertainty.
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Figure 5: Eτ,oracle|yt with different realization of mt
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Note of the figure: The solid line are Eτ,ARMA with three different realizations of mt in three panels. The

dotted lines are Eτ,oracle when µt is at quantiles 5% and 95%. Finally the gray lines are the upper and lower

bounds of the 95% confidence interval of Eτ,oracle given the realization of mt.

Figure 6 shows the distribution of Eτ,arma conditional on the realization of µt.
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Figure 6: Distribution of Eτ,ARMA conditional on realization of µt
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Figure 7 shows the conditional variance of yt+1:t+τ . As a reference, those of oracle case, i.i.d. misspecified

case are also plotted. When µt is not observed, the conditional variance is between the two cases.
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Figure 7: Conditional variance of yt+1:t+τ
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Note of the figure: the left panel shows Vτ,oracle, Vτ,iid and Vτ,ARMA. The right panel shows those divided

by τ . The x-axis is the forecast horizon τ .

Finally, the VaR based on the correct model and unobservable µt which is updated using yt is

V aR(Rt+τ |yt) = 1− exp
(
Eτ,ARMA − 2.33

√
Vτ,ARMA

)

2.5 Term structure of VaR

In this section, we study the “term structure of VaR”, which means that we plot VaR as a function of the

horizon. This enables us to study VaR when we increase the horizon, from 1 day to 10 days, or 22 days. In

the following figures, we let the horizon up to 1 year (250 days). In practice, not many financial institutions

care about VaR of such a long horizon, but there are some papers which emphasizes the importance of

longer-horizon risk management, such as Engle (2011).

We will draw VaR with the three cases discussed above. We call them as “iid VaR”, “oracle VaR” and

“ARMA-based VaR”. Because Basell II Accord uses 1% VaR of 10-day horizon, we consider 1% VaR of

horizons of 1 day up to 1 year.

VaR are shown in the dollar term, i.e., it tells “how much money the agent might lose”. It is obtained by

multiplying a fixed invest amount in the dollar term and the return rate. We fix the invest amount to 2052.6

million dollars having in mind that 1-day VaR of Bank of America in 2015 was 53 million dollars (reported

in page 8 of the annual report, 2015) and 1-day 1% VaR in the return is at about 2.5% with the calibrated

parameter values. Therefore, the dollar-terms VaR is computed as

Dollar term VaR = 2052.6× V aR(Rt+τ |t|M, It)

First, we study the oracle VaR and see how different realizations of the state variable µt affects the

computed VaR in order to see the impact of the time-variability of µt on oracle VaR. We choose several

values of µt and draw the term structure of VaR. By comparing the oracle VaR with different µt, we study

the mean effect. We show that mean effect is more important for a longer horizon, but at as short as 10 day

horizon, there exists a non-negligible mean effect.
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Second, we study iid VaR and see how “well” these VaR are, i.e., how close iid VaR can get to the oracle

VaR. We look at the variance effect by comparing iid VaR with oracle VaR with µt at the mean value. The

two VaR values are computed with the same conditional mean, but different conditional variance. We show

that the variance effect is not as large as the mean effect that we studied with the oracle VaR. Therefore iid

VaR performs well when µt is close to its mean but when µt takes a value far away from its mean, it performs

very badly.

Finally we study ARMA-based VaR. Since ARMA-based VaR is dependent on the realization of mt, we

consider a sort of confidence interval of oracle VaR given the realization of mt. We show that the agent can

adjust their VaR according to the realization of mt, and therefore it performs relatively well especially when

mt takes value far away from its mean.

2.5.1 Oracle VaR

The “oracle VaR” is given by

V aR(Rt+τ |IFull
t ) = 1− exp

(
(Eτ,oracle − 2.33

√
Vτ,oracle

)

Figure 8 and Table 2 show the oracle VaR with 5 different values of µt: (1) 5% quantile, (2) 20% quantile,

(3) mean, (4) 80% quantile and (5) 95% quantile.

Figure 8 shows that the VaR values are fanning out. As the horizon increases, the oracle VaR takes the

value more and more different with each other as the horizon increases. It means that VaR becomes more

and more sensitive to the realization of µt.

Table 2 shows that, at 10-day horizon, the difference of VaR when µt takes quantiles 95% and 5% is 12.2

million dollars, which is about 7.6% of the Oracle VaR when µt takes its mean value. Under the Basel II

framework, the difference of VaR implies 36.6 million dollars difference in the capital held by a bank.
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Figure 8: Term structure of VaR: Oracle VaR
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Table 2: Term structure of VaR: Oracle and iid VaR

Oracle VaR iid VaR

Horizon Q5% Q20% Mean Q80% Q95%

1 53.64 53.32 52.99 52.66 52.34 53.00

10 165.13 162.16 159.04 155.92 152.93 159.51

22 239.91 233.66 227.09 220.50 214.18 228.58

66 394.59 377.76 359.94 341.94 324.57 367.07

125 515.68 486.85 456.07 424.69 394.16 473.10

250 668.33 619.06 565.55 510.04 455.13 607.47

(Million Dollars)

2.5.2 iid VaR

The “iid VaR” is given by

V aR(Rt+τ |t|Miid) = 1− exp
(
µtτ − 2.33

√
σ2
yτ
)
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Note that iid VaR is not vary regardless of the realization of µt. Figure 9 shows the term structure of iid

VaR with the oracle VaR surimposed, and Table 2 shows the iid VaR on the right column. When µt takes

the mean value (line 3 in the graph), the conditional mean in the oracle case coincides with the i.i.d. case

and therefore, the difference between the oracle VaR (line 3) and iid VaR comes only from the difference of

the conditional variance. This difference does not seem large: even at 1 year horizon, the difference is 42

million dollars which accounts 7.4% of the average oracle VaR at this horizon. Therefore, the mean term

seems to have more effect on VaR than the variance term.

Comparing iid VaR with other oracle VaR, there is smaller difference if µt takes lower value, i.e., in the

bad state. This is because the conditional variance is higher with i.i.d. because of the lack of the information.

On the other hand, there is larger difference when µt takes higher value, i.e., in the good state. In this case,

an agent who has the misspecified model wrongly overestimates the VaR which result in having too much

capital in the framework of Basel II.

Figure 9: Term structure of VaR: iid VaR
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2.5.3 ARMA-based VaR

The ARMA-based VaR is given by

V aR(Rt+τ |yt) = 1− exp
(
Eτ,ARMA − 2.33

√
Vτ,ARMA

)
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and it is subject to the realization of the proxy of µt, mt. We compare ARMA-based and oracle VaR as we

do to compare the conditional mean in the above section. Firstly, we compare the unconditional distribution

of VaR in Figure 10 shows ARMA-based VaR in the solid line and oracle VaR in the dotted line. The 3 solid

line corresponds to the case where mt takes its mean value, and 5% and 95% quantile values. The two dotted

line shows the oracle VaR where µt takes these its mean and 5% and 95% quantile values. As can be seen,

the ARMA-based VaR has less variation than the oracle VaR.

Figure 10: ARMA-based VaR compared to oracle VaR
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Now let us study the distribution of the Oracle VaR given mt. Oracle VaR is written as

V aR(Rt+1:t+τ ) = 1− exp
(
Eτ,oracle − 2.33

√
Vτ,oracle

)

where the term inside the exponential is, givenmt, Normally distributed with meanEτ,oracle|mt
−2.33

√
Vτ,oracle

and variance Vτ,oracle|mt
. Therefore the exponential term is log-Normally distributed. From this, we can de-

rive the 5% and 95% quantile of V aR(Rt+1:t+τ ) given mt.

Figure 11 shows a predictive confidence interval of oracle VaR when one uses ARMA(1,1) representation.

The gray lines show the upper and lower bound of the confidence interval at 95% when mt takes values of

5% and 95% quantiles and the mean. The dotted lines are the oracle VaR when µt is at 5% and 95% quantile

of its unconditional distribution, so it may be seen as the confidence interval when one does not use any
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information on µt. If mt takes a low value, it is probable that µt also take a low value, so ARMA-based VaR

becomes larger.

Figure 11: ARMA-based VaR and 5%, 95% Quantile of Oracle VaR given mt
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Table 3: Oracle VaR conditional on realization of mt

Horizon ARMA Oracle given mt

mt 5% Mean 95%

Q5% 1 53.33 53.88 53.33 52.77

10 162.36 167.40 162.18 156.96

22 234.25 244.66 233.70 222.70

66 380.39 407.31 377.81 347.97

125 492.90 537.31 486.80 435.24

250 633.12 704.78 618.49 528.81

Mean 1 53.00 53.55 52.99 52.44

10 159.22 164.26 159.04 153.81

22 227.63 238.08 227.08 216.04

66 362.46 389.67 359.84 329.69

125 461.98 507.27 455.76 403.18

250 579.69 654.04 564.51 471.45

Q95% 1 52.66 53.21 52.66 52.10

10 156.07 161.12 155.89 150.65

22 220.99 231.47 220.43 209.35

66 344.33 371.83 341.69 311.21

125 430.45 476.64 424.11 370.48

250 524.25 601.40 508.50 411.93

(Million dollars)

Now let us study the opposite case, i.e., the distribution of ARMA-based VaR conditional on the realization

of µt.
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Figure 12: ARMA-basd VaR given µt
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Table 4: ARMA-based VaR conditional on realization of µt

Horizon Oracle ARMA-based VaR given µt

µt 5% Mean 95%

Q5% 1 53.64 53.46 53.17 52.88

10 165.13 163.53 160.84 158.14

22 239.91 236.71 231.05 225.37

66 394.59 387.03 371.73 356.30

125 515.68 504.26 478.01 451.31

250 668.33 652.53 607.50 561.03

Mean 1 52.99 53.28 53.00 52.71

10 159.04 161.91 159.22 156.52

22 227.09 233.31 227.63 221.94

66 359.94 377.83 362.46 346.94

125 456.07 488.50 461.98 435.01

250 565.55 625.58 579.69 532.32

Q95% 1 52.34 53.11 52.83 52.54

10 152.93 160.29 157.59 154.89

22 214.18 229.89 224.21 218.50

66 324.57 368.59 353.13 337.52

125 394.16 472.58 445.79 418.55

250 455.13 598.12 551.34 503.06

(Million dollars)

2.5.4 Other parameter values

Appendix shows the oracle and iid VaR computed with different parameter values. When we increase the

variance of µt keeping other parameters constant, VaR becomes more sensitive to the realization of µt, i.e.,

the mean effect becomes larger.

