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Abstract

We propose a novel class of volatility estimators named the renewal based volatility estimators for high-

frequency volatility estimation, which is constructed based on a renewal process in business time. We

show the consistency and derive the asymptotic distribution of this class of estimators, and show that

a parametric structure can lead to significant gains in the efficiency of volatility estimation compared to

a pure non-parametric design. This class of estimators includes all the parametric and non-parametric

estimators that are based on an absolute price change point process, e.g. Engle and Russell (1998), Gerhard

and Hautsch (2002), Tse and Yang (2012) and Nolte, Taylor, and Zhao (2016). We examine the non-

parametric duration (NPD) based volatility estimator proposed by Nolte, Taylor, and Zhao (2016), and

show the properties of this estimator in the presence of drift, jump, time discretization, a general market

microstructure (MMS) noise and price discretization noise. The main finding is that the NPD estimator is

very robust to the presence of jumps but is generally biased due to time discretization and the MMS noise.

Through simulations we show that the NPD estimator is more efficient than calendar time sampled RV-type

estimators in the absence of MMS noise, but also that it is much more sensitive to the MMS noise than

calendar time sampling methods. We propose an exponentially smoothed NPD estimator and show that

it can significantly outperform commonly used calendar time bias corrected volatility estimators in terms

of efficiency. Additionally, we propose a range-duration based renewal type volatility estimator that can

outperform a general realized variance (RV) estimator under any sampling scheme.
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1 Introduction

Since the seminal paper by Engle and Russell (1998), a point process based high-frequency volatility estimator

provides an important alternative to the Realized Volatility (RV)-type estimator as popularized by Andersen,

Bollerslev, Diebold, and Labys (2001). The main argument supporting the point process based volatility esti-

mator is its parametric structure and ability to provide intraday inference on local volatility, as opposed to an

integrated volatility estimator from the RV estimator. The quality of volatility estimates from point process

based estimators has be verified by Tse and Yang (2012) and Nolte, Taylor, and Zhao (2016). In these papers,

Tse and Yang (2012) show that the volatility estimates from fitting an Autoregressive Conditional Duration

(ACD) (Engle and Russell 1998) to the absolute price change point process can outperform RV-type estima-

tors under the assumption of various stochastic volatility models. With the same volatility estimator, Nolte,

Taylor, and Zhao (2016) show that volatility estimates from the point process can provide better predictability

compared to those from the RV and RV variants. Despite these promising results showing a clear advantage of

the point process based volatility estimators over the RV-type estimators, its theoretical properties have not yet

been established.

Closely linked to the parametric point process based volatility estimator, Andersen, Dobrev, and Schaum-

burg (2008) and Nolte, Taylor, and Zhao (2016) propose two different non-parametric volatility estimators that

use the price duration, that is, the time for the cumulative price change to surpass a given threshold, as a

measure of volatility. They demonstrate that the duration-based volatility estimator can easily outperform the

RV-type estimator in ideal conditions with a smaller mean squared error (MSE). Much of the theoretical prop-

erties of these non-parametric estimators have been discussed in these papers respectively, but none of them

generalize the properties of these non-parametric estimators to a setting where both time-varying volatility and

a general market microstructure noise (MMS) are present. Moreover, the duration based approach suffers from

a truncation bias, when the price change is not exactly the value of the threshold. Together with the market

microstructure noise, the consistency and asymptotic behaviour of these non-parametric estimators are largely

unknown, which greatly hinders their applications in empirical studies.

We propose a general class of volatility estimators that we will refer to as the Renewal Based Volatility (RBV )

estimators, which provides a theoretical framework for the aforementioned point process based volatility es-

timators (with the exception of the estimators in Andersen, Dobrev, and Schaumburg (2008)). This class of

volatility estimators are constructed based on a renewal process in business time, which is a time change that

treats the integrated variance as a measure of time. Based on this renewal process and the fact that the counts

of events are shared by both business time and calendar time, we can construct an estimator that estimates

the time elapse in business time, which corresponds to the integrated variance in calendar time. As we do

not require any knowledge about the dynamics of the volatility process, this estimator is a non-parametric

estimator. Moreover, we show that, by specifying a dynamic structure on the observed point process in the

calendar time and defining a link function that maps the durations in calendar time to its counterparts in

business time, one can construct parametric RBV -class estimators that can achieve a higher efficiency than

their non-parametric counterparts. This includes the parametric duration-based volatility estimator as in Engle

and Russell (1998), Tse and Yang (2012) and Nolte, Taylor, and Zhao (2016), and the intensity-based volatility

estimator (Gerhard and Hautsch 2002, Li, Nolte, and Nolte 2016). We derive the asymptotic distribution of both

the non-parametric and parametric RBV estimators, and show that they are both unbiased and consistent as

long as one can construct a renewal process in business time. One desirable property of this class of estimators

is that, the asymptotic variance is a function of the asymptotic mean, so one does not need to estimate the

asymptotic variance separately to construct confidence bounds (such as the estimation of integrated quarticity
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in the RV framework, see e.g. Barndorff-Nielsen and Shephard (2004)).

We examine Nolte, Taylor, and Zhao’s (2016) non-parametric duration-based volatility estimator (NPD) in

the RBV framework as a complement to our theoretical discussion. We formalize the properties of the NPD

estimator for a general semimartingale setting in the presence of jumps, time-varying volatility, irregular ar-

rivals of observations, price discretization and a general MMS noise. Our finding suggests that, firstly, the

NPD estimator is more robust to jumps than a realized bipower variation estimator. Secondly, although the

NPD estimator has a smaller asymptotic variance than the calendar time RV-type estimators in the absence of

noise, it is very sensitive to MMS noise. Consequently, the NPD estimator will be biased upwards more heavily

compared to a calendar time RV-type estimators of similar sampling frequency, which significantly weakens its

relative performance.

By correcting the biases for the NPD estimator and exploiting its smaller asymptotic variance, we propose

to construct the NPD estimator on the exponentially smoothed price process, which we will refer to as the

exponentially smoothed NPD estimator, denoted by NPDz. In our simulation we show that, if the smooth-

ing parameter is chosen optimally, the truncation bias due to time discretization can approximately offset

the smoothed MMS noise bias at moderate to large sampling frequencies. At these sampling frequencies, the

NPDz estimator exhibits a significantly higher efficiency compared to the commonly used bias corrected cal-

endar time sampling volatility estimators, including the Realized Kernel (Barndorff-Nielsen, Hansen, Lunde,

and Shephard 2008), the pre-averaged RV and pre-averaged bipower variation (Hautsch and Podolskij 2013)

estimators. Additionally, we demonstrate that, although the optimal sampling frequency of the NPDz estima-

tor is much smaller than its calendar time competitors, its optimal efficiency is still better than the optimal

performance from its competitors, which requires a much larger sampling frequency.

The main contributions of this paper are three-folded: Firstly, we develop a theoretical framework on which the

asymptotic properties of the aforementioned point process based volatility estimators can be derived. Specif-

ically, we show that, the duration-based volatility estimator is indeed superior to RV-type estimators in ideal

conditions, and a parametric structure can lead to a substantial increase in the efficiency of volatility estimation.

Secondly, we propose a range-duration based estimator that in theory is more efficient than any RV estima-

tor under a stochastic sampling scheme discussed in Fukasawa (2010b) and Fukasawa and Rosenbaum (2012).

However, the properties of this estimator in a more general setup is yet to be verified. Finally, we evaluate the

theoretical properties of the non-parametric duration-based volatility estimator under a very general model. We

propose the exponentially smoothed NPD estimator which shows a clear efficiency advantage over the com-

monly used bias corrected calendar time sampling volatility estimators.

The rest of the paper is structured as follows: Section 2 describes the general theory for the renewal pro-

cess and renewal reward process. Section 3 and 4 introduces the renewal based volatility estimator and the

parametric renewal based volatility estimator respectively. Section 5 gives some examples on both the non-

parametric and parametric estimators that belong to the class of renewal based estimators. In Section 6, we

examine the NPD estimator under a general semi-martingale in the presence of various market imperfections.

We conduct a Monte Carlo simulation study in Section 7. Section 8 concludes.
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2 Prerequisites: Renewal Theory

This section summarizes the related renewal theory used in constructing the renewal based volatility estimator.

For a more comprehensive discussion, please refer standard point process textbooks, e.g. Wolff (1989), Ross

(1996), etc.

We start with the definition of a renewal process:

Definition 1. Renewal Process: Let {Di}i=1,2,··· be a sequence of positive i.i.d. random variables with

0 < µ = E[Di] < ∞ which represents the inter-event arrival time, and let ti denote the arrival time of the i-th

event (renewal epoch) given by:

ti =

i∑
j=1

Dj . (1)

A renewal process X(t) is defined as a random variable that counts the number of event arrivals in the interval

(0, t]:

X(t) ≡
∞∑
i=1

1l {ti≤t}. (2)

A renewal process has the following asymptotic properties:

Theorem 1. Elemental Renewal Theorem: Let X = {X(t)}t≥0 be a renewal process with mean inter-

arrival time 0 < µ <∞ and renewal function m(t) = E[X(t)], then

lim
t→∞

X(t)

t

a.s.→ 1

µ
, (3)

lim
t→∞

m(t)

t
→ 1

µ
. (4)

Proof. See e.g. Feller (1941), Doob (1948) Theorem 3.3.4, Chapter 3 in Ross (1996).

Theorem 2. Renewal Limit Theorem: Let X = {X(t)}t≥0 be a renewal process with mean inter-arrival

time 0 < µ <∞ and variance of the inter-arrival time 0 < σ2 <∞, then as t→∞:

Z(t) =
X(t)− t

µ

σ
√

t
µ3

∼ N (0, 1). (5)

Proof. E.g. Theorem 3.3.5, Chapter 3 in Ross (1996).

Theorem 2 is essentially derived from the classical Central Limit Theorem (CLT) for i.i.d. variables. It

holds as long as a version of the CLT can be applied to the inter-arrival duration Di. Fo example, if Di is

strongly stationary, has finite moments and is ρ-mixing, then the following corollary holds as a direct result of

Theorem 2:

Corollary 1. Let {Di}i=1,2,··· be a sequence of strictly stationary random variables with 0 < µ = E[Di] < ∞
and 0 < σ2 = V[Di] <∞ as unconditional moments. We further require that all higher moments are finite and

that {Di}i=1,2,··· is ρ-mixing. Define the point process {ti}i=1,2,··· as:

ti =

i∑
j=1

Dj . (6)

The associated counting function is expressed as:

N(t) =

∞∑
i=1

1l {ti≤t}. (7)

4



The following central limit theorem holds for the counting process N(t) as t→∞:

Zt =
N(t)− t

µ

σ
√

t
µ3

∼ N (0, 1). (8)

Proof. See Appendix A.

The renewal function, m(t) = E[X(t)], has the following second order asymptotic expansion as t→∞:

Proposition 1. Let X(t) be a renewal process defined in Definition 1 with mean and variance of the inter-event

arrival time denoted as 0 < µ < ∞ and 0 < σ2 < ∞ respectively. Let m(t) = E[X(t)] denote the renewal

function. The process m(t) has the following asymptotic expansion as t→∞:

m(t) =
t

µ
+

σ2

2µ2
− 0.5 + o(1). (9)

Proof. E.g. Corollary 3.4.7 in Ross (1996)

It is useful to consider the distribution of time elapses since the last renewal epoch. This is known as the

age process of a renewal process, formally defined as follows:

Definition 2. Age Process of A Renewal Process: Let X(t) denote a renewal process defined in Definition

1. The age process of a renewal process is defined as:

A(t) = t− tX(t) (10)

The moments of A(t) can be derived from the moments of the renewal process if they exist:

Theorem 3. For an age process A(t) defined in Definition 2, and let the n-th moments of the inter-epoch

duration of the underlying be denoted by E[Dn
i ] = µn. Provided that all µn exist, the moments of the age process

A(t) can be expressed as:

E[An(t)] =
µn+1

(n+ 1)µ
(11)

Proof. See, e.g. Coleman (1982).

It is more natural to discuss the asymptotic properties of the renewal process as t → ∞, or the sprawl

asymptotics. This is different from the usual infill asymptotics considered in the RV literature, which fixes the

length of the sampling window and lets the sampling frequency goes to infinity. We would like to point out that

the use of sprawl asymptotics in the renewal literature is due to the fact that the parameter µ is assumed to be

fixed. These asymptotic results are, nonetheless, derived from the classical law of large numbers or CLT, and

the condition t→∞ therefore implies that X(t)→∞. We show that, if µ is allowed to change freely, then one

can easily recover the infill asymptotics for some interval (0, T ) based on the sprawl asymptotic results as long

as the age process converges to a centre mass at zero. This is summarized in the following proposition:

Proposition 2. Let X = {X(t)}t∈(0,T ] be a renewal process with the n-th moments of the inter-arrival durations

defined as µn = E[Dn
i ]. Assuming that µn

µ → 0 as µ→ 0 for all n, then for any T > 0:

lim
µ→0

X(T )µ− T

σ
√

T
µ3

→ N (0, 1). (12)

Proof. See Appendix B.
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In the rest of the paper we will only present asymptotic results in the sprawl asymptotics setting when we

discuss the property of the renewal based results, which follows naturally from the renewal theory context. We

assert that an infill asymptotics result can be derived analogously to the proof in Proposition 2.

We will also use the property of a renewal reward process, which is defined as follows:

Definition 3. Renewal Reward Process: Let X(t) denote a renewal process with i.i.d. inter-event duration

{Di}i=1,2,··· that has mean µ <∞ and variance σ2 <∞. Let {Ri}i=1,2,··· denote a sequence of real-valued i.i.d.

random variables with mean v < ∞ and variance σ2
r < ∞ associated with each Di. Then the renewal reward

process is defined as:

R(t) =

X(t)∑
i=1

Ri. (13)

The expectation of this process, r(t) = E[R(t)], is defined as the reward function.

A renewal reward process has the following asymptotic properties:

Theorem 4. Renewal Reward Theorem: For a renewal reward process defined in Definition 3, the following

results hold:

lim
t→∞

R(t)

t

a.s.→ v

µ
, (14)

lim
t→∞

r(t)

t
→ v

µ
. (15)

Proof. E.g. Theorem 3.6.1, Chapter 3 in Ross (1996).

Theorem 5. For a renewal reward process as defined in Definition 3, then as t→∞:

Z(t) =
R(t)− v

µ t√
Q2t
µ

∼ N (0, 1), (16)

where Q2 = E[(Ri − v
µDi)

2].

Proof. A proof of this theorem can be found in Wolff (1989).

3 Renewal Based Volatility Estimator

We are now in the position of constructing the renewal based volatility (RBV ) estimator for financial price

processes. We start with an assumption about the price process and the associated volatility process of interest:

Assumption 1. Price Processes: Let the price process {P (t)}t>0 be a stochastic process with an adapted

and càdlàg integrated variance (IV) process defined by IV (0, t) =
∫ t

0
σ2
p(s)ds with IV (0, t) → ∞ as t → ∞.

We define a time change τ(t) = IV (0, t) that converts the calendar time to the integrated variation time, which

is also known as the business time. We assume that the time changed price process P̃ (τ(t)) = P (t) is a Lévy

process in business time.

This assumption may seem strict, but it is satisfied by a wide range of stochastic processes that are used

in modelling financial price processes. We give two simple examples.

Example 1: Any continuous local martingale satisfies this assumption due to to following theorem.
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Theorem 6. (Dambis-Dubin Schwarz): Let (M(t))t≥0 be a continuous Ft-local martingale such that its

quadratic variation 〈M〉∞ = +∞, then there exists a Brownian motion (B(t))t≥0, such that for every t ≥ 0,

M(t) = B(〈M〉t).

Since the quadratic variation and integrated variance of M(t) coincide, the resulting Lévy process in busi-

ness time is a standard Wiener process.

Example 2: A (inhomogeneous) compounded Poisson process as in Oomen (2005) satisfies this assumption.

