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Abstract

In this paper, we analyse the recently procedure of Hu and Tsay (2014) (Principal

volatility component analysis. JBES, v32.2) and Li et al. (2016) (Modeling multi-

variate volatilities via latent common factors. JBES, v34.4) called principal volatility

components. This procedure overcomes several difficulties in modelling and forecast-

ing the conditional covariance matrix in large dimensions arising from the curse of

dimensionality. We show that outliers have a devastating effect on the construction

of the principal volatility components and on the forecast of the conditional covari-

ance matrix and consequently in economic and financial applications based on this

forecast. We propose a robust procedure and analyse its finite sample properties by

means of Monte Carlo experiments and also illustrate it using empirical data. The

robust procedure outperforms the classical method in simulated and empirical data.
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1 Introduction

Modelling and forecasting volatilities and co-volatilities play a crucial role in many economic

and financial applications such as portfolio allocation, risk measures, option pricing, secu-

rities regulations and hedging strategies (Chiou and Tsay, 2008; Hammoudeh et al., 2010;

Rombouts and Stentoft, 2011; Basher and Sadorsky, 2016; Wang and Liu, 2016).

Given the unfeasibility and inflexibility of most classical multivariate volatility models

in large dimensions, researchers and practitioners have been looking for alternative tools

to circumvent the curse of dimensionality when modelling and forecasting (co)volatilities in

high-dimensional data. In this sense, some alternative approaches have been suggested in

the last years. See, for instance, Lopes et al. (2012), Fan et al. (2012), Hafner and Reznikova

(2012), Pakel et al. (2014), Gruber and West (2016), Kastner (2016), Li et al. (2016) and

Engle et al. (2017) among others. Furthermore, based on the idea that comovements in

the market can be driven by a few components, factor models appear in the economic and

financial literature as an alternative way to achieve dimension reduction and to tackle the

curse of dimensionality. See, for instance Fan et al. (2008), Pan et al. (2010), Matteson and

Tsay (2011), Garćıa-Ferrer et al. (2012), Santos and Moura (2014), Matilainen et al. (2015)

and Barigozzi and Hallin (2015) for some references.

In the spirit of dimensionality reduction, an innovative approach based on the classi-

cal principal component analysis (PCA), called principal volatility components (PVC), has

been recently proposed by Hu and Tsay (2014a) and Li et al. (2016). This methodology pro-

duces two types of components. The first type corresponds to components with conditional

covariance matrix evolving over time whilst the other type corresponds to components with

constant conditional covariance matrix. This methodology is attractive because after obtain-

ing the volatility components, the problem of modelling and forecasting the (co)volatilities

of the entire system drop down into modelling and forecasting the (co)volatilities of the

volatility components with heteroscedastic dynamic since the remaining components have

constant volatility.

On the other hand, it is well know that outliers are not unusual in financial time series

and several works show how outliers affect dramatically the forecast of (co)volatilities (Muler

and Yohai, 2008; Boudt and Croux, 2010; Carnero et al., 2012; Boudt et al., 2013; Grané
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et al., 2014; Trućıos and Hotta, 2016; Trućıos et al., 2017b) and consequently financial

applications (Vaz de Melo Mendes and Pereira Câmara Leal, 2005; Welsch and Zhou, 2007;

Trućıos et al., 2017a). Furthermore, there are evidence showing that PCA is very sensitive

to the presence of outliers (Croux and Haesbroeck, 2000; Hubert et al., 2005; Candès et al.,

2011; Greco and Farcomeni, 2016). Thus, procedures based on similar methodology are also

expected to be sensitive to outliers.

In this paper, we first analyse by means of Monte Carlo experiments the performance of

the PVC in the presence of additive outliers showing that outliers have a devastating effect

on this procedure even when moderate outliers are present. Then, we propose a robust

principal volatility component (RPVC) procedure which shows to have good finite sample

properties.

The rest of the paper is organized as follows. Section 2 presents the PVC of Hu and Tsay

(2014a), the generalized version of Li et al. (2016) and our robust procedure. In Section 3 an

extensive Monte Carlo experiment is carried out to evaluate the finite sample properties of

the procedures in contaminated and uncontaminated series. Section 4 presents an empirical

application of daily returns with 73 stocks of the Nasdaq-100 index and show that our robust

procedure has better performance when applied to the selection of the minimum variance

portfolio. Finally, Section 5 presents the main conclusions and future works.

2 Volatility components

Let yt = (y1t, ..., yNt)
′ a N-dimensional vector with E(yt|Ft−1) = 0 where Ft−1 denotes

the information available till time t− 1 and let MN×N = [AN×r BN×(N−r)] an orthogonal

matrix. Observe that if we denote ft = A′yt and εt = BB′yt, we can rewrite yt as

yt = MM ′yt = (AA′ +BB′)yt = Aft + εt. (1)

Hu and Tsay (2014a) and Li et al. (2016) introduce methodologies on which, under mild

conditions, it is possible to find B such that V ar(εt|Ft−1) = V ar(εt), i.e, the second term εt

contains homocedastic components and all the conditional heteroscedastic components come

from the first term. Although model (1) has the same form of the classical factor model, there
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are some differences between them. First, model (1) splits yt into two terms, one explaining

the conditional heteroscedastic dynamic (ft) and the other one driven by components with

constant volatility (εt). Additionally, ft and εt are not necessary uncorrelated. Finally,

none assumption is imposed directly on ft and εt and all the features described previously

are consequences of the eigenvalue-eigenvector decomposition described in Hu and Tsay

(2014a) and Li et al. (2016) respectively. This model is also particularly useful because it

reduces considerable the number of parameter to be estimated circumventing the curse of

the dimensionality.

We briefly introduce the approaches of Hu and Tsay (2014a) and Li et al. (2016), denoted

by PVC and GPVC respectively. These approaches allow to obtain components with the

features described previously. Additionally, knowing the bad influence of outliers in classical

methodologies and inspired on the comments of Franke (2014) and Hu and Tsay (2014b)

about the robustness of the PVC procedure, we introduce a robust procedure which is less

sensitive to additive outliers.

