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Abstract

Most procedures for detecting stock return predictability rely on linear regression models. When
assessing the null hypothesis of no predictive power in a possibly nonlinear model, practitioners
essentially have two choices. One could resort to a suitable nonparametric test and be prepared
to lose power because of leaving the parametric framework. Since the model is linear under the
null of no predictability, one could also conduct inference in a linear model, and be prepared
to lose power because of the misspeci�cation under the alternative hypothesis. To help decide
which approach to use, the paper focuses on size and local power under the additional di�culty
that the persistence of the regressors, as quanti�ed by their largest autoregressive roots, is
unknown. Regarding nonparametrics, the statistics employed by Juhl (2014, JBES 32, 387-394)
and Kasparis et al. (2015, J. Econometrics 185, 468-494), have χ2 limiting null distributions
for both low and high regressor persistence, but are asymptotically dominated in terms of
local power by simple linear procedures. We show, theoretically and in simulations, that an
overidenti�ed IV testing scheme following Kostakis et al. (2015, Review of Financial Studies 28,
1506-1553) and Breitung and Demetrescu (2015, J. Econometrics 187, 358-375), is particularly
well suited for inference in additive predictive models with uncertain predictor persistence.
The proposed test is robust to the degree of persistence of the regressors and to time-varying
volatility. An analysis of predictability of S&P 500 stock returns �nds signi�cant predictability,
part of which is nonlinear in nature. For log dividend yields and the long-term rate of return
we �nd a monotonic regression function, while log earnings price ratios exhibit a U-shaped
relation. The latter is driven entirely by the 2008 �nancial crisis, suggesting that, during crises,
�rm-speci�c characteristics such as valuation ratios may be inconsistent signals of stock price
performance.
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1 Introduction

Predictive regressions for stock returns are an important practical aspect of quantitative �nance and

�nancial econometrics; see e.g. Campbell (2008) and Phillips (2015) for recent reviews. Practitioners

must however face several methodological and empirical challenges. For instance, the signal-to-

noise ratio of the typical (linear) predictive regression involving �nancial ratios is quite low; see

e.g. Figure 1. Moreover, under endogeneity,1 the properties of the usual OLS-based t statistic in

linear regression depend on the degree of persistence of the regressors: Stambaugh (1999) proved

the OLS estimator in a predictive regression with endogenous, autocorrelated regressors to exhibit

serious bias, and Elliott and Stock (1994) show the distribution of the associated t statistic to

depend on the degrees of persistence and endogeneity of the (near-integrated) regressor. Many

potential predictors exhibit indeed high persistence without having an exact unit root; and if

the regressor is well described as being nearly integrated, limiting distributions depend under

endogeneity on a parameter that cannot be consistently estimated. To deal with this issue in the

linear case, Amihud and Hurvich (2004); Amihud et al. (2009, 2010) propose bias corrections that

apply under stationarity conditions for the predictors, while Campbell and Yogo (2006) propose

an improved Bonferroni-based procedure that requires specifying lower and upper bounds for the

unknown persistence of the (near-integrated) regressor. Kostakis et al. (2015) adapt the extended

IV [IVX] procedure of Magdalinos and Phillips (2009) to the predictive regression framework, and

Breitung and Demetrescu (2015) study powerful extensions of the instrumental variable approach.

Still, predictability of stock returns is elusive in practice, in spite of the well-developed theoretical

foundations. As emphasized by Lettau and Van Nieuwerburgh (2008), predictability is plagued

by inconsistencies between in-sample and out-of-sample performance of predictive regressions. To

explain this, there is a growing trend in the literature positing the existence of a nonlinear dimension

in the breakdown of the linear present value model; see e.g. McMillan (2001), McMillan (2003) or

Kanas (2005); in fact, the idea that a nonlinear model may improve forecasting performance for

stock returns can be traced back at least to Chung and Zhou (1996). This is by no means far-

fetched: the relation between stock returns and dividend yields, say, grows exponentially over

time (Ang and Bekaert, 2007), such that the basic linear model may indeed be a less appropriate

representation of the true relation between �nancial ratios and asset returns.2

Indeed, examining Figure 2 giving local linear regression curve estimates, one may notice that the

slope appears to vary over the range of the predictors, in particular it is smaller in magnitude

around the center of the distribution of the regressors, where most observations lie. A linear �t

would be closer to the slope around the center, and would therefore forecast badly if the out-of-

sample predictor comes from the tails. And we may notice in Figure 1 that especially the log(D/P)

series is decisively below its long-run average from the late 90s onwards, which is largely the period

where out-of-sample predictability is not found; see e.g. Welch and Goyal (2008).

It is therefore quite reasonable to allow for nonlinear regression functions when testing the null

hypothesis of no predictability. But technical developments on testing predictive ability have mostly

1In this context, one speaks of endogenous regressors when the shocks to the series to be predicted are contem-
poraneously correlated with the innovations to the regressors.

2Slope parameter instability is another possible explanation for such phenomena; see, among others, Viceira
(1997), Paye and Timmermann (2006), Ang and Bekaert (2007), and Henkel et al. (2011); this may also be interpreted
as a nonlinear model, with the slope coe�cient depending on time or other variables.
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Figure 1: S&P 500 returns, log dividend yield and log earnings/price ratio � monthly observations,
December 1926 to December 2016; see Section 5 for details
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Figure 2: Local linear regression curves of stock returns against lagged �nancial ratios; see Section
5 for details on the computation

been con�ned to linear models sofar. Only more recently did Juhl (2014) propose a U statistic to

test the predictive ability of a near-integrated or stationary regressor; building on the work of Wang

and Phillips (2012) and Fan and Li (1999), he shows that the limiting distribution of the U statistic

is the same for either stationary or near-integrated regressors.3 Kasparis et al. (2015) study the

Nadaraya-Watson estimator and related test statistics under several types of persistence; their test

statistics can immediately be used for inference in nonlinear predictive regressions, with the same

advantage that the asymptotic distributions are the same irrespective of the actual persistence of

the regressor. Practitioners have in fact continusouly pitted parametric vs. nonparametric methods

even earlier, and there is evidence that linear models cannot fully capture predictability because of

nonlinear predictable components; see e.g. McMillan (2003) or Chen and Hong (2010).

In this paper we argue however that, contrary to the intuition that nonparametric methods can

capture nonlinear dynamics better, mispeci�ed linear models actually have better chances of un-

3In the predictive regression setup, the U statistics of Wang and Phillips (2012) and Juhl (2014) are essentially
the same. Wang and Phillips (2012), however, discuss a more general testing problem, aiming to detect misspeci-
�cation in nonlinear cointegrating regressions with near-integrated regressors; similarly, Fan and Li (1999) discuss
misspeci�cation tests in the stationary case.
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covering signi�cant predictive relations. To make the point, we focus on an additive nonlinear

predictive regression model,

yt = β0 + β1 f (xt−1) + ut, t = 2, . . . T. (1)

This nests of course the linear case. Such models have been recently studied by Chang and Park

(2010) and Shi and Phillips (2012) for integrated regressors. In line with the literature, the regressor

xt−1 has an autoregressive structure,

xt − µ = ρ (xt−1 − µ) + et, t = 2, . . . , T . (2)

with et a short-memory linear process given as et =
∑

j≥0 bjvt−j with suitable summability condi-

tions on the Wold coe�cients bj and vt is zero-mean uncorrelated such that µ is the mean of the

process irrespective of its persistence. We take ρ to be either �xed and belonging to the stationar-

ity region (cf. Amihud et al., 2009), or near to unity, ρ = 1 − c/T (cf. Campbell and Yogo, 2006),

thus allowing for �exibility in modelling the persistence of the posited predictor. Moreover, xt−1 is

allowed to be endogenous as captured by non-zero contemporaneous correlation of the zero-mean

serially uncorrelated sequence (ut, vt)
′; such endogeneity is a typical feature of predictive regres-

sions for stock returns, say. The situation relevant in practice is when ρ and f are unknown, and

the paper studies inference on β1 under such circumstances.

The main interest lies in achieving correctly-sized inference without signi�cant losses of power,

without having to specify the functional form of f (up to regularity conditions) and without having

to decide whether the regressor is stationary or (near) integrated. In particular, it is the local power

that is relevant (cf. Phillips and Lee, 2013) since the prototypical predictive regression (stock returns

on dividend yields) exhibits small coe�cients and a low signal-to noise ratio (cf. Figure 1 again).

Bluntly put, the practitioner's dilemma is as follows. Should one run a linear regression of yt on

xt−1 instead of estimating the nonlinear relation (1), power may be lost when testing β1 = 0 due

to having misspeci�ed f to be linear under the alternative. If, on the other hand, one uses a

nonparametric regression method, power is lost again due to lower convergence rates, say, than for

a parametric (even misspeci�ed) setup; moreover, the problem worsens in a nonparametric multiple

regression setup, where convergence rates may further be reduced by the curse of dimensionality.

One has the choice between a rock and a hard place: should inference rely on a misspeci�ed (under

the alternative) linear model, or on typically less powerful nonparametric techniques?

To answer the question of which approach to use, we exploit the fact that modelling f appropriately

is not always a strictly necessary step in answering the �yes/no� question on predictive ability,

even in a possible nonlinear framework; modelling f could well be done after deciding whether

there is predictive power at all. This is because of two reasons. First, the null hypothesis of no

predictability is, trivially, linear: yt = β0 + 0 · xt−1 + ut. Second, local alternatives in (1) imply

local departures from linearity, so power losses due to misspeci�cation may not be as serious as

in a textbook situation. We consider power against sequences of local alternatives of the form

β1 = b/T ν for suitable ν > 0 depending on the properties of the regression function under the

alternative (the case b = 0 recovers the null hypothesis and thus size). Since f is unknown, we

make minimal identifying assumptions, and consider in a �rst step alternatives where the regression

function f is monotonic and asymptotically homogenous of some degree α > 0 in the sense of Park
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and Phillips (1999). For the typical �nancial predictive regression with predictors such as the log

dividend price ratio (for which theory predicts an upwards sloping relation), monotonicity is a

reasonable requirement. Among others, this allows f to be a (signed) power function, and includes

piecewise linearity as a particular case. A (misspeci�ed) linear model can be interpreted as a linear

approximation of the unknown function f , and our approach may alternatively be formulated in

terms of the Taylor expansion approach of Luukkonen et al. (1988). This perspective then allows

us to deal with potential violations of monotonicity by simply using a higher-order expansion.

Therefore, we are able to relax the monotonicity requirement in a second step.

In more detail, our contributions are as follows. Section 2 provides the model framework. To keep

this paper self-contained, the section also gives a preliminary analysis showing that, not surpris-

ingly, the local power of OLS-based tests building on knowing the true functional form depends

on the homogeneity degree α of the regression function f for nearly integrated regressors with

nontrivial power given against alternatives of the type β1 = b T−
α+1
2 . Then, for nearly integrated

regressors, we show the local power of the test assuming a linear relation to be nontrivial in the

same T−
α+1
2 neighbourhoods of the null as that of the unfeasible OLS; this is quite surprising given

the misspeci�cation to linearity of the predictive model. Moreover, the test statistics considered

by Juhl (2014) and Kasparis et al. (2015) for testing predictive ability of unknown functional form

have reduced power in the sense that it has power equal to size in neighbourhoods of the null of

type T−
α+1
2 . The same ranking holds, at a di�erent scale, in the stationary case, where parametric

procedures typically exhibit
√
T convergence rates compared to lower rates in the nonparametric

approach.

Since linear OLS-based testing is size-distorted in the misspeci�ed linear regression case, we shall

resort in Section 3 to robust IV estimation and testing as advocated by Breitung and Demetrescu

(2015) to provide a test with asymptotic size control and, as we shall see, power in the �optimal�

neighbourhoods of the null.4 Breitung and Demetrescu propose a two-stage least squares [2SLS]

procedure using two instrument variables: one instrument (so-called of type I) is designed to

work when xt is stationary, whereas the other (so-called of type II) works under regressor near

integration.5 While they discuss several type-I instruments in the linear case, we provide here

arguments that the IVX instrument (already employed in linear regression by Kostakis et al.,

2015) is the more suitable choice as a type-I instrument in the nonlinear setup. The choice for a

type-II instrument is not a�ected by the potential nonlinearity, and we resort to the deterministic

instrument motivated by Phillips (1998) and used by Breitung and Demetrescu (2015); this is a

sine transformation of the scaled time index. In the limit, the 2SLS combination of these two

instruments puts all weight on the instrument suitable for the underlying data generating process

without requiring user input. At the same time, the limiting distribution is chi square in all cases.

Thus, the 2SLS IV procedure has the nice feature that it does not require any additional data or

information about the persistence of the regressors.

Section 4 shows our procedure to perform well against competing methods in �nite samples, in

particular so against nonparametric methods. It should be emphasized that, although we favour

4Following Breitung and Demetrescu (2015), optimality refers here to the rate achievable by the OLS estimator
for the concrete persistence of the data generating process.