The resulting Lévy process is a homogeneous compounded Poisson process. See Appendix C for details.

The connection from the Lèvy process in business time and the renewal theory in the previous section is

established by the following proposition:

Proposition 3. Let {Y (t)}t≥0 be a Lévy process on the filtered probability space {Ω,F , P}. Define a stopping

time process that automatically renews once stopped as:

ti = inf
t≥ti−1

{Y (t) ∈ S(ti−1)}, (17)

in which S(ti) is the stopping condition for ti as a function of Fti . If, for any i, j and t > 0, Prob(Y (ti + t) ∈
S(ti)) = Prob(Y (tj + t) ∈ S(tj)), then the sequence {τi}i=1,2,··· corresponds to arrivals of a renewal process.

Proof. The condition Prob(Y (τi + t) ∈ S(τi)) = Prob(Y (τj + t) ∈ S(τj)) ensures that the stopping condition is

equivalent to the paths of the Lévy process originating from all the possible starting points τi ∈ (0,∞) regardless

of when the previous event occurred. Then clearly the distribution of τi − τi−1 is i.i.d., which follows from the

property of the Lévy process. As a result, {τi}i=1,2,··· is by definition a renewal process.

As a result, when the price process P (t) follows Assumption 1, we can obtain a Lèvy process P̃ (τ(t)) in

business time. According to Proposition 3, we can construct a renewal process {τ(ti)}i=1,2,··· in business time.

We will base our volatility estimator on the price process sampled at {τ(ti)}i=1,2,··· in business time. Effectively,

this method samples the price process at {ti}i=1,2,··· in calendar time. We therefore refer to this sampling scheme

as renewal sampling:

Definition 4. Renewal Sampling: For a price process P (t) satisfying Assumption 1, a renewal sampling

scheme samples P (t) at 0 < t1 < t2 < · · · where the arrivals in business time {τ(ti)}i=1,2··· is a renewal process

in business time. Denote the unobservable renewal process in business time as X̃(τ(t)) =
∑
i>0 1l {τ(ti)≤τ(t)} and

its observable calendar counterpart as X(t) =
∑
i>0 1l {ti≤t}.

Note that the càdlàg property of the integrated variance guarantees that X(t) = X̃(τ(t)). Using Proposition

3, we can construct X(t) in calendar time if the stopping condition in calendar time is only a function of the

paths of P (t), but not a function of time. Heuristically, by observing the path of the price process in calendar

time, we can decide where to ‘stop’ the price process and obtain a sample. If the condition in Proposition 3 for

S(ti) is satisfied, then the stopping times in business time is by construction a renewal process.

The central contribution of this paper is the following novel volatility estimator by sampling the price pro-

cess P (t) with a renewal sampling scheme:

Definition 5. Renewal Based Volatility Estimator: Let {P (t)}t>0 be a price process that satisfies Assump-

tion 1. Choose a S(ti) according to Proposition 3, and apply renewal sampling on P̃ (τ(t)) to obtain the renewal

sampling times {ti}i=1,2,··· and the point process X(t) =
∑
i>0 1l {ti≤t}, which has a business time counterpart
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X̃(τ(t)) that is a renewal process. Let µ and σ2 denote the first two moments of the inter-epoch duration in

business time, then the Renewal Based Volatility estimator is defined by:

RBV (0, t) = X(t)µ. (18)

The RBV estimator has the following asymptotic distribution:

Theorem 7. The Renewal Based Volatility estimator as defined in Definition 5 has the following asymptotic

distribution:

lim
t→∞

RBV (0, t)→ N
(
IV (0, t), IV (0, t)

σ2

µ

)
. (19)

Proof. As a direct result of Theorem 2:

lim
τ(t)→∞

X̃(τ(t))µ→ N
(
τ(t), τ(t)

σ2

µ

)
. (20)

Note that τ(t)→∞ as t→∞, X̃(τ(t)) = X(t) and τ(t) = IV (0, t). Substituting these into the above equation

yields (19).

One remark on the RBV estimator is that, it is a consistent volatility estimator that can be made arbi-

trarily precise if σ2

µ → 0 as µ → 0. Also note that the variance of the estimator V[RBV ] = IV (0, t)σ
2

µ is a

linear function of the integrated variation. It suggests that we can compute standard errors of the estimator

without estimating the integrated quarticity as in the RV literature, which implies less estimation bias for the

standard errors and confidence bounds. Similar to the RV-type estimators, the RBV estimator does not require

any parametric assumption on the IV process in calendar time.

The obvious problem here is that µ is not explicitly specified, and is dependent on the assumption of P (t)

and the stopping condition S(ti). In Section 5 we show that in some special cases µ is available in closed form.

Also, the process P̃ (τ(t)) is usually very simple (for example, a standard Wiener process). In this case the

moments of the renewal process can be simulated easily.

3.1 Relationship to the RV Estimator

This section describes the relationship between RBV and RV estimators and discusses a natural estimator of µ

when it cannot be solved explicitly.

We start with the assumption that P (t) is a continuous local martingale to which Theorem 6 can be ap-

plied. For a given µ, let us denote the renewal sampling scheme as X(µ)(t), the sampling times as {t(µ)
i }i=1,2,···

and the inter-event return as r
(µ)
i = P (t

(µ)
i )−P (t

(µ)
i−1). We define the renewal RV and the RBV estimator for a

particular µ as:

RV (µ)(0, t) =

X(µ)(t)∑
i=1

(r
(µ)
i )2,

RBV (µ)(0, t) = X(µ)(t)µ.

(21)

From the theory of quadratic variation and Theorem 7 we know that both estimators are consistent, and converge

to IV (0, t). Specially, for the RV (µ) estimator, due to the i.i.d-ness of the inter-event arrival time in business

time denoted by D̃
(µ)
i = τ(t

(µ)
i )− τ(t

(µ)
i−1), r

(µ)
i is also i.i.d. From the martingale property of the Wiener process

we have:

E[r(µ)] = 0,E[(r
(µ)
i )2|D̃i] = D̃i,E[(r

(µ)
i )2] = µ. (22)
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This suggests that, for a fixed interval (0, T ) a natural and consistent estimator of µ is just the sample moment

of the squared return, µ̂ = 1
X(µ)(T )

∑X(µ)(T )
i=1 (r

(µ)
i )2. Obviously, by using µ̂ instead of µ, the RBV (µ) estimator

coincides with the RV (µ) estimator. The cost of using µ̂ in the RBV (µ) estimator is then a larger asymptotic

variance. Using Corollary 3.11 in (Fukasawa 2010b), we see that as µ→ 0:

V[RV (µ)(0, T )]→ 2

3

X(µ)(T )∑
i=1

(r
(µ)
i )4. (23)

When the unconditional kurtosis κ(µ) of r
(µ)
i exists, the above asymptotic variance converges to 2

3IV (0, T )κ(µ)µ2,

which is due to the i.i.d.-ness of r
(µ)
i and X(µ)(T )→ IV (T )

µ .

The asymptotic variance 2
3IV (0, T )κ(µ)µ2 has some very interesting implications. Firstly, if κ = 3 and r

(µ)
i

is normally distributed, we have V[RV (µ)](0, T )→ 2 E[X(µ)(T )]IV 2(0, T ), which is identical to the asymptotic

variance of the RV estimator sampled in business time (e.g. Hansen and Lunde (2006), Oomen (2006)). The

business time RV can indeed be considered as a RBV estimator with a constant duration in business time.

However, this estimator is infeasible because the sampling times are not stopping times. Moreover, if we can

sample r
(µ)
i by setting κ(µ) = 1, then the asymptotic variance of the RV (µ) estimator can be minimized and

coincides with the RBV (µ) estimator. This implies that the optimal renewal RV estimator must have r
(µ)
i

following a two-point distribution. We will show later in Section 5 that, the non-parametric duration-based

volatility estimator in Nolte, Taylor, and Zhao (2016) is both a RBV -class estimator and an optimal renewal

RV estimator.

4 Parametric Renewal Based Volatility Estimator

The duration in business time D̃i is not directly observable, but we can observe its calendar time counterpart

Di. Using the fact that D̃i is i.i.d., we see that the connection between Di and the integrated variance process

is that:
ti−1+Di∫
ti−1

σ2
p(s)ds = D̃i. (24)

If we can specify a parametric model g(t|Ft) that uses all the information available in such a way that the

following variable is i.i.d:

Ri =

ti−1+Di∫
ti−1

g(s|Fs)ds, (25)

then we can use the quantity Riµ
E[Ri]

as an estimator for D̃i. Without any loss of generality we set E[Ri] = µ to

simplify notation. We will refer to this estimator as the parametric renewal based volatility (PRBV) estimator,

formally defined as follows:

Definition 6. Parametric Renewal Based Volatility Estimator: Let {P (t)}t>0, X(t), X̃(τ(t)), µ and σ2

be defined identically to Definition 5. Define a parametric model g(t|Ft) and an i.i.d. variable Ri that follows

(25) with 0 < E[Ri] = µ <∞ and 0 < V[Ri] = σ2
r <∞. Then the parametric renewal based volatility (PRBV)

estimator is defined as:

PRBV (0, t) =

X(t)∑
i=1

Ri =

t∫
0

g(s|Fs)ds. (26)

The specification of (26) g(t|Ft) also provides a natural instantaneous volatility estimator of the following

form:

InsV (t) = g(t|Ft). (27)
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Recall that the RBV estimator is already consistent, therefore for any i.i.d. Ri with finite moments, the PRBV

estimator will still be consistent. However, the randomness in Ri will introduce extra noise in the PRBV

estimator compared to the use of µ in the RBV estimator, unless there exists a substantial amount of positive

correlation between Ri and D̃i, which requires that g(t|Ft) is a good proxy of σ2
p(t) for all t. Thus, we can assess

the efficiency of the PRBV estimator by using the RBV estimator as a benchmark.

Conditioning on that the econometric model g(t|Ft) is perfectly specified so that we can observe the i.i.d.

variable Ri, the asymptotic distribution of the PRBV estimator can be derived easily from Theorem 5 noting

that {Ri, D̃i} is a renewal reward process.

Theorem 8. The Parametric Renewal Based Volatility estimator as defined in Definition 6 has the following

asymptotic distribution:

lim
t→∞

PRBV (0, t)→ N
(
IV (0, t), IV (0, t)

σ2 + σ2
r − 2ρσσr
µ

)
, (28)

where ρ is the correlation between Ri and D̃i.

Proof. This follows directly from Theorem 5 and the proof in Theorem 2.

Note that the variance of PRBV is zero when Ri = D̃i for all i, indicating that the PRBV (0, t) can

in theory be a perfect estimator for the integrated variance when Ri is known. The variance of the PRBV

estimator can be written as:

V[PRBV (0, t)] = V [RBV (0, t)] + IV (0, t)
σ2
r − 2ρσσr

µ
, (29)

and as long as σ2
r − 2ρσσr < 0, that is, ρ ∈ (σr2σ , 1], the PRBV estimator will always be more efficient than the

RBV estimator. Obviously, the value of ρ is determined by the distance between g(t|Ft) and σ2
p(t), which is

unfortunately model dependent.

We provide an example of g(t|Ft) which allows us to examine ρ directly. Initially proposed by Gerhard and

Hautsch (2002) derived from the instantaneous volatility estimator of Engle and Russell (1998), the conditional

intensity process of X(t) is used as a proxy of the instantaneous volatility. In our context, we can define g(t|Ft)
as follows:

g(t|Ft) = µλ(t|Ft), (30)

where λ(t|Ft) is the Ft-conditional intensity of the process X(t) defined as:

λ(t|Ft) ≡ lim
∆↓0

1

∆
E[X(t+ ∆)−X(t)|Ft]. (31)

The corresponding renewal reward variable Ri is then defined as:

Ri = µ

ti∫
ti−1

λ(s|Fs)ds ≡ µΛ(ti−1, ti). (32)

The i.i.d.-ness of Ri is guaranteed by the following theorem:

Theorem 9. Random Time Change Theorem (RTCT): Let X(t) be a simple point process adapted

to a history Ft with bounded, strictly positive Ft-conditional intensity λ(t|Ft) and Ft-compensators Λ(t) =∫ t
0
λ(u|Fu)du with Λ(∞) =∞ almost surely. Under the random time change t 7→ Λ(t), the transformed process

X̃(t) = X(Λ−1(t))
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is a Poisson process with unit rate.

Conversely, suppose there is given a history Gt, a Gt-adaptive cumulative process M(t) with a.s. finite,

monotonically increasing and continuous trajectories, and a Gt-adapted simple Poisson process X0(t). Let Ft
denote the history of σ-algebras Ft = GM(t). Then X(t) = X0(M(t)) is a simple point process that is Ft-adapted

and has Ft-compensator M(t).

Proof. See the proof in Theorem 7.4I in Daley and Vere-Jones (2003), and Brown and Nair (1988) and Bowsher

(2007).

Theorem 9 suggests that Λ(ti−1, ti) ∼ i.i.d. exp(1), so we have Ri ∼ i.i.d. exp(µ−1). The mean and variance

of Ri are v = µ and σ2
r = µ2 respectively. In this case, the following proposition holds:

Proposition 4. Start from Definition 6, and set g(t|Ft) = µλ(t|Ft), where λ(t|Ft) is the conditional intensity

process of X(t) defined in (31). Let Ri be defined in (25) and D̃i be the inter-event duration for X̃(τ(t)). The

rank correlation between Ri and D̃i is 1.

Proof. See Appendix D.

Proposition 4 indicates that, when g(t|Ft) = µλ(t|Ft), the performance of the PRBV estimator is likely to

be very good. The exact solution to ρ obviously depends on the discrepancy between the density of D̃i and Ri.

Therefore, ρ is always 1 if the density of D̃i and Ri coincide:

Corollary 2. In Definition 6 with g(t|Ft) = µλ(t|Ft), g(t|Ft) = σ2
p(t) if and only if D̃i is i.i.d. exponentially

distributed.

Proof. See Appendix E.

Corollary 2 suggests that the optimal renewal sampling scheme for g(t|Ft) = µλ(t|Ft) is a homogeneous

Poisson sampling scheme in business time. In this case, the conditional intensity of X(t) in calendar time is

proportional to the spot volatility, so both the PRBV estimator and the instantaneous volatility estimator

InsV are valid in the sense that, knowing the conditional intensity X(t) is the same as knowing the integrated

variance. However, it is not clear whether one can construct a sequence of stopping times in calendar time that

has a homogeneous Poisson sampling scheme in business time. We will leave it for future research.

Alternatively, we can also correct for the discrepancy between the density of D̃i and Ri:

Corollary 3. In Definition 6 with g(t|Ft) = µλ(t|Ft), let FD̃(x) and F−1

D̃
(x) denote the CDF of D̃i and its

inverse correspondingly. The asymptotic variance of the following estimator is zero if Ri is known:

PRBV (∗)(0, t) =

X(t)∑
i=1

R
(∗)
i , (33)

in which

R
(∗)
i = F−1

D̃

(
1− exp

(
− Ri

µ

))
. (34)

Proof. This is straightforward from the proof in Appendix D.

The expression F−1

D̃
(1 − exp(−Riµ )) is effectively an exponential inverse probability integral transforma-

tion of D̃i, therefore we have R
(∗)
i = D̃i. This is a weaker result compared to Corollary 2 because in general

11



g(t|Ft) 6= σ2
p(t). In this case, inference based on R

(∗)
i gives the true D̃i, inference based on Ri only reflects D̃i

in expectation with E[Ri] = E[D̃i], and InsV is not the actual spot volatility but can be regarded as a proxy

that will estimate σ2
p(s) with error.

To summarize our findings on the PRBV estimators, we have shown that, it is possible to construct a PRBV

estimator as in Corollary 3 that always has zero variance if Ri is known. However, these properties are unlikely

to hold in practice as we do not observe g(t|Ft) and have to use a model to estimate ĝ(t|Ft) and R̂i instead.

