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Abstract

This paper develops a structural model to examine price dynamics. The innovation lies in that trades’
permanent price impact can be time-varying—dynamic trade informativeness. A distribution-free
filtering technique pins the real-world data to the model. The filtered series demonstrate that the
time-variation of trade informativeness accounts for a quarter of efficient price innovation; capture
the intraday pattern of information asymmetry; improve the explanatory power of current trades for
future returns; zoom in on informed trading around intraday events; and gauge informed investors’
patience. The framework contributes to the better utilization of high-frequency trading data.
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1 Introduction

This paper studies the estimation of trade informativeness. Broadly speaking, a trade moves price in

two ways: There is both a permanent price impact and a transitory one. The permanent component

reflects a trade’s information content (as, intuitively, the true information persists), while the

transitory component reflects short-run pricing error (arising from price pressure, inventory cost,

etc.) that dies out in the long-run. The terminology “trade informativeness” emphasizes our focus

on the permanent price impact.

A bulk volume of the literature has developed various econometric methods to gauge trade

informativeness (see Hasbrouck, 2007 for a review). More recently, the state space method pio-

neered by Menkveld, Koopman, and Lucas (2007) has seen a number of applications. A common

feature in the extant literature is that the trade informativeness is treated as a constant, capturing

the average permanent price impact of the estimation sample (typically a trading day). Our main

contribution in this paper is to identify the high-frequency dynamics of trade informativeness.

Trade informativeness can indeed be time-varying, for a number of reasons. Fundamentally,

the information-to-noise ratio might vary over trading hours, possibly due to investors coordination

(Admati and Pfleiderer, 1988), time-varying volatility of noise trading (Back and Pedersen, 1998;

and Collin-Dufresne and Fos, 2016), or simply because intraday corporate events or news that add to

or resolve information asymmetry. It could also be driven by informed investors’ strategic behavior

due to risk aversion (Baruch, 2002), learning and competition (Holden and Subrahmanyam, 1992;

Foster and Viswanathan, 1996; and Back, Cao, and Willard, 2000), and discounting or random

horizon (Back and Baruch, 2004; and Caldentey and Stacchetti, 2010). Further, the number of

informed traders who are active in the market might change (Back, Crotty, and Li, 2015; Wang and

Yang, 2017; Banerjee and Breon-Drish, 2017). Such theory-predicted patterns, to the best of our

knowledge, have not been empirically examined, perhaps because of the lack of an econometric

framework to account for time-varying trade informativeness.

1



To account for this dynamic feature, we develop a structural model by extending the state space

used in, e.g., Brogaard, Hendershott, and Riordan (2014). In essense, we treat the possibly time-

varying trade informativeness as a hidden state variable. Then the main econometric objective

becomes to dynamically filter out this hidden state based on observed data (trades and prices).

To this end, we also develop a novel filtering technique following the generalized autoregressive

method of moment, GaMM, first proposed by Creal, Koopman, Lucas, and Zamojski (2016).

Section 2 discusses in detail of our methodology.

A notable advantage of our technique is that it does not require distribution assumptions, as

opposed to, e.g., Kalman filter which requires normality in the data. The distribution-free property

is particularly important when the model is applied to real-world trading data, where heavy / fat tails

(and skewness) are often seen. In a simulation horserace shown in Appendix B, we demonstrate

that our filtering technique outperforms Kalman filter when normality is lost or when the model is

misspecified.

We then apply our structural model and the filtering technique to the U.S. equity trading data.

The result, presented in Section 3, strongly supports the view that trade informativeness is indeed

time-varying: While an order flow of size $10,000 on average moves the price by about 2.76

bps, from one trade to another, this (permanent) impact can change considerably, with a standard

deviation of 0.73 bps. Under our structural model, this time-variation translates to about 24% of

the innovation in the efficient price. Put alternatively, failure to account for the dynamics of trade

informativeness underestimates the true information content in order flows by about a quarter.

Four applications illustrate the usefulness of our method logy. First, we examine the intraday

pattern of trade informativeness by averaging across all the filtered intraday series of trade informa-

tiveness (of each stock, each day). We find over a typical trading day, trade informativeness appears

monotone decreasing. It is the highest at the opening (about 20% above intraday average), suggest-

ing the most severe adverse-selection, and the lowest at the closing (10% below). The decreasing

pattern is in contrast to the well-known U-shape of volume (Admati and Pfleiderer, 1988), the
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reverse J-shape of bid-ask spread (McInish and Wood, 1992), and the hump-shape of depth (Ahn,

Bae, and Chan, 2001). In particular, the fact that trade informativeness is at its lowest at the closing

reveals that the widened spread and the reduced depth in the meantime are largely accounting for

transitory price impact—price pressure, inventory cost, etc. The pattern is also consistent with the

prediction that trade informativeness follows a supermartingale (decreasing on average), as seen in

Baruch (2002) due to risk aversion and in Back and Baruch (2004) and Caldentey and Stacchetti

(2010) due to random horizon.1

The filtered intraday pattern of trade informativeness can help investors make better execution

decisions in real-time trading (as our filtering steps allow feeding in new observations as they

become available). For uninformed investors, it is advisable to trade at times with low trade

informativeness to avoid adverse-selection costs.

Second, to the extent that our filtered trade informativeness is capturing the permanent price

impact, it should also help explain long-run, future price returns. We demonstrate that this is indeed

the case by comparing the explanatory powers of two nested regression models. In the benchmark,

only the current order flow is used to explain future returns. In the extension, we include also the

current time-varying component (from our filtering) of trade informativeness. The latter model

significantly improve the explanatory power of current trades for future returns by tripling or even

quadrupling the adjusted-R2. This improvement persists even if we consider a relatively far future

return of ten minutes, affirming that the filtered time-varying component of trade informativeness

indeed corresponds to the “permanent” price impact.

Third, our filtered dynamic trade informativeness can be used for intraday, high-frequency

analyses, which can help understand the nature of intraday events and the connection with (informed)

investors’ behavior. For such an illustrative purpose, we conduct an event study to examine the

dynamics of trade informativeness around scheduled Fed announcements. Our findings show that

1 The decreasing pattern does not deny the mechanisms that might push trade informativeness to be a su-
permartingale (e.g., Collin-Dufresne and Fos, 2016). It simply suggests that informed investors’ incentives to trade
early are empirically strong.
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trade informativeness begins to pick up about two to three minutes ahead of, but then plummets

within the minute immediately before the scheduled announcements. After the announcement,

trade informativeness does not rise until about ten seconds later and then remain elevated for

another six to seven minutes. The patterns are robust after controlling usual liquidity measures.

We then discuss narratives consistent with the pattern in the paper.

Fourth, the filtered trade informativeness also identifies the (relatively more) informed side of

each and every trade. Indeed, every trade has a buyer and a seller. If the efficient price is moved

up (down) by the trade, the buyer (the seller) is more likely to be the informed. This attribute—the

(relatively more) informed side of a trade—stands separately from the trade’s aggressiveness, i.e.,

whether the buyer or the seller is using the market (usually determined by algorithms like Lee and

Ready, 1991). The separation of trade informativeness from aggressiveness makes it possible to

identify executed informed limit orders; that is, an aggressive buy (sell) that actually moves the

efficient price down (up). The literature has long recognized that limit orders can be informed;

see, e.g., Foucault (1999) and Kaniel and Liu (2006). More recently, Brogaard, Hendershott, and

Riordan (2016) and Fleming, Mizrach, and Nguyen (2017) analyze the price discovery contribution

by limit order quotes. The difference from their approach is that our analysis focuses on the limit

order side of each and every trade.2

Along this line, we design a structural estimator for informed investors’ patience, simply by

counting the proportion of informed passive trades. Applied to days around earnings announce-

ments, we find indeed that such patience drops significantly. Key to this patience measures is

the identification of the more informed side for each and every trade. Conventional frameworks

provides no such identification for individual trades, as they only generate average estimates.

The amount of transaction-level data has been overwhelming since the rise of algorithmic and

2 The conventional term “(permanent) price impact” is often implicitly associated with order flows—the aggressive
market orders. As a trade’s (relatively more) informed side can be separate from its aggressive side, we favor the term
“trade informativeness” for its neutrality: The interpretation is entertained that such informativenss can arise from
either market or limit orders.
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high-frequency trading. A large stock can easily see tens of thousands of trades on an average

trading day. Using such rich intraday data as input, the conventional econometric frameworks

however only outputs an overview, averaging out the trends and patterns in the dynamics. In

contrast, the current econometric framework improves the utilization of high-frequency data in that

it also maitains the data’s high-frequency nature. To this extent, we believe this paper add empirical

tools that help bridge some of the gaps in market microstructure research in the high-frequency

trading world (O’Hara, 2015). We conclude with some potential directions for future research

along this line in Section 4.