5Breitung and Demetrescu (2015) show that several type-I instruments may be used for the 2SLS procedure in
principle, but only one of the possible type-II instruments; in practice they �nd that one instrument of each kind is
su�cient to exploit the potential of the procedure.
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the 2SLS IV procedure, the point we make is more general and refers to the power losses of

nonparametric methods compared to linear methods, even if locally misspeci�ed.

We then examine the possibly nonlinear predictability of S&P 500 stock returns in Section 5

using logarithmized dividend-price ratio [log(D/P)] and logaritmized earnings-price ratio [log(E/P)]

as predictor variables. Following Lettau and Van Nieuwerburgh (2008), we further adjust these

predictors for possible permanent breaks in their mean to improve predictability. To �nd the breaks,

we resort to a testing procedure due to Perron and Yabu (2009), which is designed to work in the

presence of time-varying volatility and uncertain persistence of the examined series; this results in

di�erent break dates compared with Lettau and Van Nieuwerburgh (2008). After �nding signi�cant

predictability, driven in particular by log earnings-price ratio, we �nd evidence of nonlinear or, for

log(E/P), even nonmonotonic relations. It appears, however, that the nonmonotonicity is driven by

the 2008 crisis. Robstness checks further �nd some evidence of predictability when using long-term

rates of return as predictor.

The �nal section concludes, and the proofs have been gathered in the Appendix, which also contains

details on all robustness checks performed.

2 Setup

For simplicity, we start by setting the intercept β0 to equal zero. We include it of course in our

�nal proposal (see Proposition 3), but an intercept is of secondary importance for the prelimi-

nary discussions of this section. Let us now discuss the functional form under the alternative of

predictability.

Assumption 1 Let f be asymptotically homogenous of some order α > 0 in the sense that f (·) ≡
Hα (·) + I (·) where Hα (sx) = sαHα (x) for any x ∈ R and s ≥ 0, and I (·) is Lipschitz-continuous

and integrable,
´∞
−∞ |I (x)|dx <∞. Let furthermore I (0) = 0 and assume that f is monotonic.

The centering condition I(0) = 0 implies that f (0) = 0 since Hα (0) = 0 for α > 0. Because we

allow for an intercept in Section 3, which can be set to equal β0 + β1f (0), the centering condition

is not restrictive.

The assumption excludes purely integrable functions. For integrated regressors, integrable trans-

formations were analyzed by Chang and Park (2010) and Shi and Phillips (2012); see also Marmer

(2008). Such functions, however, which must converge to zero as their argument goes to plus or

minus in�nity, imply that a predictor would lose predictive power as it moves away from some

equilibrium value or region. Since we do not �nd such a restriction reasonable, we do not consider

purely integrable regression functions here. Monotonicity, which we do �nd plausible for the typ-

ical predictive regression with stock returns and �nancial ratios as potential predictors, plays an

important role under regressor stationarity guaranteeing nontrivial local power; see Proposition 2

and the discussion following it, as well as Section 3 for more details. (In Section 3, we also discuss

how to deal with violations of the monotonicity requirement in practice.) Actually, monotonicity

could completely be disposed of under persistence. Still, we require it in both cases for coherence

of the exposition.
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Assumption 2 The series yt and xt are generated according to Equations (1) and (2) with et a

linear process with 1-summable Wold coe�cients, i.e. et =
∑

j≥0 bjvt−j such that
∑

j≥0 j |bj | <∞,

where λ =
∑

j≥0 bj > 0 and the shocks (ut, vt)
′ are serially uncorrelated as speci�ed below.

Assumption 3 Let vt = σvtνt and ut = γtvt + σεtεt where (εt, νt)
′ is a strictly stationary and

ergodic martingale di�erence [md] sequence w.r.t. the natural �ltration, with �nite moments of

some order δ > max {4, 4α} . Let furthermore γt = γ (t/T) , σvt = σv (t/T) and σut = σu (t/T) =√
γ2 (t/T)σ2

v (t/T) + σ2
ε (t/T) where γ (·) , σε (·) and σv (·) are piecewise Lipschitz functions. Finally,

let supt∈Z
∣∣E ((ν2

t − E
(
ν2
t

))
νt−jνt−k

)∣∣ ≤ C (jk)−
1/2−η/2 and supt∈Z

∣∣E ((ε2
t − E

(
ε2
t

))
εt−jεt−k

)∣∣ ≤
C (jk)−

1/2−η/2 ∀j, k > 0.

The assumption allows for conditional heteroskedasticity as well as time-varying unconditional vari-

ance and covariance. This makes (ut, vt)
′ a uniformly modulated (Priestley, 1988, p. 165) or locally

stationary process (see e.g. Dahlhaus, 2012, for a recent review). Indeed, such stylized facts have

been reported in the literature; see e.g. Amado and Teräsvirta (2014) and the references therein.

The �nite kurtosis requirement is standard in the literature and plausible for monthly or quarterly

stock returns, while the bounds on E
((
ν2
t − E

(
ν2
t

))
νt−jνt−k

)
and E

((
ε2
t − E

(
ε2
t

))
εt−jεt−k

)
re-

strict the serial dependence in the second-order moments of the innovations; cf. also Assumption

1 in Breitung and Demetrescu (2015), which is only slightly more general. The assumption allows

e.g. for asymmetric responses in the conditional heteroskedasticity.

Under Assumptions 2 and 3, the following limiting behaviour arises for suitably normalized partial

sums of the innovations and is relevant for the near-integrated case.

Lemma 1 Let ω̄2
u =
´ 1

0 σ
2
u (s) ds be the average variance of ut and ω̄

2
v =
´ 1

0 σ
2
v (s) ds be the average

variance of vt. Under Assumptions 2 and 3, it holds as T →∞ that

1√
T

[sT ]∑
t=1

(
ut

vt

)
⇒
ˆ s

0

(
σε (s) σv (s) γ (s)

0 σv (s)

)
dW (s) :=

(
ω̄uWσu (s)

ω̄vVσv (s)

)

where �⇒� stands for weak convergence in a suitable space of cadlag functions, W (s) = (W1 (s) ,W2 (s))′

is a two-dimensional vector of independent Wiener processes, (Wσu (s) , Vσv (s))′ is a vector of so-

called time-transformed Wiener processes also exhibiting with time-varying correlation.

Moreover, for ρ = 1− c/T ,
1√
T
x[sT ] ⇒ λ ω̄vJc,σv (s)

where convergence is joint and Jc,σv (s) is the Ornstein-Uhlenbeck type process with mean rever-

sion parameter c driven by the time-transformed Wiener process Vσv (s) , Jc,σv (s) = Vσv (s) −
c
´ s

0 e
−c(s−r)Vσv (r) dr.

Proof: see Appendix C.

For the examination of the low-persistence case where |ρ| < 1 �xed and hence xt a stable autore-

gression, where sample averages of nonlinear transformations of locally stationary processes are
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involved, we de�ne for some continuous function h (·) the functional

Em [h] =

ˆ 1

0
E (h (m+ σv (s) x̃t)) ds

where x̃t = (1− ρL)−1
(∑

j≥0 bjL
j
)
νt with L the lag operator is strictly stationary for |ρ| < 1

�xed. We shall also require a weighted version thereof,

E∗m [h] =

ˆ 1

0
E
(
h (m+ σv (s) x̃t) (γ (s) vt + σε (s) εt)

2
)

ds.

Note that, in the case where the regressor is a stable autoregression, the nonhomogenous component

of h is not asymptotically negligible anymore and E or E∗ depend on it too. Also, both Em [h] and

E∗m [h] are positive if h (·) is positive and negative if h (·) is negative. The functionals are then used

to express the probability limit of sample averages, as shown in the following

Lemma 2 Under Assumptions 2 and 3, we have for any function h satisfying Assumption 1 and

|ρ| < 1 �xed that

1

T

T∑
t=1

h (xt−1)
p→ Eµ [h]

and

1

T

T∑
t=1

h (xt−1)u2
t

p→ E∗µ [h]

as T →∞.

Proof: see Appendix C.

Let us now examine the unfeasible OLS estimator assuming known shape of the regression function

f to assess what is achievable in terms of power. Denote by tlsβ the t statistic from a regression

of yt on f (xt−1) with the usual standard errors computed for simplicity under the null hypothesis

β1 = 0, σ̂2
u = 1/T

∑T
t=1 y

2
t .
6 The asymptotic behaviour of tlsβ is summarized in the following

Proposition 1 Under Assumptions 1, 2 and 3, we have the following limiting behavior as T →∞.

1. If ρ = 1− c/T and β = b
T (α+1)/2 , then

tlsβ
d→
´ 1

0 Hα (Jc,σv (s)) dWσu (s)√´ 1
0 H

2
α (Jc,σv (s)) ds

+ b
λαω̄αv
ω̄u

√ˆ 1

0
H2
α (Jc,σv (s)) ds;

2. If |ρ| < 1 �xed and β = b
T 1/2 , then

tlsβ
d→ Z

√
E∗µ [f2]

ω̄2
uEµ [f2]

+ b

√
Eµ [f2]

ω̄u

6The usual residual variance estimator can easily be shown to work under the considered local alternative as well,
in spite of the linear misspeci�cation; we omit the details.
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where Z is a standard normal variate and E∗µ
[
f2
]

= ω̄2
uEµ

[
f2
]
when ut is conditionally and

unconditionally homoskedastic.

Proof: see Appendix C.

Under persistence and endogeneity, the null distribution is nonstandard and depends on nuisance

parameters, so corrective action would have been required even when the regression had been

feasible. The null distribution under regressor stationarity is standard normal only if there is no

time-varying volatility and no conditional heteroskedasticity. But, as can be seen from the proof

and from Section 3, Eicker-White heteroskedasticity-robust standard errors would correct for this

problem in the low-persistence case, while, in the near-integrated case, Eicker-White standard errors

would not a�ect the limiting results; see Proposition 3.

Armed with knowledge about what the upper bounds for the local power are, let us examine the

local power of tests based on a misspeci�ed linear regression. Denote by tlinβ the resulting t statistic

with residual variance computed again under the null. We then obtain the following

Proposition 2 The following limiting behavior results as T →∞ under the assumptions of Propo-

sition 1:

1. If ρ = 1− c/T and β = b
T (α+1)/2 , then

tlinβ
d→
´ 1

0 Jc,σv (s) dWσu (s)√´ 1
0 J

2
c,σv (s) ds

+ b
λαω̄αv

´ 1
0 Jc,σv (s)Hα (Jc,σv (s)) ds

ω̄u

√´ 1
0 J

2
c,σv (s) ds

;

2. If |ρ| < 1 �xed and β = b
T 1/2 , then, with i the identity function, i (s) = s ∀s,

tlinβ
d→ Z

√
E∗µ [i2]

ω̄2
uEµ [i2]

+ b
Eµ [f · i]
ω̄u
√
Eµ [i2]

where Z is a standard normal variate and E∗µ
[
i2
]

= ω̄2
uEµ

[
i2
]
when ut is conditionally and

unconditionally homoskedastic.

Proof: see Appendix C.

This result serves to pin down the bounds on power o�ered by linear models. We note that

parametric local alternatives are achieved in spite of the nonlinearity; this is not the case with

nonparametric procedures, who have power equal to size against such alternatives by construction.

Since the limiting distribution depends on nuisance parameters, a test based on this result is

infeasible, of course. Predictability testing in linear models with regressors of uncertain persistence

is however well understood and we may resort to existing procedures; see Section 3.

Note that regressor endogeneity always leads to a non-standard distribution of the t statistic if the

regressor is highly persistent, but the test has local power in optimal neighbourhoods (optimal in

the sense that the rates of the unfeasible OLS test are achieved). Should the regressor xt−1 be
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stable, however, the test has nontrivial power only when Eµ [f · i] 6= 0.7 Having assumed that f

is monotonic with f (0) = 0, the condition is ful�lled in our setup. One could actually require

Eµ [f · i] 6= 0 as identifying condition, which is considerably more general than the monotonicity

requirement on f . We stick to monotonicity, though, and do so for several reasons: �rst, it is a

reasonable requirement for a regression function many setups, including stock return predictability,

and second, it does not involve the distributional properties of xt and is thus easier to check, at

least in principle. Third, should monotonicity be violated, simply adding x2
t−1 as regressor in the

predictive regression would side-step the problem (recall that any function can be written as the

sum of an odd and an even function, so x2
t−1 would correlate with the even component of f (xt−1)).

Summing up, inference in the misspeci�ed linear model has the potential to outperform nonpara-

metric procedures, provided of course that size control is given. To achieve both goals, we discuss

the local power of a test based on overidenti�ed IV estimation following Breitung and Demetrescu

(2015) and show that it is not a�ected by the local nonlinearity of our setup in a critical manner.