This will inevitably introduce estimation noise in the model, even if the specification of g(t|Ft) is correct. As

this is more related to the properties of the econometric model used for the observed point process that deserves

individual investigations, we will leave it for future research.

4.1 End-of-Sample Bias

In practice, we do not have data of infinite length, and the sample has to stop somewhere. Therefore, there

will be a small End-of-Sample (EoS) bias for the renewal process when the last renewal epoch is before the end

of the sample. The correction of this bias can be obtained from the second order asymptotic expansion of the

renewal function as in Proposition 1. The EoS bias correction is:

EoS = 0.5µ− σ2

2µ
. (35)

Therefore the bias correction is smaller than 0.5µ, and can even be negative when σ2 > µ2. In theory one should

always add this bias correction to the RBV and PRBV estimator. Nevertheless, when σ2

µ → 0 as µ → 0, we

have EoS → 0. In this case, when one selects a small µ to construct the RBV estimator, the EoS bias becomes

negligible.

5 Some Examples

We give some concrete examples of RBV and PRBV in this section and summarize their properties. Assume

the efficient log-price follows a semi-martingale of the following form:

dP (t) = α(t)dt+ σp(t)dW (t), (36)

where α(t) is a continuous Ft-predictable process and σ(t) is assumed to be càdlàg and strictly positive with∫ t
0
σ2(s)ds→∞ when t→∞. For now, we assume α(t) = 0 and no discontinuities in the diffusion process for

simplicity, and will discuss the effect of the drift term and jumps in the next section. The quantity of interest

here is the integrated variance of the process over an interval (0, T ):

IV (0, T ) =

T∫
0

σ2
p(s)ds. (37)

Example 1: The first example of an RBV estimator, which will also be examined in detail in later sections,

is the non-parametric duration-based (NPD) volatility estimator proposed by Nolte, Taylor, and Zhao (2016).

We start by defining the absolute price change point process, firstly introduced by Engle and Russell (1998):

Definition 7. The Absolute Price Change Point Process: The absolute price change point process

{t(δ)i }i=0,1,··· for an observed price process P (t) and a given price change threshold δ is constructed as follows:

1. Set t
(δ)
0 = 0 and choose a threshold δ.
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2. For i = 1, 2, · · · , compute the first exit time, t
(δ)
i , of P (t

(δ)
i−1) through the double barrier [P (t

(δ)
i−1) −

δ, P (t
(δ)
i−1) + δ] as:

t
(δ)
i = inf

t>t
(δ)
i−1

{|P (t)− P (t
(δ)
i−1)| ≥ δ}.

Iterate until the sample is depleted.

The arrivals of t
(δ)
i are referred to as price events. In the RBV framework, we can write S(δ)(t

(δ)
i ) =

{P (t
(δ)
i ) − δ, P (t

(δ)
i ) + δ} and clearly it satisfies the condition in Proposition 3. Define the time change as

τ(t) =
∫ t

0
σ2(s)ds = IV (0, t), and P (τ(t)) is a standard Brownian motion by Theorem 6. As a result from

Theorem 3, under business time, {τ(t
(δ)
i )}i=1,2,··· forms a renewal process, denoted by X(δ)(τ(t)).

Let D
(δ)
i = t

(δ)
i − t

(δ)
i−1 and D̃

(δ)
i = τ(t

(δ)
i ) − τ(t

(δ)
i−1) denote the duration under calendar time and business

time respectively. Note that D̃
(δ)
i is the stopping time for a Wiener process (starting at zero) to exit a symmet-

ric interval [−δ, δ]. We can retrieve its moments from its moment generating function (see Table 1 in Andersen,

Dobrev, and Schaumburg (2008)). The first three moments are:

E[D̃
(δ)
i ] = δ2, E[(D̃

(δ)
i )2] =

5

3
δ4, E[(D̃

(δ)
i )3] =

61

15
δ6. (38)

The NPD estimator in Nolte, Taylor, and Zhao (2016) is of the following form:

NPD(0, t) = X(δ)(t)δ2 = X(δ)(t)µ(δ). (39)

Note we use the notation µ(δ) and σ2(δ) to denote the mean and variance of the price duration in business

time for some δ. Therefore it is clear that the NPD estimator belongs to the class of RBV estimators. The

asymptotic distribution of the NPD estimator can be derived easily from (19):

lim
t→∞

NPD(0, t) = X(δ)(t)δ2 → N
(
IV (0, t),

2

3
IV (0, t)δ2

)
. (40)

Using the asymptotic relationship δ2 = IV (0,t)
E[X(δ)(t)]

, we see that V[NPD(0, t)] = 2IV (0,t)2

3 E[X(δ)(t)]
. This suggests that,

given a common sampling frequency, on average the NPD estimator will be more than six times as efficient

as the RV sampled in calendar time, exactly six times as efficient as the RV sampled in business time, and

more efficient than the RV under tick time sampling due to that IV (0, t)2 ≤ IQ(0, t) from Jensen’s inequality

(Fukasawa 2010a).

As discussed in Section 3.1, the NPD estimator is both an RBV estimator and a renewal RV estimator.

It achieves the optimal efficiency for the renewal RV estimators due to the fact that the kurtosis of the return

is 1.

Example 2: Inspired by Christensen and Podolskij (2007) and Andersen, Dobrev, and Schaumburg (2008)

and following the idea of the NPD estimator, we can also construct a range duration-based RBV -type volatil-

ity estimator. Let r denote a fixed range size, then the following sequence of stopping times forms a renewal

process in business time:

t
(r)
i = inf

t>t
(δ)
i−1

{P (t) ∈ S(r)(t
(r)
i )}, (41)

where S(r)(t
(r)
i ) = {P (t) : sup

t
(r)
i <s<t

P (s)− inf
t
(r)
i <s<t

P (s) ≥ r}. Similar to the NPD estimator, let X(r)(τ(t))

denote the renewal process under business time. The first three moments of D̃
(r)
i = τ(t

(r)
i )−τ(t

(r)
i−1) is as follows

(Andersen, Dobrev, and Schaumburg 2008)):

E[D̃
(r)
i ] =

1

2
r2, E[(D̃

(r)
i )2] =

1

3
r4, E[(D̃

(r)
i )3] =

17

60
r6, (42)
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and the non-parametric range duration-based volatility (NPR) estimator is simply:

NPR(0, t) =
1

2
X(r)r2, (43)

which has the following asymptotic distribution as t→∞:

NPR(0, t)→ N (IV (0, t),
1

6
IV (0, t)r2). (44)

Using the relationship r2 = 2IV (0,t)
E[X(r)]

, we have V[NPR(0, t)] = IV 2(0,t)
3 E[X(r)]

. So the NPR estimator is twice as

efficient as the NPD estimator for a common sample size.

The efficiency gain of the range-based estimators compared to the RV-based estimators has been addressed

by Christensen and Podolskij (2007) and Andersen, Dobrev, and Schaumburg (2008), as price ranges exploit

both the supremum and infimum of the price process, which can measure volatility more precisely than using

price changes. We would like to stress that the asymptotic variance of the NPR estimator is smaller than

the asymptotic variance of a general RV estimator under any sampling scheme (Fukasawa 2010b, Fukasawa

and Rosenbaum 2012). With this NPR example, it is clear that the RBV -class of estimators are in essence

different from the RV-type estimators. Other local measures of volatility can be incorporated in the RBV -class

estimators which can have superior performance to the RV-type estimators.

Example 3: The parametric duration (intensity) based volatility estimator, initially proposed by Engle and

Russell (1998) and further developed by Gerhard and Hautsch (2002), Tse and Yang (2012), Nolte, Taylor, and

Zhao (2016) and Li, Nolte, and Nolte (2016) is an example of a PRBV estimator. Specifically, it specifies the

dynamics of D
(δ)
i with a fully parametric model (for example, the Autoregressive Conditional Duration model

by Engle and Russell (1998)), and defines

g(δ)(t|Ft) = µλ(δ)(t|Ft) = δ2λ(δ)(t|Ft), (45)

in which λ(δ)(t|Ft) is the conditional intensity process of X(δ)(t) defined in (31). Gerhard and Hautsch (2002)

propose an instantaneous volatility estimator defined as InsV (δ)(t) = g(δ)(t|Ft), and an estimator of the IV

between the arrival of two price events can be constructed as follows:

R
(δ)
i =

t
(δ)
i∫

t
(δ)
i−1

g(s|Fs)ds = δ2Λ
(δ)
i ∼ i.i.d. exp(δ

−2), (46)

with E[R
(δ)
i ] = δ2 and V[R

(δ)
i ] = δ4. As this quantity is i.i.d. from Theorem 9, the parametric duration

(intensity) based (PD) estimator of the following form:

PD(0, t) =

X(δ)∑
i=1

R
(δ)
i , (47)

is by definition a PRBV -class estimator. The asymptotic properties of the PRBV estimator discussed in

Theorem (8) and Proposition 4 can be applied directly to derive the asymptotic distribution of the PD estimator:

lim
t→∞

PD(0, t)→ N
(
IV (0, t),

2

3
IV (0, t)δ2 + IV (0, t)δ2(1− 2

√
2

3
ρ(δ))

)
, (48)

in which ρ(δ) denotes the correlation between R
(δ)
i and D̃

(δ)
i . From Proposition 4, since D̃

(δ)
i can be easily

simulated based on a Wiener process, ρ(δ) can also be simulated to an arbitrary precision based on the method

in Appendix D with the empirical CDF of D̃
(δ)
i . Based on 1000000 Monte Carlo draws of D̃

(δ)
i , our simulated
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ρ(δ) ≈ 0.9998, which is very close to 1. Details of this simulation can be found in Appendix F. Plugging

this into (48), the asymptotic variance of PD(0, t) is given by V[PD(0, t)] ≈ 0.034δ2IV (0, t). Therefore, the

asymptotic variance of the PD estimator is roughly one-twentieth of the NPD counterpart. It shows that,

if the parametric model of λ(δ)(t|Ft) is well-specified, then there can be a substantial efficiency gain from the

parametric estimation.

Based on the NPR estimator, we can construct a parametric range (PR) based volatility estimator by defining

the renewal variable R
(r)
i as:

R
(r)
i = 0.5r2

t
(r)
i∫

t
(r)
i−1

λ(r)(s|Fs)ds. (49)

The PR estimator is defined analogously to the PD estimator as:

PR(0, t) =

X(r)∑
i=1

R
(r)
i = R(r)(t), (50)

From the simulation in Appendix D and the property of the PRBV estimator, we can derive the asymptotic

distribution of PD given R
(r)
i :

PR(0, t)→ N (IV (0, t), 0.0471IV (0, t)r2). (51)

So the PR estimator has a larger asymptotic variance than the PD estimator if the reward variable R
(∗)
i is

given. This is due to the fact that the density D̃
(r)
i deviates further from the exponential distribution.

We would like to stress that, although the PD and PR estimators for the integrated variance are unbiased

and consistent in the sense of expectation, using R
(·)
i as an estimator of D̃

(·)
i will introduce a non-zero error

due to the discrepancy between R
(·)
i and D̃

(·)
i . We plot the simulated ln(D̃

(·)
i ) against ln(R

(·)
i ) in Figure 1. The

figure suggests that, as the discrepancy between R
(r)
i and D̃

(r)
i is larger than that of R

(δ)
i and D̃

(δ)
i , the PR

estimator will be less efficient compared to the PD estimator. Also, based on the simulated D̃
(·)
i , one can correct

this discrepancy by the method in Corollary 3. After the correction, both estimators will have zero asymptotic

variance conditioning on the knowledge of R
(·)
i .

The results above suggest that, if the parametric model to estimate R
(·)
i performs equally well, then the two

parametric estimators will have equal performance. This is in contrast to the efficiency difference between the

NPD and NPR estimators as the NPD estimator is half as efficient as the NPR estimator. Because the

variance of the reward variable R
(·)
i offsets the variance of D̃

(·)
i completely, the advantage of a lower variance

for D̃
(r)
i for the NPR estimator disappears. However, the PR estimator might be still preferred over the PD

estimator because in a finite sample, one can obtain a larger sample size with range-based renewal sampling,

resulting in more precise estimates for R(·). Finally, as a result from Corollary 2, the instantaneous volatility

estimator proposed in Gerhard and Hautsch (2002) does not hold for all t, and can only serve as a proxy for the

instantaneous volatility.

6 The Non-Parametric Duration-Based Volatility Estimator Under

Market Frictions

This section discusses the theoretical properties of the NPD volatility estimator defined in (39) in the presence

of drift, jumps, time discretization, market microstructure noise, and rounding effect.
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Figure 1: Discrepancy between the density of R
(·)
i and D̃

(·)
i

Note: N = 1000000. Descriptive statistics of {D̃(·)}i=1:N and {R(·)
i }i=1:N can be seen in Table 3.

6.1 Drift Effect

This section aims to clarify that the drift will not bias our estimator asymptotically. As the drift effect is very

small in empirical high frequency applications, we will follow the approach by Barndorff-Nielsen and Shephard

(2002) and discuss the drift effect in this section and assume it to be zero in other sections.

Firstly, as discussed in previous section, the NPD estimator is also a renewal RV estimator, and the quadratic

variation theory can be applied. Therefore as δ → 0, the drift term will not bias our estimator since the drift

term converges to zero as sampling frequency tends to infinity. Moreover, we would like to note that there always

exists a probability measure where the price process does not possess a drift by the use of Girsanov-Maruyama

transformation. As the volatility remains unchanged after the change of measure and the NPD estimator can

also be constructed on that probability measure, the presence of a drift is not a main concern in this paper.

6.2 Jump Effect

This section discusses the possible effect of jumps on the NPD estimator. The NPD estimator is by construction

very robust to large jumps, as pointed out by Andersen, Dobrev, and Schaumburg (2008), Tse and Yang (2012)

and Nolte, Taylor, and Zhao (2016), because of its truncation feature. For simplicity, we consider the following

diffusion process with jumps:

P (t) = P (0) +

t∫
0

σp(s)dW (s) +

J(t)∑
j=1

Lj , (52)

where J(t) is a counting process independent of W (t), and Lj is the size of the j-th jump. We assume that

|Lj | � δ, so that each arrival of jump will almost surely trigger a price event. For a simple RV-type estimator

under any sampling scheme, the IV (0, t) estimates will be positively biased and include the jump variations.

Let us consider the point process X̃(δ)(τ(t)) under business time with τ(t) = IV (0, t). Denote the number of

jumps in the duration D̃
(δ)
i by Ji, then conditional on that there is no jumps in the duration, the conditional
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mean and variance are δ2 and 2
3δ

4 respectively. For the durations that contain a jump, it will always end the

duration with the jump.

We can split the durations in business time by whether they contain a jump. For the durations that do

not contain a jump, we have E[D̃
(δ)
i |Ji = 0] = δ2. For the durations that contain a jump, we interpret the jump

as a random inspection time to a duration in business time, and the renewal process is immediately renewed

when it is inspected. The time travelled on the business clock till the inspection time but before the actual price

event would have occurred is therefore the length of the duration in business time. The density of the duration

that contains a jump then can be interpreted as the age process of the renewal process defined in Definition 2.

According to Theorem 3, we have:

E[D̃
(δ)
i |Ji = 1] =

µ2(δ) + σ2(δ)

2µ(δ)
=

5

6
δ2 < δ2 (53)

This suggests that each jump will on average shorten the distance travelled on the business clock by 1
6δ

2. For a

total of X̃(δ)(τ(t)) events in which J(t) of them are jump-induced, the expected business time elapse is therefore:

IV (0, t) = X̃(δ)(τ(t))δ2 − 1

6
E[J(t)]δ2. (54)

It is then clear that the bias introduced by a jump is just 1
6 E[J(t)]δ2, which goes to zero as δ → 0 given a

fixed number of jumps. It is interesting to see that the NPD estimator is less affected by jumps when δ → 0,

in contrast to an RV estimator which is not robust to jumps at all regardless of the sampling scheme. As

empirically price jumps are found to be very infrequent (on average less than one per week as documented in

Andersen, Bollerslev, and Dobrev (2007) and Lee and Hannig (2010)), we can safely conclude that the estimator

is robust to jumps in the limit and will ignore the jump component in the analysis hereafter. Note that following

the same notion, the NPR estimator is also very robust to jumps.