2 A structural model for dynamic trade informativeness

Consider a dataset where trades are sequentially indexed by k ∈ {1, 2, ...}, each occurring at time

tk with signed size yk (> 0 for buy and < 0 for sell market order). Denote by p(t) the prevailing

log-midquote price by time t . Hence, p(tk) is observed immediately before the k-th trade occurs and

we writepk−1 := p(tk). This way, the observed information before thek-th trade can be conveniently

summarized as Fk−1 := {pj ,yj}j≤k−1. This section develops a structural model that can be cast

on such a trading dataset to filter out, analyze, and understand the dynamic informativeness of

each and every trade. (Our model discussion and applications are based on event time but can be

analogously done for clock time.)

2.1 The canonical framework

We begin by revisiting the canonical approach to model price dynamics. See, e.g., Hasbrouck

(2007) for a review; and more recent applications include Menkveld, Koopman, and Lucas (2007),

Hendershott and Menkveld (2014), and Brogaard, Hendershott, and Riordan (2014). The observed
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price pk is decomposed into two unobservable components:

pk =mk + sk(1)

where mk is the (semi-strong) efficient price and sk is the pricing error. Specifically, the efficient

price mk is modeled as a random walk, so that its innovation will persist, while the pricing error

sk is modeled as a stationary process, so that its innovation will decay to the long-run mean zero

(hence the name “pricing error”). The dynamics of the efficient price and of the pricing error are

further linearly linked to trading {yk}:

∆mk =mk −mk−1 = λy
∗
k + µk(2)

(1 − φ(L))sk = ψ (L)yk + νk(3)

where {µk} and {νk} are some independent white noises. The lag polynomials φ(L) ensures that

sk is stationary, so that it mean-reverts to zero in the long-run, satisfying the definition of “pricing

error”. The structureψ (L) captures the transitory price impact of trades. The order flow innovation,

{y∗
k
}, is another white noise, satisfying (1 − A(L))yk = y∗

k
, so that the efficient price mk indeed

follows a martingale: Ek−1[∆mk] = 0.

A focal point of such a system is the parameter λ, which governs, on average, how order

flow innovation {y∗
k
} moves the efficient price {mk}. The usual interpretation is that the larger is

λ, the more (private) information the order flow has (Kyle, 1985). As such, λ is often labeled as

(permanent) price impact, order flow informativeness, information asymmetry, or simply illiquidity.

A limitation of the above structural model is that it only informs empiricists of the average

λ over the sample period. Below we generalize the canonical framework to allow time-varying

λk and we shall refer to it as “the trade informativeness” of the k-th trade (Section 2.2). We also

discuss the unique economic insights unearthed through the generalization (Section 2.3). Finally,

we propose a new estimation technique (Section 2.4).
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2.2 Enriching trade informativeness

To begin with, consider the following general structure of how the efficient price moves from one

trade to another:

∆mk =mk −mk−1 = fk(y∗k),

where the possibly time-varying function fk(·) describes the role of the order flow surprise y∗
k
.

Instead of assuming a specific form of fk(·) (or providing a microfoundation), we turn to a generic

first-order linear approximation by expanding fk(·) around y∗
k
= 0: fk(y∗k) ≈ fk(0) + f

′

k
(0)y∗

k
. We

relabel the two components as µk := fk(0) and λk := f
′

k
(0), thus, arriving at the familiar structure

∆mk = λky
∗
k + µk .

Compared to equation (2), the only difference is the (possibly) time-varying λk . The usual inter-

pretation holds. The efficient price increment during the time interval [tk , tk+1) has a trade-related

component, driven by the order flow surprise y∗
k

at tk , and a non-trade component µk summarizing

everything else. The trade informativeness, λk , captures the per-unit impact of the k-th order flow

surprise.

There are some conditions implied by the above structure. First, through the linearization,

the possibly time-varying terms fk(0) and f
′

k
(0) are by construction orthogonal to y∗

k
. That is,

covk−1[λk ,y∗k] = covk−1[µk ,y∗k] = 0, where the subscript k − 1 emphasizes the covariance is based

on all the observables before the k-th trade, i.e., conditional on Fk−1 = {pj ,yj}j≤k−1. Second, the

martingale property ofmk implies that

Ek−1[∆mk] = Ek−1[µk] + Ek−1[λky∗k] = Ek−1[λk]Ek−1[y∗k] = 0;

and

Ek−1[∆mk∆mk+j] = Ek−1[µkµk+j] = 0, ∀j ≥ 1.

As such, µk has to be a white noise process.

7



Apart from covk−1[λk ,y∗k] = 0, the implied conditions on λk are rather mild, in fact, too mild

that some additional structure is needed for identification. For this purpose, we further impose an

autoregressive structure on λk with long-run mean λ̄:

(1 − α(L))(λk − λ̄) = εk ,

where εk is a white noise innovation, uncorrelated with the innovations y∗
k

and µk ;and α(L) is some

lag polynomial capturing the persistence of λk .3

Summing up the discussion above, we arrive at the following structural model:

observed price: pk =mk + sk(4)

efficient price: mk −mt−1 = λky
∗
k + µk

pricing error: (1 − φ(L))sk = ψ (L)yk + νk

trade informativeness: (1 − α(L))(λk − λ̄) = εk

where the order flow and its innovation satisfies (1 − A(L))yk = y∗
k
. We assume that the four

innovation series—{µk}, {νk}, {εk}, and {y∗
k
}—are white noises with zero means and are pair-

wise uncorrelated. We write their respective (finite) variance as σ 2
µ , σ 2

ν , σ 2
ε , and σ 2

y . The system

degenerates to the canonical framework if λk is not time-varying; e.g., by forcing σ 2
ε = 0.

2.3 Why dynamic trade informativeness is useful

The main econometric objective is to estimate the structural model and filter out the hidden process

{λk} from the observed trade and price series. Before proceeding to the estimation details, we

dedicate some discussions to the potential economic insights that can only be obtained from the

dynamic trade informativeness λk .

3 The identification of λk requires certain persistence. If λk behaves like a white noise (e.g., with α(L) = 0 and
λ̄ = 0), then the product λky∗k will also be a white noise, indistinguishable from µk , and the identification will not
be possible. Note that our specification does not rule out such degenerate case and we let data inform us about the
persistence in λk .
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The time-varying nature of trade informativeness. It is well-known in the theory literature that

trade informativeness (price impact) may well be time-varying. We provide a brief, incomplete

review. Holden and Subrahmanyam (1992) show that because of imperfect competition, identically

informed investors trade more aggressively early on in the trading period, generating a decaying

trade informativeness over time. Foster and Viswanathan (1996) and Back, Cao, and Willard (2000)

extend the analysis by allowing informed investors to have correlated dispersed private signals and

they demonstrate non-monotone time-series patterns for trade informativeness. Even in the case

of monopolist informed trader, the equilibrium trade informativeness can be a supermartingale if

the discount rate is non-zero, because the investor competes with his impatient self (see, e.g., Back

and Baruch, 2004; Caldentey and Stacchetti, 2010). With an activist who can dynamically affect

the company’s operation, the model by Back et al. (2016) features a stochastic trade informative-

ness process in equilibrium. Back and Pedersen (1998) find that trade informativeness can be a

martingale when noise trading is stochastic. Collin-Dufresne and Fos (2016) extend the analysis to

let noise trading have stochastic volatility and find trade informativeness can be a submartingale,

increasing in expectation over time.

Under the conventional approach, the constant λ is unable to capture the above theory-predicted

dynamic patterns. Researchers can only make a statement of the average trade informativeness.

One may opt to break the trading hour into blocks and estimate λ for each block (e.g., Lee,

Mucklow, and Ready, 1993) but such an approach faces the tradeoff between frequency (block

length) and estimation accuracy (number of observations available in each block). Our structural

model, together with the proposed filtering technique (see below), fills this gap. As we demonstrate

later in Section 3.3, our filtered {λk} does a better job in explaining future price changes.

Intraday events. Another use of the dynamics of trade informativeness is to analyze intraday

events. For example, one can compare scheduled and unscheduled corporate announcements;

different reactions after different macro news; and differences in the cross-section of securities.

Reversely, given a salient structural change in the dynamics of λk , one can check back if it is driven
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by the trading behavior of some specific traders or trading groups, e.g., algorithmic / high-frequency

traders, corporate insiders, mutual funds, etc.

In reality, the presence of informed trading during trading hours is uncertain and even if they

exist, their informativeness might change through, e.g., dynamic information acquisition. To the

best of our knowledge, previously these questions are only studied theoretically. Back, Crotty, and

Li (2015) study a trading environment where a strategic investor always exists but may or may

not have private information, while Wang and Yang (2017) study the situation where an informed

investor may or may not exist. Banerjee and Breon-Drish (2017) look at an investor’s strategic

information acquisition timing decision. The richness of dynamic λk also enables researchers to

empirically examine the implication of these intraday events—the entry of informed investor and

their acquisition of information.

From a practice point of view, liquidity-driven investors can benefit from knowing the intraday

pattern of trade informativeness in the real time, as they can avoid periods of time where trade

informativeness (adverse-selection) is high. This can be easily achieved by filtering the trade in-

formativeness using our model (4) and the filtering techinques discussed in Section 2.4. Notably,

the predict-update recursion (equations 7 and 8) can be computed by feeding from real-time obser-

vations of trades and prices. Researchers with data of, e.g., institution execution can examine the

{λk |k}-implied optimal execution time and study the potential savings in implementation shortfalls.