3 A robust combination test

In the linear case, Breitung and Demetrescu (2015) argue that simple IV-based tests using carefully

chosen instruments for the regressor xt−1 may be used to obtain a test statistic that on the one hand

possesses a standard limiting distribution (chi square) irrespective of the type of regressor dynamics,

and on the other hand has power in the optimal neighbourhood of the null, again irrespective of

whether the regressors have low or high persistence. Concretely, they recommend the combination

of instruments with di�erent properties via 2SLS. Their so-called type-I instruments are allowed

to be endogenous, but must have lower persistence than the nearly integrated regressor, while

the so-called type-II instruments are trending in an essentially deterministic manner (to exclude

endogeneity) but may exhibit high persistence.8

Intuitively, type-II instruments share the trending behaviour with the time-varying OU process

(the limit of the regressor in the highly persistent case), so they are not weak instruments when

the regressor is near integrated; the correlation with the instrumented variable is random, however;

see Phillips (1998). Thus, type-II instruments achieve the optimal rate of the OLS estimator in

the linear model, while still implying a standard normal null distribution of the corresponding test

statistic, since they are exogenous by construction. The 2SLS statistic advocated by Breitung and

Demetrescu (2015) has the nice feature that it puts, asymptotically, all the weight on the instrument

optimal for the degree of persistence of the regressor given in the data generating process, without

having to actually specify the persistence.

So let us examine this procedure from a �nonlinear alternatives� perspective. In this respect, one

contribution of the paper is to show that the IV-based test using a type-II instrument (concretely,

the sine of πt
2T recommended by Breitung and Demetrescu, 2015) has power against the same

sequences of local alternatives as the unfeasible test based on tlsβ with knowledge of the true shape

7Since it is not speci�ed whether f is increasing or decreasing, two-sided testing would be required even when
the sign of b is known under the alternative.

8Breitung and Demetrescu (2015) also discuss the so-called Cauchy instrument as a type-II instrument, which
is employed by Choi et al. (2016) in conjunction with a time transformation approach to account for time-varying
volatility.
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of the relation. Moreover, it has a null limiting distribution not depending on the persistence

of a near-integrated regressor, namely Gaussian. But this is only the case for near integration:

deterministic functions are not valid instruments for low-persistence variables, the latter not being

(stochastically) trending. See Proposition 3 below and its proof.

While type-II instruments do ful�ll their role under persistence and endogeneity, we need a type-I

instrument to account for the possibility of stable regressors under our assumptions. Breitung and

Demetrescu (2015) discuss type-I instruments that are a causal �lter of ∆xt−1, less persistent than

the levels xt−1. This would typically lead to local power in 1/
√
T neighbourhoods of the null in

the stable linear case. Such �lters require some care in the nonlinear case; to see why, consider

as a (counter-)example the simplest instrument zt−1 = ∆xt−1. In our case, its application would

require the covariance E (f (xt−1) ∆xt−1) to be non-zero. Uncorrelatedness of f (xt−1) and zt−1 is

unfortunately a case which we cannot always plausibly exclude for any type-I instrument, since

f is not known in advance. The validity of the type-I instruments discussed by Breitung and

Demetrescu (2015) therefore requires instrument-speci�c double-checking.

We therefore show in Proposition 3 that the IVX instrument employed by Kostakis et al. (2015)

does meet validity requirements in the stable nonlinear case.9 The IVX instrument is constructed

as wt =
∑t−2

j=0 %
j∆xt−j where % = 1 − a

T η for some a > 0 and η ∈ (0, 1) and has, under near-

integration, less persistence than xt. The nice feature of IVX under stability is that % is close

enough to unity to practically undo the di�erencing, and hence wt is a valid instrument whenever

xt is itself a valid instrument in the nonlinear case, which is the case in our setup according to

Proposition 2.

Then, we only need to operationalize the test by including deterministic components, by considering

both instruments at the same time, and by accounting for time-varying volatility.

So let us now examine the test statistic with demeaning; denote by ·̃ the demeaned variables,

i.e. x̃t−1 = xt−1 − x̄ etc. Then, with Eicker-White standard errors, computed for simplicity under

the null, the proposed test statistic results as

t2Sβ =

∑T
t=2 x̃t−1z̃

′
t−1

(∑T
t=2 z̃t−1z̃

′
t−1

)−1∑T
t=2 z̃t−1ỹt√∑T

t=2 x̃t−1z̃
′
t−1

(∑T
t=2 z̃t−1z̃

′
t−1

)−1∑T
t=2 z̃t−1z̃

′
t−1ỹ

2
t

(∑T
t=2 z̃t−1z̃

′
t−1

)−1∑T
t=2 z̃t−1x̃t−1

,

where

zt =

(
sin πt

2T

wt

)
and wt is the IVX instrument. Kostakis et al. (2015) propose not to demean wt (while still demean-

ing regressor and dependent variable), since demeaning wt is asymptotically negligible in the IVX

test statistic, and not demeaning reduces the endogeneity bias in �nite samples; this allows to pick

η closer to unity such that the local power of IVX-based tests is improved. Let hence w̃t = wt, and

note that w̃t does not depend on µ in either stable or near-integrated cases, since wt is obtained

by �ltering ∆xt which washes out a nonzero mean of xt.

Upon squaring, t2Sβ follows a chi-square distribution with one degree of freedom under the null

9Breitung and Demetrescu (2015) recommend a fractionally integrated �lter, but it is not clear that the fractional
instrument is a valid instrument under nonlinearity and stability, unlike the IVX instrument.
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hypothesis, and has local power in the respective optimal neighbourhood (corresponding to the

actual persistence of the regressor xt−1); we prove this in Proposition 3 below. More importantly,

specifying whether x is (near-)integrated or low-persistence is not necessary, the 2SLS procedure

automatically picks the �correct� instrument, as can be seen in

Proposition 3 Under Assumptions 1, 2 and 3, we have the following limiting behavior as T →∞.

1. If the regressor xt−1 is nearly integrated and β1 = b
T (α+1)/2 , then

(
t2Sβ
)2 d→ χ2

1,κ2

with noncentrality parameter κ2 = b2
λ2αω̄2α

v (
´ 1
0 (sin πs

2
− 1

2)Hα(Jc,σv (s))ds)
2

´ 1
0 (sin πs

2
− 2
π )

2
σ2
u(s)ds

.

2. If xt is stable and β1 = b
T 0.5 , then (

t2Sβ
)2 d→ χ2

1,κ2

with noncentrality parameter κ2 = b2
(Eµ[fi]−Eµ[f ]Eµ[i])2

E∗0 [i2]
.

Proof: see the Appendix.

The result in 1 involves some abuse of notation, since the noncentrality parameter κ2 is random and,

for b 6= 0, the distribution is not �the textbook� noncentral χ2 distribution; see the proof for details.

Concretely,
(
t2Sβ

)2 d→ (Z + κ)2, where Z is standard normal but not necessarily independent of κ,

which is zero under the null and nonzero, but random, under the alternative. Under the null, the

limiting distribution in item 1 of the proposition is therefore χ2
1, like in item 2 ; there, however, the

noncentral χ2 distribution is genuine, so we use this notation to give a summary of the limiting

behavior of t2Sβ in both studied cases.

In the case of a multivariate predictive regression with K potential predictors, we stick to the

additive model and write yt = β0 +
∑K

k=1 βk fk (xkt−1) + ut. To test, one simply resorts to several

linear independent functions of the time, one for each regressor, as type-II instruments, while type-

I instruments are easily built as in the single-regressor case; see Subsection 3.3 of Breitung and

Demetrescu (2015). The resulting limiting null distribution of the Wald-type statistic is χ2
K and

the test has power against the same types of local alternatives. We omit the technical details since

they are straightforward multivariate extensions of the proof of the above proposition.

Finally, should f (xt) be orthogonal to xt in the weakly persistent case, one may resort to the Taylor

expansion argument of Luukkonen et al. (1988) and employ a predictive regression with xt−1 and

x2
t−1 as potential predictors. To deal with this situation, we simply use the squared IVX instrument

and a second sine frequency as instruments intended to work for x2
t−1. Note that building an IVX

instrument on the basis of the di�erences of x2
t−1 would lead to technical di�culties, but w

2

t−1 could

be dealt with using existing IVX results; we omit however the technical details here. Furthermore,

we �nd the procedure to work quite well in �nite samples; see the following section.
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4 Finite-sample comparison of parametric and nonparametric meth-

ods

In this section we compare Juhl's (2014) nonparametric U test and the F̂sum test based on the

Nadaraya-Watson estimator (Kasparis et al., 2015) with the IVX procedure of Kostakis et al.

(2015) and the combination test discussed in the previous section.10 Finally, we include a size-

corrected version of the OLS based test to have some idea about the power level, although this test

is of course not feasible. Given the theoretical results, we expect the power advantage of linear

methods to increase as T grows and the di�erences in local power become more evident.

Juhl's (2014) U -statistic can be expressed as the ratio Z/
√

2W with

Z =
T∑
t=1

T∑
s=1

t6=s

K

(
xt−1 − xs−1

h

)
ỹtỹs and

W =

T∑
t=1

T∑
s=1

t6=s

K

(
xt−1 − xs−1

h

)2

ỹ2
t ỹ

2
s ,

where K(·) is a kernel, which we choose here to be the Gaussian one, and ỹt denotes the demeaned

observations. Note that there is a misprint in Theorem 4.1 of Juhl (2014); cf. Wang and Phillips

(2012, Eq. (2.2)) and Fan and Li (1999, Eq. (1)). We resort to Juhl's bandwidth choices h = σ̂xT
−0.2

and h = σ̂∆xT
−0.2.

The Nadaraya-Watson based test of Kasparis et al. (2015, Eq. 16), i.e. the F̂sum test statistic, is

computed with two bandwidth choices, concretely h = σ̂vT
−0.1 and h = σ̂vT

−0.2 following the

implementation in Section 6 of Kasparis et al. (2015, p. 478). The standard deviation σ̂v of the

residuals of an AR(1) �t for xt is used to ensure approximate scale invariance of the properties of

F̂sum.

The IVX procedure is implemented without instrument demeaning, i.e. w̃t = wt where the IVX

instrument wt is computed using % = 1− 1/T 0.95 as proposed by Kostakis et al. (2015). Finally, the

t2Sβ statistic from Section 3 is computed with the same choice % = 1 − 1/T 0.95 as for the pure IVX

instrument.

We consider the following data generating process (t = 1, . . . , T ) for T = 250:

yt = β sgn(xt−1) |xt−1|α + ut,

xt = ρxt−1 + vt,

and (
ut

vt

)
∼ iidN

(
0, σ2

t

(
1 δ

δ 1

))
where ρ is either near-integrated, ρ = 1 − c/T for c ∈ {0, 5, 15}, or stable ρ ∈ {0.7, 0.8, 0.9},
and β is chosen in the relevant neighbourhood of the null: β = b/

√
T for stable regressors and

β = b/T (α+1)/2 for highly persistent regressors.

10The alternative F̂max-test statistic discussed by Kasparis et al. (2015) yielded the lowest power of all tests in
our simulations so we do not report the corresponding results.

13



The baseline simulation setup is based on constant variance, σ2
ε (s) = σ2

ν (s) = 1. Without loss

of generality, we consider negative correlations δ between the disturbances ut and vt. We set the

correlation δ causing endogeneity to −0.95, and rely on 5000 replications for each parameter setting.

The top panel of Table 1 displays rejection frequencies for the case α = 0.5, i.e. when the in�uence

of xt−1 on yt grows less than linearly. The empirical sizes of the tests are displayed in the row

β = 0. The U test is severely undersized for both suggested bandwidth choices, while the F̂sum-

test is oversized especially for one of its bandwidths at c = 0. This oversizedness of F̂sum almost

vanishes as c increases. The IVX test as well as the robust combination test tend to be undersized,

more so for smaller autoregressive coe�cient ρ. Moving away from the null, the U tests almost

always have the lowest power which is not too surprising since they are undersized. Although the

F̂sum-tests are oversized, they have lower power than the robust combination test. The IVX test

performs similar to the robust combination test for stable regressors while the robust combination

test has more power for nearly-integrated regressors.

The results change to some extent when the in�uence of the regressor on returns grows more than

linearly in xt. Rejection rates under this scenario are displayed in the bottom panel of Table

1 for α = 1.5. The size of all tests does not depend on α and therefore stays the same as for

α = 0.5. The power however turns out to depend on α in our setup. The U tests still have the

lowest power, followed by the F̂sum-test. IVX improves its power relative to the nonparametric

approaches compared to the case α = 0.5. The robust combination test has again the largest power

but its advantage over IVX decreases. The growth in power while moving away from the null is

slower for α = 1.5 than for α = 0.5 for all tests. The reason for the power drop is that the function

f has zero slope at the origin, where more observations tend to be available, and the �e�ective�

alternative is thus closer to the null. All tests are equally a�ected.

The purely linear case (the middle panel of Table 1) checks the advantage of exploiting (correct)

information about the structure of the model. The performance of all tests in terms of power lies

between the cases α = 0.5 and α = 1.5, and the ranking of the examined tests does not change.

We then provide results for T = 1000 (Table 2). We note that power drops for the nonparametric

procedures, but not for the linear ones. This illustrates the lower, nonparametric, convergence

rates of the kernel-based procedures. The power even tends to increase a bit for linear procedures.

Furthermore we observe that the oversizedness of the IVX test of Kasparis et al. (2015) decreases

but it remains marginally oversized.