On the other hand, when θ is decreased, i.e., the state variables is assumed to be less persistent, then the

variance effect becomes more important. This is because the state variable mean revert more quickly and

thus there is not many uncertainty as to the future value of µt and thus the conditional variance in the oracle

case decreases. Therefore the iid VaR performs worse and worse as θ becomes smaller.

2.6 Parameter uncertainty: Simulation results

In this section, we simulate 1000 replications of path of size 6250. Then we estimate the i.i.d. model (Miid)

and ARMA(1,1) model. First we discuss the identification issue in estimating the ARMA(1,1) model when

the process is highly persistent. Second we study the properties of VaR computed with estimated parameter

values.

2.6.1 Estimating ARMA(1,1) model

Figure 13 shows histograms of estimated parameter values based on maximum likelihood. The red and solid

lines show the true values. Overall, the distribution of estimators are peaked at the true parameter values.

21



Figure 13: Monte Carlo estimation results: ARMA(1,1) estimation
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2.6.2 Identification issue: is H0 : Miid rejected?

We examine the rate at which the hypothesis that both AR and MA coefficient are equal to zero, which

means that yt is iid. This is to test if Miid is true.

We build the confidence interval for the value of the AR coefficient for each simulation. We do so by

inverting the Likelihood-Ratio test. We take a grid of [−1, 1] with 0.01 interval. Figure 14 demonstrates

the properties of confidence intervals. Out of 1000 simulations, the lower bound of the confidence interval

becomes -0.99 for 869 times, the upper bound becomes 0.99 for 919 times, and the length becomes 0.99 for

828 times. Therefore, it is extremely difficult to distinguish between M0 and Miid by looking at the data.
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Figure 14: Estimator and confidence interval of AR coefficient in ARMA(1,1) model
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Finally, the null hypothesis that both the AR and MA coefficients are equal to zero is rejected at 5 %

level for 182 times out of 1000. In other words, we fail to reject it for 818 times out of 1000.

2.6.3 VaR

We compute the VaR using estimated parameters for the iid model and ARMA(1,1) model. In each case,

we use the estimated parameter values whereas we assume that the value of the state variable, µt is known

at t. The sample mean of ARMA-estimated and iid-estimated VaR are shown in Figures 15. First, ARMA-

estimated VaR changes according to the value of µt. But their variation is much smaller than the oracle VaR.

Second, the iid-estimated VaR is invariant to the value of µt and it is close to the misspecified VaR without

parameter uncertainty. Table 5 summarizes.
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Figure 15: ARMA- and iid- estimated VaR (sample mean)
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Table 5: VaR based on estimation (ARMA and Miid)

µt Horizon Oracle ARMA-estimate iid-estimate

(Days) Mean Q-5% Q-95% Mean Q-5% Q-95%

Q5% 1 53.6 53.6 52.9 54.5 53.0 52.2 53.9

10 165.1 162.7 156.1 168.0 159.5 155.5 163.2

22 239.9 233.7 220.4 245.4 228.5 220.8 235.3

66 394.6 373.7 341.6 408.2 366.8 346.9 384.7

125 515.7 475.3 415.4 530.3 472.4 437.9 503.8

250 668.3 590.5 478.5 695.5 606.0 543.7 662.9

Q20% 1 53.3 53.3 52.6 54.1 53.0 52.2 53.9

10 162.2 160.7 155.4 166.2 159.5 155.5 163.2

22 233.7 229.8 218.3 242.8 228.5 220.8 235.3

66 377.8 364.2 333.5 399.8 366.8 346.9 384.7

125 486.9 460.0 399.8 525.2 472.4 437.9 503.8

250 619.1 566.0 449.0 690.0 606.0 543.7 662.9

Mean 1 53.0 53.0 52.2 53.8 53.0 52.2 53.9

10 159.0 158.6 153.6 164.8 159.5 155.5 163.2

22 227.1 225.7 215.4 240.3 228.5 220.8 235.3

66 359.9 354.2 321.4 396.7 366.8 346.9 384.7

125 456.1 443.7 382.2 519.5 472.4 437.9 503.8

250 565.5 539.6 414.4 683.8 606.0 543.7 662.9

Q80% 1 52.7 52.7 51.9 53.5 53.0 52.2 53.9

10 155.9 156.5 151.6 163.8 159.5 155.5 163.2

22 220.5 221.6 210.9 237.6 228.5 220.8 235.3

66 341.9 344.1 308.7 393.0 366.8 346.9 384.7

125 424.7 427.1 360.1 515.9 472.4 437.9 503.8

250 510.0 512.3 369.4 677.6 606.0 543.7 662.9

Q95% 1 52.3 52.3 51.6 53.2 53.0 52.2 53.9

10 152.9 154.6 149.0 163.1 159.5 155.5 163.2

22 214.2 217.7 205.4 236.1 228.5 220.8 235.3

66 324.6 334.3 294.5 390.3 366.8 346.9 384.7

125 394.2 411.1 332.6 512.5 472.4 437.9 503.8

250 455.1 485.4 322.5 673.7 606.0 543.7 662.9

(Million dollars)

Note of the table: The bold number indicates the closer value to the oracle VaR.

Figure 16 shows the distribution of ARMA-estimation-based VaR with various values of µt. When µt is

lower than the mean, the agent tends to underestimate the risk. When µt is higher than the mean, the agent

tends to overestimate the risk.

Figure 17 shows the distribution of iid-estimation-based VaR. The pattern observed with the ARMA-

estimation-based VaR is more prominent here. When µt is smaller than the mean, the agent almost always

underestimate the risk. When µt is larger than the mean, the agent almost always overestimate the risk.
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Figure 16: ARMA-estimated VaR: distribution
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Figure 17: iid-estimated VaR: distribution
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3 Conditional heteroscedasticity model

3.1 Model

Now let us consider the case where the volatility is time-varying. We consider a model where the characteristic

function of future returns are affine in the state variable at t, so that the analytical computation is possible.

Especially we consider the model proposed by Heston and Nandi (2000) as the following:

Correct (M1)

yt = r + λht−1 +
√
ht−1zt (11)

ht = ω + βht−1 + α(zt − γ
√
ht−1)

2 (12)

zt ∼ i.i.d.N(0, 1) (13)
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with β + αγ2 < 1.11 r is the risk-free rate.

Then the characteristic function of yt+1:t+τ , which we denote by C(τ, u) is affine in ht, i.e., C(τ, u) =

exp (a(τ, u) + b(τ, u)ht) with some function a(·) and b(·). It is possible to invert C(τ, u) to obtain the distri-

bution function of yt+1:t+τ .
12 and the 1% VaR of horizon τ , V aRτ is such that

Pr(yt+1:t+τ ≤ V aRτ ) = 0.01

3.2 Misspecification in the mean

Suppose the true DGP is given as M1 but an agent has a misspecified model as follows:

Misspecified constant mean model (Mcons)

yt = r̃ +
√
ht−1zt (14)

r̃ = r + λE(ht) = r +
ω + α

1− β − αγ2
(15)

ht = ω + βht−1 + α(zt − γ
√
ht−1)

2 (16)

zt ∼ i.i.d.N(0, 1) (17)

Here the agent wrongly assumes that the conditional mean is constant. For now we suppose that the investor

knows the “true” parameter values and ht at time t as well as the parameter values.

3.3 Illustration by estimated parameters

3.3.1 Estimation procedure

We use the estimated results to calibrate the model. The estimation uses S&P 500 daily Index obtained

by CRSP, from 02/01/1990 until 31/31/2015 with 6553 observations. The maximum likelihood estimator is

shown in Table 6:

Table 6: Estimation results

GARCH-in-Mean GARCH

Parameter Estimates Std. error t-stat Estimates Std. error t-stat

λ 2.295 2.179 1.052 0 (fixed)

r(∗) 4.81e-09 1.71e-04 2.80e-05 4.81e-09 1.34e-04 3.56e-05

ω -7.51e-07 4.01e-07 -1.872 -7.73e-07 3.62e-07 -2.132

α 3.46e-06 3.87e-07 8.930 3.47e-06 2.57e-07 13.52

β 0.846 2.01e-02 41.974 0.849 2.69e-02 31.534

γ 192.871 21.809 8.843 192.871 23.988 8.040

Log likelihood 21416.684 21414.706

Obs 6553 6553

(*) with restriction r ≥ 0

11The first and second moment of ht is given by E(ht) =
ω+α

1−β−αγ2 and V ar(ht) =
2α2(1+2γ2E(ht))

1−(β+αγ2)2
.

12See Duffie, Pan, and Singleton (2000) and the Appendix.
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where we put a restriction that r ≥ 0 since it has a theoretical meaning of risk-free rate.

The persistence of ht, β + αγ2 is estimated to be 0.963. The confidence interval based on the likelihood

ratio test for λ is [0.04, 4.56].

λ determines how much the conditional mean varies, i.e., if λ is larger, the importance is higher. Table 7

shows the estimation results from other papers. They use S&P500 Index for different periods of time, and

their estimates vary from 0.205 to 2.899. Given these results in the literature, the estimation we obtained

λ̂ = 2.295 is consistent with the literature.

Table 7: Estimation results from literature

Parameter HN(2000) CJO(2009) CJO(2011)

λ 0.205 2.899 1.661

r fixed fixed fixed

ω 5.02e-6 -7.756e-7 -1.269e-6

α 1.32e-6 4.546e-6 2.807e-6

β 0.589 0.9041 0.9451

γ 421.39 115.9 116.0

Obs 755 2547

(01/08/92-12/30/94) (02/01/95-31/12/04) (06/62-12/09)

CJO(2009): Christoffersen, Jacobs, and ornthanalai (2009)

CJO(2011): Christoffersen, Jacobs, and ornthanalai (2011)

In the next section, we study the VaR treating the estimated parameter values as the “true” values that

generates the data. We also compute the VaR with misspecified model (Mcons) and study the difference

between the VaR with the correcly specified model (M1).