6.3 A More Realistic Model

Real data does not follow the model specified in (36), as it possesses various type of market imperfections,

including irregularly spaced observations, market microstructure noise, price discretization, etc. It greatly com-

plicates the analysis of the theoretical properties of the NPD estimator as the properties of the RBV -class

estimators may not apply in some cases. In this section we attempt to derive some asymptotic results for the

NPD estimator under a general setting with random arrival times of observations and a very general structure

of market microstructure noise.

Our strategy here is to add features to the pure diffusion model in (36). We firstly define the latent efficient

log-price process as:

P ∗(t) = P ∗(0) +

t∫
0

σp(t)dW (t). (55)

To account for the random arrival of observations, we define a sequence of random arrival times of the tick

changes1 (or revisions for quote data) 0 = t0 < t1 < t2 · · · , and assume that the process P ∗(t) is only ob-

served at these random arrival times. The sequence {tj} and the arrival times in business time {τ(tj)} with

τ(t) =
∫ t

0
σ2
p(s)ds are natural stopping times.

1Note that the NPD estimator will always sample data in tick time, and we only consider the arrival of tick changes as the flat

trades are irrelevant in the discussion.
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At each tj , the observed process P (t) is measured with noise Vj , commonly referred to as the MMS noise:

Pj = P ∗j + Vj (56)

Whenever no confusion is caused, we suppress the notation of P (t) as a function of calendar time and use

Pj = P (tj) to denote the j-th observed price. We build our assumptions of the MMS noise based on the noise

assumptions in Zhang (2006), Bandi and Russell (2008) and Aı̈t-Sahalia, Mykland, and Zhang (2011):

Assumption 2. The Market Microstructure Noise: The MMS noise component Vj in (56) is assumed to

possess the following properties:

1. Vj is strictly stationary with mean 0 and density fV (·).

2. All moments of Vj exist and are finite.

3. Vj is ρ-mixing.

4. Vj ⊥⊥ P ∗j .

Note that conditions (2) and (3) can be replaced by other mixing conditions given that a corresponding

version of the central limit theorem is available. We exclude the case where the noise is correlated with the

efficient price movement as argued by Hansen and Lunde (2006). This is a common assumption in the existing

literature mentioned above, and to a large extent simplifies our analysis.

The literature suggest that the trade durations in calendar time dj = tj − tj−1 have seasonality patterns,

are very persistent and are correlated with the volatility of the efficient price (e.g. Easley and O’Hara (1992),

Chen, Diebold, and Schorfheide (2013)). However, we are more interested in the properties of the trade dura-

tions in business time denoted by d̃j = τ(tj)− τ(tj−1), which are more relevant to our analysis. Since P ∗(τ(t))

is a standard Wiener process, by the martingale stopping theorem, P ∗j is a martingale, and the martingale

difference sequence (MDS) r∗j = P ∗j − P ∗j−1 is mixture normally distributed:

r∗j ∼MN (0, d̃j). (57)

It is therefore clear that the property of d̃j is embedded in the property of the tick returns of the efficient price

r∗j . We make the following assumption on the MDS process r∗j :

Assumption 3. Tick Return of the Efficient Price Process: The tick return of the efficient price process

r∗j is strongly mixing and strictly stationary with finite moments.

The purpose of Assumption 3 here is to facilitate the CLT for the MDS sequence, which will be used to

derive the asymptotic properties of the NPD estimator.

The NPD estimator is constructed by Definition 7 and (39) on the observed price process Pj with the fol-

lowing form:

NPD(0, t) = X(δ)(t)δ2, (58)

where X(δ)(t) =
∑∞
i=1 1l {t(δ)i ≤t}

and t
(δ)
i is the arrival time of the i-th price event.

The first obstacle to derive the asymptotic distribution of the NPD estimator under this setting is that, the

price durations under business time, denoted by D̃
(δ)
i = τ(t

(δ)
i )− τ(t

(δ)
i−1), are not i.i.d. due to possible autocor-

relations in Vj and d̃j . As a result, the properties of the RBV -class estimators cannot be applied directly to
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the NPD estimator since the process X(δ)(τ(t)) is not renewal. Fortunately, Corollary 1 suggests that, as long

as D̃
(δ)
i is strictly stationary and strongly mixing, we can still derive similar asymptotic results for the point

process X(δ)(τ(t)) and construct a RBV -class estimator.

Proposition 5. For the observed price process defined in (56) that satisfies Assumptions 2 and 3, there exists a

RBV -class estimator NPD(∗)(0, t) based on the δ-associated absolute price change point process X(δ)(t), which

is defined as:

NPD(∗)(0, t) = X(δ)(t)µ(δ), (59)

and has the following asymptotic distribution:

lim
t→∞

NPD(∗)(0, t)→ N
(
IV (0, t), IV (0, t)

σ2(δ)

µ(δ)

)
, (60)

in which µ(δ) and σ2(δ) are the unconditional mean and variance of the price duration in business time D̃
(δ)
i .

Proof. See Appendix G.

The findings above allow us to construct the unbiased (but possibly infeasible when µ(δ) is not available)

NPD∗ estimator, and also provides the asymptotic distribution of the sampling scheme X(δ)(t). Therefore the

asymptotic distribution of the NPD estimator as defined in (39) can be derived as:

lim
t→∞

NPD(0, t)→ N
(
IV (0, t)

δ2

µ(δ)
, IV (0, t)

σ2(δ)δ4

µ3(δ)

)
. (61)

So the NPD estimator is unbiased only when µ(δ) = δ2.2

6.4 Bias of the NPD estimator

To derive the bias of the NPD estimator in the presence of MMS noise and time discretization, we start from

the renewal RV estimator based on X(δ)(t):

RV (δ)(0, t) =

X(δ)(t)∑
i=1

(r
(δ)
i )2 (62)

Since the NPD estimator simply truncates (r
(δ)
i )2 to δ2, we must have that (r

(δ)
i )2 ≥ δ2. Intuitively, if there

is no MMS noise, RV (δ) would be unbiased, and the difference between the two estimators is the bias of the

NPD estimator caused by time discretization. We will therefore use Bias
(δ)
TD(0, t) = NPD(0, t) − RV (δ)(0, t)

to denote the time discretization bias of the NPD estimator, which is always negative.

In the presence of MMS noise, let us decompose r
(δ)
i as:

r
(δ)
i = r

(∗,δ)
i + V

(δ)
i − V (δ)

i−1, (63)

in which r
(∗,δ)
i = P ∗(t

(δ)
i )− P ∗(t(δ)i−1) denotes the return of the efficient price. A well-established result (see e.g.

Hansen and Lunde (2006), Bandi and Russell (2008)) of the RV estimator under autocorrelated noise is that:

E[RV (δ)(0, t)] = IV (0, t) +

X(δ)(t)∑
i=1

E[(V
(δ)
i − V (δ)

i−1)2] (64)

2The NPD estimator is unbiased if the price process is a continuous martingale as shown in previous sections. Another case when

the NPD estimator is unbiased is when Pi is a simple random walk.
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And therefore:

E[NPD(0, t)] = IV (0, t) + E[Bias
(δ)
MMS(0, t)] + E[Bias

(δ)
TD(0, t)], (65)

in which Bias
(δ)
MMS(0, t) =

∑X(δ)(t)
i=1 (V

(δ)
i −V (δ)

i−1)2 is the bias induced by the market microstructure noise, which

is strictly positive. The above results suggest that the NPD estimator is generally biased with two source of

bias: the truncation bias introduced by time discretization and the MMS noise bias.

From Assumption 2 we know that V
(δ)
i is asymptotically independent of V

(δ)
i−1 if the number of observations

within a duration tends to infinity. We therefore have:

lim
δ→∞

E[Bias
(δ)
MMS(0, t)]→ 2 E[X(δ)(t)] V[Vj ], (66)

which corresponds to the bias of the i.i.d. MMS noise discussed in Zhang, Mykland, and Aı̈t-Sahalia (2005). As

a result, Bias
(δ)
MMS decreases as we sample more sparsely, similar to the RV estimator.

For the TD bias, we are unable to derive an explicit expression in the general case. We show in Appendix

H that an approximated version of Bias
(δ)
TD converges to zero in the absence of MMS noise with a rate of δ−1. If

we believe that Bias
(δ)
TD is of the order δ−1 in the general case, then Bias

(δ)
TD decays much slower than Bias

(δ)
MMS

as Bias
(δ)
MMS is of the order δ−2. Also, Bias

(δ)
TD will always bias the NPD estimator towards zero when δ → 0,

which is due to the fact that Xδ(t) is capped at the number of observed tick changes. To give a graphical

illustration of the bias of the NPD estimator under the two sources of biases, we simulate a simple price model

and analyse the bias of the NPD estimator by adding the features to the price model. The results are present

in Appendix I.

The discussion above also suggests that, the NPD estimator will be less biased compared to the RV (δ) es-

timator if Bias
(δ)
MMS dominates Bias

(δ)
TD, but will perform worse than the RV (δ) estimator if there is no MMS

noise at all. Interestingly, we may find cases where Bias
(δ)
MMS approximately offsets Bias

(δ)
TD when δ is large (as

in Figure 13 in Appendix I for example). In this case the NPD estimator will have a bias close to zero and thus

very efficient, although the Bias
(δ)
MMS is not zero. This suggests a potential bias correction technique if one can

‘adjust’ Bias
(δ)
MMS or Bias

(δ)
TD in a way that the two biases approximately cancels as δ → ∞. We will exploit

this property in Section 6.6 to construct bias corrected NPD estimators.

6.5 Price Discretization

The observed price in practice is not continuously distributed, due to price discretization. The minimum allowed

quote change is known as the tick size, which is typically 1 cent for securities in the US market that are traded

above $1. This is known as the round-off error discussed in the RV literature (see e.g. Delattre and Jacod

(1997), Li and Mykland (2015) and the reference therein). We show, that this noise will also have a very special

impact on the NPD estimator with simulation evidence in Appendix I.

We write the discretized return as r̊j = hε(Pj) − hε(Pj−1), where hε(x) is a rounding function for the log

price Pj . If we compare the discretized return r̊j and the return rj without discretization, we have the following

expression:

r̊j = rj +Ξj −Ξj−1

Ξj = hε(Pj)− Pj ,
(67)

and Ξj is thus the price discretization error. Depending on the assumed rounding function hε(x), the theoretical

property of Ξj will differ. To simplify our analysis, we use the rounding function: hε(x) = εnint(xε ) and nint(x)
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returns the nearest integer of x. This basically assumes that the price discretization is in the log scale, which is

reasonable if the price level is roughly constant within the time period. We can interpret ε as the log tick size.

The distribution of Ξj is then roughly identical for all j but can be potentially autocorrelated if ε is large, and

we also have Ξj ∈ (−0.5ε, 0.5ε). Thus we can regard Ξj as another noise term in the price process similar to

the MMS noise component Vj and incorporate this in Bias
(δ)
MMS .

The price discretization has a more profound impact on the sampling scheme. Specifically, when one takes

δ to be between (xε, (x+ 1)ε] for some integer x, the resulting sampling scheme X(δ)(t) will be exactly the same

due to the discreteness in r̊j . As a result, choosing multiple δ in the range (xε, (x + 1)ε] does not effectively

change the asymptotic property of X(δ)(t). An implication of this is that one can influence the level of the

truncation bias for a fixed sampling scheme X(δ)(t) by choosing a δ within the range ((x − 1)ε, xε] for some

integer x. When Bias
(δ)
TD dominates, we should always choose δ = xε to minimize Bias

(δ)
TD . When Bias

(δ)
MMS is

large, one can choose δ → (x − 1)ε to inflate Bias
(δ)
TD and counterbalance the positive Bias

(δ)
MMS . As is shown

in Figure 14 in Appendix I, there can be a δ in the range of ((x − 1)ε, xε] that corrects the bias of the NPD

estimator completely. However, this requires the knowledge of Bias
(δ)
TD at any δ, which can be very difficult to

estimate empirically.

6.6 A Possible Bias Correction Method for the NPD Estimator

In this section we propose a bias correction method for the NPD estimator, and compare the performance

of this bias correction method in a simulation study in Section 7 against some commonly used calendar time

volatility estimators.

Inspired by the pre-averaging estimator in Jacod, Li, Mykland, Podolskij, and Vetter (2009), we propose to

smooth the transaction price before constructing the NPD estimator. In detail, instead of constructing the

NPD estimator based on the observed discrete price hε(Pj), we construct a smoothed price process Zj , and

construct the NPD estimator based on Zj instead. We choose a simple exponential smoothing structure for

the process Zj :

Z1 = hε(P1)

Zj = (1− γ)Zj−1 + γhε(Pj), γ ∈ [0, 1]
(68)

where γ is a smoothing factor. Clearly when γ = 1, Zj = hε(Pj) so the process is not smoothed, and when

γ = 0, Zj = hε(P1) for all j. Intuitively, the variation of the noise is diminished by this exponential smoothing

to some extent, thus the NPD estimator constructed on Zj is less affected by MMS noise. We will denote the

exponentially smoothed NPD estimator constructed on Zj as NPDz.

The exponentially smoothed price process Zj , is still contaminated by noise, albeit the magnitude of noise

is reduced by the smoothing. Intuitively, the larger the γ, the larger the impact of MMS noise on the NPDz

estimator. Thus the exponential smoothing provides a way to alter the impact of MMS noise on the NPDz

estimator. As is shown in the previous section, if we can choose a γ so that Bias
(δ)
MMS+Bias

(δ)
TD is approximately

zero for some moderate to large δ, we can greatly improve the performance of the NPD estimator.

The price smoothing approach has two additional advantages over the original NPD estimator: firstly, it

is a natural solution to the price discretization, and the sampling frequency will change more smoothly with

respect to δ. Secondly, empirical data contains a very large amount of flat trades which will be completely

ignored by the price change point process. By smoothing the price process, we can sample the data at every
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transaction instead of every tick change, which greatly increases the maximum sampling frequency.

Nevertheless, in this paper we do not provide an analytical solution to choose γ optimally, as the trunca-

tion bias is not available in closed form. In practice, we can choose γ by benchmarking the NPDz estimator

on some unbiased volatility estimator and minimize the MSE, as documented in Hautsch and Podolskij (2013).

Moreover, the estimator will be less robust to jumps compared to the NPD estimator, simply because the

exponential smoothing distributes a jump to all previous transactions, which will have a larger chance to be

absorbed into a price event. This is however not a significant problem if the jumps are assumed to be large and

rare, so that the smoothed jumps still trigger price events as they occur.

7 Simulation Study

7.1 Simulation Design

We conduct a simulation study to demonstrate the properties of the price duration based volatility estimators

(NPD and RV (δ)) and compare their performance to existing calendar time methods. We list all volatility

estimators considered in this paper in Table 1.

Table 1: List of all volatility estimators considered in the simulation study

Acronym Description Type MMS Jump

NPD See Section 5 δ N Y

RV (δ) Renewal RV δ N N

NPDz See Section 6.6 δ N Y

RV Realized Variance CTS N N

RBip Realized Bipower Variation CTS N Y

RK Realized Kernel CTS Y N

PRV Pre-averaged Realized Variance CTS Y N

PBip Pre-averaged Bipwer Variation CTS Y Y

Note: The column Type shows the type of sampling schemes: δ stands for the δ-associated price change point process sampling and CTS

refers to calendar time sampling. The column MMS describes whether the estimator is robust in the presence of MMS noise, and the column

Jump shows the robustness to jumps for the volatility estimators.