Distinguishing trade informativeness v.s. trade aggressiveness. The market microstructure

literature often assumes that the aggressive side (market order) is more informed than the passive

side (limit order). Such a conventional dichotomy goes back as early as to Copeland and Galai

(1983) and is reinforced in the seminal papers like Kyle (1985) and Glosten and Milgrom (1985).

In the context of a limit order market, however, it is very possible that the passive side is, at least

sometimes, more informed (Foucault, 1999).

Indeed, every trade always involves two investors, a buyer and a seller, but the more informed

one needs not to also be the more aggressive one—a trade’s informativeness and aggressiveness are
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two different, though possibly correlated, attributes. Our structural model (4) allows the separation

of the two and lets data inform us of the relation between them. To see this, the trade-related

component in the efficient pricemk is λky∗k for the k-th trade. Therefore, if λky∗k > 0 (< 0), the buy

(sell) side of the trade is (relatively more) informed. Separately, the k-th trade is an aggressive buy

(sell) if yk > 0 (< 0), as often determined by algorithms like Lee and Ready (1991). To compare,

the conventional approach (2) does not admit such separation as no statement about individual

trades’ (relatively more) informed side can be made. (The constant λ estimate only states about the

average trade informativeness, not about individual trades.)

Empirically, estimates of the static λ of model (2) are typically positive, suggesting aggressive-

ness and informativeness are on average aligned: A positive (negative) surprise order flow moves

the efficient price up (down), on average. However, this does not reject that the informed side and

the aggressive side of individual trades can sometimes differ. For example, Collin-Dufresne and

Fos (2015) argue that the use of limit orders could have contributed to the surprising finding that

the estimated static λ is lower on days when informed investors (activists) heavily trade.

The separation of informativeness and aggressiveness allows us to study the information content

in the passive side of trades, i.e., limit orders. These are trades where sign(λky∗k) , sign(yk). For

example, if λky∗k > 0 but yk < 0, the trade is initiated by an aggressive sell market order, but it has

a positive impact on the efficient price, suggesting the buy limit order is more informed. Previous

literature has also empirically studied the information content of limit orders, with the focus on

the best bid and ask quotes (see Kaniel and Liu, 2006, Brogaard, Hendershott, and Riordan, 2016,

and Fleming, Mizrach, and Nguyen, 2017). Complementarily, our approach focuses on the trade

informativeness, letting the data determine, for each trade, whether the passive side (limit order) is

(relatively) more informative than the aggressive side (market order).

Informed traders’ patience. The theory of limit order market teaches us that investors, when

allowed to choose order types, face the tradeoff between immediacy and trading cost: A market

order guarantees immediate execution (no waiting cost), but incurs transaction cost (e.g., bid-ask
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spread). On the other hand, a limit order has better execution price (saving the spread) but is subject

to uncertain execution (waiting cost). See Parlour and Seppi (2008) for a review.

Inspired by this tradeoff theory, one can use the filtered λk to construct empirical measures for

informed investors’ willingness to use limit orders—their “patience”. For example, if the informed

are very impatient, using only market orders, the proportion of trades that satisfy sign(λky∗k) =

sign(yk) will be close to 100%; vice versa. Such a structural measure can be applied to different

economic settings to empirically study the relationship between informed investors’ (im)patience

and, to name a few, maker/taker fee structure; characteristics of different sources of information;

funding and market liquidity; etc.

2.4 Estimating the structural model

To estimate the structural model, the literature typically begins by estimating the order flow inno-

vation y∗
k

as the residual of (1 − A(L))yk = y∗k . We follow this approach. The structural model (4)

can then be estimated by treating {y∗
k
,yk} as known time-varying parameters, together with the

observation series {pk}.

The conventional approach is to impose some specific distribution on the innovation terms,

{µk ,νk , εk}, and then estimate the model (4) by maximum likelihood. For example, assuming

normality, Menkveld (2013), Brogaard, Hendershott, and Riordan (2014), and Hendershott and

Menkveld (2014) employ Kalman filter to the data. In principle, the same can be done to the

current structural model, assuming the innovation terms are jointly normal. However, real-world

trading data typically feature heavy tails, high kurtosis, and possibly skewness.4 Rather then making

explicit assumptions to account for possible non-normality, we would like to remain agnostic and

4 Before implementing the structural model in the real data, we actually conjectured, a priori, that the trade
informativeness series {λk } could be right-skewed. Our conjecture was based on the interpretation that a negative λk
could indicate a (more) informed limit order in the trade. All else equal, we expected an extremely informed investor
would be more likely to trade aggressively on his private information, due to considerations like timeliness, competition,
and waiting cost. Therefore, extremely negative λk would be rarer than positive extreme values, skewing the distribution
to the right. Our estimation, summarized later in Table 1, confirms this conjecture and thus rejects the normality needed
to implement a standard Kalman filter.
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let data speak. To this end, we develop a distribution-free econometric technique.

Our approach has two steps. First, we estimate the structure of the pricing error, governed by

φ(L) andψ (L). Second, we use these static parameters to help filter out the time-varying λk .

Estimating the pricing error structure with generalized method of moments, GMM. Yueshen

(2016) notes that the structure, φ(L) and ψ (L), of the pricing error sk can be estimated by GMM

without specifying the distribution of the innovation terms. We briefly review the method. To

begin with, rearrange the price change between two trades ∆pk as

∆pk = (1 − L)(mk + sk) = λky∗k + µk +
1 − L

1 − φ(L) (ψ (L)yk + νk)

= ŷk + λky
∗
k + µk +

1 − L

1 − φ(L)νk ,(5)

where the second line introduces a short-hand notation of ŷk := (1 − φ(L))−1(1 − L)ψ (L)yk . While

ŷk is not directly observed, it can be approximated via Taylor expansion. For example, when

φ(L) = φ ∈ (−1, 1) and ψ (L) = ψ (as in, e.g., Menkveld, 2013), ŷk = ψyk − (1 − φ)ψ ∑∞
j=1 φ

j−1yk−j

and can be easily constructed recursively. By subtracting ŷk from ∆pk , we obtain a residual term

that is uncorrelated with all past order flow innovationsy∗
k−j (j ≥ 1). This leads to sufficiently many

moment conditions to identify φ(L) andψ (L):

E
[
(∆pk − ŷk)y∗k−j

]
= 0, for j ≥ 1.(6)

For example, in Menkveld (2013) and Brogaard, Hendershott, and Riordan (2014), φ(L) = φ and

ψ (L) = ψ . The two unknowns can be pinned down by letting j ∈ {1, 2, ...} in the above.

Recursively filtering λk for each trade. Having estimated φ(L) andψ (L), next we turn to filtering

{λk}. In doing so, we will also estimate the unconditional trade informativeness λ̄ and the autore-

gressive structure α(L). For exposition simplicity, we focus on a special case of α(L) = α ∈ (−1, 1),

i.e., letting {λk} follow an AR(1) process.

Our objective is to “best guess” the unobservable true λk . It is useful to distinguish the

information set based on which we make our best guesses. Given all the information before the
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next trade, i.e., conditional on Fk = {pj ,yj}j≤k , our best guess—our prediction—of the next trade’s

informativeness, λk+1, is written as λk+1|k := Ek[λk+1]. Upon seeing the next pair of trade and

price, our best guess is updated to λk+1|k+1 := Ek+1[λk+1]. The terminology of “prediction” v.s.

“update” follows the filtering literature (see, e.g., Durbin and Koopman, 2012). Under the AR(1)

structure of {λk}, the “prediction step” becomes

λk+1|k = Ek
[
(1 − α)λ̄ + αλk + εk+1

]
= (1 − α)λ̄ + αλk |k ,(7)

a weighted average between the long-run mean λ̄ and the current “best guess” λk |k .

In order to compute (filter out) our new best guess λk+1|k+1, we need to complement the above

prediction with an “update step”, making use of the new observation {pk+1,yk+1}. This step can be

generically expressed as (see, e.g., Creal, Koopman, and Lucas, 2013)

λk+1|k+1 = λk+1|k + βSk+1(8)

where Sk+1 represents some “surprise” due to the new observation {pk+1,yk+1} and β some scaling

coefficient (to be estimated). Under Kalman filter, for example, this Sk+1 would be the conditional

expectation (given the new observation) of the innovation εk , scaled by the Hessian of the log-

likelihood function. Since no specific distributions are assumed, we are unable to obtain such a

conditional expectation. We turn to some moment conditions instead.