3.3.2 Value of the state variable: ht

In order to compute the VaR based on the information at t, we need the value of the state variable, which is

ht in our case. We chose the sample quantile of 5%, 20%, 80% and 95% as well as the sample mean of the

estimated ht. The sample quantiles and the sample mean are shown in Table 8.

Table 8: Sample quantile of ht

Quantile 5% 20% Mean 80% 95%

Value 2.59e-05 4.54e-05 1.09e-04 1.56e-04 2.65e-04

3.3.3 Mean and variance effect

Figure 18 shows the mean and variance of yt+1:t+τ with ht taking 5 different values. The right panels depicts

the per-period mean and variance of yt+1:t+τ , i.e., Et(yt+1:t+τ )/k and V art(yt+1:t+τ )/k. The per-period

mean converges to the unconditional mean, but the per-period variance converges differently if we have the

correct model and the misspecified model.
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Figure 18: Mean and variance of yt+1:t+τ
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3.3.4 VaR with the two cases

In this section, we consider the oracle VaR, when an agent has the correct model (M1). Here we assume

away the parameter uncertainty, so the agent is assumed to know the true parameter values.

Table 9 and Figure 20 show VaR computed with Garch-in-Mean and Garch model with various values

of ht. For each horizon, the higher the state variable, the greater the VaR is. As the horizon increases, it

increases at first but reduces due to the mean-reversion of the volatility.
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Table 9: VaR with GARCH model in comparison with GARCH-in-Mean model

ht Horizon GARCH-in-Mean GARCH Difference

(days) A B B-A

Q5% 1 24.0 24.2 0.2

10 107.0 110.7 3.7

22 178.5 189.8 11.3

66 346.6 394.9 48.3

125 473.1 570.9 97.8

250 610.0 786.9 176.9

Q20% 1 31.7 32.0 0.3

10 125.8 130.6 4.8

22 200.0 213.7 13.7

66 364.1 417.1 53.0

125 484.2 587.0 102.8

250 615.5 795.9 180.5

Mean 1 48.8 49.3 0.5

10 168.9 177.0 8.2

22 251.2 271.7 20.4

66 410.0 476.5 66.5

125 516.1 633.4 117.3

250 631.9 823.7 191.8

Q80% 1 58.2 59.0 0.8

10 192.6 203.0 10.5

22 280.0 304.9 24.9

66 437.5 512.7 75.3

125 536.4 663.5 127.1

250 643.3 842.9 199.7

Q95% 1 75.3 76.5 1.2

10 235.1 250.2 15.1

22 331.0 365.1 34.1

66 487.8 580.5 92.7

125 575.5 722.5 147.0

250 666.5 883.1 216.6

(Million dollars)
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Figure 19: VaR with GARCH-in-Mean model and GARCH model (250 days)
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Figure 20: VaR with GARCH-in-Mean model and GARCH model (shorter horizons)

2 4 6 8 10

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

10 days

V
a

R
 (

m
ill

io
n

 d
o

lla
rs

)

1
1

2
2

3

3
4

4

5

5

5 10 15 20
0

1
0

0
2

0
0

3
0

0

1 month

V
a

R
 (

m
ill

io
n

 d
o

lla
rs

)

1
12
2

3

34

4
5

5

0 10 20 30 40 50 60

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

3 months

V
a

R
 (

m
ill

io
n

 d
o

lla
rs

)

1

1

2

23

3

4

4
5

5

0 20 40 60 80 100 120

0
2

0
0

4
0

0
6

0
0

6 months

V
a

R
 (

m
ill

io
n

 d
o

lla
rs

)

1

1

2

2

3

3

4

4

5

5

1: Q5%
2: Q20%
3: Mean
4: Q80%
5: Q95%

GARCH−in−Mean GARCH

33



3.4 Parameter uncertainty: Simulation results

In this section, we show the simulation results where we estimate the two models: the correct model

(M1) and the misspecified model (Mcons). The estimation is done by the Maximum Likelihood.

The former case is referred to as “GARCH-in-Mean” and the latter is referred to as “GARCH”

since λ = 0 is imposed. First we discuss the identification issue for λ and then we study the VaR

with estimated parameters with two models.

Simulation procedure is as follows. We first simulate 1000 paths of sample size 2500 with the

data-generating process as in M1 with parameter values the same as the previous section, i.e., shown

in the column (a) of Table 6. Then, we estimate the two models for each simulation.

3.4.1 Estimation of GARCH-in-Mean and GARCH models

Figure 21 shows the Monte Carlo results of the GARCH-in-Mean estimation result. Each panel

shows the histogram of estimated parameter values. The red and dashed lines show the true

parameter values. Overall, the histograms are centered at the true parameter values. Figure 22

shows the counterpart of GARCH.When imposing λ = 0, ω and γ are influenced and the estimations

become far from the true values.

The bottom-right panel shows the histogram of estimated E(ht) with the two models. With the

GARCH-in-Mean, it is centered at the true value, but with GARCH, E(ht) tends to be estimated

to be larger than the true values.

Table 10: Estimation results for GARCH-in-Mean

Sample mean Sample std.dev min max True

r 7.25e-05 1.04e-04 4.74e-09 6.23e-04 4.81e-09

ω -7.44e-07 3.03e-07 -1.66e-06 5.960e-07 -7.51e-07

α 3.37e-06 2.89e-07 2.53e-06 4.30e-06 3.46e-06

β 0.845 1.23e-02 0.803 0.879 0.846

γ 196.95 5.08 192.85 223.15 192.871

λ 1.715 1.949 -3.591 9.317 2.295

Table 11: Estimation results for GARCH

Sample mean Sample std.dev min max

r 1.33e-04 9.97e-05 4.77e-09 5.02e-04

ω -8.10e-07 2.97e-07 -1.68e-06 5.95e-07

α 3.39e-06 2.83e-07 2.58e-06 4.31e-06

β 0.845 1.20e-02 0.804 0.879

γ 197.54 3.76 193.59 219.44
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Figure 21: Monte Carlo: GARCH-in-Mean estimation (simulation = 1000)
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Figure 22: Monte Carlo: GARCH estimation results
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3.4.2 Identification issue for λ: is H0 : λ = 0 rejected?

For each simulation, we conduct a Likelihood-Ratio (LR) test, The null hypothesis that H0 : λ = 0

is rejected at 5% level for 55 times out of 1000 simulations. In other words, we fail to reject it 945

times out of 1000. It means that, we tend to fail to reject λ = 0 when the true value is actually

λ = 2.295.
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We also construct a confidence interval of λ for each simulation by inverting the Likelihood-

Ratio test, by estimating the model imposing λ = −10.0,−9.9, · · · , 9.9, 10.0. The histograms of the

lower bound, upper bound and the length of the confidence intervals are reported in Figure 23. On

average, the confidence interval is from -0.50 until 4.17 and the average length is 4.67. It implies

that the confidence interval for λ is not tight and it is difficult to identify it.

Figure 23: Monte Carlo: Confidence interval of λ
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3.4.3 VaR

We show the VaR computed with estimated parameter values. Table 12 reports the sample mean

of VaR for each horizon. The highlighted two columns are the sample mean of VaR with estimated

parameters for GARCH-in-Mean and GARCH models.

First, comparing the highlighted columns with the oracle VaR, the deviation of estimated VaR

from the oracle VaR increases as the horizon increases. Also, the deviation is larger when the

state variable ht takes larger values. Second, the deviation of GARCH-in-Mean-based VaR is much

smaller than GARCH-based VaR.

Figure 24 show the average value of GARCH-in-Mean-based VaR superimposed on the oracle
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VaR. For any horizon, the two lines are close. On the other hand, the sample mean of GARCH-

based VaR deviates from the oracle VaR.

Finally, Figures 25 and 26 plot 1000 simulated VaRs with GARCH-in-Mean (Figure 25) and

GARCH (Figure 26). With the GARCH-in-Mean, the VaRs are centered at the oracle VaR whereas

the GARCH-based VaRs are systematically above the oracle VaR.
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Table 12: VaR with estimated parameters

ht Horizon Oracle Garch-in-Mean Garch

Mean Diff SD Mean Diff SD

Q5% 1 24.0 23.9 23.5 24.2 23.9 23.5 24.2

10 107.0 105.9 99.3 112.6 107.3 101.4 113.2

22 178.5 177.0 159.9 193.8 182.1 169.3 195.1

66 346.6 347.3 285.4 408.2 372.5 339.5 403.4

125 473.1 479.7 358.9 601.2 532.9 478.5 578.9

250 610.0 626.0 410.2 845.2 724.5 631.1 795.5

Q20% 1 31.7 31.6 31.2 32.0 31.7 31.3 32.0

10 125.8 125.1 117.7 132.6 127.4 121.9 132.9

22 200.0 199.4 180.6 217.9 206.4 194.5 218.1

66 364.1 366.6 299.8 433.6 395.5 363.5 424.2

125 484.2 492.8 366.6 619.8 549.8 495.6 595.0

250 615.5 632.8 413.3 855.8 734.3 640.9 804.6

Mean 1 48.8 48.8 48.2 49.5 49.0 48.7 49.3

10 168.9 169.1 157.9 179.5 173.9 168.9 178.6

22 251.2 252.7 225.5 278.8 264.8 253.9 274.8

66 410.0 417.3 333.7 498.8 456.3 425.1 482.3

125 516.1 530.1 386.7 679.1 598.3 543.2 642.1

250 631.9 653.6 419.1 891.6 764.3 671.4 835.5

Q80% 1 58.2 58.3 57.4 59.1 58.7 58.3 59.0

10 192.6 193.5 179.1 206.9 200.0 195.1 204.5

22 280.0 282.7 249.3 314.0 298.1 287.1 307.7

66 437.5 447.5 351.0 543.0 493.2 460.3 519.7

125 536.4 553.8 397.3 714.9 629.5 572.3 673.9

250 643.3 667.7 421.2 917.1 784.9 691.0 856.7

Q95% 1 75.3 75.4 73.8 76.8 76.2 75.7 76.5

10 235.1 237.2 216.5 256.9 247.3 242.3 251.6

22 331.0 336.3 290.3 380.6 358.6 347.4 368.2

66 487.8 503.1 384.4 623.2 562.0 527.9 589.7

125 575.5 599.3 415.2 789.3 690.3 632.3 737.3

250 666.5 696.7 423.4 966.2 827.9 733.4 901.2

(Million dollars)
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Figure 24: Mean of value-at-risk with estimated parameters , GARCH-in-Mean vs GARCH models
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Figure 25: VaR with Garch-in-Mean model: distribution
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Note: Each panel plot 1000 simulated VaRs with the GARCH-in-Mean estimates. The red line shows the oracle VaR
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Figure 26: VaR with Garch model: distribution
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Note: Each panel plot 1000 simulated VaRs with the GARCH estimates. The red line shows the oracle VaR