We consider a one-factor stochastic volatility (1FSV) model3 with jumps to simulate the efficient price pro-

cess, a model commonly used in this literature (see e.g. Huang and Tauchen (2005), Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2008), etc.). The log-efficient price is specified as:

dP ∗(t) = µdt+ σp(t)dW (t) + dJ(t), σp(t) = exp(β0 + β1τt)sp(t)

dτ(t) = ατ(t)dt+ dB(t), corr(dW (t), dB(t)) = ϕ,
(69)

in which J(t) =
∑NJ (t)
i=0 Ji is a pure jump process. We assume that NJ(t) is a homogeneous Poisson process

with rate λJ , and Ji is i.i.d. normal with zero mean and variance σ2
J . Note that we augment the original 1FSV

model by a time deterministic function sp(t) to accommodate the well-documented L or U-shaped pattern of

intraday volatility. In the simulation study we set t ∈ [0, 1] to represent fractions of time from a trading day

from 9:30 to 16:00, and the process τ(t) is initialized by a random draw from its unconditional distribution. The

3We will use the subscript 1FSVJ to denote a 1FSV model with jump.
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function sp(t) in our simulation study is specified as:

sp(t) =
1

a1t+ a2
−

ln(a1a2 + 1)

a1
+ 1, a1 > 0, a2 > 0. (70)

This function has the property that
∫ 1

0
s(t)dt = 1. When a1 and a2 are properly chosen, the function can

produce a L-shaped pattern.

We build the MMS noise component in transaction time instead of calendar time. Specifically, we assume

that the point process of transaction arrivals (or quote updates), denoted by N(t), follows a inhomogeneous

Poisson process where the intensity function λ(t) is specified as a time-deterministic function to mimic the

empirical U-shaped pattern of transaction arrivals. We specify the intensity function as:

λ(t) =
1

∆t

(
b1(b2t− 1)b3 − b1(b2 − 1)b3+1 + 1

b2(b3 + 1)
+ λ0

)
, (71)

in which b1 > 0, b2 > 0 and b3 = 2, 4, · · · , λ0 is the baseline arrival rate of transactions. The quantity ∆t is the

discretization step size of the simulation. The expected number of transactions in the interval (0, 1) is therefore

E[N(t)] =
∫ 1

0
λ(t)dt = λ0

∆t .

Let tj denote the j-th arrival of transaction, and P ∗j = P ∗(tj) denote the efficient price at the j-th trans-

action. Empirically we cannot observe P ∗j due to the presence of MMS noise, and the following decomposition

is frequently used in the literature:

Pj = P ∗j + Vj , (72)

in which Vj is a MMS noise term satisfying Assumption 2, and Pj is the log-price process measured with error.

We assume that Vj follows an Gaussian AR(1) process specified as follows:

Vj = ρVj−1 + vj , vj ∼ N (0, (1− ρ2)σ2
v) (73)

For the sake of stationarity we require that |ρ| < 1. The unconditional variance of the noise is therefore

V[Vj ] = σ2
v .

Empirically, the transaction returns contain a large amount of flat trades where the transaction price do not

move at all. For example, in Liesenfeld, Nolte, and Pohlmeier (2006), the proportion of flat trades for two stocks

traded in NYSE is over 60%. Jacod, Li, and Zheng (2017) reports an over 70% of flat trades in the transaction

data from Citigroup. For the mid-quote data the proportion of flat price changes will be even larger, as the best

quotes can remain constant even when the transaction price moves. As a result, the empirical transaction returns

are typically found to have excess kurtosis due to the amount of flat trades that cannot be reasonably explained

by the normal assumption. To account for this effect, we follow the approach of Griffin and Oomen (2008) and

assume that the tick change of price process is governed by a first order Markov chain. Let Sj be a stationary

and recurrent two-state first order Markov chain with transitional parameters P (Sj+1 = n|Sj = m) = pmn

where m,n ∈ {0, 1}. We rewrite (72) as:

Pj =

P ∗j + Vj , Sj = 1

Pj−1, Sj = 0
(74)

Therefore, when Sj = 1, the observed price change is updated by the rounded efficient price process plus noise,

and remains constant whenever Sj = 0.

The observed log-price process, hε(Pj) is specified as follows:

hε(Pj) =

(
εnint

(Pj
ε

))
, (75)
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Figure 2: Simulated diurnal pattern of intraday volatility and transaction arrival rate

Note: sp(t) is specified in (70) with a1 = 10, a2 = 0.5. λ(t) is specified in (71) with b1 = 0.5, b2 = 2, b3 = 4, λ0 = 0.4 and ∆t = 1. t is the

fraction of time in a trading day.

in which nint(x) returns the nearest integer of a real number x. Note that the rounding will introduce additional

flat trades to the observed price process when the price change is rounded to zero. We set ε = ln(P0+0.01)−ln(P0)

to represent the log tick size.

The parameters for the 1FSV model we use are: µ = 0, β0 = −4.3711, β1 = 0.05934, α = −0.011, ϕ = −0.3,

λJ = 2, a1 = 10, a2 = 0.5, and σJ = 0.01. The unconditional mean of the annualized daily volatility is roughly

27%, and the expected jump variation is about 0.0002 per day. The transaction and tick arrival parameters are

set as b1 = 0.5, b2 = 2, b3 = 4, λ0 = 0.4, p11 = 0.6 and p22 = 0.8. We set the Euler step size of the simulation to

be ∆t = 1
23400 , so that the expected number of transactions within a trading day is 9360. The diurnal patterns

of intraday volatility and the arrivals of transactions are plotted in Figure 2. From the figure we can clearly see

that the intraday volatility has a L-shaped pattern and the arrivals of observations possess a U-shaped pattern.

An example of a simulate price path of the 1FSVJ is presented in Figure 4.

For the MMS noise parameters, we set ρ = −0.5 and σ2
v = ωIV , where ω is the noise-to-signal ratio. Em-

pirically ω is found to be quite small (typically smaller than 0.1% as documented in Hansen and Lunde (2006)).

We therefore choose ω = 0.005, 0.001 and 0.0002 to represent high, moderate and low noise scenarios. The

resulting σ2
v ≈ 0.001152, 0.000522 and 0.000232 respectively. The expected number of flat trades implied by the

Markov chain is about 67% of the total transactions. The actual amount of flat trades in hε(Pj) depends on

the initial price P (0), as the rounding error is smaller when P (0) is large, and vice versa. We set P (0) = 20,

and the resulting proportion of flat trades is approximately 70%. We plot a histogram and the correlogram for

the simulated price change hε(Pj)− hε(Pj−1) in Figure 3 with J(t) = 0 and ∆t = 1
23400 for the moderate noise

case. It is clear that the observed price change is leptokurtic with a sample kurtosis of approximately 15. This

closely resembles the empirical density of the price changes as in Liesenfeld, Nolte, and Pohlmeier (2006). The

autocorrelation for price changes suggests that the price changes follow an ARMA-type process with negative

first order autocorrelation, which is consistent with the findings in e.g. Oomen (2006).

We use the bias, the mean squared error (MSE) and the QLIKE measure to compare the performance among

estimators. For the true integrated variance IV (0, t) and an estimate of IV denoted by ÎV (0, t), the three

measures are defined as follows:

Bias(ÎV (0, t)) = E[ÎV (0, t)− IV (0, t)], (76)

MSE(ÎV (0, t)) = E[(ÎV (0, t)− IV (0, t))2], (77)

QLIKE(ÎV (0, t)) = E
[ ÎV (0, t)

IV (0, t)
− ln

ÎV (0, t)

IV (0, t)
− 1
]
. (78)
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Figure 3: Histogram and correlogram for the simulated price change with moderate level of MMS noise and no

jumps

Note: The histogram is on the left side and the correlogram is on the right.. The histogram is constructed based on simulated price

changes for 10000 days without jumps. The correlogram is constructed based on the average autocorrelation for 10000 days without jumps.

∆t = 1
23400 in the simulation. The noise-to-signal ratio is set to be ω = 0.001.

Figure 4: An example of simulated price path of the IFSVJ model with moderate level of noise

Note: t is the fraction of time in a trading day. ∆t = 1
23400 in the simulation. The noise-to-signal ratio is set to be ω = 0.001.
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7.2 1FSV Model Without Noise and Price Discretization

Firstly, we would like to show that price duration based volatility estimators, namely NPD and RV (δ) are

indeed superior to calendar time RV and realized bipower (RBip) estimators when we can observe P ∗(t) in

continuous time without noise or price discretization.4 We simulate 10000 replications of P ∗(t) for t ∈ (0, 1)

with and without jump. We construct the NPD and RV (δ) estimators on a grid of δs with δ = xδ0, in which

δ0 = 0.1ε and x ∈ Z+. The calendar time sampled (CTS) RV and RBip estimators are constructed based on

the average sampling frequency of the NPD estimator for each x, so that CTS estimators will have a fixed

sampling frequency that is comparable to that of the NPD estimator.5 The Bias, MSE and QLIKE of the four

estimators are plotted in Figure 5 against the log sampling frequency.

From the plots on the first column in Figure 5, we can see a strong negative bias for the NPD estimator

at the maximum frequency when δ is small due to time discretization in the simulation. In theory the NPD

estimator should converge to the integrated variance as δ decreases, but in simulation whenever we use a discrete

approximation to the continuous efficient price process, the truncation bias will affect the performance of the

NPD estimator when δ is small. Since RV (δ) is unaffected by this truncation, it converges to the theoretical

quadratic variation as δ decreases.

Comparing the efficiency of RV (δ) with RV and RBip in the absence of jump, we can see clearly that RV (δ)

is indeed superior to RV and RBip at any sampling frequency considered in this simulation, as discussed in

Section 3.1. NPD and RV (δ) have similar efficiency when δ is large, but the performance of NPD deteriorates

as δ shrinks and the truncation bias becomes larger. However, even in the presence of truncation bias the NPD

estimator is still more efficient than CTS estimators for sampling frequencies less than roughly 140 per day.

When the jumps are present, RV (δ) and RV are not robust to jumps and their efficiency drops sharply. We also

see that the NPD estimator is more robust to jumps compared to RBip estimator as the jump variation for the

NPD estimator is of a much smaller magnitude. Consequently, the efficiency advantage of the NPD estimator

is even larger in the presence of jumps.

7.3 Full 1FSV Model: Primal Volatility Estimators

We proceed to add irregular transaction arrivals, price discretization and MMS noise to the 1FSV model, and

compare the performance of price duration based volatility estimators NPD and RV (δ) to the calendar time

estimators RV and RBip. Note that these estimators are all ‘primal’ estimators without any correction for MMS

bias. The average (log) sampling frequency for the NPD estimator is presented in Figure 6 for the 1FSV and

1FSVJ model.

From Figure 6 we see that the sampling frequency of NPD estimators always decreases at multiples of 10δ0 = ε

due to price discretization. The sampling frequency ranges from roughly 3000 (exp(8)) which is the average

number of tick returns per day, to roughly 7 (exp(2)) for all three levels of noise. The presence of jumps does not

have a large impact on the average sampling frequency for small δs as expected, and will increase the sampling

4Technically, when P ∗(t) is observed in continuous time, NPD and RV (δ) coincide in the absence of jump. Due to that we use an

Euler method to approximate the continuous time P ∗(t), NPD will be different from RV (δ) even in the absence of jump as a result

of time discretization.
5Note that it is not always possible to construct a NPD estimator from a sample if the maximum range of the price is smaller

than the threshold. A similar issue arises when constructing kernel and pre-averaging estimators as they are not guaranteed to be

positive. The computation of Bias, MSE and QLIKE is only based on valid volatility estimates and ignores all invalid volatility

estimates.
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Figure 5: Simulated Bias, MSE and QLIKE for daily volatility estimates obtained from NPD, RV (δ), RV and

RBip for 1FSV model without noise and price discretization

Panel 1: 1FSV

Panel 2: 1FSVJ

Note: The results are based on 10000 replications of the 1FSV model with and without jumps. The x-axis denotes the average log sampling

frequency for a given δ for NPD and RV (δ), or the log sampling frequency of the equidistant intraday return per day for RV and RBip.

The subscript J represents an estimator constructed on the 1FSV model with jumps. The Euler discretization step ∆t = 1
23400 .
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Figure 6: Average sampling frequency of the NPD estimator for the 1FSV and 1FSVJ models

Note: For the high, moderate and low levels of noise, the δ ranges from δ0 to 200δ0, 150δ0 and 120δ0 correspondingly. The step size is set

to be δ0 = 0.1ε, with ε = ln(20.01) − ln(20). For each δ, we compute the average sampling frequency by averaging the number of price

durations over 10000 Monte Carlo draws of 1FSV and 1FSVJ model. The noise-to-signal ratios for the high, moderate and low levels of

noise are ω = 0.005, 0.001 and 0.0002 respectively.

frequency slightly when δ is large. Similar to the previous case, we use the average sampling frequency of the

NPD estimator to construct the calendar time RV and RBip estimators for each δ. The performance of these

estimators under moderate noise can be viewed in Figure 7, and results for the high and low levels of noise cases

can be found in Figure 17 and 18 in Appendix L.

From Figure 7 we can observe that, due to the price discretization, for δ ∈ ((x − 1)ε, xε] the sampling scheme

does not change. As a result, there will be multiple volatility estimates from the NPD for a given sampling

frequency as δ changes within the range ((x− 1)ε, xε]. It is clear that the RV (δ) is the worst estimator among

all 4 estimators that has a significantly larger bias and is not robust to jumps at all. Although NPD performs

better than RV (δ), the efficiency advantage of NPD over RV and RBip is greatly weakened by the MMS noise

bias as calendar time estimators outperforms the NPD estimator for a very large range of δ. For RV and RBip,

we see that the optimal sampling frequency is around exp(4.4), which corresponds to a sampling frequency

of 84 per day. It is evident that RBip has the overall best performance when sampled optimally due to its

smallest MSE and QLIKE and its robustness to jumps. Note that the optimal sampling frequency is close to

the theoretical optimal sampling frequency as proposed by Bandi and Russell (2008): (2ω)−2/3 ≈ 63.

The inferior performance of price duration based estimators to the calendar time estimators is due to that

the price duration returns have a much more pronounced autocorrelation structure than the calendar time re-

turns with the same sampling frequency. We plot the average correlogram for the calendar time returns and

price duration returns sampled at RV’s optimal sampling frequency in Figure 8.

Figure 8 shows a MA(1) dependence structure for the calendar time returns, and an ARMA-type dependence

structure for the price duration returns that clearly has a higher magnitude. This suggests that the MMS

noise under calendar time sampling can be regarded as i.i.d. when we sample sparsely, thus the calendar time

estimators are much less affected by the MMS noise. For the renewal based estimators, we see that the RV (δ)
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Figure 7: Simulated Bias, MSE and QLIKE for daily volatility estimates obtained from NPD, RV (δ), RV and

RBip for 1FSV model with moderate level of MMS noise

Panel 1: 1FSV No Jump

Panel 2: 1FSVJ

Note: The results are based on 10000 replications of the 1FSV model with and without jumps. The x-axis denotes the average log sampling

frequency for a given δ for NPD and RV (δ), or the log sampling frequency of the equidistant intraday return per day for RV and RBip.

The truncation threshold δ ranges from δ150 to δ0 with a step size of δ0 = 0.1ε, with ε = ln(20.01)− ln(20). The subscript J represents an

estimator constructed on the 1FSV model with jumps. The noise-to-signal ratio is set to be ω = 0.001.
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Figure 8: Average correlogram of calendar time returns and price duration returns

Note: The results are based on averaging the first 20 autocorrelations of calendar time and price duration returns from 10000 replications

of the 1FSV model with moderate noise. The sampling frequency for the calendar time return is 84 per day. The corresponding threshold

of price duration is δ = 51δ0.

performs the worst due to the dependence in the noise structure, and NPD performs better simply because

the truncation bias mitigates part of the MMS noise bias. More importantly, the performance of NPD is more

sensitive to the size of MMS noise than calendar time methods when the sampling frequency is on the same level.