Our approach is inspired by the generalized autoregressive method of moments, or GaMM,

proposed by Creal, Koopman, Lucas, and Zamojski (2016). Assume we already have a prediction

λk+1|k and we want to update it to λk+1|k+1 based on the newly observed {pk+1,yk+1} (from which

we also observe ∆pk+1, y∗
k+1, ŷk+1, etc.). To do so, we first define a function of

дk+1(λ) :=
(
∆pk+1 − ŷk+1 − λy∗k+1

)
y∗k+1.(9)
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Note that дk+1(·) is monotone decreasing. Evaluated at the prediction λk+1|k , дk+1(·) satisfies

Ek[дk+1(λk+1|k)] = Ek
[(
µk+1 +

1 − L

1 − φ(L)νk+1

)
y∗k+1 +

(
λk+1 − λk+1|k

) (
y∗k+1

)2]
= Ek

[(
µk+1 +

1 − L

1 − φ(L)νk+1

)
y∗k+1

]
︸                                    ︷︷                                    ︸

=0

+Ek
[
λk+1 − λk+1|k

]︸                ︷︷                ︸
=0

Ek

[ (
y∗k+1

)2]
= 0,

where the first equality follows the expression of ∆pk+1 from Equation (5); and the second equality

uses the structural assumption that y∗
k+1 is orthogonal of λk+1.

We have obtained a (conditional) moment condition of Ek[дk+1] = 0, where we omit the

argument λk+1|k for brevity. That is, immediately before the (k +1)-th trade, under Fk , Ek[дk+1] = 0

holds with the prediction λk+1|k . After observing Fk+1, the realized value of дk+1 thus evaluates

how good the prediction λk+1|k was: If it turns out that дk+1 > 0 (< 0), one can conclude that λk+1|k

was too small (too large), because дk+1(·) is monotone decreasing. That is, the sign of the realized

дk+1 gives an indication of how one can improve the prediction of λk+1|k , i.e., how to update to

λk+1|k+1 using the new observation. This is the core idea of Creal et al. (2016): For a possibly

time-varying variable (e.g., λk), the one-step ahead realization of a conditional moment condition

(дk+1) essentially measures the misfit of (i.e., the “surprise” to) the current prediction (λk+1|k).

The misfit only informs us of the direction (and a rough magnitude) of how to update λk+1|k to

λk+1|k+1. To optimally quantify the update from the prediction, we take a scaled steepest descent

by letting

Sk+1 :=
(
Ek

[
∂дk+1

∂λk+1|k

] )−1
дk+1,(10)

That is, we scale the misfit дk+1 is with the gradient of the GMM objective function

max
λk+1 |k

(
Ek[дk+1

(
λk+1|k

)
]
)2

with respect to λk+1|k . The idea is the same as Newton-Raphson method in root-finding. Creal et al.

(2016) show that the updating step (8) with surprise (10) is locally optimal. In fact, taking both the

prediction and the updating steps together (Equations 7 and 8), we obtain a dynamic structure for
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our “best guess”:

λk+1|k = (1 − α)λ̄ + αλk |k−1 + αβSk ,

which is referred to as “GaMM(1,1)” by Creal et al. (2016).

To filter out λk+1|k dynamics and to estimate the static parameters (λ̄, α , and β), we follow

Creal et al. (2016) and instrument the misfit дk+1 with [1; λk |k−1;Sk], yielding the following set of

unconditional moment conditions (where ⊗ denotes Kronecker product):

E
[
дk+1 ⊗ [1; λk |k−1;Sk]

]
= 0.(11)

Specifically, E[дk+1] = 0 pins down λ̄ as in the standard GMM (Yueshen, 2016). The unconditional

moments E[дk+1λk |k−1] = 0 and E[дk+1Sk] = 0 exploit the zero autocorrelation in дk+1 (because of

the white noise {y∗
k
}) by optimizing over the GaMM coefficients α and β . These moment conditions

readily fit into the standard GMM framework (Hansen, 1982) and the usual asymptotic normality

of the estimators holds.

Higher moments. The GMM conditions (11) only identify the dynamic {λk+1|k} and the static

parameters {λ̄,α , β} (hence also {λk |k} following Equation 8). In Appendix A, we exploit several

second moment conditions so that our approach also estimates the variances of the innovations:

σ 2
µ , σ 2

ν , and σ 2
ε . Third moments or higher can be estimated in a similar fashion.

Outperforming Kalman filter. We illustrate the superiority of our proposed estimation method

over standard Kalman filter via simulation. The results are summarized in Appendix B, where we

run a horserace between the two approaches via simulated data. When the innovation terms are

non-normal or when there is model misspecification, our approach outperforms Kalman filter as

judged by the root-mean-squared error of the filtered estimates. (Of course, when the innovations

are normally distributed and the model is correctly specified, Kalman filter outperforms.)
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3 Applications

We estimate our structural model using the U.S. equity intraday trading data. Our sample includes

300 randomly selected stocks from S&P 1500 index over the year 2014. Price and trade information

during trading hours (9:30 to 16:00, Eastern Standard Time) are collected for each stock-day from

Monthly Trade and Quote (TAQ) database. To avoid bid-ask bounces, the log-transformed national

best bid-offer (NBBO) midquote price immediately before the k-th trade is used for pk−1. (The

last prevailing midquote by 16:00 is used for the last pk .) Trades are signed using the algorithm

proposed by Ellis, Michaely, and O’Hara (2000). Our results are robust to alternative signing

algorithms. To facilitate comparison across stocks, we measure the order flow {yk} in $10,000.

We also use the algorithm by Holden and Jacobsen (2014) to alleviate the potential data issues

associated with Monthly TAQ data.

For each stock-day, we estimate the state space model (4) using the method described in

Section 2.4. The lag polynomials are chosen to be φ(L) = φL, ψ (L) = ψ , and α(L) = αL. The

order flow innovation y∗
k

is constructed from an autoregressive model of yk with ten lags. This

parsimonious specification closely follows Brogaard, Hendershott, and Riordan (2014).

Lastly, we complement our intraday data with daily stock information collected from the Center

for Research in Security Price (CRSP). Specifically, we sort our 300 stocks into three size groups—

small, medium, and large—according to their daily average market capitalization during October

to December 2013, three months ahead of the above sample period. Each group has 100 stocks.

3.1 Estimation result

There are 248 trading days in 2014. With the 300-stock cross-section, our sample has a maximum

of 248 × 300 stock-day observations. The number of valid estimates falls short of this maximum

because the numerical optimization does not converge for some stock-days. The overall convergence

rate is about 97.4%, with a breakdown of 97.8%, 98.8%, and 95.7% respectively for large, medium,
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Percentile in the full sample
Unit All Large Medium Small 5% 25% 50% 75% 95%

(a) Structural parameters for trade informativeness λk
λ̄ bps/$10,000 2.76 0.31 1.22 6.85 0.12 0.37 0.88 2.96 11.12

(11.81) (19.64) (15.60) (13.56)
α 0.13 0.15 0.08 0.15 -0.14 -0.01 0.08 0.21 0.67

(32.35) (15.99) (32.95) (34.37)
β -0.34 -0.29 -0.29 -0.46 -1.37 -0.38 -0.18 -0.07 -0.01

(-53.97) (-51.45) (-54.10) (-38.43)
(b) Structural parameters for pricing error sk
ψ bps/$10,000 -1.90 -0.22 -0.82 -4.69 -7.62 -1.93 -0.56 -0.24 -0.08

(-11.84) (-19.11) (-15.38) (-13.70)
φ 0.50 0.52 0.49 0.47 0.19 0.42 0.52 0.62 0.74

(92.29) (52.35) (55.95) (59.46)
(c) Innovation sizes√

var[εk] bps/$10,000 0.61 0.10 0.31 1.44 0.01 0.05 0.17 0.52 2.51
(12.62) (12.98) (21.09) (13.28)√

var[µk] bps 1.60 0.63 1.30 2.90 0.01 0.63 1.04 2.03 4.78
(24.02) (32.92) (30.53) (228.00)√

var[νk] bps 0.70 0.22 0.38 1.53 0.00 0.01 0.28 0.73 3.10
(14.52) (18.58) (18.35) (14.50)

Count 72,501 24,264 24,504 23,733

Table 1: Estimated parameters of the structural model. This table reports the summary statistics of the
estimated parameters of the structural model:

observed price: pk =mk + sk

efficient price: mk =mk−1 + λky
∗
k + µk

pricing error: sk = φsk−1 +ψyk + νk

trade informativeness: λk = (1 − α)λ̄ + αλk−1 + εk

where in filtering the hidden λk we assume a GaMM(1,1) structure (Creal et al., 2016):

prediction: λk+1 |k = (1 − α)λ̄ + αλk |k ;
update: λk+1 |k+1 = λk+1 |k + βSk+1.

The reported estimates include the structural parameters for (a) the trade informativeness {λk }; (b) the
pricing error {sk }; and (c) the standard deviations of innovations. The averages (across all stock-days) of the
estimates are reported for the full sample and for each size tercile. The t-statistics, reported in brackets, are
calculated using two-way clustered (stock and day) standard errors. Selected percentiles of the estimates in
the full sample are reported.
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and small stocks. The resulting sample sees 72,501 stock-day observations.