2.1 Principal volatility components (PVC)

Let us assume that the vector yt defined previously is weakly stationary with finite four-

order moment. Hu and Tsay (2014a) consider the eigenvalue-eigenvector decomposition of

the cumulative generalized kurtosis matrix given by Γ∞M = ΛM where Λ is a decreasing

ordered diagonal matrix of eigenvalues, M is the associated normalized eigenvectors and Γ∞

is the cumulative generalized kurtosis matrix defined as

Γ∞ =
∞∑
k=1

N∑
i=1

N∑
j=1

E2 [(yty
′
t − Σ) (xij,t−k − E (Xij))] , (2)

where Σ is the unconditional covariance matrix and xij,t−k is a function of yi,t−kyj,t−k
1. The

kth volatility component is defined as zkt = m′kyt where mk is the eigenvector associated

with the kth eigenvalue and corresponds to the kth column of M . Hu and Tsay (2014a)

1In their simulations and empirical application Hu and Tsay (2014a) use the Huber’s function defined as

r(x) =


x, if |x| ≤ c2,
2c
√
x− c2, if x > c2,

c2 − 2c
√
|x|, if x < −c2.
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proves that if mk is an eigenvector associated with a zero eigenvalue of Γ∞, the linear

combination m′kyt has constant volatility (See Lemma 1 — Theorem 1 of Hu and Tsay

(2014a)). Additionally, it can also be proved that under mild conditions (Theorem 1 of

Hu and Tsay (2014a)) exist N − r linearly independent combinations of yt with constant

volatility, where r = rank(Γ∞).

In practice, (2) is estimated by

Γ̂r =

g∑
k=1

N∑
i=1

N∑
j=1

(
1− k

T

)2
[

1

T

T∑
t=k+1

[(
yty
′
t − Σ̂

)
(xij,t−k − x̄ij)

]]2

, (3)

where Σ̂ is the sample covariance matrix, x̄ij is the sample mean of xij,t, g is a positive

integer that represents a lag order and T is the sample size. For more details see, Hu and

Tsay (2014a) and Andreou and Ghysels (2014).

2.2 Generalized principal volatility components (GPVC)

The PVC of Hu and Tsay (2014a) assumes that the vector series has finite fourth-order

moment. However, there is evidence showing that in many financial series this assumption

does not hold (Zhu and Ling, 2011). To relax this assumption, Li et al. (2016), inspired by

the paper of Pan et al. (2010), propose an alternative PVC procedure, denoted by GPVC,

which requires only finite second-order moments.

In the GPVC, the cumulative generalized kurtosis matrix (2) is replaced by

G =

g∑
k=1

T∑
t=1

ω(yt)E
2 [(yty

′
t − Σ) I(‖yt−k‖ ≤ ‖yt‖)] , (4)

where ω(·) is a weight function and ‖ · ‖ is the L1 norm. The matrix G is estimated in a

natural way by

Ĝ =

g∑
k=1

T∑
τ=1

ω(yτ )

[
1

T − k

T∑
t=k+1

[(
yty
′
t − Σ̂

)
I(‖yt−k‖ ≤ ‖yτ‖)

]]2

. (5)

Both procedures present a good performance with a slight better performance in favour of

the GPVC procedure (Li et al., 2016). However, these procedures have two drawbacks. The

first one, which is not discussed here, is related with the problem of dealing with N/T → 1
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or even N > T . The second one, which is the focus of this paper, is related with the presence

of additive outliers that, as discussed previously, can have several implications in modelling

and forecasting volatility (Boudt et al., 2013; Grané et al., 2014; Trućıos et al., 2017a,b).

These outliers are not unusual and can be related with financial crashes, elections, wars,

macroeconomic news and terrorist attack (Charles and Darné, 2014; Laurent et al., 2016).

Because both procedures are based on a methodology similar to the classical PCA, which

is very sensitive to atypical observations (Croux and Haesbroeck, 2000; Hubert et al., 2005;

Candès et al., 2011; Greco and Farcomeni, 2016) and in addition taking into account that

both procedures focus on estimation and prediction of the conditional covariance matrix,

which are badly affected by additive outliers (Carnero et al., 2012; Boudt et al., 2013;

Trućıos et al., 2017b,a) it is important to know whether and how outliers affect the (G)PVC

procedures and consequently their financial applications. In a second step, it is interesting

to find an alternative or a robust procedure, which is pursued in the following section.

2.3 Robust principal volatility components (RPVC)

In order to obtain a procedure less sensitive to additive outliers, we robustify the estimator

given in (5). The robust procedure is based on a robust estimator of the unconditional

covariance matrix and a weighted estimator of E [(yty
′
t − Σ) I(‖yt−k‖ ≤ ‖yt‖)]. We replace

the matrix (5) by a less sensitive matrix defined as

ĜR =

g∑
k=1

T∑
τ=1

ω(yτ )

[
T∑

t=k+1

δ∗(d2
t )
{

(yty
′
t − Σ̂R)I(‖yt−k‖ ≤ ‖yτ‖)

}]2

, (6)

where d2
t is the robust square Mahalanobis distance given by d2

t = (yt − µ̂R)′Σ̂−1
t (yt − µ̂R)

with Σ̂t = 0.01ρ(y′t−1yt−1) + 0.99Σ̂t−1, Σ̂1 = Σ̂R and µ̂R and Σ̂R being a robust estimates

of the unconditional mean and covariance matrix obtained using the minimum covariance

determinant (MCD) estimator of Rousseeuw (1984) implemented with the algorithm of

Hubert et al. (2012). Finally, ρ(·) and δ(·) are given by

ρ(xt) =


xt, if d2t ≤ c,

Σ̂R, if d2t > c,

δ(x) =


1, if x ≤ c,

1
x
, if x > c,

and δ∗(·) = δ(·)/||δ(·)||, where ‖ · ‖ is the L1 norm.

Observe that, to avoid that returns corresponding to periods with high volatility being
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considered as possible outliers we incorporate in the squared Mahalanobis distance a covari-

ance matrix evolving over time which is obtained using a RiskMetrics 1994 Smoother with

λ = 0.99. Similar approaches have been also used in Croux et al. (2010), Boudt and Croux

(2010) and Boudt et al. (2013). Additionally, because the sample covariance matrix is sen-

sitive to outliers (Hubert et al., 2012, 2015), we use the robust MCD estimator (Rousseeuw,

1984; Hubert et al., 2012). To maintain the robustness of d2
t , we use Σ̂R as the initial value

in Σ̂t and introduce the filter ρ(·) that mitigate the effect of outliers in the RiskMetrics

Smoother. Finally, as a natural robust estimator of E [(yty
′
t − Σ) I(‖yt−k‖ ≤ ‖yt‖)] we use

a weighted estimator that penalize large values of d2
t .