The sensitivity to the size of noise for the NPD estimator can also be seen from Figure 17 and 18 in Appendix

L. In the low noise case NPD performs significantly better than the calendar time methods with smaller MSE

and QLIKE if the sampling frequency is smaller than 84, similar to the no noise case. This advantage quickly

diminishes as the size of the MMS noise increases, and in the large noise case the performance of NPD is

completely dominated by the CTS methods for any sampling frequency smaller than 1000.

Interestingly, when size of the noise is large, one may choose a very small δ in such a way that the trunca-

tion bias exactly offsets the MMS noise bias, which explains why the NPD estimator has better performance

when δ is small. However, even if we can reliably choose such a δ, the performance of this NPD estimator is still

inferior to an optimally sampled CTS estimator. Moreover, it is difficult to choose a δ that can maximize MSE

or QLIKE for a δ ∈ ((x− 1)ε, xε]. If the goal is to choose an estimator that has a smaller MSE or QLIKE, then

for the NPD estimator one needs to choose a large δ that are less affected by the truncation bias, and hopes

that the MMS bias does not outweigh the smaller asymptotic variance of renewal sampling. As a result, CTS

primal estimators are preferred over the NPD estimator due to that the optimal sampling frequency already

has closed form approximations (See e.g. Bandi and Russell (2008) and Hansen and Lunde (2006)) and their

optimal performance dominate the NPD estimator in the presence of moderate to high level of MMS noise,

7.4 Full 1FSV Model: Bias Corrected Estimators

The discussion above suggests that, to fully exploit the smaller asymptotic variance of the price duration based

estimators, it is necessary to mitigate impact of the MMS noise bias for the NPD estimator. To this end,

we compare the performance of the exponentially smoothed NPDz estimator to calendar time bias corrected
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methods, namely RK, PRV and PBip estimators, which are state-of-the-art calendar time volatility estimators

that are known to be highly efficient and robust to MMS noise (also robust to jumps for PBip). Similar to

the previous comparison, we compare the NPDz estimator to the calendar time rivals with the same average

sampling frequency.

The choice of tuning parameters for theses estimators are non-trivial, as they have a very large impact on

the performances of these estimators. Our aim here is to compare the optimal performance of all these esti-

mators, therefore we will use optimized tuning parameters assuming they are known in advance. For the RK

estimator the optimal choice of the bandwidth is provided in Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2008), but there is no analytical solution to the optimal tuning parameters for NPDz, PRV and PBip esti-

mators. We therefore choose the tuning parameters for NPDz, PRV and PBip by a grid search method that

minimizes the simulated MSE of the estimators. Details of tuning parameter selection and implementation of

all estimators considered is presented in Appendix K.

Figure 9: Average sampling frequency of the NPD and NPDz estimator for the 1FSV and 1FSVJ models

under optimal γ

Note: For the high, moderate and low levels of noise, the δ ranges from δ0 to 200δ0, 150δ0 and 120δ0 correspondingly. The step size is set

to be δ0 = 0.1ε, with ε = ln(20.01) − ln(20). For each δ, we compute the average sampling frequency by averaging the number of price

durations over 10000 Monte Carlo draws of 1FSV and 1FSVJ model. The noise-to-signal ratio is set to be ω = 0.001. See Appendix K for

the values of the tuning parameter γ under different levels of noise.

Figure 9 shows the average sampling frequency of the NPDz estimator under optimal γ compared to that

of the NPD estimator. It is clear that as the level of noise increases, the sampling frequency of the NPDz

estimator deviates from that of the NPD estimator. As the impact of noise is alleviated by the smoothing, it

is expected that the sampling frequency for the NPDz estimator is smaller than that of the NPD estimator

to reduce the positive MMS bias. It is also interesting to see that the sampling frequency of NPDz can exceed

the average number of ticks in a day as smoothing removes all the flat trades. The sampling frequency is also

a smoother function of δ due to exponential smoothing. Finally note that in the low level of noise case, we can

still observe a step-shaped sampling frequency curve for the NPDz, as the optimal γs are very close to 1. This

suggests that smoothing does not improve the MSE of the NPD estimator in the low level of noise case, similar

to the optimal θs for the pre-averaged estimators for sparsely sampled returns.
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Figure 10: Simulated Bias, MSE and QLIKE for daily volatility estimates obtained from NPDz, RK, PRV

and PBip for 1FSV model with moderate level of MMS noise

Panel 1: 1FSV No Jump

Panel 2: 1FSVJ

Note: The results are based on 10000 replications of the 1FSV model with and without jumps. The x-axis denotes the average log sampling

frequency for a given δ for the NPDz model, or the log sampling frequency of the equidistant intraday return per day for RK, PRV and

PBip. The truncation threshold δ ranges from δ150 to δ0 with a step size of δ0 = 0.1ε, with ε = ln(20.01) − ln(20). The subscript J

represents an estimator constructed on the 1FSV model with jumps. The noise-to-signal ratio is set to be ω = 0.001.
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We plot the Bias, MSE and QLIKE of NPDz, RK, PRV and PBip for the moderate level of noise case in

Figure 10, and the other two cases can be viewed in Figure 19 and 20 in Appendix L. In Figure 10, we see that

the bias correction leads to a significant improvement in the MSE and QLIKE of volatility estimates compared

to the primal estimators, especially at larger sampling frequencies. The RK estimator performs worse than the

pre-averaged estimators because the window length H is optimized for convergence rate instead of MSE, thus

the MMS noise bias is not fully corrected for at high sampling frequencies. For PRV and PBip, we see that

these two estimators are very robust to MMS noise in the absence of jump. The performance of PRV is however

affected by jumps as θ∗ is optimized to minimize the MSE which uses the actual IV instead of QV. As a result,

optimal PRVJ underestimates the QV so that it is less biased.

Comparing the MSE and QLIKE for the four estimators in Figure 10 we can see that, the NPDz estima-

tor has a clear advantage of efficiency at any sampling frequency smaller than approximately exp(5) ≈ 150. The

NPDz is biased towards zero when the sampling frequency is large due to the truncation bias. Similar to a

NPD estimator, the truncation bias diminishes as δ increases. As is discussed in Section 6.4, the optimal γ

shrinks the MMS bias in a way that it approximately offsets the truncation bias when one samples relatively

sparsely. As a result, the smaller asymptotic variance of the RBV -class estimators leads to a more efficient

NPDz estimator compared to its calendar time rivals for a moderate to small sampling frequency. Interestingly,

the smoothed price process Zj itself is not noise free, so constructing RV-type estimators based on Zj is still

inferior to the NPDz estimator.

We provide a comprehensive comparison of the optimal MSEs of all volatility estimators considered under

various model settings in Table 2. A similar comparison of optimal QLIKEs can be found in Table 4 in Ap-

pendix L. From Tables 2 and 4, we see that despite a much smaller optimal sampling frequency of the NPDz

estimator compared to the pre-averaged estimators, its optimal MSE and QLIKE still outperform those of the

pre-averaged estimators. Moreover, the exponential smoothing to some extent preserves the robustness to jumps

of the NPD estimator, and it is evident that the efficiency advantage of the NPDz estimator over the calendar

time competitors is more pronounced in the presence of jumps.

From the discussion above we can conclude that NPDz has the overall best MSE and QLIKE which is also

very robust to jumps. Its performance is closely followed by the pre-averaging estimators PRV and PBip in the

absence of noise. It is suboptimal to use a very high sampling frequency for the NPDz estimator due to the

truncation error, but the NPDz estimator under a sparse sampling frequency can still beat the pre-averaged

estimators that uses much more observations in terms of efficiency. Also note that the optimal MSE and QLIKE

for the NPDz is even lower than the optimal MSE and QLIKE of NPD in the absence of noise. This is because

the smoothed MMS noise bias serves as a bias correction to the truncation bias, which reduces the bias of the

NPD estimator without greatly affecting its variance.

8 Concluding Remarks

This paper proposes the class of renewal based volatility estimator for high frequency volatility estimation, and

develops its asymptotic theory of the estimator based on renewal theory. The renewal based volatility estimator

differs from RV-type estimators as it does not require an equidistant deterministic sampling grid and does not

rely on computing squared returns. Our theory opens up a wide range of possibilities to construct alternative

volatility estimators such as range duration-based RBV -type estimators with more efficiency compared to RV-
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Table 2: Comparison of the optimal MSEs for all volatility estimators in Table 1 for the 1FSV and 1FSVJ

models with low, moderate and high levels of noise

Estimator NPD RV (δ) RV RBip NPDz RK PRV PBip

1FSV model with low level of noise

Optimal log MSE -20.9544 -18.1988 -19.3120 -19.3286 -20.9757 -20.2790 -20.7407 -20.8603

δ/δ0 34 101 21 21 35 6 5 1

Sampling Freq. 93 10 189 189 93 2160 2160 2160

1FSV model with moderate level of noise

Optimal log MSE -17.0324 -15.3145 -18.3553 -18.3411 -20.2637 -19.6876 -20.1954 -20.1100

δ/δ0 11 141 51 51 47 9 5 5

Sampling Freq. 1356 7 84 84 146 2955 2955 2955

1FSV model with high level of noise

Optimal log MSE -16.5537 -11.6995 -17.2449 -17.3405 -20.1142 -18.6052 -19.4332 -19.4418

δ/δ0 6 191 151 151 49 12 7 6

Sampling Freq. 3529 9 21 21 841 2618 3529 3529

1FSVJ model with low level of noise

Optimal log MSE -21.0187 -15.8231 -15.9375 -18.3767 -21.0195 -16.0064 -16.2491 -20.0609

δ/δ0 34 111 31 21 34 10 17 8

Sampling Freq. 93 9 93 187 93 2142 517 2142

1FSVJ model with moderate level of noise

Optimal log MSE -17.0643 -14.8169 -15.8456 -17.3982 -19.7464 -15.9891 -16.2552 -19.3642

δ/δ0 11 141 61 51 37 11 11 3

Sampling Freq. 1322 8 52 83 272 1322 1322 2929

1FSVJ model with high level of noise

Optimal log MSE -16.5834 -11.7460 -15.5769 -16.4333 -19.6157 -15.8562 -16.1501 -18.5307

δ/δ0 6 191 151 151 39 19 7 8

Sampling Freq. 3491 9 20 20 1159 2524 3491 3491

Note: Optimal log MSE for an estimator is the smallest log MSE among all the sampling frequencies considered. The smallest value is highlighted in bold. The

entries for the rows δ/δ0 represents the value of the threshold as multiples of δ0 = 0.1ε, with ε = ln(20.01) − ln(20). The sampling frequency is the average

sampling frequency at the optimal δs for NPD, RV (δ) and NPDz , and is the calendar time sampling frequency for RV, RBip, RK, PRV and PBip.
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type estimators, while providing consistency and asymptotic distribution for the entire class of renewal based

volatility estimators. Moreover, the stochastic sampling duration in calendar time is allowed to be parametrized,

which can potentially lead to a significant efficiency gain compared to non-parametric renewal based volatility

estimators.

Using the theory of renewal based volatility estimators, we prove theoretically the consistency and provide

the asymptotic distribution for the point process based volatility estimator as in Engle and Russell (1998),

Gerhard and Hautsch (2002), Tse and Yang (2012), Nolte, Taylor, and Zhao (2016) and Li, Nolte, and Nolte

(2016) under a continuous martingale setting. We examine Nolte, Taylor, and Zhao’s (2016) NPD estimator

in detail, showing its robustness to drifts and jumps, and establishing its bias structure under MMS noise, time

discretization and price discretization. In our simulation study we show that: (1) it is suboptimal to choose a

very small δ due to truncation bias. (2) When the MMS noise level is small, the NPD estimator is more efficient

than the calendar time estimators. (3) The NPD estimator in general is more robust to jumps than the RBip

estimator. (4) The NPD estimator is much more sensitive to the level of noise compared to the calendar time

methods. (5) Exponentially smoothing the contaminated price process can yield an approximately unbiased

NPDz estimator that provides high efficiency compared to optimized RK and pre-averaged estimators while

preserving the robustness to jumps.

This paper has several limitations that provide rooms for future research. Firstly, the idea of a range duration-

based volatility estimator can be further developed as it is showing some very promising properties under the

pure diffusion assumption. Different from the realized range estimator proposed by Christensen and Podolskij

(2007), the normalizing coefficient for the NPR estimator is just 0.5, and the asymptotic properties follow

directly from our theory. However, the properties of this estimator under various noise structures are yet to

be verified, but it is promising that its properties can be analysed following the same approach for the NPD

estimator presented in this paper. Secondly, the properties of the PRBV estimator require further analysis,

as we assume that the renewal reward process Ri is known. Therefore it is also helpful to examine the im-

pact of estimation noise of Ri on the efficiency of the PRBV estimator. Finally, theoretical properties of the

NPDz estimator and a data-driven method to select the optimal smoothing parameter γ are also worth separate

investigation.

35



References
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Appendices

A Proof to Corollary 1

We start with a central limit theorem for the ρ-mixing sequence:

Theorem 10. Peligrad (1986): Suppose X1, X2,· · · is a second order stationary stochastic process with

E[Xi] = 0 and limn→∞ σn →∞ where σn = V[X1 +X2 + · · ·+Xn], and either of the following condition holds:

1. For some c ≥ 0:

E[|X1|2+c] <∞. (79)

2. For the mixing coefficient ρn:
∞∑
n=1

ρn
n
<∞. (80)

Then:

lim
n→∞

n−1σn → σ2. (81)

And:

lim
n→∞

X1 +X2 + · · ·+Xn√
nσ

→ N (0, 1). (82)

Clearly Xi = Di−µ satisfies the conditions described in Theorem 10, and condition 1 is met from the finite

moment assumption. We can then apply the central limit theorem on Di − µ and obtain:

lim
n→∞

tn − nµ√
nσ

→ N (0, 1). (83)

Then Theorem 1 can be derived by a direct implementation of the proof in Theorem 3.3.5, Chapter 3 in Ross

(1996).

B Proof to Proposition 2

Firstly, for the sampling period (0, T ] in business time, let X(T ) denote the sample size from a renewal sampling

scheme with arrival times {ti}i=1:I . Let Di = ti− ti−1 denoting the inter-arrival duration of the renewal process

and finite µ and σ2 being the mean and variance of Di. Heuristically, the renewal process is filling up the time

interval (0, T ] with i.i.d. durations. We therefore have:

T =

X(T )∑
i=1

Di +A(T ), (84)

where A(T ) is the age process of the renewal process defined in Definition 2. By assuming µn
µ → 0 as µ → 0,

the density of A(T ) converges to a centre mass at 0 (a dirac delta function) as µ→ 0. Taking expectations on

both sides of (84) and letting µ→ 0:

lim
µ→0

E
[X(T )∑
i=1

Di

]
=

X(T )∑
i=1

Di → T. (85)

The first equality is due to the fact that as µ→ 0, the sum of all Dis is not random and equals T . It also implies

that X(T )→∞ as µ→ 0, since for a finite X(T ),

lim
µ→0

E
[X(T )∑
i=1

Di

]
= E[X(T )]µ→ 0 6= T. (86)
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We can therefore apply the classical central limit theorem:

lim
µ→0

T −X(T )µ√
X(T )σ

→ N (0, 1). (87)

Note that X(T ) converges to T
µ in the limit. Substituting this into the denominator of the equation above

completes the prove.

C The Time Changed Compounded Poisson Process

Following Oomen (2006), the price process {P (t)}t>0 is specified as:

P (t) =

N(t)∑
i=1

ri, ri ∼ i.i.d.N (0, σ2), (88)

where N(t) is a inhomogeneous Poisson process with time-varying intensity function λ(t|Ft) = E[N(t)]. The

integrated variance of this process is defined by:

IV (0, t) = σ2

t∫
0

λ(s|Fs)ds. (89)

It then follows directly from Theorem 9 that the time changed counting process Ñ(τ(t)) = N(t) where τ(t) =

IV (0, t) follows a homogeneous Poisson process with constant intensity σ−2. Since ri is i.i.d., P̃ (τ(t)) = P (t) is

by definition a Lèvy process.