Table 1 provides summary statistics for the static structural parameters. Our focus is on trade

informativeness λk . The estimates of the unconditional mean, λ̄, suggests that on average, a surprise

buy (sell) of size $10,000 moves the efficient price up (down) by about λ̄ = 2.76 basis points (bps).

Large stocks see much smaller price impact (0.31 bps) than small stocks (6.85 bps). The magnitude

is comparable with the estimates by Brogaard, Hendershott, and Riordan (2014).

The innovation of our approach is that we allow and estimate the dynamics of λk . This can

be seen via the estimate of the standard deviation of εk in Panel (c). On average, from one trade

to another, the innovation in trade informativeness has a standard deviation of 0.61 bps/$10,000,

roughly a quarter of the long-run mean λ̄. Such trade-to-trade fluctuation mean-reverts rather

quickly, as the autoregressive coefficient appears small (α = 0.13).

3.2 Intraday pattern of trade informativeness

To further examine the dynamics of trade informativeness, Table 2 presents the statistical moments

of the filtered {λk |k}, our best guesses for the hidden {λk}. The statistical moments are first calculated

for each intraday series of {λk |k} and then aggregated across the stock-days. Unsurprisingly,

the filtered λk |k has unconditional mean very close to the long-run average λ̄ (2.80 v.s. 2.76).

The unconditional mean of |λk |k | is about 3.54 bps/$10,000. This suggests that conventional

methods, treating λ as a constant, underestimate trade informativeness (price impact) by about 27%

(≈ 3.54/2.80 − 1), because positive and negative λk might average out. Note that our structural

model 4 does not require λk to be positive. A negative λk simply means that the trade’s permanent

price impact has opposite sign of the order flow innovation y∗
k
. From the summary statistics we can

see there are around 4% of such trades in the sample.

In terms of higher moments, the standard deviation of λk |k averages at 0.73 bps/$10,000.5

5 The number 0.73 slightly defers from σε/
√

1 − α2 implied by the AR(1) structure of {λk } because σε = 0.63 and
α = 0.13 are the averages across the sample. Due to the nonlinearity, the evaluation at the sample averages in general
differs from the average of evaluations across the sample.
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Percentile in the full sample
Unit All Large Medium Small 5% 25% 50% 75% 95%

E[λk |k] bps/$10,000 2.80 0.32 1.23 6.95 0.12 0.37 0.88 2.99 11.35
(11.74) (19.82) (15.65) (13.46)

E[|λk |k |] bps/$10,000 3.54 0.35 1.38 9.03 0.13 0.40 0.97 3.43 15.12
(11.03) (20.10) (14.86) (12.66)√

vark
[
λk |k

]
bps/$10,000 0.73 0.16 0.50 2.30 0.02 0.09 0.24 0.59 2.63

(13.10) (9.92) (20.26) (12.50)
skew[λk |k] 1.60 1.91 1.50 1.38 -0.14 0.70 1.15 1.88 5.68

(18.92) (12.27) (10.44) (10.65)
kurt[λk |k] 13.47 15.05 12.46 12.88 4.74 6.92 9.09 13.18 42.08

(19.35) (11.25) (10.94) (11.84)
P
(
λk |k < 0

)
0.04 0.03 0.04 0.07 0.00 0.00 0.01 0.05 0.20

(32.06) (25.33) (26.99) (23.31)

Count 72,501 24,264 24,504 23,733

Table 2: Intraday dynamics of trade informativeness. This table summarizes the statistical moments
of the filtered λk |k , filtered for the structural model (4) using the method proposed in Section 2.4. These
statistics are calculated first for each intraday {λk |k } series and then averaged across stock-days, for the full
sample and for each size tercile. The t-statistics reported in brackets are calculated using two-way clustered
(stock and day) standard errors. Selected percentiles in the full sample are also reported.

Notably, there is moderate positive skewness (1.60) and severe kurtosis (13.47). These statistical

moments demonstrate the importance of not assuming normality, justifying our distribution-free

estimation technique.

From the efficient price structure described in (4), ∆mk = λ̄y∗
k
+ (λk − λ̄)y∗

k
+ µk . Replacing

the hidden λk with out best guess, we can compute the contribution of the time-varying trade

informativeness (λk |k − λ̄)y∗k to the efficient price innovation as

E
[
(λk |k − λ̄)y∗k

]
λ̄2E

[
(y∗

k
)2
]
+ E

[
(λk |k − λ̄)y∗k

]
+ var[µk]

.

We compute this ratio for each stock-day and it averages at a striking 24.1%. That is, about a quarter

of the efficient price innovation can be attributed to the time-varying trade informativeness. The
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contribution is significant both statistically and economically.

We also explore the intraday dynamic pattern of trade informativeness. For each stock-day,

we take snapshots of λk |k at the end of each minute, obtaining a time-series of 390 observations

(six and half trading hours). These intraday series are then averaged (equal weighted) across large,

medium, and small stocks and plotted in Panel (a), (b), and (c) in Figure 1 respectively.

Despite the salient difference in magnitude, it can be seen that across all stocks trades are on

average more informed at the early hours and it decays gradually over the trading day. The downward

pattern differs from the well-known U-shapes of volume (Admati and Pfleiderer, 1988), the reverse

J-shape of bid-ask spread (McInish and Wood, 1992), and the hump-shape of depth (Ahn, Bae,

and Chan, 2001). The peak at market opening is consistent with the idea that uncertainty, news,

and information asymmetry build up overnight. The fact that trade informativeness is at its lowest

at the closing suggests that the lack of liquidity (large spread and the low depth) is due more to

transitory price pressure like inventory cost than information. The pattern is also consistent with

the prediction that trade informativeness follows a supermartingale. Baruch (2002) show that this

happens because of informed investors’ risk aversion, while Back and Baruch (2004) and Caldentey

and Stacchetti (2010) yield similar predictions to random horizon (or discounting).

Because the magnitudes are very different across the terciles, we also construct a “standardized”

average series across full sample and plot it in Panel (d) as a robustness check. Each intraday series of

λk |k is first scaled by its daily mean and then aggregated across all stock-days. This way, the graphed

level of λk |k can be read in percentage terms, relative to the unconditional mean (2.76 bps/$10,000).

The qualitative pattern remains and sees that in the early morning, trade informativeness is roughly

about 120-130% of the unconditional mean. Toward the closing, trades become less informed, only

about 85% the daily average.
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(a) Large stocks
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(c) Small stocks

10:00 12:00 14:00 16:00

5

6

7

8

9

10

Trade informativeness, λk |k

(bps/$10,000)

(d) Full sample, standardized
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Figure 1: Intraday pattern of trade informativeness. This figure plots the intraday pattern of filtered
trade informativeness, λk |k . Panel (a) through (c) show for large, medium, and small stocks, respectively.
Panel (d) plots the average of the full sample by standardizing each intraday series to have its average at
100%. In all panels, the thin line is the cross-sample average snapshotted at every minute and the bold line
is the smoothed trend.
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3.3 Explaining future returns

Consider a surprise order flowy∗
k

at time tk . Under the structure (4), it has a permanent price impact

of λky∗k (in efficient price mk) and a transitory price impact of ψy∗
k

(in pricing error sk). Over a

relatively long period, the transitory price impact dies out as the pricing error mean reverts to zero,

while the permanent price impact persists. The literature therefore often estimates the permanent

price impact by regressing future price return on current order flow, for example:

∆p(tk , tk +w) ∼ λ̄y∗k + residual

where ∆p(tk , tk +w) denotes the price return from time tk to tk +w with a (large) window of sizew .

(A conventional choice is w = 5 minutes; e.g., Collin-Dufresne and Fos, 2015.) The regression

coefficient of y∗
k

reflects the average permanent price impact (trade informativeness), λ̄.

Such regressions, however, often have relatively low explanatory power. To see this, using the

structural model (4), the future price return can be decomposed into:

∆p(tk , tk +w) = λ̄y∗k + (λk − λ̄)y
∗
k + µk + ∆m(tk+1, tk +w)︸                                       ︷︷                                       ︸
uncorrelated with y∗k

+∆s(tk , tk +w)︸          ︷︷          ︸
asymptotically uncorrelated with y∗k

.

Only the first part, λ̄y∗
k
, is explained by the above simple linear regression. The other parts are

(asymptotically, for largew) uncorrelated with y∗
k
, thus serving as the “residual noise” in the above

regression. They can have large variance, especially when the windoww is large, thus lowering the

explanatory power of the above regression.

Under the current approach, the filtered time-varying trade informativeness λk |k could help

reduce the “noise” in the above regression. Notably, part of the residual term, (λk − λ̄)y∗
k
, can be

further explained, thanks to the filtered λk |k . To see this, we rewrite the above return as

∆p(tk , tk +w) =λ̄y∗k + (λk |k − λ̄)y
∗
k

+ (λk − λk |k)y∗k + µk + ∆m(tk+1, tk +w)︸                                           ︷︷                                           ︸
uncorrelated with y∗k

+∆s(tk , tk +w)︸          ︷︷          ︸
asymptotically uncorrelated with y∗k

.
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Window size w for future return ∆p(tk , tk +w)
1 sec. 5 sec. 10 sec. 30 sec. 1 min. 5 min. 10 min.