2

3 Monte Carlo experiments

To evaluate the finite sample properties of the PVC, GPVC and RPVC, we carry out Monte

Carlo experiments with small and large dimensions. Series of sample size 1000 and 1000

Monte Carlo replicates are considered. Different patterns of contamination, size of outliers

and percentage of series contaminated are considered. We consider consecutive (C) and

isolated (I) outliers in the middle and close to the end of the sample period. In cases

contaminated by isolate outliers we put two outliers in the series at positions t = 500

and 999, in the same way cases with consecutive outliers are contaminated at positions

t = 500, 501 and 998, 999. Outliers of size 5 and 10 standard deviations of the univariate

uncontaminated process are contemplated. Finally, we consider uncontaminated series (0%

of series contaminated) and contamination of p% of the series, with p% = 25%, 50% and

100% of the series. The p% contaminated series were the first p% series which appear in

the entire system.

2At the same time we are working in a robust PVC procedure, another robust procedure is being
developed independently by Monte and Reisen (2016). The main differences between both approaches are
that Monte and Reisen (2016) robustify the procedure of Hu and Tsay (2014a) while we robustify the
procedure of Li et al. (2016). The procedure of Monte and Reisen (2016) replace the generalized covariance
in (3) by a robust version based on Ma and Genton (2000) while we use the robust MCD estimator of
Rousseeuw (1984). Additionally we mitigate the effect of outliers penalizing large values of the squared
Mahalanobis distance taking into account high and low volatility period using a RiskMetrics Smoother
that avoid returns corresponding to periods with high volatility being considered as outliers. Finally, the
robust procedure proposed in this paper is fast and feasible in large dimensions. Because the GPVC has
shown a slight better performance than the PVC and in addition because the robust procedure of Monte
and Reisen (2016) is computationally more expensive than the other approaches we do not analyse this
procedure here since Monte Carlo experiments even for small dimension (N = 8) is highly time consuming
and in consequence infeasible in moderate/large dimensions.
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Following Hu and Tsay (2014a), Andreou and Ghysels (2014) and Li et al. (2016), we

use the factor model as DGP. In the simulation study we consider three analyses. First,

we analyse if outliers affect the estimation of the number of volatility components with

heteroskedastic dynamic. Second, considering that the number of components with het-

eroskedastic dynamic are known, we analyse the effect of the outliers in the estimation of

the matrix A in (1). Finally, we are interested on the effects of outliers in the prediction

of the conditional covariance matrix and its implications in economic and financial applica-

tions.

3.1 Number of volatility components

First, we are interested in knowing whether the selection of the number of volatility com-

ponents with heteroskedastic dynamic is affected by outliers. The procedures proposed in

the literature to estimate the number of components are not conclusive, for simplicity and

illustrative purposes we use the ratio estimator criterion (Lam and Yao, 2012; Ahn and

Horenstein, 2013), the BN criterion (Bai and Ng, 2002) and the Kaiser-Guttman criterion

(Guttman, 1954).

We consider small and large dimensions (N = 8 and 60) and the factor model was gener-

ated with two and six common factors for N = 8 and 60 respectively. Each common factor

follows a Gaussian GARCH(1,1) process with parameters ω = (1, 2), α = (0.07, 0.03) and

β = (0.83, 0.92) for N = 8 and ω = (1, 2, 1, 0.5, 2, 3), α = (0.07, 0.03, 0.05, 0.03, 0.02, 0.03)

and β = (0.83, 0.92, 0.90, 0.95, 0.78, 0.87) for N = 60, the factor load matrix A was randomly

drawn as a matrix with orthogonal columns using the R package pracma of Borchers (2017),

the idiosyncratic factors were simulated as εt = ε̄t
N

where ε̄t ∼ NormalN(0, I). The initial

covariance matrix H0 was simulated as a positive definite matrix using the procedure of Joe

(2006) implemented in R package clusterGeneration of Qiu and Joe. (2015). In all cases

we simulate 1500 observations and discard the first 500 to avoid the influence of the initial

values.

Tables 1 and 2 report the average and standard deviation of the estimated number of

volatility components using the ratio estimator (top panel), the BN (middle panel) and

the Kaiser-Guttman (bottom panel) criteria for small and large dimensions respectively.
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Additionally, the proportion of estimated components smaller, equal and larger than the

true number of factors are also reported. Observe that, mainly for the large dimension

case, when the non-robust procedures are implemented, the selected number of estimated

volatility components obtained using any of the three criteria mentioned previously is highly

affected by the presence of outliers. However, when the robust procedure is implemented, the

presence of outliers does not affect significantly the selected number of volatility components.

In large dimension, the ratio estimator and the BN criteria tends to overestimate the number

of components when outliers are present in the series and the non-robust procedures are

used, two exceptions are observed using the ratio estimator criterion in the PVC procedure

with 100% of the series contaminated by consecutive outliers, in which cases the number

of selected components is mostly underestimated when the size of outliers is ω = 10 and

almost 41.9% of cases is underestimated when ω = 5.

In the presence of outliers, as expected, the Kaisser-Guttman criterion also missesti-

mate the number of selected components. Furthermore, in small dimension the Kaisser-

Guttman criterion also missestimate the number of selected components when no outliers

are in the series and approximately 50% of cases underestimate the number of selected

volatility components. However, in large dimensions when the series are uncontaminated,

the number of estimated components obtaining is close to the true number of factors. Ad-

ditional Monte Carlo experiments conclude that as the ratio common factors/dimension

increase, the Kaiser-Guttman criterion estimate incorrectly the number of components (see

supplementary material).

Note that, when the RPVC procedure is used, the ratio estimator criteria estimates the

number of components pretty well in all cases. Furthermore, in uncontaminated cases and

large dimension, all criteria estimate correctly the number of components.

3.2 Eigenvectors associated with non-zero eigenvalues

In this section, we analyse the effects of outliers on the estimation of the eigenvectors as-

sociated with the non-zero eigenvalues. Note that, these vectors are the columns of the

matrix A in the model yt = Aft+ εt and play an important role on the forecast of the condi-

tional covariance matrix. To separate the source of error, we focus on the estimation of the
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Table 1: Average and standard deviation of the estimated number of components for uncon-
taminated and contaminated series using the ratio estimator (top panel), the BN (middle
panel) and the Kaiser-Guttman (bottom panel) criteria. For data coming from a factor
model the proportion of estimated components lower (Comp = 1), equal (Comp =2) and
upper (Comp >2) the number of true factors is also reported. Dimension N = 8, sample
size T = 1000 and 1000 Monte Carlo replicates.