4 Model with Realized Variance

Christoffersen, Feunou, Jacobs, and Meddahi (2014) introduce an extension of Heston and Nandi

(2000) which incorporates the dynamics of the Realized Variance (RV).

yt = r + λht−1 +

√
ht−1ε1t

RVt = hRV
t−1 + σv(ε2t)
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ht = κhR
t + (1− κ)hRV

t

hR
t = ω1 + β1h

R
t−1 + α1

(
ε1t − γ1

√
ht−1

)2

hRV
t = ω2 + β2h

RV
t−1 + α2

(
ε2t − γ2

√
ht−1

)2

with (
ε1t

ε2t

)
∼ i.i.d.N

(
0,

(
1 ρ

ρ 1

))

(hR
t , h

RV
t ) follows VAR(1) process:

(
hR
t

hRV
t

)
=

(
ω1 + α1

ω2 + α2

)
+ φ1

(
hR
t−1

hRV
t−1

)
+

(
α1v(ǫ1t)

α2v(ǫ2t)

)

with

φ1 =

(
β1 + α1γ

2
1κ α1γ

2
1(1 − κ)

α2γ
2
2κ β2 + α2γ

2
2(1 − κ)

)

and for j = 1, 2,

v(ǫjt) =

(
ǫjt − γj

√
ht

)2

− 1− γ2
j ht

E [v(ǫjt)] = 0

Therefore, given the largest eigenvalue of φ1 has a modulus smaller than 1,

E

(
hR
t

hRV
t

)
= (I2 − φ1)

−1

(
ω1 + α1

ω2 + α2

)

4.1 Misspecified model

As in the previous chapter, we consider an agent who has a misspecified model without a time-

varying conditional mean.

yt = r̃ +

√
ht−1ε1t

r̃ = r + E(ht)

4.2 Parameter values to compute VaR

We follow the estimation results of Christoffersen, Feunou, Jacobs, and Meddahi (2014). They

estimate the GARV model using daily close-to-close returns and realized variance data for the S&P

500 index for the period Jan. 2, 1990 to Dec. 31, 2010.
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Parameters Estimate Std. Error

κ 0.395 (2.07e-2)

λ 0.97 (1.20)

α1 4.61e-6 (3.57e-7)

β1 9.67e-7 (5.56e-2)

γ1 457 (21.1)

ω1 5.74e-12

α2 2.57e-6 (2.23e-7)

β2 4.07e-6 (6.60e-2)

γ2 617 (45.4)

ω2 5.84e-12

σ 7.50e-6 (5.67e-7)

ρ 0.103 (9.50e-3)

r Fixed and unknown

E(ht) 1.19e-4 (1.34e-5)

We compute the VaR with the two cases with different state variables. We pick the same five

values for ht shown in Table 8. Since E(hR
t ) ≈ E(hRV

t ), we set hR
t = hRV

t = ht for every value of

ht.

4.3 Term structure of VaR

The VaR below is computed using the parameter values estimated by CFJM(2014) with the risk-

free rate 9.81e-05, which is the average of 3-month T-bill rate for this sample. In the figure, the red

lines are with the misspecified constant mean model.
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Table 13: VaR with GARCH model in comparison with GARCH-in-Mean model

ht Horizon GARCH-in-Mean GARCH Difference

(days) A B B-A

Q5% 1 23.9 23.7 -0.2

10 117.3 116.6 -0.7

22 200.2 200.8 0.6

66 396.9 406.9 10.0

125 545.9 567.7 21.9

250 707.1 745.4 38.3

Q20% 1 31.7 31.5 -0.2

10 136.6 136.6 0.0

22 222.9 224.4 1.5

66 415.1 427.3 12.2

125 556.6 580.9 24.3

250 712.9 752.9 40.0

Mean 1 48.9 48.9 -0.0

10 180.8 182.1 1.3

22 276.0 280.7 4.7

66 464.0 481.5 17.5

125 590.3 620.8 30.5

250 731.8 775.9 44.0

Q80% 1 58.4 58.5 0.1

10 205.4 207.7 2.3

22 306.2 312.9 6.7

66 494.3 515.8 21.5

125 613.1 647.6 34.5

250 744.5 791.7 47.2

Q95% 1 75.7 76.0 0.3

10 249.3 253.5 4.2

22 360.8 370.7 9.8

66 549.4 578.1 28.7

125 657.1 699.7 42.6

250 772.2 825.9 53.7

(Million dollars)
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5 Empirical studies

We now use the data and conduct an out-of-sample analysis. The data are the series of SPDR

S&P 500 ETF (SPY). This is an ETF (exchange traded fund) which tracks the S&P 500 Index.

The data spans daily from June 15, 2004 through June 13, 2014, amounting to 2497 observations.

We consider the Heston-Nandi model and Realized Variance model, and compare them with the

counterpart model without Garch-in-mean effect (denoted by λ). In order to study the forecast

ability of the two models, we conduct a Diebold-Mariano test.

5.1 Heston-Nandi Model

First, we consider the model introduced by Heston and Nandi (2000). The “baseline” model refers

to the original model:

yt = r + λht−1 +
√
ht−1zt

ht = ω + βht−1 + α(zt − γ
√
ht−1)

2

zt ∼ i.i.d.N(0, 1)

whereas the “model without the mean effect” refers to the simplified model with λ = 0:

yt = r +
√
ht−1zt

ht = ω + βht−1 + α(zt − γ
√
ht−1)

2

zt ∼ i.i.d.N(0, 1)

Also, we also consider the “model without the leverage effect”, i.e., γ = 0. In this model, we set

Covt(yt+1, ht+1) = 0.

yt = r + λht−1 +
√
ht−1zt

ht = ω + βht−1 + αz2t

zt ∼ i.i.d.N(0, 1)

5.1.1 Out-of-sample analysis

First, we split the data and use the first 1997 observations (06/15/2004 - 06/07/2012) to estimate

the parameters, and then forecast with the remaining 500 observations. Estimation results are

shown in Table 19. We impose r ≥ 0 with an assumption that the risk-free rate is nonnegative, and

ω ≥ 0, β ≥ 0 in order to guarantee the positivity of ht.
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Table 14: estimation with first 1997 obs.

Baseline w/o mean

Parameter estimates S.e. t-stat estimates Std. error t-stat

r 1.21e-15 9.94e-04 0.00 3.17e-16 3.27e-04 0.00

λ 3.17e+00 7.03e+00 0.45

ω 1.60e-25 1.74e-06 0.00 1.03e-25 9.37e-07 0.00

α 3.63e-06 1.24e-06 2.92 3.81e-06 1.10e-06 3.47

β 8.10e-01 5.98e-02 13.54 8.15e-01 4.98e-02 16.37

γ 2.11e+02 3.97e+01 5.31 2.04e+02 3.63e+01 5.63

Log likelihood 6321.875 6320.288

Obs 1997 1997

Persistence 0.971 0.974

w/o leverage

Parameter Estimates S.e. t-stat

r 7.50e-05 5.79e-04 1.30e-01

λ 4.50 6.51e+00 6.91e-01

ω 2.51e-22 2.53e-06 9.94e-17

α 8.40e-06 3.89e-06 2.16e+00

β 9.37e-01 4.53e-02 2.07e+01

γ

Log likelihood 6241.206

Obs 1997

Persistence 0.937

Figure 27 shows the VaR computed with three different models, and Table 15 shows the average

of VaR.
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Figure 27: VaR with three different models (Forecast window = last 500 days)
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Table 15: Mean of VaR (forecast window = last 500 days)

Horizon (days)

1 10 22 66 125 250

Baseline (A) 38.79 145.90 224.48 380.21 480.29 577.74

w/o mean (B) 39.33 155.93 250.68 470.27 643.38 850.36

Difference (B) - (A) 0.54 10.03 26.19 90.07 163.08 272.63

w/o leverage (C) 42.73 138.06 201.08 318.27 392.32 459.27

Difference (C)-(A) 3.94 -7.84 -23.40 -61.94 -87.97 -118.47

(Million dollars)

Table 16: Violation rate (forecast window=last 500 days)

Horizon Baseline w/o mean w/o leverage

1 1.60 1.00 0.80

10 0.00 0.00 0.00

22 0.00 0.00 0.00

66 0.00 0.00 0.00

125 0.00 0.00 0.00

250 0.00 0.00 0.00

(%)

In order to test statistically the forecast performance, we conduct the Diebold-Mariano test.

Suppose f1,t+1|t is the 1% quantile forecast based on the baseline model, and f2,t+1 is that based

on another model. Following Giacomini and Komunjer (2005) we consider the “tick” loss function

that is consistent for the 1% quantile, i.e., the 1% quantile (q) is a minimizer of the following loss

function:

q = argmin
f

E[L(f, y)] = E[−0.99(y − f)I{y≤f} + 0.01(y − f)I{y>f}]

We use this loss function and consider the loss differences, denoted by dt.
13

dt+1 = L(f2,t+1|t, yt+1)− L(f1,t+1|t, yt+1)

13As Patton (2016) points out, there are infinitely many loss functions that is consistent for the quantile, and the

choice of the loss function may matter to evaluate the forecast performance.
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where I{} is an indicator function. Note that we are studying the 1% VaR. Diebold and Mariano

(1995) suggest a test the null hypothesis H0 : E(dt) = 0 under an assumption that {dt} is second-

order stationary and have a short memory. Later Giacomini and White (2006) prove that the same

test statistic can be used when we fix the estimation window that does not go to infinity, under a

mild assumption (Theorem 4 of Giacomini and White (2006)).

we have √
T d

d−→ N(µ,Ω)

where d = 1
T

∑T
t=1 dt, µ = E(dt), and Ω =

∑∞
t=−∞ γd(t) with γd(t) being the auto-covariance

function of {dt}.
We can then conduct a test using a consistent estimator of Ω. We use the Bartlett kernel as

was suggested by Newey and West (1987) and

Ω̂ = V̂ ar(dt) + 2

L∑

l=1

(
1− l

L+ 1

)
Ĉov(dt, dt+l)

According to the rule of thumb, the lag length L is computed as 0.75×T 1/3 = 7.5 with T = 1000.