Our simulation results suggest that the IVX test and especially the robust combination test are

able to outperform the nonparametric approaches in terms of power in spite of the linear missspec-

i�cation, while controlling size.

Finally, we study three cases which are not covered by our monotonicity assumptions, f (x) = |x|0.5,
f (x) = |x| and f (x) = |x|1.5 for T = 250 (Table 3). We �nd in line with Juhl (2014) that the linear

procedures are not able to compete with the nonparametric ones in such cases. One exception is

2SLS for c = 0 and small b, i.e. alternatives very close to the null. The power of the linear procedures

is much lower for stable regressors especially when the persistence of the regressor decreases. We

included further instruments to deal with this problem. For IVX2 we added the square of the regular

IVX instrument and in 2S2 we furthermore added the sine of 3 πt
2T as additional type-II instrument.

It can be seen that IVX2 and 2S2 are able to compete with the nonparametric approaches in terms
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Table 1: Size and local power of nonparametric and misspeci�ed linear procedures: T = 250
b OLS U1 UD1 F1 F2 IVX 2SLS OLS U1 UD1 F1 F2 IVX 2SLS

f(x) = |x|0.5 sgn x

Local alternative: β = b

T (1+α)/2
Local alternative: β = b√

T

c = 0 (ρ = 1) ρ = 0.9
0 5.0 1.3 3.6 9.4 6.5 4.9 6.7 5.0 1.2 2.0 6.7 6.2 3.3 3.4
2 10.0 3.7 6.1 19.7 11.6 18.0 24.5 35.5 9.4 8.1 35.2 26.8 33.2 32.0
5 69.5 39.2 18.4 58.9 35.0 57.0 77.9 99.9 91.8 78.3 99.4 96.8 99.1 99.2
10 98.7 93.5 70.7 97.4 85.9 84.1 98.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 100.0 98.6 100.0 99.9 97.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

c = 5 (ρ = 0.98) ρ = 0.8
0 5.0 0.9 3.0 6.6 4.9 3.3 3.5 5.0 1.6 1.9 7.0 7.2 3.5 3.3
2 9.8 2.1 3.8 13.5 8.9 11.7 11.5 32.1 10.5 10.2 37.6 31.2 32.8 31.9
5 57.4 15.5 11.1 45.3 28.8 50.7 56.4 99.6 89.0 82.5 99.4 98.0 98.8 98.7
10 99.2 90.7 67.3 97.9 90.1 95.5 98.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 99.9 98.7 100.0 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

c = 15 (ρ = 0.94) ρ = 0.7
0 5.0 1.1 2.6 6.5 5.6 3.7 3.9 5.0 1.1 1.4 6.2 6.8 2.9 2.8
2 8.5 2.1 3.2 11.4 8.6 8.6 8.5 36.4 11.2 11.1 40.0 34.1 34.3 33.7
5 38.1 10.2 8.1 35.1 25.1 37.1 35.3 99.5 88.4 85.2 99.4 98.6 98.5 98.5
10 98.5 73.5 50.1 94.4 82.9 94.5 96.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

f(x) = |x|1.0 sgn x

Local alternative: β = b

T (1+α)/2
Local alternative: β = b√

T

c = 0 (ρ = 1) ρ = 0.9
0 5.0 1.3 3.6 9.4 6.5 4.9 6.7 5.0 1.2 2.0 6.7 6.2 3.3 3.4
2 11.2 4.8 5.8 19.0 10.9 11.3 22.4 45.8 7.0 6.7 38.4 28.7 42.1 40.8
5 62.0 33.4 16.7 55.4 30.4 56.4 77.6 100.0 97.2 80.3 100.0 99.9 99.9 100.0
10 99.4 92.6 62.6 98.1 87.0 93.4 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 100.0 99.7 100.0 100.0 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

c = 5 (ρ = 0.98) ρ = 0.8
0 5.0 0.9 3.0 6.6 4.9 3.3 3.5 5.0 1.6 1.9 7.0 7.2 3.5 3.3
2 5.4 1.2 3.5 9.5 6.3 6.8 6.4 42.5 8.5 8.5 41.7 34.7 40.8 40.2
5 19.2 3.1 4.7 19.0 12.2 19.3 20.1 100.0 92.9 83.7 100.0 99.9 99.9 100.0
10 90.9 24.8 13.9 65.9 40.1 78.2 87.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 99.8 89.0 100.0 99.8 99.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

c = 15 (ρ = 0.94) ρ = 0.7
0 5.0 1.1 2.6 6.5 5.6 3.7 3.9 5.0 1.1 1.4 6.2 6.8 2.9 2.8
2 3.6 1.2 2.6 7.1 6.2 4.8 4.6 46.4 9.7 9.2 44.8 38.5 43.4 42.5
5 9.5 1.8 3.4 12.5 8.9 10.3 10.0 100.0 90.7 85.6 100.0 99.9 99.8 99.9
10 34.9 5.8 5.9 29.0 20.0 33.7 32.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 99.8 50.3 28.6 94.5 78.6 96.7 98.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

f(x) = |x|1.5 sgn x

Local alternative: β = b

T (1+α)/2
Local alternative: β = b√

T

c = 0 (ρ = 1) ρ = 0.9
0 5.0 1.3 3.6 9.4 6.5 4.9 6.7 5.0 1.2 2.0 6.7 6.2 3.3 3.4
2 15.0 8.4 6.6 20.8 11.6 8.4 22.9 70.9 7.4 7.1 51.5 37.9 62.2 61.2
5 51.7 36.4 22.2 54.4 35.8 51.2 68.3 100.0 99.8 94.3 100.0 100.0 100.0 100.0
10 93.5 74.9 56.1 90.1 75.8 95.4 98.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 98.2 89.7 100.0 98.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

c = 5 (ρ = 0.98) ρ = 0.8
0 5.0 0.9 3.0 6.6 4.9 3.3 3.5 5.0 1.6 1.9 7.0 7.2 3.5 3.3
2 3.7 1.0 3.3 7.9 5.5 5.3 4.9 65.2 8.7 8.5 55.7 46.1 60.0 59.8
5 9.2 1.4 3.8 11.9 7.8 10.0 9.8 100.0 99.4 96.1 100.0 100.0 100.0 100.0
10 38.4 5.7 6.2 29.8 18.4 34.9 37.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 99.4 62.8 34.8 95.1 76.4 93.6 98.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0

c = 15 (ρ = 0.94) ρ = 0.7
0 5.0 1.1 2.6 6.5 5.6 3.7 3.9 5.0 1.1 1.4 6.2 6.8 2.9 2.8
2 2.8 1.2 2.6 6.7 5.7 3.9 3.7 67.0 10.0 9.6 58.0 50.4 60.5 60.3
5 4.7 1.2 2.9 7.8 6.2 5.3 4.9 100.0 98.8 96.7 100.0 100.0 100.0 100.0
10 8.9 1.7 3.5 11.5 8.6 9.3 8.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 37.6 4.2 4.9 29.7 19.7 35.2 33.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Notes: The tables displays rejection rates for the unfeasible size-corrected OLS test (OLS), the U test of Juhl

(2014) (U1 and UD1 denote two di�erent bandwidth choices), the F̂sum test of Kasparis et al. (2015) (F1 and F2

denote two di�erent bandwidth choices), the IVX test of Kostakis et al. (2015) (IVX) and for the combination/IV

test (2SLS). Results for di�erent values of the autoregressive coe�cient ρ are displayed in the corresponding panels.

For further details see the text.
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Table 2: Size and local power of nonparametric and misspeci�ed linear procedures: T = 1000
b OLS U1 UD1 F1 F2 IVX 2SLS OLS U1 UD1 F1 F2 IVX 2SLS

f(x) = |x|0.5 sgn x

Local alternative: β = b

T (1+α)/2
Local alternative: β = b√

T

c = 0 (ρ = 1) ρ = 0.9
0 5.0 1.0 4.3 5.9 5.9 5.1 7.1 5.0 1.7 3.1 7.3 5.2 3.4 3.2
2 9.5 3.3 5.1 10.8 8.5 20.2 26.7 33.2 9.6 7.9 30.9 19.3 33.5 32.8
5 69.9 35.8 11.2 29.1 15.1 59.0 79.6 99.5 86.6 71.7 98.5 92.1 98.9 99.0
10 99.0 93.2 52.1 81.4 46.2 86.5 99.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 100.0 93.4 99.7 90.9 97.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

c = 5 (ρ = 0.995) ρ = 0.8
0 5.0 1.3 3.5 4.2 4.1 3.7 3.9 5.0 1.6 2.0 6.4 5.1 3.8 3.5
2 9.9 2.2 4.4 6.4 5.5 12.0 11.7 31.7 10.5 9.1 36.5 26.5 33.2 33.5
5 57.1 13.7 7.6 21.8 12.4 53.4 59.5 98.8 85.1 77.9 98.6 94.9 98.3 98.5
10 99.3 89.1 39.6 83.2 46.9 96.3 99.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 99.8 96.1 99.8 97.6 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

c = 15 (ρ = 0.985) ρ = 0.7
0 5.0 1.1 4.3 5.7 5.3 4.2 4.9 5.0 1.6 1.9 7.1 7.2 3.7 3.6
2 10.8 3.0 4.6 9.2 7.4 11.1 16.7 30.5 10.6 10.1 37.3 28.5 32.9 32.4
5 56.6 27.8 9.3 24.5 14.0 49.9 63.9 98.6 85.0 80.9 99.1 96.9 97.8 98.0
10 89.8 69.0 40.5 67.1 38.0 84.1 92.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 99.7 95.2 76.1 92.5 78.6 98.4 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0

f(x) = |x|1.0 sgn x

Local alternative: β = b

T (1+α)/2
Local alternative: β = b√

T

c = 0 (ρ = 1) ρ = 0.9
0 5.0 1.0 4.3 5.9 5.9 5.1 7.1 5.0 1.7 3.1 7.3 5.2 3.4 3.2
2 9.6 3.8 5.2 10.2 8.1 13.2 23.2 44.3 7.5 6.3 34.2 21.6 43.3 43.0
5 61.3 30.0 10.4 25.2 13.3 59.8 80.4 100.0 87.9 67.6 99.8 97.9 100.0 99.9
10 99.3 89.6 41.4 77.4 38.0 95.2 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 100.0 94.4 100.0 92.9 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

c = 5 (ρ = 0.995) ρ = 0.8
0 5.0 1.3 3.5 4.2 4.1 3.7 3.9 5.0 1.6 2.0 6.4 5.1 3.8 3.5
2 5.0 1.5 4.3 4.6 4.9 7.2 6.8 42.8 8.5 7.9 41.5 29.9 44.3 44.2
5 19.0 3.2 4.9 9.6 7.1 20.5 21.2 100.0 86.1 75.9 99.8 98.8 99.8 99.9
10 92.2 20.4 9.2 30.4 15.9 81.7 90.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 99.8 59.7 99.3 70.4 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

c = 15 (ρ = 0.985) ρ = 0.7
0 5.0 1.7 4.0 4.4 4.2 3.2 3.3 5.0 1.6 1.9 7.1 7.2 3.7 3.6
2 4.4 1.4 4.2 4.7 4.1 4.8 4.7 41.2 8.8 8.2 43.1 32.0 43.2 43.0
5 10.4 2.1 4.6 7.4 5.7 10.3 9.7 100.0 84.6 79.2 99.8 99.1 99.8 99.8
10 36.8 4.5 5.1 14.1 8.6 33.2 32.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 41.7 15.0 66.5 32.2 97.5 98.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0

f(x) = |x|1.5 sgn x

Local alternative: β = b

T (1+α)/2
Local alternative: β = b√

T

c = 0 (ρ = 1) ρ = 0.9
0 5.0 1.0 4.3 5.9 5.9 5.1 7.1 5.0 1.7 3.1 7.3 5.2 3.4 3.2
2 13.2 7.1 5.4 10.9 8.4 9.9 23.9 66.7 7.7 6.4 45.8 28.9 63.7 64.0
5 51.9 34.4 14.8 29.1 15.4 56.9 71.7 100.0 98.6 82.5 100.0 100.0 100.0 100.0
10 91.4 71.6 41.4 66.9 40.0 96.8 98.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 97.4 79.6 97.3 81.3 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

c = 5 (ρ = 0.995) ρ = 0.8
0 5.0 1.3 3.5 4.2 4.1 3.7 3.9 5.0 1.6 2.0 6.4 5.1 3.8 3.5
2 3.7 1.3 4.3 4.0 4.6 5.2 5.2 63.1 8.8 8.0 54.8 40.2 63.2 63.7
5 9.4 1.9 4.6 7.0 5.9 10.6 10.2 100.0 95.7 88.4 100.0 100.0 100.0 100.0
10 38.6 5.9 5.8 14.0 9.2 36.9 41.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 99.6 58.4 20.3 64.5 31.0 95.1 98.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