0% 25% 50% 100%
ω = 5 ω = 10 ω = 5 ω = 10 ω = 5 ω = 10

I C I C I C I C I C I C
Ratio estimator criterion

Mean 1.992 1.986 1.988 1.987 1.990 1.988 1.989 1.988 1.987 1.987 1.988 1.987 1.988
SD 0.089 0.118 0.109 0.113 0.100 0.109 0.104 0.109 0.113 0.113 0.109 0.113 0.109

RPVC Comp =1 0.008 0.014 0.012 0.013 0.010 0.012 0.011 0.012 0.013 0.013 0.012 0.013 0.012
Comp =2 0.992 0.986 0.988 0.987 0.990 0.988 0.989 0.988 0.987 0.987 0.988 0.987 0.988
Comp >2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean 1.998 2.383 2.607 3.106 3.366 2.868 3.100 3.249 3.798 2.281 2.624 2.032 3.108
SD 0.045 0.830 1.017 0.737 0.864 1.031 1.465 0.952 1.385 0.957 1.370 0.830 1.176

GPVC Comp =1 0.002 0.151 0.173 0.050 0.068 0.152 0.233 0.100 0.126 0.222 0.245 0.265 0.106
Comp =2 0.998 0.390 0.271 0.074 0.053 0.150 0.115 0.059 0.060 0.409 0.302 0.502 0.193
Comp >2 0.000 0.459 0.556 0.876 0.879 0.698 0.652 0.841 0.814 0.369 0.453 0.233 0.701

Mean 1.972 2.214 2.694 3.037 2.779 2.517 2.944 3.286 2.437 2.090 1.880 2.143 1.987
SD 0.165 0.794 1.012 0.785 1.268 1.065 1.523 0.908 1.626 0.878 0.975 0.960 0.886

PVC Comp =1 0.028 0.189 0.168 0.069 0.291 0.242 0.290 0.085 0.434 0.258 0.409 0.284 0.303
Comp =2 0.972 0.450 0.207 0.083 0.065 0.199 0.110 0.055 0.216 0.480 0.407 0.404 0.497
Comp >2 0.000 0.361 0.625 0.848 0.644 0.559 0.600 0.860 0.350 0.262 0.184 0.312 0.200

BN criterion
Mean 2.066 2.400 2.502 2.588 2.620 2.449 2.517 2.598 2.599 2.328 2.416 2.532 2.579
SD 0.293 0.726 0.783 0.818 0.833 0.743 0.799 0.814 0.825 0.650 0.732 0.791 0.815

RPVC Comp =1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp =2 0.946 0.743 0.679 0.625 0.609 0.703 0.677 0.613 0.621 0.773 0.730 0.656 0.631
Comp >2 0.054 0.257 0.321 0.375 0.391 0.297 0.323 0.387 0.379 0.227 0.270 0.344 0.369

Mean 2.013 3.352 3.650 3.422 3.704 3.658 3.899 3.691 3.872 3.765 3.888 3.856 3.823
SD 0.137 0.531 0.498 0.498 0.457 0.477 0.308 0.462 0.346 0.447 0.334 0.354 0.460

GPVC Comp =1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
Comp =2 0.990 0.027 0.010 0.002 0.000 0.001 0.002 0.000 0.004 0.010 0.006 0.001 0.030
Comp >2 0.010 0.973 0.990 0.998 1.000 0.999 0.998 1.000 0.996 0.990 0.994 0.999 0.969

Mean 2.026 3.348 3.651 3.438 3.701 3.649 3.901 3.690 3.891 3.696 3.924 3.845 3.888
SD 0.208 0.551 0.497 0.500 0.458 0.480 0.299 0.463 0.324 0.508 0.283 0.376 0.337

PVC Comp =1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
Comp =2 0.983 0.038 0.010 0.002 0.000 0.001 0.000 0.000 0.001 0.023 0.005 0.005 0.007
Comp >2 0.017 0.962 0.990 0.998 1.000 0.999 1.000 1.000 0.998 0.977 0.995 0.995 0.993

Kaiser-Guttman criterion
Mean 1.562 1.549 1.522 1.552 1.521 1.550 1.520 1.548 1.518 1.544 1.517 1.546 1.518
SD 0.496 0.498 0.500 0.498 0.500 0.498 0.500 0.498 0.500 0.498 0.500 0.498 0.500

RPVC Comp =1 0.438 0.451 0.478 0.448 0.479 0.450 0.480 0.452 0.482 0.456 0.483 0.454 0.482
Comp =2 0.562 0.549 0.522 0.552 0.521 0.550 0.520 0.548 0.518 0.544 0.517 0.546 0.518
Comp >2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean 1.494 1.527 1.556 1.741 1.658 1.581 1.568 1.661 1.601 1.588 1.599 1.549 1.679
SD 0.500 0.500 0.503 0.533 0.543 0.494 0.500 0.578 0.551 0.499 0.502 0.498 0.490

GPVC Comp =1 0.506 0.473 0.447 0.305 0.377 0.419 0.434 0.394 0.431 0.415 0.407 0.451 0.332
Comp =2 0.494 0.527 0.550 0.649 0.588 0.581 0.564 0.551 0.537 0.582 0.587 0.549 0.657
Comp >2 0.000 0.000 0.003 0.046 0.035 0.000 0.002 0.055 0.032 0.003 0.006 0.000 0.011

Mean 1.433 1.467 1.508 1.674 1.422 1.496 1.478 1.634 1.324 1.528 1.382 1.465 1.391
SD 0.496 0.503 0.512 0.512 0.548 0.502 0.516 0.541 0.475 0.503 0.488 0.501 0.488

PVC Comp =1 0.567 0.535 0.498 0.347 0.606 0.505 0.530 0.396 0.679 0.474 0.619 0.536 0.609
Comp =2 0.433 0.463 0.496 0.632 0.366 0.494 0.462 0.574 0.318 0.524 0.380 0.463 0.391
Comp >2 0.000 0.002 0.006 0.021 0.028 0.001 0.008 0.030 0.003 0.002 0.001 0.001 0.000

(a) 25%, 50% and 100% of series contaminated at time t = 500 and 999 (isolated outliers) or
t = 500, 501 and 998, 999 (consecutive outliers). (b) (c) Size of outliers ω = 5 and 10 standard
deviations of the univariate uncontaminated process. (d) the factor models are simulated with two
factors.
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Table 2: Average and standard deviation of the estimated number of components for uncon-
taminated and contaminated series using the ratio estimator (top panel), the BN (middle
panel) and the Kaiser-Guttman (bottom panel) criteria. For data coming from a factor
model the proportion of estimated components lower (Comp < 6), equal (Comp =6) and
upper (Comp >6) the number of true factors is also reported. Dimension N = 60, sample
size T = 1000 and 1000 Monte Carlo replicates.