However The lag should be at least h−1 for h−step ahead forecast, so we use L = h−1 for h = 10, 22

and 66.

Table 17 shows the test results.

Table 17: Diebold-Mariano test: Baseline vs w/o mean

Horizon Mean s.e. t-stat p-value

1 -1.18e-06 1.50e-06 -0.785 0.78

10 5.33e-05 1.48e-06 35.9 0.00

22 1.46e-04 3.84e-06 38.0 0.00

66 5.56e-04 8.63e-06 64.5 0.00

125 1.10e-03 9.39e-06 117 0.00

250 2.05e-03 9.33e-06 220 0.00

Note: d is a sample average of loss difference between the two models, i.e., loss from the model

without the mean minus the loss from the baseline model.

For horizons over 10 days, We reject the null hypothesis of an equal predictive ability of the two

models, and the predictive ability of the baseline model is higher than the model without the mean

effect.

Table 18 shows the test statistic to compare the predictive ability of the baseline model and the

model without the leverage effect. Here, we fail to reject the null hypothesis.
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Table 18: Diebold-Mariano test: Baseline vs w/o leverage effect

Horizon Mean s.e. t-stat p-value

1 5.26E-06 1.06E-05 0.498 0.309

10 -4.33E-05 8.57E-06 -5.05 1.00

22 -1.31E-04 1.37E-05 -9.53 1.00

66 -3.65E-04 1.35E-05 -26.9 1.00

125 -5.46E-04 7.80E-06 -70.0 1.00

250 -7.75E-04 4.27E-06 -181 1.00

5.1.2 Before, during and after the crisis

Now we split the series into three periods, namely before, during and after the crisis. The before

crisis period is from 2004-06-15 to 2007-07-31 (T = 782). The during crisis period is from 2007-08-

02 to 2012-02-28 (T = 1145). Finally the after crisis period is from 2012-02-29 to 2014-06-13 (T =

570). Figure 28 shows the three periods shown in the graph of log returns.

Figure 28: Divided three periods
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5.1.3 Before crisis

For the before crisis period, we estimate the models with the first 391 observations until 2006-01-

03 and forecast with the remaining 391 observations (from 2004-06-15 to 2006-01-03). Table 19

summarizes the estimation result. λ is estimated to be 9.56 which is larger than the estimation
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results in the literature, but it is not significant at 5% level (t-statistic is 0.09). If we test λ = 0 by

the likelihood ratio test, we cannot reject it either. The leverage effect parameter γ is estimated to

be 855 but it is not significant according to its t-statistic. However, we reject the null that γ = 0

by the likelihood ratio test.

Table 19: estimation with before-crisis period

Baseline w/o mean

Parameter estimates S.e. t-stat estimates S.e. t-stat

r 0.00e+00 4.29e-03 0.00e+00 0.00e+00 3.28e-04 0.00e+00

λ 9.56e+00 1.04e+02 9.22e-02

ω 1.95e-06 1.68e-06 1.16e+00 2.28e-06 1.52e-06 1.50e+00

α 4.24e-07 2.09e-06 2.03e-01 4.30e-07 6.40e-07 6.72e-01

β 6.32e-01 1.35e+00 4.70e-01 6.12e-01 4.39e-01 1.39e+00

γ 8.55e+02 3.99e+03 2.14e-01 8.75e+02 1.20e+03 7.32e-01

Log likelihood 1420.681 1419.912

Obs. 391 391

Persistence 0.942 0.941

w/o leverage

Parameter estimates S.e. t-stat

r 0.00e+00 8.45e-03 0.00e+00

λ 9.42e+00 2.01e+02 4.68e-02

ω 3.46e-06 1.19e-05 2.92e-01

α 2.01e-06 1.44e-06 1.39e+00

β 8.72e-01 2.51e-01 3.47e+00

γ

Log likelihood 1413.151

Obs 391

Persistence 0.872

Figure 29 shows the VaR computed with three different models for horizons 10 days, 22 days

and 66 days. Most of the time, the model without the mean effect yields the highest VaR in million

dollars and the model without the leverage effect yields the lowest VaR. vaR from the model without

leverage effect fluctuates less than the other VaR. The lower panel shows the same graph with the

actual loss superimposed. There are several violations for horizons of 10 days and 22 days, in 2006

and 2007. Table 20 shows the average amount of VaR for the three models. The difference between

the baseline model and the model without the mean effect is larger than the difference between the
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baseline model and the model without the leverage effect.
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Figure 29: VaR for before-crisis period
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Table 20: Mean of VaR (Before the crisis)

Horizon (days)

1 10 22 66 125 250

Baseline (A) 28.75 94.33 134.76 199.98 234.49 257.32

w/o mean (B) 29.64 106.43 162.92 280.08 370.48 492.87

Difference (B) - (A) 0.89 12.10 28.15 80.10 135.99 235.55

w/o leverage (C) 30.27 89.95 125.58 190.12 231.51 267.36

Difference (C)-(A) 1.52 -4.38 -9.18 -9.86 -2.98 10.05

(Million dollars)

Table 21 shows the fraction of days where the actual loss exceeds the VaR. For horizons 1 day

and 10 days, the actual loss exceeds the VaR for days more than 1%, which is the target level.

However, for horizons above 22 days, there are less violations than 1%.

Table 21: Violation rate (Before the crisis)

Horizon Baseline w/o mean w/o leverage

1 3.08 2.82 2.82

10 2.89 1.05 2.62

22 0.00 0.00 0.27

66 0.00 0.00 0.00

125 0.00 0.00 0.00

250 0.00 0.00 0.00

(%)

Table 22 shows the Diebold-Mariano test results. For horizons over 22 days, we reject the null

hypothesis that the two have the equal predictive ability in expectation.
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Table 22: Diebold-Mariano test: Baseline vs w/o mean (Before the crisis)

Horizon Mean s.e. t-stat p-value

1 -9.79e-06 4.11e-06 -2.38e+00 9.91e-01

10 -4.01e-05 5.50e-05 -7.28e-01 7.67e-01

22 1.47e-04 2.90e-06 5.07e+01 0.00e+00

66 4.42e-04 5.62e-06 7.86e+01 0.00e+00

125 7.76e-04 6.07e-06 1.28e+02 0.00e+00

250 1.42e-03 5.76e-06 2.46e+02 0.00e+00

Note: d is a sample average of loss difference between the two models, i.e., loss from the model

without the mean minus the loss from the baseline model.

Table 23 shows the results to test equal predictive ability of the baseline model versus the model

without the leverage effect.

Table 23: Diebold-Mariano test: Baseline vs w/o leverage effect (Before the crisis)

Horizon Mean s.e. t-stat p-value

1 -1.13e-05 1.01e-05 -1.11e+00 8.67e-01

10 -2.83e-05 1.72e-05 -1.65e+00 9.50e-01

22 -3.85e-05 9.06e-06 -4.25e+00 1.00e+00

66 -5.40e-05 4.70e-06 -1.15e+01 1.00e+00

125 -1.68e-05 2.25e-06 -7.49e+00 1.00e+00

250 5.57e-05 1.10e-07 5.07e+02 0.00e+00

5.1.4 During crisis

For the during crisis period, we estimate the models with the first 573 observations from 2007-08-02

until 2009-11-12 and forecast with the remaining 572 observations (from 2009-11-13 to 2012-02-28).

Table 24 summarizes the estimation results. λ is estimated to be 0.56 which is much lower than the

estimated λ before the crisis period, but it is still positive value. It means that, when the volatility

is high the expected return is higher but not as high as before-crisis period. The leverage effect

parameter γ is estimated to be 197 and it is significant by its t-statistic.
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Table 24: Estimation with during-crisis period

Baseline w/o mean

Parameter Estimates S.e. t-stat Estimates S.e. t-stat

r 0.00e+00 3.13e-03 0.00e+00 0.00e+00 1.18e-03 0.00e+00

λ 5.67e-01 8.01e+00 7.07e-02

ω 4.90e-19 1.41e-05 3.48e-14 2.85e-19 7.79e-06 3.66e-14

α 7.43e-06 6.49e-06 1.14e+00 7.63e-06 5.35e-06 1.43e+00

β 6.86e-01 2.20e-01 3.11e+00 6.91e-01 1.42e-01 4.85e+00

γ 1.97e+02 5.66e+01 3.48e+00 1.93e+02 5.47e+01 3.53e+00

Log likelihood 1540.329 1540.274

Obs. 573 573

Persistence 0.974 0.975

w/o leverage

Parameter Estimates S.e. t-stat

r 6.56e-15 2.05e-03 3.19e-12

λ 1.36e+00 8.50e+00 1.60e-01

ω 7.02e-83 8.54e-06 8.22e-78

α 2.09e-05 8.63e-06 2.42e+00

β 9.37e-01 4.50e-02 2.08e+01

γ

Log likelihood 1513.23

Obs 573

Persistence 0.937

Figure 30 shows the VaR forecast with three models. Because the estimated λ is close to zero,

there is not large difference between the baseline and without mean effect. VaR with the model

without the leverage effect is more smooth and overall it is below the other two VaR. Table 25

shows the average of VaR. The average VaR is twice as large as VaR computed for before-crisis

period.
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Figure 30: VaR forecast: during crisis: 2009-11-13 to 2012-02-28 (T=572)
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Table 25: Mean of VaR (During the crisis)

Horizon (days)

1 10 22 66 125 250

Baseline 60.60 237.07 371.57 652.15 846.76 1055.71

w/o mean 60.74 241.55 383.34 690.65 912.17 1153.86

Difference 0.14 4.48 11.78 38.50 65.41 98.16

w/o leverage 65.80 220.42 328.05 541.13 692.89 872.55

Difference 5.20 -16.65 -43.52 -111.02 -153.87 -183.16

(Million dollars)

Table 26 shows the violation rate. For 1-day horizon, the violation rate is close to 1% with the

baseline model and the model without the mean effect. The violation rate gradually reduces and

finally becomes zero at 66 day horizon.