(a) ∆p(tk, tk +w) = b1λ̄y*
k + residual

Average adjusted R2, % 1.15 1.10 1.02 0.80 0.63 0.26 0.16

(b) ∆p(tk, tk +w) = b1λ̄y*
k + b2 · (λk |k − λ̄)y*

k + residual
Average adjusted R2, % 6.65 6.04 5.45 4.10 3.14 1.18 0.70
Adjusted R2 difference with (a), % 5.50*** 4.94*** 4.43*** 3.30*** 2.51*** 0.92*** 0.54***

Proportion of adjusted R2 from (b) > (a), % 99.2 99.2 99.1 99.1 99.0 97.6 94.9
Rejection rate at 1% for b2 = 0, % 98.2 98.2 98.1 97.9 97.5 89.7 74.7

Table 3: Explanatory power of a current trade for future returns. Two models (a) and (b) are estimated
for all stock-days and for all return window sizesw . Panel (a) reports the adjusted R2, averaged across stock-
days, of only using the unconditional average trade informativeness λ̄ to explain future returns. Panel (b)
adds to (a) the time-variation, as proxied by the filtered trade informativeness λk |k . The superscripts “***”
in Panel (b) indicate that the corresponding improvement in R2 is statistically significant over (a) under a
one-sided t-test with 1% confidence. Also reported in (b) are the proportion of stock-days that see an increase
in the R2 and the rejection rates of the null hypothesis that the added explanatory variable is statistically
insignificant.

That is, the time-variation in trade informativeness, λk − λ̄, which is previously treated as some

residual noise, can now be captured. To the extent that our filtered λk |k is indeed tracking the true λk

well, we hypothesize that the following regression

∆p(tk , tk +w) ∼ λ̄y∗k + (λk |k − λ̄)y
∗
k + residual

will deliver significantly improved explanatory power.

For each stock-day, we regress the future return {∆p(tk , tk + w)} on two different sets of

explanatory variables: (a) {λ̄y∗
k
}; and (b) {λ̄y∗

k
, (λk |k − λ̄)y∗

k
}. Model (a) only accounts for the

average trade informativeness λ̄y∗
k
. Model (b) adds to it the time-variation proxied by (λk |k − λ̄)y∗k .

We then compare the explanatory power of the models for different window sizes w , ranging from

1 second up to 10 minutes.

Table 3 summarizes the results. For all window sizes, the explanatory power, adjusted R2,
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of Model (b) is significantly higher over Model (a). The economic magnitude is also striking:

After including the time-variation λk |k − λ̄, the improvement of adjusted R2 is roughly three-to-five

times higher than the benchmark (a).6 In fact, across the stock-days, almost all see an increase

in the explanatory power. We also report the rejection rate of the null hypothesis that the added

explanatory variable (λk |k − λ̄)y∗k is insignificant. It can be seen that this is rejected by most of the

stock-days and the rejection rate only moderately declines as the forward-looking window extends

beyond one minute.

As a robustness check, we redo the above regression exercise by using the predicted λk |k−1

(as opposed to the updated λk |k). The improvement in the explanatory power remains statistically

significant. However, the economic magnitude of the improvement is less salient, which is expected

as λk |k−1 accounts for less information than λk |k .

We conclude this exercise with two observations. First, the results confirm that there is indeed

significant, economically meaningful time-variation in trade informativeness {λk}, for otherwise

the added explanatory variable (λk |k− λ̄)y∗k would not be significant. Second, by the same argument,

the filtered {λk |k} does track the true, yet hidden, {λk}.

3.4 An event study: scheduled Fed announcements

This exercise studies the scheduled announcements by the U.S. Fed in 2014, as an example of how

the filtered high-frequency trade informativeness can be used to address economic questions. All

scheduled Fed announcements in 2014 are collected from Bloomberg. Conveniently, all of them

were made at 14:00 Eastern Time and there were no other macro news announced at 14:00. Out

of the 242 trading days, 58 had such announcements, including releases of Fed meeting minutes,

budget statements, pace of Quantitative Easing, summary of economic projections, amendments,

etc. These 58 days serve as the treatment group, while the rest as controls.

6 In absolute terms, the adjusted R2 is still relatively small as it only accounts for less than 10% of the total price
return. This suggests that most of the price variation originates from activities like quote updates and revisions. See
Brogaard, Hendershott, and Riordan (2016) for price discovery from such non-trade activities.

25



We ask whether trades become more or less informed approaching, upon, and after Fed an-

nouncements at 14:00. Ex ante, the pattern of λk is unclear to us. For example, assuming there

is no information shock before 14:00, investors’ trading should remain the same with or without

a scheduled announcement. Yet, risk-averse uninformed investors who trade for liquidity reasons

might temporarily refrain from trading, either because they are afraid of information leakage or

because they are slow and unable to react to the news timely. This would imply that those who

remain trading in minutes leading to the announcement are relatively more informed and hence

have higher trade informativeness λk . Likewise, competing arguments for the pattern of λk after the

announcement exist. On the one hand, the public news should provide a benchmark for reassessing

the asset value, hence reducing information asymmetry and lowering λk . On the other, investors

can draw different interpretations from the same news (see, e.g., Eyster, Rabin, and Vayanos, 2017;

Vives and Yang, 2017), more trading on such information ensues, and trade informativeness λk

increases. An empirical examination of the pattern of our filtered λk |k can help disentangle the

above effects and quantify the magnitude and the duration.

We construct per-second snapshots of the filtered λk |k for all stock-days. Since our estimation

is event-based, within each stock-day, we aggregate all trades and their informativeness within the

same second and average them to get a snapshot for that second. If there is no trade in a specific

second, we linearly interpolate from two nearest available snapshots. Then for each second around

14:00, we compute two cross-sectional averages, one for all stock-days with Fed announcement

(treatment) and one for without (control). The two resulting time series are plotted in Figure 2.

Panel (a) shows a fifteen-minute window from 13:55 to 14:10. It can be seen that on no-

announcement days, the average trade informativeness λk |k (dashed line) hovers around the uncon-

ditional mean (about 2.76 bps/$10,000) in this period. In contrast, on days with announcement

(solid line), λk |k starts to pick up at about 13:57, minutes before the scheduled announcement.

At about 13:59, the difference with no-announcement days becomes statistically significant, as

indicated by the boxes (95% confidence) and the circles (99% confidence). However, approaching
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the announcement at 14:00, λk |k quickly reverts to the long-run average level and continuing the

trend, drops below the no-announcement level, after 14:00. As zoomed in on by Panel (b), it

is not until about 30 seconds after the announcement that λk |k trends up again. It then remains

significantly higher than no-announcement days for about another seven minutes and eventually

dies down, becoming indistinguishable from no-announcement days after 14:07.

The pattern suggests that trades turn more informed roughly two-and-half minutes before

the announcement. This could be driven by risk-averse uninformed investors’ withdrawal from

trading, leaving (relatively) more informed investors in the market. After the announcement, the

pattern suggests that investors do derive different private signals and trade on those. The elevated

information asymmetry (λk |k) lasts about six-and-halve minutes. In total, during the nine minutes

from 13:57:30 to 14:06:30, trade informativeness is on average 0.18 bps/$10,000 higher on with-

announcement days than on without. The difference is statistically significant and economically

meaningful, as compared to an unconditional average of 2.76 bps/$10,000 (0.17/2.76 ≈ 6.5%).

A natural question is whether the elevated trade informativeness a result of liquidity reduction—

wider bid-ask spread and lower order book depth—around the announcement. Indeed, if spread

becomes wider and book thinner, a same trade could move price much more. However, such

deterioration of liquidity would only have transitory effects on prices, i.e., through the pricing

error sk . In contrast, by construction, the filtered trade informativeness λk |k captures the persistent

effect of trades (i.e. the permanent price impact through the efficient price mk). Conceptually,

we would argue that trade informativeness λk and liquidity measures (spread and depth) capture

(possibly correlated) different aspects of trading.

Nonetheless, as a robustness check that the patterns shown in Figure 2 are not driven by

illiquidity, we perform the following regression for every second t ∈[13:55,14:10] by pooling the

second t-observations for all stock i and day d:

λk |k(i,d, t) ∼ Fed(d) + no-Fed(d) + spread(i,d, t) + depth(i,d, t) + stock fixed effects + residual.
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(a) Fifteen minutes around 14:00

13:55 56 57 58 59 14:00 02 04 06 08 14:10
2.5

2.6

2.7

2.8

2.9

3.0

3.1

Trade informativeness, λk |k

(bps/$10,000)
with Fed announcement

no Fed announcement

(b) Zoomed in, two minutes around 14:00

13:59:00 10 20 30 40 50 14:00:00 10 20 30 40 50 14:01:00
2.5

2.6

2.7

2.8

2.9

3.0

3.1

Trade informativeness, λk |k

(bps/$10,000)
with Fed announcement

no Fed announcement

Figure 2: Trade informativeness around 14:00, with v.s. without Fed announcements. The first two
panels plot the filtered trade informativeness λk |k around 14:00 by averaging across all stock-days in 2014,
separately for days with Fed announcement (blue-solid line) and for days without (orange-dashed line). The
circled and boxed points indicate the difference between the two are statistically significant with 99% and
95% confidence, respectively. Panel (a) shows a fifteen-minute window, while Panel (b) zooms in on the two
minutes around 14:00. Panel (c), on the next page, shows the difference series, after controlling for liquidity
measures.