D Proof to Proposition 4

To prove the proposition, we only need to show that Ri is a monotonically increasing function of D̃i in the sense

that for any D̃i > D̃j , Ri > Rj .

We start by applying the same time change τ(t) =
∫ t

0
σ2
p(s)ds to the conditional intensity process λ(t|Ft)

to obtain its business time counterpart:

λ̃(τ(t)|Fτ(t)) = λ(t|Ft). (90)

The time-changed conditional intensity λ̃(τ(t)|Fτ(t)) is the conditional intensity process of the renewal process

X̃(τ(t)), since from Theorem 9:

Λ̃(τ(ti−1), τ(ti)) ≡
τ(ti−1)+D̃i∫
τ(ti−1)

λ̃(τ(s)|Fτ(s))dτ(s) = Λ(ti−1, ti) ∼ i.i.d. exp(1). (91)

We can therefore write Ri in terms of λ̃(τ(t)|Ft):

Ri = µ

τ(ti−1)+D̃i∫
τ(ti−1)

λ̃(τ(s)|Fτ(t))dτ(s). (92)

Note that by the definition of conditional intensity and due to that the process X̃(τ(t)) is renewal, we have

λ̃(τ(ti) + s|Fτ(ti)) = hD̃(s), where hD̃(s) is the hazard function of the renewal process X̃(τ(t)) defined by:

hD̃(s) = −
∂ ln(1− FD̃(s))

∂s
, (93)
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in which FD̃(s) is the CDF of D̃i. The cumulative hazard function HD̃(x) is defined as:

HD̃(s) =

s∫
0

hD̃(u)du = −ln(1− FD̃(s)). (94)

The equivalence between hD̃(s) and λ̃(τ(ti) + s|Fτ(ti)) suggests the following relationship which holds true for

all t:
τ(ti−1+t)∫
τ(ti−1)

λ̃(τ(s)|Fτ(t))dτ(s) =

ti−1+t∫
ti−1

λ(s|Fs)ds = − ln(1− FD̃(τ(ti−1 + t)− τ(ti−1)). (95)

Taking t = Di so that ti + t = ti+1 and substitute into the equation above:

Ri = −µ ln(1− FD̃(D̃i)). (96)

Note that the term − ln(1 − FD̃(D̃i)) in the above equation is the exponential inverse probability integral

transform of D̃i which follows an i.i.d. unit exponential distribution. This is consistent with the result that Ri

is i.i.d. exponential. More importantly, − ln(1 − FD̃(D̃i)) is a monotonically increasing function of D̃i, which

completes the proof.

E Proof of Corollary 2

We start with (95):

ti−1+t∫
ti−1

λ(s|Fs)ds = − ln(1− FD̃(τ(ti−1 + t)− τ(ti−1)),

= − ln(1− FD̃

( ti−1+t∫
ti−1

σ2
p(s)ds

)
.

(97)

Rearrange:

1− exp

(
−

ti−1+t∫
ti−1

λ(s|Fs)ds

)
= FD̃

( ti−1+t∫
ti−1

σ2
p(s)ds

)
. (98)

Rewrite in terms of g(t|Ft):

1− exp

(
− 1

µ

ti−1+t∫
ti−1

g(s|Fs)ds

)
= FD̃

( ti−1+t∫
ti−1

σ2
p(s)ds

)
. (99)

Comparing both sides of (99), it is easy to see that the necessary and sufficient condition for g(t|Ft) = σ2
p(t) for

all t is:

FD̃(x) = 1− exp
(
− x

µ

)
, (100)

which shows that D̃i is exponentially distributed with intensity µ−1, and the proof is complete.

F Simulation of ρ(δ) and ρ(r) for the PD and PR estimators

To simulate ρ(δ) and ρ(r), we firstly simulate a standard Wiener process. Let ∆Wi ∼ N (0,∆), and the (discrete)

Wiener process is simulated as:

Wj =

∞∑
k=1

∆Wk. (101)
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In the simulation we set ∆ = 10−5. The stopping times {D̃(δ)
i }i=1:N and {D̃(r)

i }i = 1 : N are then constructed

by setting δ = r = 1 based on this Wiener process as follows:

D̃
(δ)
i =

1

∆
inf

j>i−1
{Wj : |Wj −Wi−1| ≥ 1},

D̃
(r)
i =

1

∆
inf

j>i−1
{Wj : sup

i−1<s<j
(Ws)− inf

i−1<s<j
(Ws) ≥ 1}.

(102)

We choose N = 1000000. Note that there will be a small truncation bias due to the discreteness of the simulated

Wiener process. This will cause the simulated D̃
(δ)
i and D̃

(r)
i to be biased upward slightly, and the bias vanishes

as ∆ ↓ 0. This will not have a significant impact as long as ∆ is relatively small compared to δ or r. Based on

the simulated D̃
(δ)
i and D̃

(r)
i , we can construct R

(δ)
i and R

(r)
i as:

R
(·)
i = −E[D̃(·)] ln(1− F̂D̃(·)(D̃

(·)
i )), (103)

in which F̂D̃(·)(x) is the empirical CDF of D̃(·). We do not use the theoretical CDF because it is not available in

closed form. The correlation ρ(·) is then computed based on {D̃(·)}i=1:N and {R(·)
i }i=1:N . We plot the simulated

moments for {D̃(·)}i=1:N and {R(·)
i }i=1:N and the simulated ρ(·) in Table 3.

Table 3: Simulated moments for D̃(·) and R
(·)
i and the simulated ρ(·)

E[D̃(δ)] V[D̃(δ)] E[R
(δ)
i ] V[R

(δ)
i ] ρ(δ) V[D̃

(δ)
i −R

(δ)
i ]

Simulated 1.0033 0.6707 1.0000 0.9999 0.9998 0.0330

Theoretical 1 0.6667 1 1 - 0.0340

E[D̃(r)] V[D̃(r)] E[R
(r)
i ] V[R

(r)
i ] ρ(r) V[D̃

(r)
i −R

(r)
i ]

Simulated 0.5036 0.0844 0.5000 0.2500 0.9915 0.0463

Theoretical 0.5 0.0833 0.5 0.25 - 0.0471

Note: δ = r = 1. N = 1000000. Theoretical values of the simulated moments can be found in (38) and (42).

G Proof to Proposition 5

To prove the proposition, we only need to show that D̃
(δ)
i is strictly stationary and strongly mixing with finite

moments for any finite δ. We start with the following proposition:

Proposition 6. Let Pj = P ∗j + Vj be a discrete stochastic process on the probability space {Ω,F , P}. P ∗j is a

martingale with the property V[P ∗j ]→∞ as j →∞. Its increments r∗j = P ∗j − P ∗j−1 satisfy 3. The noise term

Vj satisfies Assumption 2. Define a threshold δ > 0 and a sequence of stopping time j
(δ)
i :

j
(δ)
i = inf

j>j
(δ)
i−1

{j : |Yj − Yj(δ)i−1
| ≥ δ}. (104)

Then the sequence {M (δ)
i }i=1,2,··· where M

(δ)
i = j

(δ)
i − j

(δ)
i−1 is also strongly mixing and strictly stationary.

Proof. To prove that {M (δ)
i }i=1,2,··· is strictly stationary and strongly mixing, firstly note that M

(δ)
i always

exists and is smaller than ∞ for some finite δ. This is implied by the assumption that V[P ∗i ] → ∞ as i → ∞.

We then prove that the following probability is strictly stationary and strongly mixing:

Qj,k = Prob
( k∑
l=1

r∗j+l + Vj+k − Vj /∈ (−δ, δ)
)
. (105)
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The quantity Qj,k can be interpreted as the marginal probability that starting at the j-th price observation,

a price event is triggered after the k-th step. From the finiteness of M
(δ)
i , we also have Qj,k → 1 as k → ∞

for any δ. Because Prob(M
(δ)
i ≤ k) = Q

j
(δ)
i−1,k

, it is clear that as long as Qj,k is strictly stationary and mixing,

{M (δ)
i }i=1,2,··· will also be strictly stationary and mixing. From Assumption 2 and 3, it is clear that the

joint distribution {r∗j , r∗j+1, · · · , r∗j+k} is not a function of j due to the strict stationarity. The same holds for

Vj+k − Vj . Moreover, the strong mixing assumption for both r∗i and Vi implies that for large enough h, Qj−h,k

is independent of Qj,k. We can therefore conclude that Qj,k is strictly stationary and strongly mixing, which

implies that {M (δ)
i }i=1,2,··· is also strictly stationary and strongly mixing.

Proposition 5 suggests that, if we consider the price process Pi as a time deformed discrete process, then

the number of steps to trigger a price change M
(δ)
i is strictly stationary and strongly mixing under Assumptions

2 and 3. Following the notation in Proposition 6, let j
(δ)
i denote the index of the tick change where the i-th

price event arrives, then we can rewrite D
(δ)
i as:

D̃
(δ)
i =

M
(δ)
i∑

k=j
(δ)
i−1

d̃k. (106)

Therefore, D̃
(δ)
i is a random sum of a random variable, where both M

(δ)
i and d̃j are strictly stationary and

strongly mixing. As a result, D̃
(δ)
i is also strictly stationary and strongly mixing, which completes the proof.

H An Approximated Time Discretization Bias

Throughout this section we assume rj = r∗j , that is, the MMS noise is absent in the price process. We start by

decomposing r
(δ)
i as:

r
(δ)
i =

j
(δ)
i−1+M

(δ)
i∑

j=j
(δ)
i−1

rj , (107)

where j
(δ)
i is the observation index of t

(δ)
i , and M

(δ)
i is the number of observations in the i-th price duration

(excluding the starting point). From Theorem 10, we see that since we assume rj to be strongly mixing and

strictly stationary with finite moments, it holds that:

lim
N→∞

N∑
n=1

rj ∼ N (0, NV [rj ]), (108)

where V [rj ] = E[d̃j ] is the unconditional variance of the tick return. Now consider Ni being a sufficiently large

random variable, so that
∑Ni
n=1 rj is approximately mixture normal. The absolute price change point process

truncates this random variable
∑Ni
n=1 rj whenever |

∑Ni
n=1 rj | ≥ δ, and the distribution of r

(δ)
i becomes very

complicated.

To provide an approximated result, we treat the sequence rj as i.i.d. normal variates with variance V[rj ].

Let Si =
∑Ni
j=1 rj denote the partial sum of the returns till step Ni, the process Si is then a Gaussian random

walk. For a truncation threshold δ, we use the joint distribution {N (δ)
i , S

N
(δ)
i
} to approximate {M (δ)

i , r
(δ)
i }. The

asymptotic expansion of E[S2

N
(δ)
i

] as δ →∞ is given in Lotov (1996):

E[S2

N
(δ)
i

] = δ2 + 2δ
√

V[rj ]K + V[rj ]K2 +
1

4
+ o(1), (109)

where K ≈ 0.58258087 is defined through: K = 1√
2π

limn→∞[2
√
n−

∑n
m=1m

−1]. From Wald’s identity we also

have that: E[S2

N
(δ)
i

] = V[rj ] E[N
(δ)
i ].
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In this Gaussian random walk setting, S2

N
(δ)
i

can be interpreted as the return for the i-th price duration. As a

result, the expected TD bias is just: TD(δ)(0, t) =
∑X(t)
i=1 S2

N
(δ)
i

−X(t)δ2. Apply Wald’s identity once again, we

have E[TD(δ)(0, t)]→ E[X(t)](E[S2

N
(δ)
i

]− δ2) in the limit. Also, E[X(t)] in the limit converges to IV (0,t)
E[S2

N
(δ)
i

]
which

is from the property of renewal processes. The approximated T̃D bias is therefore:

lim
δ→∞

T̃D
(δ)

(0, t)→ IV (0, t)

E[S2

N
(δ)
i

]
E[S2

N
(δ)
i

− δ2]

= IV (0, t)(1− 1

1 +O(δ−1)
)

(110)

which converges to zero as δ →∞ with a rate of δ−1.

I Determinants of the Bias of the NPD Model

We provide a simple example to illustrate the bias of the NPD estimator as a function of δ via simulation.

Based on (55), we assume that the arrival of τ(tj) in business time follows a homogeneous Gamma process

with intensity measure v(x) = γ
xeλx

. The inter-observation durations in business time are then i.i.d. Gamma

distributed: d̃j ∼ Γ(γ, λ). Let z∗j denote an i.i.d. standard normal variable, we have:

r∗j = z∗j

√
d̃j ∼ N (0, d̃j). (111)

so the tick return is unconditionally mixture normal. This simple structure allows for a leptokurtic distribution

of r∗j with the following sample moments: V[r∗j ] = γλ, K[r∗j ] = 3 + 3
γ . For the noise term Vj , we assume that it

follows an AR(1) process:

Vj = ρVj−1 + vj , vj ∼ N
(

0,
σ2
v

1− ρ2

)
. (112)

To ensure that Vj complies with Assumption 2, we further require that |ρ| < 1 and vj ⊥⊥ r∗j . The unconditional

variance Vj is therefore σ2
v for any ρ ∈ (−1, 1). The tick return rj is therefore conditionally normally distributed

with an ARMA-type autoregressive structure. We will refer to this model as the Gamma subordinated trans-

action (GST) model. Some moment conditions for rj are summarized in Appendix J.

To illustrate the asymptotic properties of the NPD estimator in this setting, we construct the X(δ)(t) pro-

cess for various parameter settings and a range of δ based on the simulated Pi. We then compare the simulated

µ(δ) with δ2, which describes the bias of the NPD estimator. To show this difference graphically, we plot the

volatility signature plot (Andersen, Bollerslev, Diebold, and Labys 2000) of the NPD estimator for a theoret-

ical interval using the asymptotic property of X(δ)(t). The volatility signature plot is constructed by plotting

E[NPD(0, t)] = IV (0,t)
µ(δ) against δ for some finite IV (0, t), and comparing it to the true integrated variance. The

mean duration in business time can be simulated by collecting the number of transactions M
(δ)
i required to

trigger the i-th price duration, and the mean duration µ(δ) can be obtained as:

µ(δ) =
γλ

N

k∑
i=1

M
(δ)
i , (113)

in which k is the size of the simulation. Alternatively, it can be simulated by the renewal RV estimator (with

a larger simulation error) as:

µ(δ) =
1

N

k∑
i=1

(r
(δ)
i )2. (114)
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For each δ, we choose k = 100000. All the parameters of the GST model are set for illustrative purposes only.

The first case we examine is the case where Vi = 0 and V [r∗j ] = 1. We set the kurtosis K[r∗j ] to be 20,

10, 4 and 3 to examine the effect of an excess kurtosis on the NPD estimator.6 The volatility signature plots

of the NPD estimator under these parameter settings are presented in Figure 11. In the simulation we set

IV (0, t) = 1 with δ ranging from 0.1 to 10 with a step size of 0.1. From Figure 11 we see that, as discussed in

the previous section, the NPD estimator is downwardly biased in the absence of MMS noise due to Bias
(δ)
TD,

which is a function of V [r∗j ] and kurtosis. Generally, holding the variance constant, r∗j with heavier tails will

have a larger truncation bias on average, as is shown in Figure 11. It is also clear that the bias decays slowly as

δ increases, which corroborates our result in H.

Figure 11: Simulated volatility signature plot for the NPD estimator on the GST model with no MMS noise
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Note: We simulate µ(δ) based on (113) for δ ∈ [0.1, 10] with a step size of 0.1. For each δ, the volatility signature curve is computed by

IV (0, t) δ2

µ(δ)
where IV (0, t) = 1. Each circle represents a volatility estimate from the NPD estimator computed at the value of δ.