c = 15 (ρ = 0.985) ρ = 0.7
0 5.0 1.7 4.0 4.4 4.2 3.2 3.3 5.0 1.6 1.9 7.1 7.2 3.7 3.6
2 3.2 1.3 4.2 4.5 3.9 3.7 3.8 62.2 9.2 8.4 56.2 43.9 61.8 63.0
5 4.9 1.7 4.3 5.0 4.6 5.2 5.0 100.0 94.1 90.2 100.0 100.0 100.0 100.0
10 9.8 1.7 4.1 7.0 5.1 9.0 8.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 39.5 3.9 4.8 14.3 9.0 35.6 34.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Notes: See Table 1.
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Table 3: Size and local power of nonparametric and misspeci�ed linear procedures: T = 250
b OLS U1 F2 IVX IVX² 2SLS 2S² OLS U1 F2 IVX IVX² 2SLS 2S²

symmetric f(x) = |x|0.5

Local alternative: β = b

T (1+α)/2
Local alternative: β = b√

T

c = 0 (ρ = 1) ρ = 0.9
0 5.0 1.1 6.2 4.9 6.8 6.5 4.0 5.0 1.4 6.2 3.4 2.8 3.5 2.5
2 3.9 1.5 7.1 5.2 8.8 8.1 5.2 2.7 1.7 7.7 3.8 4.2 3.8 3.4
5 13.4 6.4 10.8 9.3 18.7 20.6 14.8 4.9 10.2 21.1 6.3 14.7 6.6 11.1
10 36.7 37.8 27.8 32.3 44.1 50 44.7 11.9 56.6 71.0 13.0 57.2 13.7 51.1
20 61.3 79.9 73.8 63.0 79.2 74.9 80.8 31.2 99.8 100.0 31.1 95.5 32.3 97.4

c = 5 (ρ = 0.98) ρ = 0.8
0 5.0 0.9 4.6 3.4 2.7 3.5 2.0 5.0 1.1 6.6 3.0 2.8 3.3 2.4
2 2.3 1.2 5.3 3.6 2.9 3.8 2.0 2.9 2.6 10.2 3.5 5.0 3.8 3.7
5 4.6 2.6 7.0 5.9 5.9 6.4 4.1 4.0 9.4 24.1 4.6 15.4 4.8 11.3
10 12.3 11.7 15.8 14.2 16.8 16.8 15.3 7.4 55.7 75.2 7.8 58.2 7.8 51.4
20 33.2 65.6 61.5 36.1 58.5 41.1 57.7 20.5 99.9 100.0 18.6 96.7 18.8 98.4

c = 15 (ρ = 0.94) ρ = 0.7
0 5.0 1.2 5.5 3.5 2.7 3.6 2.3 5.0 1.3 7.2 3.4 3.2 3.2 2.7
2 2.5 1.6 5.7 3.5 2.8 3.6 2.3 2.6 2.3 10.5 3.4 4.5 3.2 3.2
5 2.9 2.7 7.0 4.0 4.4 4.3 3.2 3.5 9.9 26.2 4.1 16.2 4.1 12
10 4.3 6.7 13.6 6.3 10.6 6.9 8.2 5.4 56.1 77.7 6.1 59.7 6.1 52.8
20 13.4 39.9 49.1 15.0 42.6 16.1 35.9 13.2 99.9 100.0 12.6 96.4 12.9 98.8

symmetric f(x) = |x|1.0

Local alternative: β = b

T (1+α)/2
Local alternative: β = b√

T

c = 0 (ρ = 1) ρ = 0.9
0 5.0 1.1 6.1 4.9 6.8 6.5 4.0 5.0 1.6 6.7 3.2 2.8 3.3 2.7
2 5.7 2.4 7.6 5.3 11.2 10.9 7.5 3.7 3.9 12.4 4.7 9.5 4.8 7.0
5 23.8 17.4 15.6 16.0 29.1 33.0 26.1 12.8 33.8 54.0 13.5 50.7 14.1 42.6
10 47.7 50.7 42 47.1 58.2 59.7 56.9 31.8 96.8 99.4 30.1 93.7 30.8 95.8
20 71.1 83.4 81.1 73.1 87.4 80.3 85.9 53.9 100.0 100.0 47.6 98.8 49.2 99.3

c = 5 (ρ = 0.98) ρ = 0.8
0 5.0 1.0 4.5 3.4 2.5 3.5 2.1 5.0 1.2 7.2 3.1 3.0 3.2 2.5
2 3.4 1.4 5.5 4.0 3.3 4.2 2.4 3.5 4.0 15.3 3.8 10.1 4.1 7.6
5 4.7 2.8 6.8 5.9 4.7 6.7 4.5 7.5 33.4 59.6 7.9 52.6 7.8 44.3
10 15.1 10.0 14.3 15.6 18.7 18.6 16.5 20.8 97.4 99.8 17.3 95.7 18.4 97.6
20 39.0 54.9 54.1 39.9 60.2 44.4 58.4 42.1 100.0 100.0 32.5 99.6 33.5 99.7

c = 15 (ρ = 0.94) ρ = 0.7
0 5.0 1.4 5.1 3.3 2.7 3.3 2.1 5.0 1.4 6.9 3.4 3.1 3.1 2.5
2 2.9 1.6 5.3 3.4 2.9 3.3 2.4 3.3 4.3 16.3 3.7 9.9 3.8 7.2
5 3.2 1.9 6.6 3.6 3.3 3.9 3.0 5.5 32.9 62.7 5.8 54.2 5.9 45.0
10 5.0 3.8 9.7 5.6 7.7 6.1 6.5 15.0 98.0 99.8 12.3 95.8 12.4 97.6
20 11.6 16.2 26.6 13.2 27.9 13.6 22.6 32.9 100.0 100.0 22.7 99.6 23.4 99.8

symmetric f(x) = |x|1.5

Local alternative: β = b

T (1+α)/2
Local alternative: β = b√

T

c = 0 (ρ = 1) ρ = 0.9
0 5.0 1.1 6.1 4.9 6.8 6.5 4.0 5.0 1.6 6.7 3.2 2.8 3.3 2.7
2 8.6 5.0 8.3 5.5 14.1 13.9 11.0 6.5 8.0 21.1 7.4 20.6 7.6 16.2
5 28.8 23.8 21.1 22.6 34.6 37.1 31.5 26.2 66.5 86.5 25.0 82.9 25.7 80.8
10 51.3 51.3 47.6 52.1 60.5 61.6 58.5 48.4 99.9 100.0 42.5 97.9 43.7 98.7
20 71.0 78.3 77.7 74.2 86.2 79.0 82.4 65.2 100.0 100.0 54.0 99.3 54.9 99.5

c = 5 (ρ = 0.98) ρ = 0.8
0 5.0 1.0 4.5 3.4 2.5 3.5 2.1 5.0 1.2 7.2 3.1 3.0 3.2 2.5
2 3.4 1.3 5.4 3.9 3.2 4.1 2.3 5.1 7.4 25.9 5.4 21.9 5.5 16.7
5 3.9 2.3 6.2 5.4 4.4 6.0 3.9 16.2 67.4 91.2 14 86.5 14.3 84.5
10 12.1 6.5 10.8 12.8 14.4 15.1 12.4 37.0 100.0 100.0 27.5 99.0 28.5 99.5
20 33.7 34.6 38.0 34.2 47.5 38.0 44.2 54.5 100.0 100.0 37.4 99.9 38.2 99.8

c = 15 (ρ = 0.94) ρ = 0.7
0 5.0 1.4 5.1 3.3 2.7 3.3 2.1 5.0 1.4 6.9 3.4 3.1 3.1 2.5
2 2.9 1.6 5.2 3.3 2.8 3.3 2.4 4.4 7.5 27.3 4.5 22.3 4.5 16.3
5 2.9 1.5 6.0 3.4 2.6 3.7 2.5 11.7 68.5 92.6 10.0 87.5 10.0 85.8
10 3.8 2.0 6.9 4.5 4.9 4.8 4.3 28.6 100.0 100.0 19.1 99.0 19.5 99.3
20 6.5 5.7 13.4 7.6 12.8 8.4 10.2 46.2 100.0 100.0 27.3 99.9 27.8 99.9

Notes: See Table 1.
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of power in spite of being seriously undersized; in terms of size control, IVX2 might be preferred.

5 Nonlinear predictability of S&P 500 stock returns

We now turn our attention to the issue of whether stock returns may be predicted, be it in a

linear or a nonlinear fashion. We take advantage of the superior performance of linear methods

(represented here by IV-based tests) in terms of power to detect the alternative of predictability.

We test the null hypothesis of no predictability of S&P 500 stock returns by applying the tests

compared in the previous sections, i.e. the tests by Juhl (2014), Kasparis et al. (2015) and Kostakis

et al. (2015), as well as the two-stage least squares test from Section 3. For a particular emphasis

of the nonlinearity aspect, we also include quadratic terms and use the statistics IVX² and 2S²; see

Section 4 for implementation details. For the nonparametric approaches we only include results

for one bandwidth each; we include the U1 test with bandwidth h = σ̂xT
−0.2 and the F2 test with

h = σ̂vT
−0.2 as the two performed better in simulations.

5.1 Data processing

The analysis is conducted using monthly data provided on the webpages of Amit Goyal and Robert

Shiller.11 We focus on log dividend-price and earnings-price ratios as possible predictors, as is com-

mon in the literature (see e.g. Campbell and Yogo, 2006). The log dividend-price ratio [log(D/P)]

is computed as di�erence of log moving one-year average dividends and log prices of the S&P 500

index. The log earnings-price ratio [log(E/P)] is de�ned analogously but using log moving one-year

average earnings. The dependent variable stock returns is computed including dividends. For fur-

ther details to the data we refer to Welch and Goyal (2008). The considered dataset includes the

most recent update (as to August 2017), with data from January 1926 to December 2016 and a

total of 1092 observations (see Figure 1 again).

In what concerns the stability of the �nancial ratios, their logs are seen to have dropped to lower

levels towards the turn of the millenium. This is an issue, since Lettau and Van Nieuwerburgh

(2008) point out that persistent changes in the mean of valuation ratios can have a substantial

impact on the inference of return forecasting regressions; in fact, they �nd stable in-sample stock

return predictability when log(D/P) is adjusted for one or two breaks (but not for log(D/P) itself).

We therefore account for changes in the level of the predictor series, but choose not to adopt the

break dates suggested by Lettau and Van Nieuwerburgh. Rather, we conduct a new break analysis

in the mean of log(D/P) and log(E/P). We do this for two reasons. First, the method employed by

Lettau and Van Nieuwerburgh (2008) to identify breaks is not valid under uncertain persistence,

while we apply a procedure proposed by Perron and Yabu (2009) which is designed to be robust.

Second, Lettau and Van Nieuwerburgh (2008) use a di�erent data set and the longer time span

of the data used here allows for a more precise timing of the breaks, even if we had used the

original break detection tool. Indeed, we �nd di�erences in the time of the breaks; see below.

After identifying structural changes in the mean of log(D/P) and log(E/P), we adjust the series

for permanent shifts accordingly.

11We would like to thank Amit Goyal and Robert Shiller for making the data freely available on their webpages
http://www.hec.unil.ch/agoyal/ and http://www.econ.yale.edu/~shiller/data.htm.
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Figure 3: Sequential break identi�cation, �ve steps in total; Left: log(D/P), right: log(E/P); see
the text for more details and Table 4 for exact �gures.

Table 4: Sequential break identi�cation, test results of the �ve consecutive steps to identify struc-
tural breaks in the full sample

Step Start 1st 2nd End Exp−WFS CV0.95 Signi�cant

1 1926:M01 1940:M04 2016:M12 6.65 1.74 X(0.990)
2 1926:M01 1940:M04 1987:M09 2016:M12 10.75 1.69 X(0.990)

log(D/P) 3 1940:M04 1987:M09 2016:M12 10.79 1.74 X(0.990)
4 1940:M04 1974:M09 1987:M09 2016:M12 11.48 1.69 X(0.990)
5 1940:M04 1974:M09 1987:M09 1.16 1.74

1 1926:M01 1940:M04 2016:M12 3.07 1.74 X(0.975)
2 1926:M01 1940:M04 1987:M09 2016:M12 4.97 1.69 X(0.990)

log(E/P) 3 1940:M04 1987:M09 2016:M12 4.69 1.74 X(0.990)
4 1940:M04 1974:M09 1987:M09 2016:M12 4.35 1.69 X(0.990)
5 1940:M04 1974:M09 1987:M09 1.22 1.74

Notes: For details see the text.

Regarding implementation details of the Perron and Yabu (2009) procedure (concretely, we use the

Exp −WFS test statistic of Perron and Yabu with parameter ε = 0.15.), Perron and Yabu only

provide critical values to test for either one or two breaks which makes testing for more breaks less

straightforward. This is why we apply �ve consecutive steps to identify structural breaks in the full

sample. As a result, we identify identical break dates for log(D/P) and log(E/P) as follows. In the

�rst two steps we test for one and for two breaks in the full sample. We �nd one signi�cant break

in April 1940 and two jointly signi�cant breaks in April 1940 and September 1987. The third step

serves as robustness check of the break in 1987. We test the subperiod beginning in April 1940 for

one break and con�rm the break in September 1987. In the fourth step we search for two breaks in

the aforementioned subperiod and �nd jointly signi�cant breaks in September 1974 and September

1987. The last step is a robustness check for the break in 1974. On the subperiod from April 1940

to September 1987 we �nd again a break in 1974 but it turns out to be insigni�cant. The �ndings

are summarized in Figure 3 and the precise test results can be found in Table 4.