28



(c) Controlling for liquidity
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Figure 2: Trade informativeness around 14:00, with v.s. without Fed announcements, continued.

The dummy variables Fed(d) and no-Fed(d) capture whether dayd has Fed announcement scheduled

at 14:00. The spread(i,d, t) and depth(i,d, t) are stock i’s bid-ask spread and depth, respectively,

at the end of second t on day d . We measure spread in basis points (relative to the midquote) and

depth in the total number of shares available at National Best Bid and Offer (NBBO). Finally, we

also control for stock fixed effects. The above regression is separately performed for every second

in the fifteen-minute window. For each regression, the difference between the coefficients for

Fed(d) and no-Fed(d) shows the effect of the treatment. This resulting difference series is plotted in

Panel (c) of Figure 2. We see a pattern similar to the difference between the blue-solid line and the

orange-dashed line in Panel (a) of Figure 2, both in terms of magnitude and statistical significance.

This evidence strengthens our argument that trade informativeness stands for a different aspect from

market (il)liquidity.
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3.5 Informativeness v.s. aggressiveness and informed investors’ patience

Every trade has a buyer and a seller. In modern limit order markets, the aggressive one initiates the

trade with a market order, while the other has his limit order passively hit. Such aggressiveness is

often determined by algorithms like Lee and Ready (1991). Conventionally, yk > 0 (< 0) indicates

an aggressive buy (sell).

There is a separate aspect: the (relatively more) informed investor of the two. It is possible,

but not necessary, that the aggressive one happens also to be the (relatively more) informed one.

Put alternatively, the limit order trader can very well have (relatively more) information than the

market order trader. Equipped with the structural model (4) and with the estimation technique

(GaMM), we use the filtered λk |k to help identify the (relatively more) informed side for each and

every trade.7 To do so, recall that the efficient price innovation ∆mk has a trade-related component.

For notation simplicity, we write our best guess of this term as

ηk := λk |ky∗k .

This is the permanent price impact of the k-th trade. If ηk > 0 is positive, we can say it is the buyer

who has pushed the efficient price up and is the (relatively more) informed; and the seller if ηk < 0.

Clearly, sign[ηk] needs not to be the same as sign[yk]—the former distinguishes whether the

trade is an informed buy or sell, while the latter indicates an aggressive buy or sell. Our structural

model allows the separation of the two. In particular, if sign[ηk] , sign[yk], it follows that the

passive side—the limit order trader—is the (relatively more) informed. For example, if the k-th

trade sees ηk > 0 and yet yk < 0, it means this market sell order drives the efficient price up,

suggesting the corresponding limit buy order is (relatively more) informed.

Theory of limit order models suggest that informed investors optimally choose between limit

orders and market orders by trading off execution and waiting costs (see, e.g., Parlour and Seppi,

7 Under the canonical framework discussed in Section 2.1, trade informativeness is only an average statement λ̄ for
all trades. For an individual trade, however, it is not possible to determine whether the buyer or the seller is (relatively
more) informed. See more detailed discussion in Section 2.3.
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Percentile in the full sample
Empirical frequency of All Large Medium Small 5% 25% 50% 75% 95%

(a) sign[ηk],sign[yk] 0.14 0.13 0.13 0.17 0.05 0.09 0.12 0.17 0.30
(b) sign[ηk],sign[yk] | sign

[
y∗
k

]
=sign[yk] 0.05 0.03 0.04 0.07 0.00 0.00 0.01 0.05 0.21

Count 72,501 24,264 24,504 23,733

Table 4: Informed investors’ patience. This table reports two empirical frequencies related to informed
investor’ patience. The two are first calculated for each stock-day and then averaged across the full sample
and respective size terciles. Selected percentiles in the full sample are also reported.

2008 for a review). All else equal, if informed investors mostly use limit orders, we infer they are

more patient. We therefore use the empirical frequency

P(sign[ηk] , sign[yk])(12)

as a proxy for informed investors’ patience; that is, the frequency of trades where the limit order

side is (relatively more) informed. Row (a) of Table 4 reports the statistics. Overall, there are about

14% of the trades that are more informed on the limit order side. This ratio is relatively stable

across stock size terciles, ranging from 13% to 17%. Notably, a most patient informed trading day

sees more than one-third of such trades (the 95-percentile).

To the best of our knowledge, this is the first structural estimator designed to capture informed

investor’ patience. This measure, using only the price dynamics and the order flow information,

can be coupled with other empirical observations to help strengthen the understanding of informed

trading. As an illustration, we consider firms’ earnings announcements and examine informed

investors’ (im)patience with the proposed measure.

We collect from Bloomberg all earnings announcements (quarterly and annual) of the sampled

firms in 2014 and find 1,187 such events. With the exception of ten announcements (which we

discard from the analysis), all announcements were made off trading hours. We then zoom in on

the ten trading days around each announcements, five before and five after. For each stock-day in
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Figure 3: Informed investors’ patience around earnings announcements. This figure shows informed
investors’ patience around earnings announcements. Panel (a) plots an unconditional version defined in
equation (12). Panel (b) plots a conditional version defined in equation (13). Each dot indicates the averages
and the caps show the 95% confidence bounds on the corresponding day. The horizontal dashed line
indicates the average in the full sample (Table 4). The vertical line separates the days before and after the
announcement.

this subsample, we then compute the proxy for informed investor’ patience as in equation (12).

Panel (a) of Figure 3 demonstrates the pattern by averaging the patience measure across all

stock-days in the subsample. Informed trading becomes less and less patient as the earnings day

approaches. That is, the proportion of (relatively more) informed limit orders drops. On the day

right after the announcement, across the sample, patient informed trades only account for less than

10% of total trades, a one-third reduction from the unconditional average (Row (a) of Table 4). The

drop in informed investors’ patience is also statistically significant, judged by the 95% confidence

bounds.

The evidence supports our proposed structural measure for patience: Facing a scheduled public
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announcement, informed investors become more impatient and trade more aggressively on their

private information, as otherwise the value of their private information will be eroded by the

announcement. It is seen that informed investors are least patient right after the announcement.

To the extent that information processing is costly and takes time, such extreme impatience can

be attributed to those who have parsed the information sooner than others. Given the public

information, the others will soon come to the same result. Restricting to market orders to trade on

the early-processed information is profitable in such scenarios.

We perform two robustness checks. First, we control for the potential heterogeneity across

stocks by standardizing the patience measure (12)—taking out the stock-specific effect and then

scaling by the firm-specific standard deviation. We then aggregate the standardized series and redo

Panel (a) of Figure 3. The resulting pattern is qualitatively the same as shown.

Second, recall that the order flow innovation is defined as the residual of an autoregressive

structure: A(L)yk = y∗
k
. Around earnings announcement days, the average size of y∗

k
might

significantly increase because investors rebalance their portfolio (non-informational) or because

information asymmetry intensifies. (However, neither reasons imply informed investors’ patience

might change.) As y∗
k

grows larger, it dominates in yk and sign[y∗
k
] = sign[yk] becomes very likely.

This will mechanically drive up our unconditional measure (12), because ηk = λk |ky∗k and because

λk |k is mostly positive (Table 1). To control for the effect of order flow innovation size, we consider

a conditional version of the patience measure:

P
(
sign[ηk] , sign[yk]

�� sign
[
y∗k
]
= sign[yk]

)
(13)

=P
(
λk |k < 0

�� sign
[
y∗k
]
= sign[yk]

)
;

that is, among all trades that have same signs of order flow yk and its innovation y∗
k
, the empirical

frequency to see the (relatively more) informed side of the trade differ from the aggressive side.

Across all stock-days, this conditional patience is at about 5%, as reported in Row (b) of Table 4.

Panel (b) of Figure 3 shows the trend around earnings announcement days. The pattern is consistent
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with the unconditional patience measure, lending support to the robustness of the result.

4 Concluding remarks

This paper proposes a structural model that permits time-varying trade informativeness and de-

velop a new filtering technique for empirical applications. We argue that the dynamics of trade

informativeness will serve as a useful empirical tool. First, trade informativeness is time-varying

in nature and, as such, empirically identified dynamic patterns can help assess theoretical mod-

els. Second, without a dynamic characterization of trade informativeness, it is hard to examine

informed investors’ high-frequency trading behavior, both at normal times and upon intraday events

like un/scheduled announcements and news. Third, dynamic trade informativeness allows the sep-

aration of the (relatively more) informed side from the aggressive side of a trade. Fourth, as trade

informativeness and aggressiveness no longer needs to be aligned at all times, a structural measure

of informed investors’ patience readily follows. We illustrate these uses with examples.