Table 26: Violation rate (during the crisis)

Horizon Baseline w/o mean w/o leverage

1 1.75 1.75 0.35

10 0.89 0.89 0.71

22 0.18 0.18 0.18

66 0.00 0.00 0.00

125 0.00 0.00 0.00

250 0.00 0.00 0.00

(%)

Table 27 summaries the Diebold-Mariano test comparing the predictive ability of the baseline

model and the model without the mean effect. At 5% level, we reject the null of equal predictive

ability for horizons above 22 days. Table 28 shows the test results comparing the predictive ability

of the baseline model and the model without the leverage effect. At 5% level, we reject the null for

horizons above 22 days.
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Table 27: Diebold-Mariano test: Baseline vs w/o mean

Horizon Mean s.e. t-stat p-value

1 -1.43e-06 8.76e-07 -1.63e+00 9.49e-01

10 5.68e-06 1.76e-05 3.22e-01 3.74e-01

22 6.32e-05 9.41e-06 6.72e+00 9.12e-12

66 2.83e-04 1.14e-05 2.49e+01 0.00e+00

125 5.55e-04 1.23e-05 4.51e+01 0.00e+00

250 1.03e-03 8.98e-06 1.14e+02 0.00e+00

Note: d is a sample average of loss difference between the two models, i.e., loss from the model

without the mean minus the loss from the baseline model.

Table 28: Diebold-Mariano test: Baseline vs w/o leverage effect

Horizon Mean s.e. t-stat p-value

1 -5.13e-06 2.62e-05 -1.96e-01 5.78e-01

10 -6.21e-05 4.49e-05 -1.38e+00 9.17e-01

22 -2.88e-04 4.58e-05 -6.30e+00 1.00e+00

66 -7.86e-04 7.90e-05 -9.95e+00 1.00e+00

125 -1.19e-03 5.95e-05 -1.99e+01 1.00e+00

250 -1.65e-03 3.17e-05 -5.20e+01 1.00e+00

5.1.5 After crisis

For the after crisis period, we estimate the models with the first 285 observations from 2012-02-29

until 2013-04-23 and forecast with the remaining 285 observations (from 2013-04-24 to 2014-06-13).

Table 29 summarizes the estimation result. λ is estimated to be 7.53 which is larger than the

estimation results in the literature, but it is not significant at 5% level (t-statistic is 0.40). If we

test λ = 0 by the likelihood ratio test, we fail to reject it either. The leverage effect parameter γ is

estimated to be 160 but it is not significant according to its t-statistic. However, we reject the null

that γ = 0 by the likelihood ratio test.
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Table 29: estimation with after-crisis period

Baseline w/o mean

Parameter estimates S.e. t-stat estimates S.e. t-stat

r 0.00e+00 1.93e-03 0.00e+00 0.00e+00 7.53e-04 0.00e+00

λ 7.53e+00 1.87e+01 4.02e-01

ω 3.19e-147 3.41e-05 9.33e-143 7.36e-149 1.56e-05 4.72e-144

α 5.97e-06 4.31e-05 1.38e-01 6.20e-06 1.92e-05 3.23e-01

β 7.65e-01 1.60e+00 4.77e-01 7.68e-01 6.92e-01 1.11e+00

γ 1.60e+02 1.43e+03 1.12e-01 1.62e+02 5.96e+02 2.71e-01

Log likelihood 975.094 974.469

Obs. 285 285

Persistence 0.919 0.930

w/o leverage

Parameter estimates S.e. t-stat

r 0.00e+00 3.46e-03 0.00e+00

λ 1.33e+01 4.43e+01 3.01e-01

ω 5.81e-44 7.90e-06 7.36e-39

α 9.23e-06 1.30e-05 7.10e-01

β 8.72e-01 5.68e-02 1.54e+01

γ

Log likelihood 966.331

Obs 285

Persistence 0.872

Figure 31 shows the VaR forecast with three models, and Table 30 shows the average of VaR.

The baseline VaR is smaller than the VaR without the mean effect but larger than VaR without

the leverage effect except for 1 day horizon. At 10 day horizon, the difference is 21.64 and 23.34

million dollars.
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Figure 31: VaR forecast after the crisis: 2013-04-24 - 2014-06-13 (T = 285)
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Table 30: Mean of VaR (After the crisis)

Horizon (days)

1 10 22 66 125 250

Baseline 34.05 127.06 181.70 259.32 294.72 309.15

w/o mean 34.93 148.70 234.73 404.34 524.81 679.40

Difference 0.88 21.64 53.04 145.02 230.10 370.25

w/o leverage 34.62 103.71 139.31 186.11 192.87 140.11

Difference 0.57 -23.34 -42.39 -73.21 -101.85 -169.04

(Million dollars)

Table 31 shows the violation rate. It exceeds 1% at 1 day horizon but is is lower than 1% for

horizons above 10 days.

Table 31: Violation rate (After the crisis)

Horizon Baseline w/o mean w/o leverage

1 1.41 1.41 2.11

10 0.00 0.00 0.73

22 0.00 0.00 0.00

66 0.00 0.00 0.00

125 0.00 0.00 0.00

250 0.00 0.00 0.00

(%)

Table 32 shows the Diebold-Mariano test comparing the predictive ability of the baseline model

and the model without the mean effect, and Table 33 to compare the baseline model and the model

without leverage effect. For both test, for horizons above 10 days, we reject the null hypothesis of

equal predictive ability.
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Table 32: Diebold-Mariano test: Baseline vs w/o mean

Horizon Mean s.e. t-stat p-value

1 -3.09e-06 3.96e-06 -7.80e-01 7.82e-01

10 1.14e-04 4.16e-06 2.75e+01 0.00e+00

22 2.91e-04 7.67e-06 3.80e+01 0.00e+00

66 8.46e-04 6.54e-06 1.29e+02 0.00e+00

125 1.40e-03 6.69e-06 2.10e+02 0.00e+00

250 2.39e-03 8.78e-06 2.72e+02 0.00e+00

Note: d is a sample average of loss difference between the two models, i.e., loss from the model

without the mean minus the loss from the baseline model.

Table 33: Diebold-Mariano test: Baseline vs w/o leverage effect

Horizon Mean s.e. t-stat p-value

1 1.87e-05 1.09e-05 1.71e+00 4.35e-02

10 -1.18e-04 9.52e-06 -1.24e+01 1.00e+00

22 -2.28e-04 8.94e-06 -2.55e+01 1.00e+00

66 -4.01e-04 3.01e-06 -1.33e+02 1.00e+00

125 -5.63e-04 1.85e-06 -3.05e+02 1.00e+00

250 -9.26e-04 8.95e-07 -1.04e+03 1.00e+00

5.1.6 Estimation with all observations

Table 34 shows the estimation result using all the sample. The mean parameter λ is estimated to

be 4.11 and it is not significant according to its t-statistic. However, we reject the null that λ = 0

at 5% by the likelihood ratio test. The leverage effect parameter γ is estimated to be 235 and it is

significant according to its t-statistic. Also we reject the null γ = 0 by the likelihood ratio test.
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Table 34: Estimation with all observations

Baseline w/o mean

Parameter estimates S.e. t-stat estimates S.e. t-stat

r 0.00e+00 7.36e-04 0.00e+00 0.00e+00 2.63e-04 0.00e+00

λ 4.11e+00 6.11e+00 6.72e-01

ω 2.35e-18 1.30e-06 1.81e-12 4.62e-18 7.73e-07 5.98e-12

α 3.18e-06 9.75e-07 3.27e+00 3.37e-06 8.92e-07 3.77e+00

β 7.94e-01 5.34e-02 1.49e+01 8.00e-01 4.82e-02 1.66e+01

γ 2.35e+02 4.17e+01 5.64e+00 2.28e+02 3.78e+01 6.03e+00

Log likelihood 8079.713 8076.810

Obs. 2497 2497

Persistence 0.971 0.975

w/o leverage

Parameter estimates S.e. t-stat

r 0.00e+00 5.38e-04 0.00e+00

λ 6.86e+00 6.67e+00 1.03e+00

ω 5.90e-19 2.05e-06 2.87e-13

α 7.62e-06 3.11e-06 2.45e+00

β 9.33e-01 4.22e-02 2.21e+01

γ

Log likelihood 7972.523

Obs 2497

Persistence 0.933

5.2 Realized Variance Model

We consider the model introduced by Christoffersen, Feunou, Jacobs, and Meddahi (2014). The

“baseline” model refers to the original model,

ht = κhR
t + (1− κ)hRV

t

hR
t = ω1 + β1h

R
t−1 + α1

(
ε1t − γ1

√
ht−1

)2

hRV
t = ω2 + β2h

RV
t−1 + α2

(
ε2t − γ2

√
ht−1

)2
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with (
ε1t

ε2t

)
∼ i.i.d.N

(
0,

(
1 ρ

ρ 1

))

the “model without the mean effect” sets λ = 0 and the “model without the levreage effect” set

γ1 = γ2 = 0.

The estimation is done by QMLE, assuming that yt and RVt are, conditional on the information

at t− 1, jointly normally distributed.

(
yt

RVt

∣∣∣∣∣ It−1

)
∼
((

r + λht−1

hRV
t−1

)
,

(
ht−1 −2ργ2σht−1

−2ργ2σht−1 2σ2(1 + 2γ2
2ht−1)

))

Note that by setting γ2 = 0 for the model without the leverage effect, we assume that the

conditional covariance between the yt and RVt are zero, and ρ is not identified.

5.2.1 Out-of-sample analysis

We split the data and use the first 1997 observations (06/15/2004 - 06/07/2012) to estimate the

parameters, and then forecast with the remaining 500 observations. Estimation results are shown in

Table 35. We impose r ≥ 0 with an assumption that the risk-free rate is nonnegative, and ωj ≥ 0,

βj ≥ 0 for j = 1, 2 in order to guarantee the positivity of ht.