Thus, we �nd one signi�cant break in April 1940 and a second signi�cant break in September

1987. A third break can be found in September 1974. The latter break turns out to be only jointly

signi�cant with the break in 1987 while it is marginally insigni�cant if taken alone. For comparison,

Lettau and Van Nieuwerburgh (2008), report one break in the early 1990s or two breaks around

1954 and 1994 for log(D/P) but they apply a di�erent method and use an annual sample from 1927

to 2004.

The observed break dates roughly correspond to critical economic events. While the break identi�ed
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Figure 4: Demeaned and break-adjusted predictor variables; left: log(D/P), right: log(E/P), upper
panels are adjusted for one break, lower panels adjusted for two breaks.

in April 1940 might be a late indicator for the Great Depression in the early 1930s, it is actually

more likely that it is tied to the beginning of World War II. The break in September 1987 is only

one month prior to the Black Monday. We do not consider the break in September 1974 since it is

insigni�cant, although it is a plausible break date around the First Oil Crisis. The demeaned and

break adjusted series log(D/P) and log(E/P) are displayed in Figure 4. We do not treat the peak in

log(D/P) and the drop in log(E/P) in 2009 as permanent shifts but as outliers since the values for

Dividends, Earnings and Prices return to levels comparable to 2008 until 2010. The reason for the

outliers is that Dividends, Earnings as well as Prices decreased in 2008-2009 during the �nancial

crisis. Dividends, however, decreases much less than Earnings since Dividends are long dated while

Earnings react immediately. The e�ect on Prices is smaller than for Earnings but larger than for

Dividends which leads to an increase in the ratio log(D/P) and a decrease in the ratio log(E/P).

In the following analysis, we shall use the original series, the series adjusted for one break, as well

as the series adjusted for two breaks as putative predictors, for both log(D/P) and log(E/P).

Before proceeding to the analysis, note that adjusting for permanent shifts in the mean tends to

reduce the degree of persistence of a series. This can be shown by �tting the best (as indicated by

Akaike's Information Criterion) AR(p) process to the data and adding up the estimated autore-

gressive parameters; the cumulated autoregressive coe�cients serve as an (indirect) indicator for

the degree of persistence of a series; see Cochrane (1988). Table 5 suggests that the more breaks are

adjusted for, the less persistent the series are. The decrease in persistence is of course not an issue

here since the considered tests cope with stable as well as nearly integrated regressors. However,

the drop in persistence is not very large in absolute terms.

5.2 Data analysis

The starting step of the analysis is to �t a local polynomial regression of stock returns on the lagged

�nancial ratios from above to get an idea about the shape of the predictive relations; this also
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Table 5: Sum of autoregressive parameters of autoregressive model �ts for series adjusted for 0, 1
or 2 breaks

Data paic
∑paic
i=1 φi Data paic

∑paic
i=1 φi

log(D/P)FS;0 22 0.9935 log(E/P)FS;0 12 0.9831
log(D/P)FS;1 6 0.9891 log(E/P)FS;1 12 0.9831
log(D/P)FS;2 6 0.9723 log(E/P)FS;2 6 0.9634

Notes: Model order selection conducted via AIC.

allows for a quick check of whether the monotonicity assumptions are ful�lled. The nonparametric

regression curves are computed as local quadratic regressions using the closest 75% data points

at each x-value with tricubic weighting; the local regressions also give the pointwise asymptotic

con�dence bands.

The �ndings are largely consistent with the preliminary discussion in Figure 2, even after adjusting

for breaks; see Figure 5. This suggests that nonlinear predictive power, should it be con�rmed

statistically, is no artifact of the persistence of the predictors. A pointwise con�dence band is

computed as �tted conditional mean plus/minus two times standard error of the �ts. The fact

that it is a pointwise band implies that inferece on predictability cannot be based on it; see Juhl

(2014). The monotonicity assumption appears to hold for log(D/P) while it is apparently violated

for log(E/P). For this reason, we shall also discuss the outcomes of tests relying on IV regressions

with quadratic terms, i.e. IVX2 and 2S2 from the previous section.
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log(D/P), Full Sample, no break

●

●

●

●

●
●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●
●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●
●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●●
●

●●

●

●

●
●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●●●

●
●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●●
●
●●●

●

●

●●●

●

●
●

●

●

●

●
●●●

●
●●
●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●
●

● ●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●●

●●

●●

●

●●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●●

●●
●

●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●
●

●

●
●

●●
●

●

●

●

●
●●

●

●●

●

●

●
●●

●

●

●

●
●

●●

●

●

●●
●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●
●

−1.0 −0.5 0.0 0.5 1.0

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

log(D/P), Full Sample, one break
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log(D/P), Full Sample, two breaks
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Figure 5: Stock returns against lagged �nancial ratios in full sample, including pointwise con�dence
band computed as �t plus/minus two times standard error, dashed line is mean of regressor, see
the text for computation details; left to right: demeaned, adjusted for one break, adjusted for two
breaks, top: log(D/P), bottom: log(E/P).
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Table 6: Test signi�cance of nonparametric and linear test procedures, log(D/P) and log(E/P) with
0, 1 or 2 breaks as predictors; full sample (1926:M01 - 2016:M12).

Predictor U1 F2 IVX IVX2 2SLS 2S2

log(D/P)0 0.612 0.738 0.111 0.223 0.316 0.442
log(D/P)1 0.336 0.227 0.056 (*) 0.157 0.045 (**) 0.118
log(D/P)2 0.936 0.424 0.049 (**) 0.054 (*) 0.047 (**) 0.033 (**)

log(E/P)0 0.192 0.081 (*) 0.037 (**) 0.084 (*) 0.038 (**) 0.029 (**)
log(E/P)1 0.200 0.062 (*) 0.037 (**) 0.085 (*) 0.039 (**) 0.030 (**)
log(E/P)2 0.070 (*) 0.003 (***) 0.028 (**) 0.054 (*) 0.020 (**) 0.003 (***)

Notes: Signi�cance: (*) p ≤ 0.10 , (**) p ≤ 0.05, (***) p ≤ 0.01; for further details see the text.

We conduct a series of tests for predictability of stock returns with null hypothesis of no predictabil-

ity. The predictor variables are lagged log(D/P) and lagged log(E/P). The series log(D/P) and

log(E/P) are demeaned and adjusted for either zero, one or two breaks.

Table 6 summarizes the resulting p-values for all of these tests of predictability. (We display the

p-values instead of test statistics to maintain comparability since the test statistics are of di�erent

magnitude and have di�erent critical values.)

The test according to Juhl (2014) shows almost no predictability of S&P 500 stock returns in the

full sample, neither for log(D/P) nor for log(E/P). This result is not too surprising since the test

is undersized and has low power as seen in the previous section. The tests based on Kasparis et al.

(2015) show no predictability for log(D/P) but some predictability for log(E/P) in the full sample.

One has to keep in mind that the test tends to be a bit oversized, though.

In contrast to the nonparametric approaches, both linear procedures show substantial rejections of

the null hypothesis of no predictability. It shows that log(D/P) is able to predict stock returns when

adjusted for permanent shifts in its mean: both linear procedures yield signi�cant predictability (at

the 5% level). The series log(E/P) on the other hand is able to signi�cantly predict stock returns

in this sample regardless of whether it is adjusted for breaks or not.

Both IVX2 and 2S2 show less predictability than IVX and 2SLS for log(D/P); however, for log(E/P)

it looks the other way round. This is in line with the derivations in Chapter 4 since the monotonicity

assumptions are violated for log(E/P) but appear to hold for log(D/P). We furthermore summarize

the individual t-statistics for the parameters of the linear and the quadratic terms in IVX2 and

2S2 in Table 7 to check whether the quadratic terms are signi�cant or not. Signi�cance of the

quadratic term would point towards a U-shaped predictive relation, but they are only signi�cant

for the log(E/P) series adjusted for two breaks, indicating a weak, at most moderate, U-shaped

relation as hinted upon by Figure 5.

Note that, in line with the results of our Monte Carlo experiments, IVX and 2SLS are able to

outperform the nonparametric approaches on the log(D/P) samples where the monotonicity as-

sumption appears to hold. IVX and 2SLS still perform quite well on the log(E/P) samples even

if the monotonicity assumption appears to be violated. Adding quadratic terms (IVX2 and 2S2)

leads to further re�nements, with 2S2 indicating a U-shaped predictive relation for the log(E/P)

series.

Summing up, we �nd evidence of stock return predictability. Adjusting for permanent shifts in
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Table 7: Summary of t-statistics for individual parameters of quadratic predictive regressions esti-
mated via IVX² and 2S²

Predictor tIV X2
1 tIV X2

2 t2S21 t2S22

log(D/P)0 0.948 0.569 1.094 0.215
log(D/P)1 1.841 (*) 0.786 2.011 (**) 0.571
log(D/P)2 2.412 (***) 0.364 2.072 (**) 0.575

log(E/P)0 2.168 (**) 1.316 2.052 (**) 0.439
log(E/P)1 2.160 (**) 1.315 2.044 (**) 0.436
log(E/P)2 2.373 (***) 1.730 (*) 2.486 (***) 0.785

Notes: t1 denotes the t-statistic associated to the linear term, t2 the t-statistic associated to the quadratic term.

the mean always leads to more signi�cant results for the linear procedures. For log(E/P), there is

evidence of a nonmonotonic predictive relation.

5.3 Re�nements

We now conduct a detailed subsample analysis. The purpose of this further discussion is to re�ne

the results coming from the full-sample analysis. We also become more precise on the di�erences in

outcomes when using di�erent inferential procedures, and do this in a compact manner that is not

biased by choosing a �suitable� subsample by data snooping, as argued by Scheithauer (2008).12

Concretely, we test for predictability in each possible subperiod beginning in January and ending

in December. Therefore, we obtain 4186 subperiods in total (91 subperiods of a one year length,

90 subperiods of two year length, etc.).

The results for all nonparametric and linear tests, periods and predictor variables are summarized

in Figures 6 and 7. Following Scheithauer (2008), the results are shown in colored upper triangular

matrices with 4186 cells each (so-called p-value surfaces). Every cell represents a di�erent test

period where the rows and columns denote di�erent starting and end points. A white cell denotes

no signi�cant predictability of S&P 500 stock returns for the corresponding period on a 10% level;

otherwise, the higher the signi�cance, the darker the cell color. Signi�cance is not to be taken at

face value because there are multiple tests conducted to set up the matrices: we simply use the

full-scale subsample analysis to pin down the periods of stronger predictability which are likely to

have driven the signi�cant full-sample �ndings.

Even in the subsample analysis, the test according to Juhl (2014) shows almost no predictability of

S&P 500 stock returns, neither for dividend price ratio nor for earnings price ratio (except for the

series adjusted for one break and longer subsamples starting before the war). This result is not too

striking since the test is undersized and has less local power, as seen in the previous section. The

tests based on Kasparis et al. (2015) show predictability for several periods but one has to keep

in mind that the test tends to be a bit oversized. Predictability is featured for di�erent periods,

depending on the utilized predictor variable (log(E/P) or log(D/P)).

The two linear procedures yield stronger evidence for predictability. For each predictor variable,

the p-value surfaces show predictability for roughly the same periods, whereby the evidence for

two-stage least squares is, expectedly, slightly stronger than for IVX. The results for log(E/P) and

12See Hansen and Timmermann (2012) for a discussion of the e�ects of di�erent subsample splits in the context
of pseudo out-of-sample forecasting evaluations.
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Figure 6: Subsample-wise tests of predictive power of log(D/P): p-values for the U1, the F̂sum,
the IVX and the combination/IV tests for all possible subsamples starting (ending) in January
(December). For further details see the text
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Figure 7: Subsample-wise tests of predictive power of log(E/P); for details see Figure 6
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IVX², joint test, no breaks, log(D/P)
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IVX², joint test, one break, log(D/P)
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IVX², t statistic linear term, no breaks, log(D/P)
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IVX², t statistic linear term, one break, log(D/P)
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IVX², t statistic linear term, two breaks, log(D/P)
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IVX², t statistic quadratic term, no breaks, log(D/P)
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IVX², t statistic quadratic term, one break, log(D/P)

0.0 0.05 0.1

'26 '41 '56 '71 '86 '01 '16

End Point

'16

'01

'86

'71

'56

'41

'26

S
ta

rt
in

g 
P

oi
nt

IVX², t statistic quadratic term, two breaks, log(D/P)
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Figure 8: Subsample-wise results for quadratic predictive regressions with log(D/P); p-values for
the IVX2, the 2S2 and the individual t-statistics of the linear and the quadratic term in IVX2
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2S², joint test, no breaks, log(E/P)
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2S², joint test, two breaks, log(E/P)
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IVX², t statistic linear term, no breaks, log(E/P)
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IVX², t statistic quadratic term, no breaks, log(E/P)
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Figure 9: Subsample-wise results for quadratic predictive regressions with log(E/P); for details see
Figure 8
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log(D/P) do not fully coincide for the linear tests, like in the nonparametric discussion. Some pre-

dictive power is indicated for log(D/P) between the mid-thirties and mid-nineties, while log(E/P)

would rather predict in periods staring prior to the mid-forties and ending after 1950; again, there

are di�erences in timing between nonparametric and linear procedures. After adjusting log(D/P)

for one break, there seems to be additional predictability in samples starting before the �fties and

ending past 2000. Adjusting for two breaks leads to predictability in most samples with length of

at least 30 years. For log(E/P) there appears to be predictability in samples starting prior to the

�fties. Adjusting the data for one break has no large impact here. After adjusting for a second

break, also the samples ending between 2002 and 2008 indicate a relation. In comparison, the F̂sum

test (as the more powerful nonparametric test) �nds predictability in relatively di�erent times and

overall less often when compared to the linear tests.