We highlight some notable limitations to the proposed structural model (4). First, trades’

transitory price impactψ are not modeled as time-varying. This can be generalized using the same

approach as we have done to trade informativeness λk . Second, order flow dynamics {yk ,y∗k} are

estimated separately from the system, a convention we inherit from the literature featuring the state

space approach. This front can be pushed forward by endogenizing the order flows in a richer state

space. Finally, the innovations like µk and νk are assumed to have constant volatility over time. It is

well-known, however, that trade data features time-varying heteroskedasticity. This extension will

involve modeling the innovations as GARCH series.

While relaxing these limitations can be challenging, we believe properly accounting for these

realistic aspects of trading data will provide better understanding of the nature of financial securities

trading. The flexibility of the novel distribution-freee estimation technique can help deal with the

complexity in such more realistic state spaces. We leave these extensions for future research.
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Appendix

A Estimating the variances

Section 2.4 mainly discusses the filtering of the dynamic {λk}. In this appendix, we exploit the

second moments to estimate the variances of the innovations: σ 2
µ , σ 2

ν , and σ 2
ε . Construct the

following residual series:

ξk := (1 − φL)
(
∆pk − ŷk − λk |k−1y

∗
k

)
= (1 − φL)

(
µk + λ̂ky

∗
k

)
+ (1 − L)νk ,

where λ̂k := λk − λk |k−1 is the one-step ahead prediction error. The autocovariance generating

function applied to ξk yields

cov[ξk , ξk−j] =



(1 + φ2)
(
σ 2
µ + (y∗k)

2var
[
λ̂k
] )
+ 2σ 2

ν , if j = 0;

−φ ·
(
σ 2
µ + (y∗k)

2var
[
λ̂k
] )

− σ 2
ν , if |j | = 1;

0, if |j | ≥ 2.

The above moment conditions can identify only two terms: σ 2
ν and σ 2

µ + (y∗k)
2var[λ̃k]. It remains to

separate σ 2
µ from var[λ̃k] in the second term. To do so, consider j = 0 in the above. Since {y∗

k
} are

observed, we have the following two more moment conditions:

E
[
ξ 2
k − 2σ 2

ν −
(
1 + φ2

) (
σ 2
µ + (y∗k)

2var
[
λ̂k
] )]
= 0

E
[(
ξ 2
k − 2σ 2

ν −
(
1 + φ2

) (
σ 2
µ + (y∗k)

2var
[
λ̂k
] ))

(y∗k)
2
]
= 0

which essentially pin down σ 2
µ and var

[
λ̂k
]

via the regression of ξ 2
k
∼ constant + (y∗

k
)2. Finally, we

note that var
[
λ̂k
]

can be expressed as:

var
[
λ̂k
]
= var

[
λk − λk |k−1

]
= E

[ (
λk − λk |k−1

)2]
+
(
E
[
λk − λk |k−1

] )2
= E

[ (
λk − λk |k−1

)2]
= E

[
λ2
k

]
− 2E

[
λkλk |k−1

]
+ E

[
λ2
k |k−1

]
= E

[
λ2
k

]
− E

[
λ2
k |k−1

]
= E

[
λ2
k

]
− var

[
λk |k−1

]
−
(
E
[
λk |k−1

] )2
= var[λk] − var

[
λk |k−1

]
=

σ 2
ε

1 − α2 − var
[
λk |k−1

]
,
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where the last equation follows the AR(1) structure of λk . We therefore augment the above moment

condition with

E
[
(1 − α2)

(
var

[
λ̂k
]
+
(
λk |k−1 − λ̄

)2) − σ 2
ε

]
= 0,

which completes the GMM conditions needed to identify the innovation variances.

B Comparing GaMM with Kalman filter

We perform a horserace between our filtering method (GaMM, as first proposed by Creal et al.,

2016) and Kalman filter by simulation. The results demonstrate the superiority of GaMM over

Kalman when the model 4 has non-normal innovations or when the model is misspecified. Three

specifications are considered:

(a) The model is correctly specified as in (4). The innovations {µk ,νk , εk} follow an i.i.d. joint

normal distribution.

(b) The model is correctly specified as in (4). The innovations {µk ,νk} follow an i.i.d. bivariate

t-distribution (heavy tails), while {εk} follows an i.i.d. skewed t-distribution.

(c) The model is misspecified in that λk follows an AR(2) process, as opposed to the AR(1)

process assumed in (4), while the other structure in (4) hold. The innovations {µk ,νk , εk}

follow the same i.i.d. joint normal distribution as in (a).

In all cases, the static structural parameters are set to the same as the average estimates reported

in Table 1: ψ = −1.90, φ = 0.50, λ̄ = 2.76, and α = 0.13. The innovations have zero mean and

the common variances: σ 2
µ = 2.60, σ 2

ν = 0.49, and σ 2
ε = 0.40; and they are pair-wise uncorrelated.

In (b), the bivariate t-distribution for {µk ,νk} has a degree of freedom of 3; and the skewed t-

distribution used for {εk} has a scale parameter 0.40, a skewness parameter 20, and a degree of

freedom of 3 (see Fernández and Steel, 1998). In (c), the AR(1) coefficient is the same α = 0.13

and the AR(2) coefficient is set to 0.7.
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Static structural parameters (true value)
ψ φ λ̄ α σ 2

µ σ 2
ν σ 2

ε {λk} process
(-1.9) (0.5) (2.76) (0.13) (2.60) (0.49) (0.40) RMSE cor

(
λk |k , λk

)
(a) Model correctly specified, normal innovations
GaMM -1.91 0.50 2.77 0.14 2.73 0.48 0.30 0.74 0.33
Kalman filter -1.91 0.50 2.77 0.06 2.59 0.50 0.41 0.61 0.35

GaMM less Kalman 0.13 -0.02
(19.64) (-14.26)

(b) Model correctly specified, heavy tails in innovations, {εk} skewed
GaMM -1.90 0.50 2.76 0.11 7.52 1.44 0.38 0.56 0.18
Kalman filter -1.90 0.50 2.76 0.02 6.81 1.75 0.25 0.57 0.13

GaMM less Kalman -0.01*** 0.05***

(-3.44) (17.13)
(c) Model misspecified with true {λk} following AR(2), normal innovations
GaMM -1.91 0.50 2.77 0.95 2.85 0.48 0.07 0.84 0.53
Kalman filter -1.91 0.50 2.77 0.87 2.85 0.50 0.19 0.86 0.52

GaMM less Kalman -0.02*** 0.01***

(-7.67) (3.00)

Table B.1: A horserace between GaMM and Kalman filter. This table presents the simulation results
for a horserace between GaMM and Kalman filter. Three different data generating processes are considered,
each with 1,000 samples of 5,000 observations. For the static structural parameters {ψ ,φ, λ̄,α ,σ 2

µ ,σ
2
ν ,σ

2
ε },

the averages of the point estimates across the 1,000 samples are reported. For the hidden process {λk }, the
root-mean-squared error (RMSE) of the filtered {λk |k } and the correlation between them, again averaged
across the 1,000 samples, is reported, together with the difference between GaMM and Kalman filter. The
superscripted “***” stands for 1% significance for one-sided t-tests with the null of GaMM outperforming
Kalman filter.

For each of the three cases, we simulate 1,000 samples, each with 5,000 observations. We run

the horserace by “pretending” the specification (4) is correct. We follow the GaMM steps described

in Section 2.4 and in Appendix A to estimate all parameters and obtain the filtered series {λk |k}.

Assuming the innovations are normally distributed, we also estimate all parameters by maximum

likelihood and obtain the {λk |k} process by Kalman filter.

Table B.1 presents the simulation results. With some exceptions, the static parameters are

37



largely accurately estimated. Notably, even in (a), when the model is correctly specified and all

innovations are normally distributed, maximum likelihood following Kalman filter seems to under

estimate α . (This bias seems to persist in other model specifications.) In terms of filtering the

hidden {λk} process, Kalman filter outperforms GaMM only in (a), when the model is correctly

specified and when the innovations follow joint normal distribution. This is unsurprising as Kalman

filter is the optimal filter in this benchmark case. However, when either of the two requirements

fail, GaMM can outperform Kalman filter, as seen in Panel (b) and (c). In both latter cases, the

root-mean-squared error of GaMM filtered {λk |k} is statistically significantly smaller than that

under Kalman filter. In terms of magnitude, the reduced RMSE amounts to about 1-2% (1/57 and

2/86). We opt for the GaMM filtering approach based on the above simulation evidence.

Despite the simulation results above, we still implemented Kalman filter in the three hundred

sampled stocks in 2014. However, the overall convergence rate is only about 85%. We suspect

this has something to do with the non-normal distribution of {λk} (positive skewness and the high

kurtosis; see Table 1). The high numerical convergence rate of GaMM (around 97%) is another

reason we favor this approach.
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