0% 25% 50% 100%
ω = 5 ω = 10 ω = 5 ω = 10 ω = 5 ω = 10

I C I C I C I C I C I C
Ratio estimator criterion

Mean 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000
SD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RPVC Comp <6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp =6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Comp >6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean 6.000 7.980 9.926 7.990 9.960 7.999 9.997 7.999 9.997 8.000 10.000 7.766 9.604
SD 0.000 0.140 0.298 0.100 0.196 0.032 0.055 0.032 0.055 0.000 0.000 1.162 1.490

GPVC Comp <6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.039 0.066
Comp =6 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp >6 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.961 0.934

Mean 6.000 7.976 9.941 7.990 9.927 7.999 9.997 7.999 8.886 8.000 6.647 7.832 2.050
SD 0.000 0.153 0.252 0.100 0.597 0.032 0.055 0.032 2.769 0.000 3.950 0.990 0.621

PVC Comp <6 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.139 0.000 0.419 0.028 0.994
Comp =6 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp >6 0.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000 0.861 1.000 0.581 0.972 0.006

BN criterion
Mean 6.001 6.005 6.005 6.023 6.008 6.005 6.004 6.017 6.010 6.008 6.002 6.013 6.003
SD 0.032 0.071 0.071 0.157 0.089 0.071 0.063 0.144 0.100 0.089 0.045 0.122 0.055

RPVC Comp <6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp =6 0.999 0.995 0.995 0.978 0.992 0.995 0.996 0.985 0.990 0.992 0.998 0.988 0.997
Comp >6 0.001 0.005 0.005 0.022 0.008 0.005 0.004 0.015 0.010 0.008 0.002 0.012 0.003

Mean 6.000 7.986 8.000 7.991 7.999 7.999 7.999 7.999 8.000 8.000 8.000 8.000 8.000
SD 0.000 0.118 0.000 0.094 0.032 0.032 0.032 0.032 0.000 0.000 0.000 0.000 0.000

GPVC Comp <6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp =6 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp >6 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Mean 6.000 7.987 8.000 7.990 8.000 7.999 8.000 7.999 7.999 8.000 8.000 8.000 8.000
SD 0.000 0.113 0.000 0.100 0.000 0.032 0.000 0.032 0.032 0.000 0.000 0.000 0.000

PVC Comp <6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp =6 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Comp >6 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Kaiser-Guttman criterion
Mean 5.999 5.999 6.000 5.999 6.000 6.000 6.000 6.000 6.000 6.000 5.998 6.000 6.000
SD 0.032 0.032 0.000 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.045 0.000 0.000

RPVC Comp <6 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000
Comp =6 0.999 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000
Comp >6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean 6.000 7.218 7.868 7.341 7.453 7.574 8.008 4.901 4.654 5.963 5.701 2.183 3.995
SD 0.000 0.534 0.630 0.660 0.854 0.532 0.737 0.765 0.677 0.508 0.636 0.389 0.071

GPVC Comp <6 0.000 0.000 0.000 0.003 0.014 0.000 0.000 0.787 0.904 0.144 0.353 1.000 1.000
Comp =6 1.000 0.057 0.007 0.096 0.115 0.019 0.017 0.209 0.091 0.747 0.572 0.000 0.000
Comp >6 0.000 0.943 0.993 0.901 0.871 0.981 0.983 0.004 0.005 0.109 0.075 0.000 0.000

Mean 6.000 7.088 7.968 7.617 3.315 7.599 5.089 5.588 2.117 6.188 2.294 3.288 2.000
SD 0.000 0.568 0.501 0.615 0.783 0.502 0.832 0.995 0.322 0.539 0.458 0.860 0.000

PVC Comp <6 0.000 0.000 0.000 0.000 0.989 0.000 0.690 0.429 1.000 0.062 1.000 0.996 1.000
Comp =6 1.000 0.121 0.004 0.071 0.010 0.006 0.277 0.424 0.000 0.686 0.000 0.004 0.000
Comp >6 0.000 0.879 0.996 0.929 0.001 0.994 0.033 0.147 0.000 0.252 0.000 0.000 0.000

(a) 25%, 50% and 100% of series contaminated at time t = 500 and 999 (isolated outliers) or
t = 500, 501 and 998, 999 (consecutive outliers). (b) 0% represents uncontaminated series. (c) Size
of outliers ω = 5 and 10 standard deviations of the univariate uncontaminated process. (d) the
factor models are simulated with six factors.
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eigenvectors and assume that we know the true number of components with hereroskedastic

dynamic. We follow Li et al. (2016) and carry out a similar Monte Carlo experiments with

1000 replicates and consider small (N = 8) and large (N = 100) dimension cases. Follow-

ing examples 1 and 4 of Li et al. (2016), the factor model is driven by just one common

factor which follows a Gaussian GARCH(1,1) process with parameters ω = 1, α = 0.07 and

β = 0.83. The idiosyncratic factors εt are simulated as εt = ε̄t√
N

where ε̄t ∼ NormalN(0, I)

with N being the dimension of the system. The factor load matrix A is also normalized and

each element is a random draw of U(−1, 1). Given that the PVC and GPVC procedures

have similar performance (Li et al., 2016) and considering the extreme computational cost

of the Monte Carlo experiment using the PVC procedure when N = 100, for large dimen-

sions we only consider the GPVC and RPVC procedures. To compare the estimation of the

matrix A we use the two measures3 defined in Li et al. (2016) and given by

d
(
M̂1,M1

)
=

√√√√
1−

Tr
(
ÂÂ′AA′

)
r

, (7)

d
(
Â, A

)
= 1−

[∑
t(yt − ȳ)′ÂA′(yt − ȳ)

]2[∑
t(yt − ȳ)′ÂÂ′(yt − ȳ)

]
[
∑

t(yt − ȳ)′AA′(yt − ȳ)]
, (8)

where yt is a vector of observed returns, A is the true load factor matrix, Â is the estimated

load factor matrix and r is the number of columns of Â. Figure 1 presents the box-plot

of the results of the measure defined in (7) for small and large dimension cases. We can

observed that, the effect of outliers in PVC and GPVC procedures is devastating even when

just a few outliers are added in the series.

In general, the analyses of the results show that the RPVC is less sensitive to outliers and

also stable despite the proportion of series contaminated, the size of outliers and if outliers

are isolated or consecutive. Note also that, in the absence of outliers the performance of

all procedures is almost similar with a slight better performance of the GPVC procedure.

Results using (8) produces similar results and are available in the supplementary material.