Table 35: estimation with first 1997 observations

Baseline w/o mean

Parameter Estimates S.e. t-stat Estimates S.e. t-stat

κ 2.37e-02 2.71e-02 8.72e-01 3.30e-02 3.34e-02 9.90e-01

α1 1.21e-04 1.40e-04 8.62e-01 8.54e-05 8.74e-05 9.77e-01

β1 2.39e-05 7.66e-02 3.11e-04 1.82e-15 7.70e-02 2.36e-14

γ1 3.56e+02 2.59e+01 1.38e+01 3.62e+02 2.66e+01 1.36e+01

ω1 5.24e-100 2.22e-04 2.36e-96 6.39e-113 1.42e-04 4.48e-109

α2 2.50e-06 2.84e-07 8.81e+00 2.53e-06 2.87e-07 8.82e+00

β2 0.00e+00 6.77e-02 0.00e+00 0.00e+00 6.99e-02 0.00e+00

γ2 4.94e+02 4.99e+01 9.90e+00 4.93e+02 4.95e+01 9.97e+00

ω2 2.75e-11 5.24e-06 5.24e-06 9.62e-17 5.10e-06 1.89e-11

σ 6.35e-06 5.94e-07 1.07e+01 6.38e-06 5.98e-07 1.07e+01

ρ 2.05e-01 1.93e-02 1.06e+01 2.03e-01 1.90e-02 1.07e+01

λ 2.50e+00 1.97e+00 1.27e+00

r 1.41e-224 2.02e-04 6.97e-221 1.34e-229 1.75e-04 7.67e-226

Log likelihood 24753.86 24752.63

Obs. 1997 1997
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w/o leverage

Parameter estimates S.e. t-stat

κ 5.12e-01 6.39e-02 8.02e+00

α1 6.80e-06 2.58e-06 2.63e+00

β1 9.27e-01 2.75e-02 3.38e+01

γ1

ω1 6.72e-18 3.05e-06 2.20e-12

α2 4.18e-05 5.95e-07 7.02e+01

β2 8.40e-01 1.31e-02 6.42e+01

γ2

ω2 1.88e-49 1.11e-05 1.69e-44

σ 1.34e-04 3.49e-07 3.83e+02

ρ

λ -1.06e-01 3.05e+00 -3.46e-02

r 3.68e-04 4.59e-04 8.02e-01

Log likelihood 22237.11

Obs 1997

The mean parameter λ is estimated to be 2.50 which is smaller than the estimates with the

Heston-Nandi model and it is not significant according to its t-statistic. Also we fail to reject the

null hypothesis that λ = 0 by the likelihood ratio test. The leverage effect parameter γ1 and γ2 are

estimated to be 356 and 494 respectively and these are both significant according to its t-statistics.

Also we reject the null hypothesis that γ1 = γ2 = 0 by the likelihood ratio test. Figure 32 shows

the VaR with three different models, and Table 36 shows their average value. The baseline VaR

is, on average, smaller than the VaR without the mean effect. This is the same pattern as in the

Heston-Nandi model. The difference at 10 horizon is 8.74 million dollars. When we compare the

baseline VaR and the VaR without the leverage effect exhibits nonmonotone pattern. VaR without

the leverage effect is larger on average except for the 66 day horizon.
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Figure 32: VaR with three different models (Forecast window = last 500 days)
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Table 36: Mean of VaR (forecast window = last 500 days)

Horizon (days)

1 10 22 66 125 250

Baseline (A) 33.87 151.82 242.77 416.95 525.14 637.38

w/o mean (B) 34.08 160.57 269.52 514.83 694.54 899.19

Difference (B)-(A) 0.21 8.74 26.76 97.88 169.40 261.81

w/o leverage (C) 42.52 159.53 244.47 407.82 526.63 671.66

Difference (C)-(A) 8.65 7.71 1.70 -9.13 1.49 34.28

(Million dollars)

Table 37 shows the violation rate. It is close to 1% at 1 day horizon but it becomes zero for

horizons larger than 10 days.

Table 37: Violation rate (forecast window=last 500 days)

Horizon Baseline w/o mean w/o leverage

1 1.80 1.80 1.00

10 0.00 0.00 0.00

22 0.00 0.00 0.00

66 0.00 0.00 0.00

125 0.00 0.00 0.00

250 0.00 0.00 0.00

(%)

Finally Table 38 shows the Diebold-Mariano test statistics comparing the predictive ability of

the baseline model and the model without the mean effect. From 10 day horizons, we reject the

null hypothesis of the equal predictive ability.
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Table 38: Diebold-Mariano test: Baseline vs w/o mean

Horizon Mean S.e. t-stat p-value

1 -2.26e-07 4.79e-07 -4.71e-01 6.81e-01

10 4.66e-05 1.44e-06 3.24e+01 0.00e+00

22 1.51e-04 3.56e-06 4.23e+01 0.00e+00

66 6.19e-04 6.54e-06 9.46e+01 0.00e+00

125 1.18e-03 4.86e-06 2.43e+02 0.00e+00

250 2.05e-03 3.04e-06 6.75e+02 0.00e+00

Note: d is a sample average of loss difference between the two models, i.e., loss from the model

without the mean minus the loss from the baseline model.

Table 39 shows the test statistic to compare the predictive ability of the baseline model and the

model without the leverage effect. The result is not monotone: we reject the null hypothesis for

horizons 10 days and above 66 days.

Table 39: Diebold-Mariano test: Baseline vs w/o leverage effect

Horizon Mean S.e. t-stat p-value

1 -1.24e-05 2.18e-05 -5.70e-01 7.16e-01

10 3.75e-05 1.15e-05 3.27e+00 5.38e-04

22 3.93e-06 1.42e-05 2.77e-01 3.91e-01

66 -5.66e-05 8.92e-06 -6.34e+00 1.00e+00

125 9.20e-06 3.73e-06 2.46e+00 6.87e-03

250 2.45e-04 1.53e-06 1.60e+02 0.00e+00

6 Conclusion

In this paper, we consider the effect of ignoring the time-variability of the conditional mean on the

computation of the VaR. We show that, even though the constant mean may not be rejected at 5%

level, we should estimate the model with the time-varying mean since they will have a large impact

on the VaR.
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7 Appendix

7.1 Other Calibration: constant volatility model

We first pick θ = 0.999 (so that its counterpart of annually aggregated return is θ250 = 0.78) and

the annual R2 = 0.06 (one of the posterior mode of PS(2012)). Making them as a benchmark, we

vary the values of θ and the annual R2, fixing the other parameters to be constant or keeping the

first and second moments of yt. The calibration designs are shown in Table 40.

Table 40: Calibration design

Fix θ = 0.999 Annual R2 = 0.01

0.06

0.10

0.20

Fix Annual R2 = 0.06 θ = 0.999

0.99

0.98

0.95

(underline is drawn for the benchmark calibration.)

In Table 40, the first four rows show the calibration fixing θ = 0.999. We vary the annual R2

to be 0.01, 0.06, 0.10 and 0.20. 0.01 and 0.20 are extreme values that are not likely according

to PS(2012), and 0.10 is the other postrior mode of PS(2012). The second four rows shows the

calibration fixing the annual R2 = 0.06. We vary θ to be 0.999, 0.99, 0.98 and 0.95. We consider

that µt is very persistent and believe that this range is reasonable.

Figures 33 and 34 show some properties of different calibrations. Figure 33 As shown in Figure

33, the R2 grows monotonically when θ = 0.999, whereas it is hump-shaped. Figure 34 shows the

unconditional variance of aggregated log return, yht as a function of h. From the data, the variance

of annual log return is about 18%. The figure shows that the variance of annual log return is the

most close to the data when θ = 0.999 and it is not sensitive to the annual R2.
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Figure 33: Term structure of R2: R2 of y
(h)
t as a function of h
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Note: R2 is defined to be the variance of µt divided by the variance of yt, which is the R2 if we

regress yt on µt.
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Figure 34: Variance of aggregated return y
(h)
t as a function of h
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7.1.1 Mean and Variance effect with various calibrations

In this section, let us compare the properties of E(yt+1:t+τ ), V ar(yt+1:t+τ ) when (i) an agent have

a misspecified iid model (Miid), and (ii) an agent has the correct model and observes µt (full

information). In all figures, the red and dashed lines correspond to case (i), and the black and solid

lines correspond to the case (ii). For the full information case, the following five values for µt are

chosen for the demonstration:

Table 41: Five values of µt to compute oracle VaR

µ1 µ2 µ3 µ4 µ5

Mean-2sd Mean - 1sd Mean Mean + 1sd Mean + 2sd

where each values are drawn from the unconditional distribution, µt ∼ N(µ, σ2
µ).

Figures 35 and 36 show E(yt+1:t+τ ) as a function of τ with various calibrations. When θ = 0.999,

the mean grows almost linearly with the horizon. On the other hand, when θ takes smaller values,

it converges quickly. The same pattern is observed by Figures 37 and 38.
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Figure 35: Mean of yt+1:t+τ as a function of τ : fixing θ = 0.999
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Figure 36: Mean of yt+1:t+τ as a function of τ : fixing annual R2 = 0.06
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Figure 37: Per-period mean of yt+1:t+τ as a function of τ : fixing θ = 0.999
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Figure 38: Per-period mean of yt+1:t+τ as a function of τ : fixing annual R2 = 0.06
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Figure 39 shows V ar(yt+1:t+τ ) in the left panels and the per-period variance (vτ,iid and vτ,full)

in the right panels. The per-period variance is constant for misspecified iid model, and those with

full information is smaller than that. The difference is larger as the annual R2 is larger (fixing θ),

and θ is smaller (fixing annual R2).

Figure 39: Variance and per-period variance
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7.1.2 VaR

Figure 40 shows the VaR with calibrations fixing θ = 0.999 while varying the annual R2. As the

annual R2 increases, the variation of VaR based on different values of µt increases. However, the

overall relationship between the VaR with misspecified iid model is the same, i.e., the iid-based

VaR lies between the line 2 and line 3 of each panel. Table 3 shows the values of selected horizons.