To discuss the type of nonlinearity (monotonic vs. nonmonotonic), we give in Figures 8 and 9

the subsample t-statistics for the linear and quadratic terms to see where nonmonotonicity is

strong. (Recall, the linear term captures a monotonic relation, while the quadratic term indicates

a possible U-shaped predictive relation.) There is little di�erence in the periods of predictability

when considering di�erent numbers of breaks adjusted for; if anything, predictability increases

slightly with more breaks adjusted for, but just for log(D/P). The quadratic terms for log(D/P)

are practically never signi�cant, con�rming that the predictive relation is monotonic. In fact,

examining Figure 5, it even looks reasonably close to linearity, with slightly di�erent slopes for

very large or very small values of log(D/P). For log(E/P), the quadratic term is always signi�cant

for, and only for, subsamples starting before 2008 and ending after 2009, strongly indicating that the

U-shaped relation is largely driven by the large drop in log(E/P) during and in the aftermath of the

2008 crisis. The changing predictability of the log(E/P) ratio during the crisis lends support to the

�ndings of Gupta et al. (2013), who �nd that stock markets are less e�cient in incorporating �rm-

speci�c information in stock prices. This is likely because a signi�cant reduction in risk arbitrage

activities of investors during the crisis leads to an overall reduction in the �ow and transparency

of information.

5.4 Robustness checks

First, conducting the analysis for D/P and E/P in levels rather than logs lead to similar results.

One particularity is that stability tests tend to �nd more breaks in the predictors; this is likely due

to the presence of more spikes in the series, spikes that are dampened when taking logs. For two

breaks we choose April 1940 and September 1974 and for four breaks additionally September 1987

and September 2008 (2009 for EP) as break dates. The results for the detailed subsample analysis

for zero, two or four breaks can be found in Appendix A.1.

Second, we also considered interest rates and long term rates of return as possible predictors beyond

the �classical� �nancial ratios. As proxy for interest rates we take treasury bills, since they have

been found to have predictive power (e.g. Campbell and Yogo, 2006). The data analysis is given

in Appendix A.2. One particularity of the treasury bill subsample analysis is that we excluded

all subsamples starting and ending between 1942 and 1947 since treasury bills are constant in the

mid fourties for a span of �ve years. For both, treasury bills and long-term rates, we �nd at most

one break in mean. In short, the long-term rates provide some evidence in favour of predictability
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as well, e.g. for samples beginning between the thirties and the seventies, albeit weaker than the

earnings-price ratio in its logarithmized form. The evidence for treasury bills is weak at best.

Finally, we also conducted a subsample analysis for linear predictive regressions involving bivariate

combinations of log(D/P), log(E/P), treasury bills and long term rates of return for the linear

models. We do not add more predictor variables and also stick to data without break adjustment

to not in�ate the amount of results. It turns out that combinations including long term rates of

return seem to perform best in predicting stock returns; nevertheless, predictibility seems to have

decreased since the seventies. The results of the subsample analysis with two predictor variables

can be seen in Appendix A.3.

6 Concluding remarks

The paper argued in favor of the use of linear models to test the forecasting ability of possibly

nonstationary regressors in potentially nonlinear models, on the grounds that the loss in local power

caused by possible misspeci�cation of the functional form is outweighed by the loss in power caused

by resorting to nonparametric estimation and testing procedures. Estimation can be conducted in

a �exible manner after having established the existence of a predictive relation.

To correct the size problem of linear procedures in predictive regressions with endogenous regres-

sors of uncertain persistence, we recommend the 2SLS combination of two types of instruments,

exogenous yet persistent ones working under persistent regressors only, and certain nonlinear trans-

formations of the regressors, working under stable regressors only. Overall, this IV procedure fares

better than alternative nonparametric statistics, under the null and under nonlinear local alterna-

tives, provided that the regression curve is monotonic under the alternative. But if one chooses

nonparametric models, say because the monotonicity requirement is violated in an obvious manner,

one should rather use the F̂sum test by Kasparis et al. (2015) than the U test by Juhl (2014). Also,

adding a quadratic term in the IVX regression is a competitive solution for cases of nonmonotonic-

ity.

The methodological and experimental �ndings are complemented by an analysis of the predictability

of monthly S&P 500 returns. We �nd that the predictive power of log(D/P) is stronger between the

40s and the 90s, while that of log(E/P) diminished in the post-war period. For log(E/P) we �nd

some evidence of an U-shaped regression function. This appears, however, to be driven by a few

abnormal observations during and after the peak of the �nancial crisis in 2008-2009. Furthermore,

long-term rates of return may also predict stock returns, with no evidence of U-shaped relations.

As a byproduct, we �nd that linear methods are well-suited to detect even nonlinear predictability.
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Appendix

A Tables and Plots for further predictors

A.1 Financial ratios in levels
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Figure 10: (In-) Signi�cant breaks in D/P and E/P in the full sample based on a signi�cance level
of α = 0.05.

Table 8: Sequential break identi�cation, test results of twelve consecutive steps to identify structural
breaks in the full sample

Step Start 1st 2nd End Exp−WFS CV0.95 Signi�cant

D/P 1 1926:M01 1940:M04 2016:M12 7.62 1.74 X(0.990)
2 1926:M01 1940:M04 1974:M08 2016:M12 7.39 1.69 X(0.990)
3 1940:M04 1974:M09 2016:M12 4.00 1.74 X(0.990)
4 1940:M04 1974:M09 1987:M09 2016:M12 6.88 1.69 X(0.990)
5 1974:M09 1987:M09 2016:M12 8.71 1.74 X(0.990)
6 1974:M09 1987:M09 2008:M09 2016:M12 9.38 1.69 X(0.990)
7 1987:M09 2008:M09 2016:M12 5.32 1.74 X(0.990)
8 1987:M09 2002:M08 2008:M09 2016:M12 9.99 1.69 X(0.990)
9 1926:M01 1938:M02 1974:M09 7.88 1.74 X(0.990)
10 1926:M01 1938:M02 1948:M10 1974:M09 7.33 1.69 X(0.990)
11 1926:M01 1938:M02 1987:M09 9.34 1.74 X(0.990)
12 1926:M01 1938:M02 1974:M08 1987:M09 8.79 1.69 X(0.990)

E/P 1 1926:M01 1940:M04 2016:M12 13.22 1.74 X(0.990)
2 1926:M01 1940:M04 1974:M09 2016:M12 18.51 1.69 X(0.990)
3 1940:M04 1974:M09 2016:M12 9.56 1.74 X(0.990)
4 1940:M04 1974:M09 1987:M09 2016:M12 12.61 1.69 X(0.990)
5 1974:M09 1987:M09 2016:M12 4.51 1.74 X(0.990)
6 1974:M09 1987:M09 2009:M09 2016:M12 6.12 1.69 X(0.990)
7 1987:M09 2009:M09 2016:M12 6.42 1.74 X(0.990)
8 1987:M09 2003:M10 2009:M09 2016:M12 6.47 1.69 X(0.990)
9 1926:M01 1940:M04 1974:M09 9.29 1.74 X(0.990)
10 1926:M01 1940:M04 1948:M10 1974:M09 12.36 1.69 X(0.990)
11 1926:M01 1940:M04 1987:M09 9.00 1.74 X(0.990)
12 1926:M01 1940:M04 1974:M09 1987:M09 12.03 1.69 X(0.990)

Notes: Test results of consecutive steps to identify structural breaks in the full sample.
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Figure 11: Subsample-wise tests of predictive power of D/P: p-values for the U1, the F̂sum, the IVX
and the combination/IV tests for all possible subsamples starting (ending) in January (December).
For further details see Figure 6
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U1, no breaks, E/P
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Figure 12: Subsample-wise tests of predictive power of E/P; for details see Figure 11
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IVX², joint test, no breaks, D/P
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IVX², joint test, two breaks, D/P
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IVX², joint test, four breaks, D/P
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2S², joint test, no breaks, D/P
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2S², joint test, two breaks, D/P
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2S², joint test, four breaks, D/P
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IVX², t statistic linear term, no breaks, D/P
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IVX², t statistic linear term, two breaks, D/P
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IVX², t statistic linear term, four breaks, D/P
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IVX², t statistic quadratic term, no breaks, D/P
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IVX², t statistic quadratic term, two breaks, D/P

0.0 0.05 0.1

'26 '41 '56 '71 '86 '01 '16

End Point

'16

'01

'86

'71

'56

'41

'26

S
ta

rt
in

g 
P

oi
nt

IVX², t statistic quadratic term, four breaks, D/P
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Figure 13: Subsample-wise results for quadratic predictive regressions with D/P; p-values for the
IVX2, the 2S2 and the individual t-statistics of the linear and the quadratic term in IVX2
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IVX², joint test, no breaks, E/P

0.0 0.05 0.1

'26 '41 '56 '71 '86 '01 '16

'16

'01

'86

'71

'56

'41

'26

End Point

S
ta

rt
in

g 
P

oi
nt

IVX², joint test, two breaks, E/P
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IVX², joint test, four breaks, E/P
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2S², joint test, no breaks, E/P
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2S², joint test, two breaks, E/P
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2S², joint test, four breaks, E/P
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IVX², t statistic linear term, no breaks, E/P
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IVX², t statistic linear term, two breaks, E/P
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IVX², t statistic linear term, four breaks, E/P
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IVX², t statistic quadratic term, no breaks, E/P
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IVX², t statistic quadratic term, two breaks, E/P
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Figure 14: Subsample-wise results for quadratic predictive regressions with E/P; for details see
Figure 13
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Table 9: Test results on nonparametric and linear test procedures, D/P and E/P; full sample
(1926:M01 - 2016:M12) with 0, 2 or 4 breaks.

Predictor U1 F2 IVX IVX2 2SLS 2S2

D/PFS;0 0.600 0.119 0.214 0.362 0.311 0.514
D/PFS;2 0.469 0.070 (*) 0.130 0.208 0.120 0.137
D/PFS;4 0.932 0.014 (**) 0.174 0.269 0.167 0.202

E/PFS;0 0.062 (*) 0.146 0.020 (**) 0.051 (*) 0.017 (**) 0.062 (*)
E/PFS;2 0.112 0.156 0.019 (**) 0.041 (**) 0.014 (**) 0.044 (**)
E/PFS;4 0.187 0.053 (*) 0.032 (**) 0.095 (*) 0.021 (**) 0.040 (**)

Notes: Signi�cance: (*) p ≤ 0.10 , (**) p ≤ 0.05, (***) p ≤ 0.01; for further details see the text.
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A.2 Treasury bills and long-term rates of return
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Figure 15: Treasury Bill Rate and Long Term Rate of Returns � monthly observations from De-
cember 1926 to December 2016; see Section 5.4 for details
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Figure 16: (In-) Signi�cant breaks in Treasury Bill Rate and Long Term Rate of Returns in the
full sample based on a signi�cance level of α = 0.05.
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Table 10: Sequential break identi�cation, test results of �ve (and seven, respectively) consecutive
steps to identify structural breaks in the full sample

Step Start 1st 2nd End Exp−WFS CV0.95 Signi�cant

TBill 1 1926:M01 1980:M04 2016:M12 86.66 1.74 X(0.990)
2 1926:M01 1958:M01 1980:M04 2016:M12 86.20 1.69 X(0.990)
3 1926:M01 1958:M01 1980:M04 0.38 1.74
4 1958:M01 1980:M04 2016:M12 62.38 1.74 X(0.990)
5 1958:M01 1971:M01 1980:M04 2016:M12 61.60 1.69 X(0.990)
6 1958:M01 1974:M07 1980:M04 1.37 1.74 X(0.900)
7 1980:M04 2008:M02 2016:M12 -0.22 1.74

LTR 1 1926:M01 1981:M09 2016:M12 2.49 1.74 X(0.975)
2 1926:M01 1959:M12 1981:M09 2016:M12 2.38 1.69 X(0.975)
3 1926:M01 1970:M05 1981:M09 0.06 1.74
4 1926:M01 19753M05 1970:M05 1981:M09 -1.12 1.69
5 1981:M09 1987:M02 2016:M12 -0.12 1.74

Notes: Test results of consecutive steps to identify structural breaks in the full sample.