3These measures and the measures used in the next section are implemented in the R package StatPer-
Meco of Trucios (2017).
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Figure 1: Boxplot of d(M̂1,M1) for uncontaminated (0%) and contaminated series with 25%, 50% and 100% of series

contaminated. Dimension 8 (top panel) and 100 (bottom panel), T = 1000 and outliers of size ω = 0, 5 and 10 standard

deviations of the univariate uncontaminated process. 1000 replicates
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3.3 Conditional covariance matrix

In this last section on Monte Carlo experiment, we use the same DGP used in the previous

section to analyse the effects of outliers on the one-step-ahead forecast of the conditional

covariance matrix. Because the PVC and the RPVC procedures have similar performance

(Sections 3.1, 3.2 and Li et al. (2016)) and given the computational cost of the PVC proce-

dure, hereafter we focus on the GPVC procedure and compare it with our robust proposal.

It can be shown (Section 2.2 of Li et al. (2016)) that the forecast h-steps-ahead of the

conditional covariance matrix can be obtained through

Σ̂y(h) = ÂΣ̂f̂ (h)Â′ + ÂÂ′Σ̂yB̂B̂
′ + B̂B̂′Σ̂y, (9)

where Σ̂f̂ (h) is the conditional covariance matrix h-steps-ahead of the estimated components

f̂ , Σ̂y is the estimated unconditional covariance matrix of y and Â and B̂ are estimated

eigenvectors. The one-step-ahead volatility of the volatility component is estimated using a

Student-t quasi maximum likelihood (QML) GARCH(1,1) model for the GPVC and by the

robust procedure of Boudt et al. (2013) with the filter used in Trućıos et al. (2017b) for the

RPVC. It is important to mention that in real life data, a deep analyse should be made to

choose the best model to be fitted.

Figures 2 and 3 report the MSE4 and the MAE for contaminated and uncontaminated

series in small and large dimension cases. The results show a devastating impact of outliers

on the forecasting of the conditional covariance matrix when the non-robust procedure

is used. Observe also that for uncontaminated series the both procedures have a similar

performance. However, when outliers are present in the series the advantage of the robust

procedure is clear, even in small dimensions. Also note that, for both criteria, when the

dimension of the series is small and when only 25% of series are contaminated with outliers

of size ω = 5, the performance of both procedures are similar regardless if outliers are

isolated or consecutive.

It is clear that, the non-robust volatility components procedure is very sensitive to

outliers and can lead to improper estimation of the conditional covariance matrix, even

4Results for the MSE were cut-off in the value of 50 for small dimensions and in 3 for large dimensions
to improve the visualization in the figure.
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when the true number of volatility components with heteroskedastic dynamic is know. The

consequences of using a non-robust procedure to forecast the conditional covariance matrix

when outliers are present in the series can be disastrous leading for instance, as observed

in our empirical application, to misspecified portfolio allocation and improper forecast of

the portfolio volatility. These results are in concordance with the obtained by, for instance,

Boudt et al. (2013) and Trućıos et al. (2017a) who showed that the effects of outliers affect

the estimation of the conditional covariance matrix and consequently economic measures

based on its estimation.

4 Empirical application

In this section, we implement the RPVC procedure to analyse the daily returns of stocks

used in the construction of the Nasdaq-100 index traded from January 6, 2001 to May 12,

2017. Because not all stocks of the index were traded during the entire period, we ended

up with N = 73 stocks. The daily prices are available at finance.yahoo.com and were

downloaded on May 14 2017 using the R package quantmod of Ryan (2017). Returns are

computed as usual by ri,t = 100 × log (Pi,t/Pi,t−1), where Pi,t denotes the adjusted closing

price of the ith stock at day t for i = 1, ..., 73.

With illustrative purposes we use the one-step-ahead forecast of the conditional covari-

ance matrix to estimate the 1% and 5% Value-at-Risk (VaR) of the equal-weight portfolio as

well as to construct the minimum variance portfolio (MVP) with short-sale constrains. The

VaR is calculated assuming a Student-t distribution where the degrees of freedom is esti-

mated by maximum likelihood using the portfolio innovations5 and the MVP are rebalanced

daily.

In the VaR and the MVP applications, we use a rolling windows approach with window

size of 1000 days and all results are compared with the GPVC and OGARCH (Alexander

and Chibumba, 1996) procedures. We use the OGARCH procedure because this method

5For t = 1, ...1000, the portfolio innovations were obtained through ep,t = rp,t/
√
σ2
p,t where rp,t =

ω× (r1,t, ...r73,t)
′ and σ2

p,t = ωĤtω
′ are the portfolio returns and variances at time t respectively with ω and

Ĥt being a vector of equal-weights and the estimated conditional covariance matrix respectively. The VaR
is obtained by V aR = Zασp,T+1|T where Zα is the α quantile of the standardized Student-t distribution

with ν degrees of freedom (ν is estimated using the portfolio innovations) and σ2
p,T+1|T = ωĤT+1|Tω

′ is the
one-step-ahead forecast conditional portfolio variance.
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Figure 2: Boxplot of MSE for uncontaminated (0%) and contaminated series with 25%, 50% and 100% of series contami-

nated. Dimension 8 (top panel) and 100 (bottom panel), T = 1000 and outliers of size ω = 0, 5 and 10 standard deviations of

the univariate uncontaminated process. 1000 replicates.
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Figure 3: Boxplot of MAE for uncontaminated (0%) and contaminated series with 25%, 50% and 100% of series contami-

nated. Dimension 8 (top panel) and 100 (bottom panel), T = 1000 and outliers of size ω = 0, 5 and 10 standard deviations of

the univariate uncontaminated process. 1000 replicates.
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has been used in several papers as a dimension reduction technique benchmark (Santos and

Moura, 2014; Becker et al., 2015; Santos and Ferreira, 2017). The OGARCH model was

estimated as in Becker et al. (2015), that means, considering the number of components equal

to the number of series and each components being modelled as a GARCH(1,1) process. The

GARCH model in all dimension reduction techniques was estimated assuming a Student-t

distribution6. Additionally, we compare our robust procedure with the classical Risk Metrics

(RM) methodology (Morgan, 1996), the new version, called, Risk Metrics 2006 (RM2006)

methodology (Zumbach, 2007) and with the DCC model using composite likelihood and

non-linear shrinkage as in Engle et al. (2017).

Table 3 reports the percentage of violation (returns smaller than the VaR) and the

p-values of the back-testing tests of unconditional coverage (Kupiec, 1995), independence

and conditional coverage (Christoffersen, 1998) for the 1% and 5% VaR of the equal-weight

portfolio. The number of selected volatility components in the GPVC and RPVC procedures

is estimated using the the ratio estimator (Lam and Yao, 2012; Ahn and Horenstein, 2013),

the BN (Bai and Ng, 2002) and the Kaiser-Guttman (Guttman, 1954) criteria. The ratio

estimator criterion suggests to use one component in both cases (GPVC and RPVC), the

BN criterion suggests to use three components and the Kaiser-Guttman criterion suggest to

use three components when the GPVC procedure is used and four components in the robust

procedure. With illustrative and comparative purposes we fit the stocks of the Nasdaq 100

index to the models using one, two, three and four volatility components. The conditional

variance of the volatility component is forecasted using the same strategy described in

Subsection 3.3 and conditional covariance matrices in cases with more than one volatility

component are forecasted using the DCC model. The DCC model was estimated by Aielli

(2013) and Boudt et al. (2013) methods for the GPVC and RPVC procedures respectively.