Table 42 summarizes it.
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Figure 40: VaR: fixing θ = 0.999
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Table 42: VaR: fixing θ = 0.999

Annual R2 = 0.01

oracle VaR iid VaR

Days µ1 µ2 µ3 µ4 µ5

1 53.3 53.2 53.0 52.8 52.7 53.0

10 162.3 160.8 159.3 157.8 156.4 159.5

22 234.2 231.2 228.0 224.8 221.7 228.6

66 381.1 372.8 364.2 355.5 347.1 367.1

125 495.2 481.0 466.1 451.0 436.5 473.1

250 640.2 615.9 590.1 563.9 538.2 607.5

Annual R2 = 0.06 (benchmark)

oracle VaR iid VaR

Days µ1 µ2 µ3 µ4 µ5

1 53.8 53.4 53.0 52.6 52.2 53.0

10 166.3 162.7 159.0 155.3 151.8 159.5

22 242.4 234.9 227.1 219.3 211.7 228.6

66 401.1 381.1 359.9 338.5 317.7 367.1

125 526.8 492.6 456.1 418.7 382.0 473.1

250 687.2 628.9 565.5 499.4 433.1 607.5

Annual R2 = 0.10

oracle VaR iid VaR

Days µ1 µ2 µ3 µ4 µ5

1 54.0 53.5 53.0 52.5 52.0 53.0

10 168.3 163.7 158.9 154.1 149.5 159.5

22 246.3 236.7 226.6 216.5 206.7 228.6

66 410.9 385.2 357.9 330.1 303.1 367.1

125 542.2 498.3 451.2 402.7 354.7 473.1

250 710.2 635.7 553.8 467.2 379.2 607.5

Annual R2 = 0.20

oracle VaR iid VaR

Days µ1 µ2 µ3 µ4 µ5

1 54.4 53.7 53.0 52.3 51.6 53.0

10 171.9 165.4 158.6 151.8 145.3 159.5

22 253.6 240.0 225.8 211.5 197.6 228.6

66 428.8 392.6 354.1 314.6 275.9 367.1

125 570.3 508.9 442.4 372.9 303.4 473.1

250 752.2 649.1 533.0 407.2 276.8 607.5

(million dollars)
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Figure 41 shows the VaR with calibrations fixing annual R2 = 0.06 while varying θ. As θ

decreases, VaR based on misspecified iid model deviates more from the oracle VaR. Table 43 sum-

marizes it.

Figure 41: VaR: fixing annual R2 = 0.06
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Table 43: VaR: fixing annual R2 = 0.06

θ = 0.999 (benchmark)

oracle VaR iid VaR

Days µ1 µ2 µ3 µ4 µ5

1 53.8 53.4 53.0 52.6 52.2 53.0

10 166.3 162.7 159.0 155.3 151.8 159.5

22 242.4 234.9 227.1 219.3 211.7 228.6

66 401.1 381.1 359.9 338.5 317.7 367.1

125 526.8 492.6 456.1 418.7 382.0 473.1

250 687.2 628.9 565.5 499.4 433.1 607.5

θ = 0.99

oracle VaR iid VaR

Days µ1 µ2 µ3 µ4 µ5

1 54.5 53.8 53.0 52.2 51.4 53.0

10 170.7 163.8 156.7 149.6 142.7 159.5

22 247.8 234.2 219.9 205.6 191.7 228.6

66 394.3 363.6 331.1 297.9 265.5 367.1

125 489.0 446.2 400.3 353.1 306.6 473.1

250 579.5 527.5 471.3 413.1 355.2 607.5

θ = 0.98

oracle VaR iid VaR

Days µ1 µ2 µ3 µ4 µ5

1 55.4 54.2 52.9 51.6 50.4 53.0

10 175.1 164.4 153.3 142.1 131.3 159.5

22 251.4 231.4 210.3 188.9 168.1 228.6

66 380.7 342.3 301.3 259.4 218.2 367.1

125 451.9 405.8 356.4 305.5 255.2 473.1

250 518.0 470.3 419.0 366.0 313.5 607.5

θ = 0.95

oracle VaR iid VaR

Days µ1 µ2 µ3 µ4 µ5

1 58.1 55.4 52.6 49.8 47.1 53.0

10 182.3 161.8 140.3 118.6 97.5 159.5

22 249.1 215.8 180.4 144.3 109.1 228.6

66 339.5 294.1 245.5 195.6 146.4 367.1

125 389.8 344.2 295.5 245.3 195.8 473.1

250 448.4 404.4 357.3 308.8 261.0 607.5

(million dollars)
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7.2 ARMA(1,1) representation

We have M0. Letting L be a back-shift operator, and by yt = µt−1 + ut,

(1 − θL)yt = (1 − θL)(µt−1 + ut) = (1 − θL)µt−1 + (1 − θL)ut.

= c+ wt−1 + ut − θut−1

where the last equality comes from the fact that µt = c+ θµt−1 + wt. Let us define zt as follows:

zt ≡ (1 − θL)yt − c.

Since zt = wt−1 + ut − θut−1, Cov(zt, zt−1) = σuw − θσ2
u and Cov(zt, zt−h) = 0 for all h such

that |h| > 1. Therefore, zt has an MA(1) representation with E(zt) = 0. Thus, letting {ηt} be a

second-order white noise, zt can be expressed as the following:

zt = ηt − γηt−1

Let ACF(1) of zt be λ which is
σuw−θσ2

u

σ2
w+(1+θ2)σ2

u−2θσuw
. Then, λ = Cov(zt,zt−1)

V ar(zt)
= −γ

1+γ2 and thus

λγ2 + γ + λ = 0. First, since the discriminant of this equation is positive,14 the two solutions are

real. Second, since the product of the solutions are one and we are interested in the case where

|γ| < 1, we select the smaller solution, i.e., γ = −(1−
√
1−4λ2)

2λ . With the parameter values above, yt

has the following ARMA(1,1) representation:

yt = c+ θyt−1 + ηt − γ ηt−1

Since (ut, wt)
′ is iid and normally distributed, ηt is a m.d.s. V ar(ηt) ≡ σ2

η =
θσ2

u−σuw

γ =
σ2
w+(1+θ2)σ2

u−2θσuw

1+γ2 .

7.3 Characteristic function of Heston Nandi Model

The characteristic function of yt+1:t+τ |yt, St is

C(τ, u) = exp (a(τ, u) + b(τ, u)ht)

a(τ, u) = a(τ − 1, u) + iur + b(τ − 1, u)ω − 1

2
log(1 − 2αb(τ − 1, u))

b(τ, u) = iu(λ+ γ)− 1

2
γ2 + βb(τ − 1, u) +

1/2(iu− γ)2

1− 2αb(τ − 1, u)

a(0, u) = 0, b(0, u) = 0

For example, when τ = 1,

a(1, u) = iur, b(1, u) = −1

2
u2 + iuλ, C1(u) = −1

2
u2ht + iu(r + λht)

which is the characteristic function of N(r + λht, ht).

14Since λ = −γ
1+γ2 , |λ| ≤ 1

2
. Thus, ∆ = 1− 4λ2 ≥ 0.
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7.4 Inverting characteristic function and obtaining CDF

we invert the characteristic function to a CDF of yt+1:t+τ |yt by Gil-Palaez formula:

Pr(yt+1:t+τ ≤ y|yt) =
1

2
− 1

π

∫ ∞

0

Im(e−iuyCh(τ, u))

u
du

where Im(z) denotes the imaginary part of a complex number z. We evaluate the integral by

numerical integration. Let us denote by I(u) = Im(e−iuyCh(τ, u)),
15

Pr(yt+1:t+τ ≤ y|yt) ≈
1

2
− ∆

π

(
n−1∑

k=0

I((k + 1/2)∆)

(k + 1/2)∆

)

I pick ∆ = 0.01, n = 50, 00 so that I evaluate the function from 0 to 500.16

7.5 Various values of ht: analytical approach

The characteristic function of ht+τ denoted by Ch(τ, u)is

Ch(τ, u) = Et(exp(iuht+τ )) = exp(ã(τ, u) + b̃(τ, u)ht)

ã(τ, u) = ã(τ − 1, u) + b̃(τ − 1, u)ω − 1

2
log(1− 2αb̃(τ − 1, u))

b̃(τ, u) = b̃(τ − 1, u)β +
αb̃(τ − 1, u)γ2

1− 2αb̃(τ − 1, u)

with ã(0, u) = 0, b̃(0, u) = iu.

Proof. Let us guess that Ch(τ, u) = exp(ã(τ, u)+b̃(τ, u)ht). For simplicity, let us define ã(τ, u) ≡ ãτ ,

b̃(τ, u) ≡ b̃τ . Then,

Ch(τ, u) = exp(ãτ + b̃τht)

= Et[exp(ãτ−1 + b̃τ−1ht+1)]

= Et[exp(ãτ−1 + b̃τ−1(ω + βht + α(zt+1 − γ
√
ht)

2))]

= Et[exp(ãτ−1 + b̃τ−1ω + b̃τ−1βht + αb̃τ−1(zt+1 − γ
√
ht)

2))]

Using the fact that, for standard normal variable z,

E[exp(a(z + b)2] = exp

(
−1

2
log(1− 2a) +

ab2

1− 2a

)

15Composite midpoint rule states that
∫ b
a
f(x)dx = h(f(x1/2) + f(x3/2) + · · ·+ f(x(2n−1)/2)) + O(n−2).

16With ∆ = 0.01 and n = 10, 000 so that evaluating the function up to 1000 makes difference of order e − 15 at

h = 2 and less than this for h ≥ 3. With ∆ = 0.005, n = 100, 000 have even smaller differences.
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Ch(τ, u) = exp

(
ãτ−1 + b̃τ−1ω + b̃τ−1βht −

1

2
log(1 − 2αb̃τ−1) +

αb̃τ−1γ
2ht

1− 2αb̃τ−1

)

= exp

(
ãτ−1 + b̃τ−1ω − 1

2
log(1− 2αb̃τ−1) +

(
b̃τ−1β +

αb̃τ−1γ
2

1− 2αb̃τ−1

)
ht

)

Therefore,

ã(τ, u) = ãτ−1 + b̃τ−1ω − 1

2
log(1 − 2αb̃τ−1)

b̃(τ, u) = b̃τ−1β +
αb̃τ−1γ

2

1− 2αb̃τ−1

The unconditional characteristic function is computed as follows:

exp(Ch(u)) ≡ E(exp(iuht+1)) = E[E(exp(iuht+1)|ht)] = E[exp(ã(1, u) + b̃(1, u)ht)]

= exp(ã(1, u))E[exp(̃b(1, u)ht)]

= exp(ã(1, u)) exp(Ch (̃b(1, u))

= exp(ã(1, u) + Ch(̃b(1, u))

Plugging in ã(1, u) and b̃(1, u),

Ch(u) = iuω − 1

2
log(1− 2iuα) + Ch

(
iuβ +

iαγ2u

1− 2iuα

)
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