In the next case, we examine the effect of various sizes of i.i.d. MMS noise by choosing ρ = 0 with σ2
v ∈

{0, 0.5, 1, 2}. We will use the same parameter settings from the previous case with K[r∗j ] = 4 for illustration,

as the effect of kurtosis is similar for both cases. The volatility signature plots are presented in Figure 12. The

figure corroborates our previous discussion on the truncation bias and the MMS noise bias. From the graph,

we see that when the size of the noise is small (σ2
v ≤ 0.5), the MMS noise bias is smaller than the truncation

bias and the volatility signature curve converges from below. When the size of the MMS bias is large enough to

compensate for the truncation bias, the volatility signature curve has a hump shape and converges from above.

This result is consistent with Figures 2, and 3 in Nolte, Taylor, and Zhao (2016), which document a similar

curve with a different setting. Also, in the case where the MMS bias is large enough, we see that the volatility

signature curve intersects the true IV (0, t) at some finite δ so the NPD estimator is unbiased. Unfortunately,

we are unable to derive an analytical form for this particular NPD estimator as we cannot estimate the amount

of Bias
(δ)
TD.

Figure 13 shows the case with AR(1) MMS noise. In the simulation we use the settings from the previous

6For the first three cases, the corresponding parameter values for (γ, λ) are ( 3
47
, 47

3
), ( 3

17
, 17

3
) and (3, 1

3
) respectively. When

K[r∗j ] = 3, d̃j = 1 for all j so that r∗j is i.i.d. normal.
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Figure 12: Simulated volatility signature plot for the NPD estimator on the GST model with i.i.d. MMS noise

Note: We simulate µ(δ) based on (113) for δ ∈ [0.1, 10] with a step size of 0.1. For each δ, the volatility signature curve is computed by

IV (0, t) δ2

µ(δ)
where IV (0, t) = 1. The GST model parameters are γ = 3 and λ = 1/3 for all four cases. Each circle represents a volatility

estimate from the NPD estimator computed at the value of δ.

case with σ2
v = 0.5 and ρ ∈ {−0.9,−0.5, 0, 0.5, 0.9}, so that the unconditional variance of the noise remains

unchanged. The figure shows that, negative autocorrelation inflates Bias
(δ)
MMS when δ is small, and affects the

shape of the volatility signature plot. We can clearly see a hump-shaped volatility signature curve for ρ = −0.9.

The effect of negatively correlation decays as δ increases, and the volatility signature curves converge to the

i.i.d. noise case. The impact of positively correlated noise is more persistent and has less of an impact on the

NPD estimator. However, in the positively correlated noise case the volatility signature curve deviates from

the i.i.d. case as ρ increases.

We also include price discretization in the example. As discussed in Section 6.5, we assume that rj is discrete with

the support {· · · ,−2ε,−ε, 0, ε, 2ε, · · · }. We construct the same volatility signature plots for ε ∈ [0, 0.1, 0.5, 1],

and construct the discrete log-price process hε(Pj), where hε(x) = εnint(xε ) and nint(x) is the nearest integer

function. A slight complication arises in this situation. As the NPD estimator always samples in tick time, all

the zero entries in rj are completely disregarded. We choose the parameter settings for Pj from the previous

AR(1) noise case with ρ = −0.5 and examine the effect of different levels of ε on the NPD estimator. The

volatility signature plots in this case are presented in Figure 14.

Figure 14 reveals some very interesting features of the NPD estimator under price discretization. Compar-

ing the case with ε = 0 and ε = 0.1, we see that the bias increases slightly as a result of the price discretization.

When ε = 0.5 or 1, the volatility signature curves have a zigzag pattern. As discussed in Section 6.5, this is

due to the invariant sampling scheme for δ ∈ ((n − 1)ε, nε], so that µ(δ) is also constant within the range. As

a result, the NPD volatility estimates for δ ∈ (n − 1)ε, nε] will become a quadratic function of δ peaking at

every nε. By sampling at nε, we obtain the volatility signature curve that has the least truncation bias, and

this bias can be artificially increased by letting δ ↓ (n − 1)ε without changing the properties of the sampling

scheme. Therefore, if the magnitude of the MMS noise is large enough, one may be able to obtain solutions of

δ∗ for multiple n, represented by the multiple intersections between the volatility signature curves and the true

IV for ε ≥ 0.5.
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Figure 13: Simulated volatility signature plot for the NPD estimator on the GST model with AR(1) MMS

noise

Note: We simulate µ(δ) based on (113) for δ ∈ [0.1, 10] with a step size of 0.1. For each δ, the volatility signature curve is computed by

IV (0, t) δ2

µ(δ)
where IV (0, t) = 1. The GST model parameters are γ = 3, λ = 1/3 and σ2

v = 0.5 for all five cases. Each circle represents a

volatility estimate from the NPD estimator computed at the value of δ.

Figure 14: Simulated volatility signature plot for the NPD estimator on the GST model with AR(1) MMS

noise and price discretization

Note: We simulate µ(δ) based on (113) for δ ∈ [0.1, 10] with a step size of 0.1. For each δ, the volatility signature curve is computed by

IV (0, t) δ2

µ(δ)
where IV (0, t) = 1. The GST model parameters are γ = 3, λ = 1/3, ρ = −0.5 and σ2

v = 0.5 for all five cases. Each circle

represents a volatility estimate from the NPD estimator computed at the value of δ.
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In the last case, we examine the effect of jumps and price discretization on the NPD estimator and assume

that Vi = 0 for simplicity. The discrete price process with jumps is specified as follows:

P̃j = hε(P
∗
j ) + L · Lj · Jj

Lj ∼ i.i.d.Bernoulli(p), Jj ∼ i.i.d.Rademacher
(115)

In this simple setting, L is the size of each jump which is assumed to be a constant, Lj is a Bernoulli draw

on each arrival of transaction representing the arrivals of jumps, and Jj determines the direction of the jump.

We plot the simulated volatility signature plot in this case in Figure 15. From the figure, we see that both L

and p influences the bias of the NPD estimator. We see that when δ is very small, the four curves coincide,

which proves our previous theoretical result on the jump effect. As the jump size and jump intensity increase,

the NPD estimator absorbs more jump variation and are also affected. In the extreme case with L = 10, we

see that the NPD estimator diverges from the true IV . However, the jump intensity used here (one per 100

transaction) is highly unlikely in reality (as opposed to less than one per week as documented in Andersen,

Bollerslev, and Dobrev (2007) and Lee and Hannig (2010)).

Figure 15: Simulated volatility signature plot for the NPD estimator on the GST model with price

discretization and jumps

Note: We simulate µ(δ) based on (113) for δ ∈ [0.1, 10] with a step size of 0.1. For each δ, the volatility signature curve is computed by

IV (0, t) δ2

µ(δ)
where IV (0, t) = 1. The GST model parameters are γ = 3, λ = 1/3 and Vj = 0 for all four cases. Jumps are specified as

(115). Each circle represents a volatility estimate from the NPD estimator computed at the value of δ.

J Moment conditions for rj of the GST model

E[rj ] = 0, (116)

V[rj ] = γλ+
2σ2

v

1 + ρ
, (117)

E[rjrj−k] =
ρ− 1

ρ+ 1
ρk−1σ2

v , (118)

E[r4
j ] = 3γλ2(1 + γ) +

12γλσ2
v

1 + ρ
+

12σ4
v

(1 + ρ)2
. (119)
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K Implementation details for RK, NPDz, PRV and PBip estimators

For the RK estimator, we use a Tukey-Hannings2 kernel, with the optimal bandwidth H = 5.74ξN0.5, in which

ξ =
σ2
v√∫ 1

0
σ4
p(s)ds

and N is the sampling frequency, as given by Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2008). In the simulation, we use the true value of σ2
v and

∫ 1

0
σ4
p(s) for each random draw of the 1FSV model to

construct the RK estimator. The RK estimator is then constructed based on the calendar time sampled returns

with the sampling frequency given by the average sampling frequency of the NPDz estimator (or the NPDz
J

estimator in the presence of jump) for each δ = xδ0. An example of the sampling frequencies for the moderate

level of noise case is shown in Figure 9.

For the NPDz estimator, we choose the optimal smoothing parameter by computing the MSE of the NPDz

estimator based on 10000 random draws of the 1FSV and 1FSVJ models for a grid of δ = xδ0, and choose

the γ that minimizes the MSE of the NPDz estimator for some δ. The resulting optimized γ∗s for the 1FSV

model with high, moderate and low levels of noise are 0.1, 0.30 and 0.92 respectively. For the 1FSVJ model, the

corresponding γ∗s are: 0.1, 0.31 and 0.99. The γ∗s for the 1FSV model are very close to those of the 1FSVJ

model with the same noise level. We also see that the smoothing parameter is reversely related to the size of

noise as expected. The NPDz estimator is then constructed on a grid of δ = xδ0 on the smoothed price process

Zj .

For the PRV and PBip estimators, we need to determine the tuning parameter θ that controls for the win-

dow width of pre-averaging (see e.g. Jacod, Li, Mykland, Podolskij, and Vetter (2009) or Hautsch and Podolskij

(2013)), and σ2
v to correct for the pre-averaged MMS bias. As the optimal value of θ varies with the sampling

frequency according to Hautsch and Podolskij (2013), we optimize θ for each sampling frequency used in order

to obtain optimized performance for the PRV and PBip estimators at each sampling frequency. In detail we

use a grid of θ ∈ [0, 2] to construct both estimators and to choose an optimal θ∗ that minimizes the MSE of the

estimator at each sampling frequency. Note that when θ∗ = 0, we use RV and RBip instead. We plot the opti-

mal θ∗s of PRV and PBip for both the 1FSV and 1FSVJ models under three different levels of noise in Figure 16:

Figure 16 shows that the optimal θs indeed vary with the sampling frequency. Generally, a much larger θ

is required for the highest sampling frequency, and for the sampling frequency within exp(4) to exp(7), θ is

very stable. When the sampling frequency decreases further, θ quickly drop to zero, as the simple RV and

RBip estimators have better efficiency when the impact of MMS noise is small. The presence of jump seems to

decrease the optimal θ∗ slightly, but the optimal θ∗s have a similar pattern with or without jumps.
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Figure 16: Optimal θs of PRV and PBip estimators

Note: The results are based on 10000 replications of the 1FSV and 1FSVJ models. For each black dot, the x-axis shows the log sampling

frequency used to construct PRV and PBip estimators and the y-axis represents the optimized value for θ. For each sampling frequency, θ∗

is computed by a grid search method for θ ∈ [0, 2] that minimizes the simulation MSE.

50



L Additional Tables and Figures

Table 4: Comparison of the optimal QLIKEs for all volatility estimators in Table 1 for the 1FSV and 1FSVJ

models with low, moderate and high levels of noise

Estimator NPD RV (δ) RV RBip NPDz RK PRV PBip

1FSV model with low level of noise

Optimal log QLIKE -5.3841 -3.1229 -4.1165 -4.3328 -5.4041 -5.1137 -4.8457 -5.5014

δ/δ0 24 61 21 21 25 9 11 8

Sampling Freq. 189 26 189 189 189 2160 524 2160

1FSV model with moderate level of noise

Optimal log QLIKE -2.7444 -2.1163 -3.3983 -3.4633 -5.3551 -4.6682 -4.8649 -4.9156

δ/δ0 91 131 51 51 27 9 6 6

Sampling Freq. 19 8 84 84 594 2955 2955 2955

1FSV model with high level of noise

Optimal log QLIKE -1.4389 -0.5337 -2.4789 -2.5070 -5.1677 -3.5907 -4.4197 -4.3951

δ/δ0 5 191 141 141 30 14 6 6

Sampling Freq. 3529 9 27 27 1845 2618 3529 3529

1FSVJ model with low level of noise

Optimal log QLIKE -5.4757 -0.1705 -0.2015 -2.8499 -5.4833 -0.2122 -0.3157 -4.0977

δ/δ0 24 111 51 11 24 14 17 1

Sampling Freq. 187 9 38 517 187 517 517 2142

1FSVJ model with moderate level of noise

Optimal log QLIKE -2.3990 -0.0655 -0.2012 -2.0102 -4.6502 -0.1925 -0.3497 -3.4153

δ/δ0 81 141 81 51 18 18 15 7

Sampling Freq. 26 8 26 83 1322 1322 1322 2929

1FSVJ model with high level of noise

Optimal log QLIKE -1.3215 0.4063 -0.0663 -1.1812 -4.0293 -0.0827 -0.1327 -2.7092

δ/δ0 4 191 161 131 20 19 7 7

Sampling Freq. 3491 9 16 33 2524 2524 3491 3491

Note: Optimal log QLIKE for an estimator is the smallest log QLIKE among all the sampling frequencies considered. The smallest value is highlighted in bold.

The entries for the rows δ = xδ0 represents the value of the threshold as multiples of δ0 = 0.1ε, with ε = ln(20.01) − ln(20). The sampling frequency is the

average sampling frequency at the optimal δs for NPD, RV (δ) and NPDz , and is the calendar time sampling frequency for RV, RBip, RK, PRV and PBip.
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Figure 17: Simulated Bias, MSE and QLIKE for daily volatility estimates obtained from NPD, RV (δ), RV

and RBip for 1FSV model with high level of MMS noise

Panel 1: 1FSV No Jump

Panel 2: 1FSVJ

Note: The results are based on 10000 replications of the 1FSV model with and without jumps. The x-axis denotes the average log sampling

frequency for a given δ for NPD and RV (δ), or the log sampling frequency of the equidistant intraday return per day for RV and RBip.

The truncation threshold δ ranges from 200δ0 to δ0 with a step size of δ0 = 0.1ε, with ε = ln(20.01) − ln(20). The subscript J represents

an estimator constructed on the 1FSV model with jumps. The noise-to-signal ratio is set to be ω = 0.005.
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Figure 18: Simulated Bias, MSE and QLIKE for daily volatility estimates obtained from NPD, RV (δ), RV

and RBip for 1FSV model with low level of MMS noise

Panel 1: 1FSV No Jump

Panel 2: 1FSVJ

Note: The results are based on 10000 replications of the 1FSV model with and without jumps. The x-axis denotes the average log sampling

frequency for a given δ for NPD and RV (δ), or the log sampling frequency of the equidistant intraday return per day for RV and RBip.

The truncation threshold δ ranges from δ120 to δ0 with a step size of δ0 = 0.1ε, with ε = ln(20.01)− ln(20). The subscript J represents an

estimator constructed on the 1FSV model with jumps. The noise-to-signal ratio is set to be ω = 0.0002.
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Figure 19: Simulated Bias, MSE and QLIKE for daily volatility estimates obtained from NPDz, RK, PRV

and PBip for 1FSV model with high level of MMS noise

Panel 1: 1FSV No Jump

Panel 2: 1FSVJ

Note: The results are based on 10000 replications of the 1FSV model with and without jumps. The x-axis denotes the average log sampling

frequency for a given δ for the NPDz model, or the log sampling frequency of the equidistant intraday return per day for RK, PRV and

PBip. The truncation threshold δ ranges from δ150 to δ0 with a step size of δ0 = 0.1ε, with ε = ln(20.01) − ln(20). The subscript J

represents an estimator constructed on the 1FSV model with jumps. The noise-to-signal ratio is set to be ω = 0.005.
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Figure 20: Simulated Bias, MSE and QLIKE for daily volatility estimates obtained from NPDz, RK, PRV

and PBip for 1FSV model with low level of MMS noise

Panel 1: 1FSV No Jump

Panel 2: 1FSVJ

Note: The results are based on 10000 replications of the 1FSV model with and without jumps. The x-axis denotes the average log sampling

frequency for a given δ for the NPDz model, or the log sampling frequency of the equidistant intraday return per day for RK, PRV and

PBip. The truncation threshold δ ranges from δ150 to δ0 with a step size of δ0 = 0.1ε, with ε = ln(20.01) − ln(20). The subscript J

represents an estimator constructed on the 1FSV model with jumps. The noise-to-signal ratio is set to be ω = 0.0002.
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