The percentage of violations using the dimension reduction techniques (GPVC, RPVC,

OGARCH) is close to the nominal one and in those cases the unconditional coverage (UC)

and conditional coverage (CC) tests fail to reject the null hypotheses at 5% of significance

level. Note that results for the 5% VaR using the GPVC procedure are the same regardless

of the number of selected volatility components used. In fact, the values of the 5% VaR

using the GPVC (not reporting here) are very similar and no differences are observed in the

6All codes in this paper were implemented in the R software (R Core Team, 2017)
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proportion of violations. The RM2006 methodology slightly underestimate the percentage

of violations but the UC and CC tests also fail to reject the null hypotheses. The RM

methodology has a good performance for the 5% VaR, although, the percentage of violations

is overestimated in the 1% VaR and the UC and CC tests reject the null hypotheses at 5%

of significance level. The DCC procedure reports results in the 5% VaR similar than the

obtained with the GPVC procedure.

Figure 4 shows the 1% VaR of the equal-weight portfolio using the GPVC and RPVC

procedures with one volatility component. Note that after large returns, the VaR obtained

using the GPVC (solid green line) procedure is unnecessarily larger than the obtained using

the RPVC (dashed red line) procedure, implying in more capital requirements. Additional

figures comparing the RPVC with the OGARCH, RM, RM2006 and DCC procedures are

in the supplementary material.

Table 3: Percentage of violations (returns smaller than VaR) and p-values of the uncondi-
tional coverage (UC), independence (IND) and conditional coverage (CC) tests. VaR 1%
(top panel) and VaR 5% (bottom panel) of the equal-weight portfolio

Method % violations UC IND CC
GPVC 1VC 0.868 0.448 0.492 0.587
RPVC 1VC 0.932 0.699 0.029 0.085
GPVC 2VC 0.835 0.342 0.508 0.507
RPVC 2VC 0.996 0.983 0.038 0.116
GPVC 3VC 0.835 0.342 0.508 0.507

1% VaR RPVC 3VC 0.996 0.983 0.429 0.724
GPVC 4VC 0.900 0.567 0.476 0.652
RPVC 4VC 1.157 0.391 0.358 0.449
OGARCH 0.867 0.447 0.492 0.586

RM 1.478 0.012 0.185 0.017
RM 2006 0.803 0.254 0.197 0.224

DCC 0.964 0.839 0.034 0.101
GPVC 1VC 4.724 0.475 0.022 0.053
RPVC 1VC 4.981 0.961 0.273 0.521
GPVC 2VC 4.724 0.475 0.022 0.053
RPVC 2VC 4.981 0.961 0.273 0.521
GPVC 3VC 4.724 0.475 0.022 0.053

5% VaR RPVC 3VC 5.141 0.719 0.391 0.616
GPVC 4VC 4.724 0.475 0.022 0.053
RPVC 4VC 5.205 0.601 0.592 0.716
OGARCH 4.916 0.830 0.141 0.314

RM 4.948 0.895 0.132 0.303
RM 2006 4.531 0.223 0.120 0.135

DCC 4.724 0.475 0.417 0.531
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Figure 4: 1% VaR of the equal-weight portfolio using the GPVC (solid green line) and
RPVC (dashed red line) procedures (considering one volatility component)

Following Engle et al. (2017), Gambacciani and Paolella (2017) and Trućıos et al. (2017a),

Table 4 reports annualized performance measures. The results are presented from January 3,

2005 to May 12, 2017 (entire out-of-sample period) and also for August 1, 2007 to December

31, 2013 (high volatile out-of-sample period). For the sake of comparison, we also implement

the equal-weighted portfolio. See, Fan et al. (2012), Engle et al. (2017) and Gambacciani

and Paolella (2017) for some references where the naive equal-weighted portfolio has also

used with comparison purpose.

Note that, as mentioned by Engle et al. (2017) and Ledoit and Wolf (2017), notwith-

standingly high Sharpe/Sortino ratio as well as minimum observed standard deviation are all

desirable properties, the MVP is calculated to achieve minimum variance and the observed

annualized standard deviation should be the main focus in the comparison.

Results given in Table 4 show that in both periods the worst results are obtained when

the equal-weighted portfolio is used, obtaining the highest standard deviation (SD) and also

the smallest Sharpe and Sortino ratio. On the other hand, regardless of the number of

selected volatility components used, the RPVC procedure always outperforms the GPVC in

terms of SD and most of cases also in terms of Sharpe and Sortino ratio, the unique exception

is observed in the period 2007-2013 when the Sharpe and Sortino ratios are smaller using

the RPVC with three volatility components than using the GPVC procedure with the same

number of components. The OGARCH procedure never outperforms the RPVC procedure

in terms of SD, although, sometimes outperforms the GPVC. In terms of the Sharpe and

Sortino ratios, in the high volatile period the OGARCH procedure is always outperformed
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by the RPVC and GPVC procedures. However, in the entire period the OGARCH method

outperforms the GPVC in all cases but the RPVC procedure with one and two volatility

components outperforms the OGARCH. Among the dimension reduction techniques used

in this paper, the RPVC procedure presents the best performance. Note that among the

dimension reduction techniques the smallest SD in both periods are obtained using the

RPVC procedure with four volatility components and the highest Sharpe ratio is obtained

using the RPVC procedure with two volatility components. The highest Sortino ratio is

obtained using the RPVC with two volatility components in the entire period and four

volatility components in the high volatile period.

Table 4 also reports results of the comparison between the RPVC procedure and the

RM, RM2006 and DCC methodologies. In the entire period, the RPVC procedure presents

a smaller SD than the obtained using the RM procedure and in the 2007-2013 period the

RM methodology is outperformed by the RPVC procedure when using four volatility com-

ponents. In all cases, the RM procedure presents largest Sharpe and Sortino ratios. The

RM2006 and DCC procedures outperform all the other procedues in terms of SD. The

smallest SD in the entire period is obtained using the DCC procedure while the smallest

SD in the high volatile period is obtained using the RM2006 methodology . Similar results

where dimension reduction techniques are outperformed by multivariate volatility models

including simplest models such as EWMA, ORE (Foster and Nelson, 1996) and RiskMetrics

in a MVP context can be found in, for instance, Han (2006), Santos and Moura (2014),

Becker et al. (2015), Caldeira et al. (2017), Santos and Ferreira (2017) and Ledoit and Wolf

(2017). Han (2006) and Han (2007) point out that not necessarily best statistical models

have a better portfolio performance than simplest ones. Analysis in which scenarios sim-

plest models could have a better performance than dimension reductions techniques is an

interesting further research topic. Additionally, recent results of Barigozzi and Hallin (2017)

shows that the introduction of a dynamic structure in volatility factor models improve the

forecasting performance in comparison with static approaches.

Results obtained in this paper, probably, could be improved using a dynamic component

approach (Barigozzi and Hallin, 2015; Peña and Yohai, 2016; Barigozzi and Hallin, 2017;

Peña et al., 2017) and this topic is in our research agenda.
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Table 4: Annualized performance measures for the selected MVP using equal-weight strat-
egy, GPVC and RPVC procedures (with one to four volatility components)

Jan 3, 2005 - May 12, 2017 Aug 1, 2007 - Dic 31, 2013
Method SD ShR SR SD ShR SR

1/N 20.7347 0.6272 0.8796 24.8567 0.5064 0.7083
GPVC 1VC 16.8537 0.6773 0.9445 20.2005 0.6159 0.8535
RPVC 1VC 16.7884 0.7850 1.0955 19.9746 0.6481 0.8946
GPVC 2VC 16.8171 0.6888 0.9619 20.1418 0.6400 0.8885
RPVC 2VC 16.7383 0.8155 1.1409 19.9551 0.6683 0.9238
GPVC 3VC 16.8266 0.7105 0.9904 20.1810 0.6431 0.8901
RPVC 3VC 16.6621 0.7181 1.0022 19.9180 0.6071 0.8395
GPVC 4VC 16.7954 0.7131 0.9930 20.1550 0.6505 0.8989
RPVC 4VC 16.6261 0.7465 1.0481 19.8679 0.6642 0.9264
OGARCH 16.8062 0.7801 1.0935 20.1997 0.5559 0.7699

RM 16.8517 1.0880 1.5548 19.9113 0.9218 1.2948
RM 2006 16.3518 0.9929 1.3932 19.4390 0.7953 1.0948

DCC 16.3474 0.9307 1.3059 19.5645 0.7779 1.0735

(a) SD: Standard deviation of the out-of-sample portfolio returns multiplied by
√

252. (b) ShR:
Annualized Sharpe ratio. (c) SR: Annualized Sortino ratio (Sortino and van der Meer, 1991).

Three important comments are necessary to point out before to finish our empirical ap-

plication. First, although the criteria used in this paper to select the number of volatility

components are not conclusive and each criteria suggest a different number, regardless of

the number of selected volatility components, our robust procedure showed a better perfor-

mance than the non-robust version. However, an optimal procedure to select the number

of estimated volatility components its necessary. Second, the RPVC procedure showed to

be better than the other dimension reduction techniques used in this paper as well as the

equal-weight strategy. However, in the MVP context, RPVC is outperformed by the Risk

Metrics 2006 procedure. This results could be explained by the static structure of the RPVC

procedure. A new procedure, taking into account a dynamic approach in the volatility com-

ponents could improve our results and it is a further research topic. Finally, the criteria

used to asses the performance of forecast one-step-ahead conditional covariance matrix using

RPVC procedure indicates that the RPVC procedure is superior to the GPVC, which is in

concordance with the Monte Carlo experiments carried out in Section 3.
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5 Conclusions and further research topics

In this paper, we focus on the principal volatility components procedure of Hu and Tsay

(2014a) and Li et al. (2016). These procedures extract few components with time varying

volatility and the remainder components with constant volatility tackling the problem of

the curse of the dimensionality.

We analyse the problem of modelling and forecasting the conditional covariance matrix

via principal volatility components in the presence of outliers and show that just a few

outliers are sufficient to affect drastically the volatility components and the estimation of

the conditional covariance matrix.

To estimate the number of selected volatility components we used the estimator criterion

(Lam and Yao, 2012; Ahn and Horenstein, 2013), the BN criterion (Bai and Ng, 2002) and

the Kaiser-Guttman criterion (Guttman, 1954). The use of the ration estimator and BN

criteria estimated the number of components close (or equal) to the true number of factors.

However, the Kaiser-Guttman criterion reports problems to estimate correctly the number of

component when the ratio factors/dimension increase, for that reason we do not recommend

its use in such cases.

A new and robust procedure with good finite sample properties based on a robust esti-

mator of the unconditional covariance matrix, a weighted estimator and robust filters was

introduced.

The principal volatility components approach brings an innovative contribution in the

field of modelling and forecasting multivariate volatility, managing portfolios and quantifying

risk. However, it is necessary caution when the data is contaminated by outliers because

disastrous results can be obtained when using the non-robust procedures of Hu and Tsay

(2014a) or Li et al. (2016). This paper contributes to the literature in two ways: it call the

attention to the risk of using these procedures in the presence of outliers and introduces an

approach robust to outliers and with a similar performance in uncontaminated series.

In our empirical application, the one-step-ahead forecast of conditional covariance matrix

was used to estimate the VaR and also to construct the MVP. In both applications the RPVC

procedure had a better performance than the GPVC. This results are in concordance with

our Monte Carlo experiments and show the superiority of the RPVC procedure against the
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GPVC one.

The problem of dealing with N/T → 1 or even N > T has not being addressed here.

This topic as well as PVC in switching regime are in our research agenda.

The aim of this paper is not to compare the predictability of the volatility using dif-

ferent approaches but to robustify the principal volatility components method. An exten-

sive comparison using other recently procedures such as Matteson and Tsay (2011), Pakel

et al. (2014) Matilainen et al. (2015), Barigozzi and Hallin (2015), Peña and Yohai (2016),

Barigozzi and Hallin (2017), Engle et al. (2017) among other in different scenarios is an

interesting further research topic.

Finally, some papers such as Han (2006), Santos and Moura (2014), Becker et al. (2015),

Caldeira et al. (2017), Santos and Ferreira (2017) and Ledoit and Wolf (2017) have reported

in their empirical application that in a MVP context, dimension reduction techniques are

sometimes outperformed by classical multivariate volatility models including simplest mod-

els such as EWMA, ORE (Foster and Nelson, 1996) and RiskMetrics. An interesting research

topic is to evaluate some recently dimension reduction techniques and compare it in a MVP

context with other multivariate volatility models as well as analyse the reasons why a better

performance of the simplest models is observed in the papers previously mentioned.
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