Table 11: Test results on nonparametric and linear test procedures, Treasury Bill Rate and Long
Term Rate of Returns with 0 or 1 breaks; full sample (1926:M01 - 2016:M12).

Predictor U1 F2 IVX IVX2 2SLS 2S2

TBillFS;0 0.501 0.642 0.801 0.701 0.824 0.785
TBillFS;1 0.395 0.348 0.707 0.520 0.722 0.615

LTRFS;0 0.273 0.190 0.115 0.240 0.115 0.260
LTRFS;2 0.256 0.459 0.128 0.265 0.130 0.288

Notes: Signi�cance: (*) p ≤ 0.10 , (**) p ≤ 0.05, (***) p ≤ 0.01; for further details see the text.

Table 12: Summary of t-statistics for individual parameters of quadratic predictive regressions
estimated via IVX² and 2S²

Predictor tIV X2
1 tIV X2

2 t2S21 t2S22

TBillFS;0 0.168 -0.711 -0.317 -0.676
TBillFS;1 0.035 -1.025 -0.493 -0.958

LTRFS;0 1.654 (*) -0.655 1.522 -0.238
LTRFS;2 1.562 -0.576 1.463 -0.301

Notes: t1 denotes the t-statistic associated to the linear term, t2 the t-statistic associated to the quadratic term.
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TBill, Full Sample, no break
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TBill, Full Sample, one break
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LTR, Full Sample, one break

Figure 17: Stock returns against lagged �nancial ratios in full sample, including pointwise con�dence
band computed as �t plus/minus two times standard error, dashed line is mean of regressor, left
to right: demeaned, adjusted for one break, top: Treasury Bill Rate, bottom: Long Term Rate of
Returns.
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Figure 18: Subsample-wise tests of predictive power of Treasury Bill Rate: p-values for the U1,
the F̂sum, the IVX and the combination/IV tests for all possible subsamples starting (ending) in
January (December), subsamples starting and ending between 1942 and 1947 are excluded since
treasury bills are constant in mid fourties. For further details see Figure 6 and Section 5.4
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Figure 19: Subsample-wise tests of predictive power of Long Term Rate of Returns; for details see
Figure 18
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Figure 20: Subsample-wise results for quadratic predictive regressions with Treasury Bill Rate;
p-values for the IVX2, the 2S2 and the individual t-statistics of the linear and the quadratic term
in IVX2. Subsamples starting and ending between 1942 and 1947 are excluded since treasury bills
are constant in mid fourties
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IVX², joint test, one break, LTR
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Figure 21: Subsample-wise results for quadratic predictive regressions with Long Term Rate of
Returns; for details see Figure 20
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A.3 Combination of two predictors

log(D/P)

IVX, log(D/P) & log(E/P) 

0.0 0.05 0.1

'26 '41 '56 '71 '86 '01 '16

'16

'01

'86

'71

'56

'41

'26

End Point

S
ta

rt
in

g 
P

oi
nt

IVX, log(D/P) & TBill 

0.0 0.05 0.1

'26 '41 '56 '71 '86 '01 '16

'16

'01

'86

'71

'56

'41

'26

End Point

S
ta

rt
in

g 
P

oi
nt

IVX, log(D/P) & LTR 

0.0 0.05 0.1

'26 '41 '56 '71 '86 '01 '16

'16

'01

'86

'71

'56

'41

'26

End Point

S
ta

rt
in

g 
P

oi
nt

2SLS, log(E/P) & log(D/P) 

0.0 0.05 0.1

'26 '41 '56 '71 '86 '01 '16

'16

'01

'86

'71

'56

'41

'26

End Point

S
ta

rt
in

g 
P

oi
nt

log(E/P)

IVX, log(E/P) & TBill 

0.0 0.05 0.1

'26 '41 '56 '71 '86 '01 '16

'16

'01

'86

'71

'56

'41

'26

End Point

S
ta

rt
in

g 
P

oi
nt

IVX, log(E/P) & LTR 

0.0 0.05 0.1

'26 '41 '56 '71 '86 '01 '16

'16

'01

'86

'71

'56

'41

'26

End Point

S
ta

rt
in

g 
P

oi
nt

2SLS, TBill & log(D/P) 

0.0 0.05 0.1

'26 '41 '56 '71 '86 '01 '16

'16

'01

'86

'71

'56

'41

'26

End Point

S
ta

rt
in

g 
P

oi
nt

2SLS, TBill & log(E/P) 

0.0 0.05 0.1

'26 '41 '56 '71 '86 '01 '16

'16

'01

'86

'71

'56

'41

'26

End Point

S
ta

rt
in

g 
P

oi
nt

TBill

IVX, TBill & LTR 

0.0 0.05 0.1

'26 '41 '56 '71 '86 '01 '16

'16

'01

'86

'71

'56

'41

'26

End Point

S
ta

rt
in

g 
P

oi
nt

2SLS, LTR & log(D/P) 

0.0 0.05 0.1

'26 '41 '56 '71 '86 '01 '16

'16

'01

'86

'71

'56

'41

'26

End Point

S
ta

rt
in

g 
P

oi
nt

2SLS, LTR & log(E/P) 

0.0 0.05 0.1

'26 '41 '56 '71 '86 '01 '16

'16

'01

'86

'71

'56

'41

'26

End Point

S
ta

rt
in

g 
P

oi
nt

2SLS, LTR & TBill 

0.0 0.05 0.1

'26 '41 '56 '71 '86 '01 '16

'16

'01

'86

'71

'56

'41

'26

End Point

S
ta

rt
in

g 
P

oi
nt

LTR

Figure 22: Subsample-wise tests of predictive power for bivariate combinations of log(D/P),
log(E/P), Treasury Bill Rate and Long Term Rate of Returns: upper triangle shows p-values
for IVX, lower triangle for the combination/IV tests for all possible subsamples starting (ending)
in January (December). Subsamples starting and ending between 1942 and 1947 are excluded if
tests includes treasury bills since they are constant in mid fourties. For further details see the text
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Figure 23: Subsample-wise tests of predictive power for bivariate combinations of log(D/P),
log(E/P), Treasury Bill Rate and Long Term Rate of Returns: individual t-statistics of IVX for
the �rst instrument which is de�ned by the corresponding row (individual t-statistics of second
instruments can be achieved by transposing this �gure). Subsamples starting and ending between
1942 and 1947 are excluded if tests includes treasury bills since they are constant in mid fourties
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Figure 24: Subsample-wise tests of predictive power for bivariate combinations of log(D/P),
log(E/P), Treasury Bill Rate and Long Term Rate of Returns: individual t-statistics of the com-
bination/IV tests for the �rst instrument which is de�ned by the corresponding row (individual
t-statistics of second instruments can be achieved by transposing this �gure). Subsamples start-
ing and ending between 1942 and 1947 are excluded if tests includes treasury bills since they are
constant in mid fourties
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B Auxiliary results

Throughout, C denotes a generic constant whose value may change from occurrence to occurrence. We also

make use of
∑t
j=0 %

kj = 1−%k(t+1)

1−%k ≤ CT η for all t = 2, . . . , T and k = 1, 2. The Lp norm of a random

variable is denoted by ‖·‖p = p
√

E (|·|p).

Lemma 3 Under the Assumptions of Proposition 3, we have for near-integrated xt as T →∞ that

1. For t = 2, . . . , T , wt−1 = λw̄t−1 + rt−1 where w̄t−1 =
∑t−3
j=0 %

jvt−1−j for t ≥ 3 and 0 for t = 2, with

supt ‖w̄t−1‖4 = O
(
T η/2

)
, and supt ‖rt−1‖4 = o

(
T η/2

)
;

2. 1
λαω̄αv T

α/2 f
(
x[sT ]−1

)
⇒ Hα (Jc,σv (s));

3. 1
λ2αω̄2α

v Tα+1

∑T
t=2 f

2
(
x[sT ]−1

)
⇒
´ 1

0
H2
α (Jc,σv (s)) ds;

4. 1
λαω̄αv T

α/2+0.5

∑T
t=2 f (xt−1)ut ⇒

´ 1

0
Hα (Jc,σv (s)) dWσu (s);

5. 1
T 1+η/2

∑T
t=2 wt−1 = op (1);

6. 1
T 3/2+η/2

∑T
t=2 xt−1wt−1 = op (1);

7. 1
T 1+η/2

∑T
t=2

(
sin πt

2T − sin
)
wt−1 = op (1) where sin = 1

T 1

∑T
t=2 sin πt

2T ;

8. 1
T 1+η/2

∑T
t=2

(
sin πt

2T − sin
)
wt−1ỹ

2
t = Op (1);

9. 1
Tα/2+1+η/2

∑T
t=2 wt−1f (xt−1) = Op (1);

10. 1
T 1+η

∑T
t=2 w

2
t−1 = Θp (1) with Θp denoting an exact order of magnitude;

11. 1
T 1+η

∑T
t=2 w

2
t−1ỹ

2
t = Op (1);

12. 1
T

∑T
t=2

(
sin πt

2T − sin
)2
ỹ2
t ⇒

´ 1

0

(
sin πs

2 −
2
π

)2
σ2
u (s) ds.

Proof: see Appendix C.

Lemma 4 Under the Assumptions of Proposition 3, we have as T →∞ for |ρ| < 1 �xed that

1. wt−1 = xt−1 − µ − %t−3 (x1 − µ) + rt−1 for t = 2, . . . , T , where T η/2rt−1 is uniformly L4-bounded,∥∥T η/2rt−1

∥∥
4
< C ∀t;

2. 1
T

∑T
t=2 x̃t−1 sin πt

2T = op (1);

3. 1
T

∑T
t=2 wt−1

(
sin πt

2T − sin
)

= op (1);

4. 1
T

∑T
t=2 wt−1

(
sin πt

2T − sin
)
ỹ2
t = Op (1);

5. 1
T

∑T
t=2 w

2
t−1

p→ E0
[
i2
]
;

6. 1
T

∑T
t=2 w

2
t−1ỹ

2
t
p→ E∗0

[
i2
]
;

7. 1√
T

∑T
t=2 wt−1ũt

d→ N
(
0, E∗0

[
i2
])
;

8. 1
T

∑T
t=2

(
sin πt

2T − sin
)2
ỹ2
t ⇒

´ 1

0

(
sin πs

2 −
2
π

)2
σ2
u (s) ds.

Proof: see Appendix C.

C Proofs

Proof of Lemma 1

Note that, upon division by
√
T , the mean µ is asymptotically negligible. The result follows e.g. with the

arguments of Cavaliere et al. (2010).
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Proof of Lemma 2

Split the sample in B blocks of length nT and write

1

T

T∑
t=2

h (xt−1) =
1

B

B∑
b=1

1

nT

nT∑
τ=1

h
(
x(b−1)nT+τ

)
where T−1 = B·nT for simplicity. Let βj denote the coe�cients of the lag polynomial (1− ρL)

−1
(∑

j≥0 bjL
j
)

and note that they also ful�ll the 1-summability condition ful�lled by bj since (1− ρL)
−1

has exponentially
decaying coe�cients. Examining now the B block sums individually, we have that

1

nT

nT∑
τ=1

h
(
x(b−1)nT+τ

)
=

1

nT

nT∑
τ=1

h

µ+
∑
j≥0

βjσv

(
(b− 1)nT + τ − j

T

)
ν(b−1)nT+τ−j

 .

Using Proposition 1 from Demetrescu and Sibbertsen (2014), note that, for all b and τ ,∥∥∥∥∥∥
∑
j≥0

βjσv

(
(b− 1)nT + τ − j

T

)
ν(b−1)nT+τ−j − σv

(
bnT
T

)∑
j≥0

βjν(b−1)nT+τ−j

∥∥∥∥∥∥
2

≤ C

T

with ‖·‖2 the L2 norm of a random variable. Let qb,τ =
∑
j≥0 βjσv

(
(b−1)nT+τ−j

T

)
ν(b−1)nT+τ−j and q̃b,τ =

σv
(
bnT
T

)∑
j≥0 βjν(b−1)nT+τ−j and note that both quantities are uniformly Lδ-bounded since |ρ| < 1 is �xed

and σv is bounded.

We now examine the approximation error h (µ+ qb,τ ) − h (µ+ q̃b,τ ). To this end it su�ces to focus on
homogenous functions h, since the nonhomogenous part is Lipschitz and shall not a�ect the following
derivations. We distinguish two cases, α > 1 and 1 ≥ α > 0.

For α > 1, use the mean-value theorem to obtain

h (µ+ qb,τ ) = h (µ+ q̃b,τ ) + h′ (ξb,τ ) (qb,τ − q̃b,τ ) ,

where ξb,τ lies between µ+ q̃b,τ and µ+ qb,τ so |ξb,τ | ≤ |µ|+ max {|q̃b,τ | ; |qb,τ |}. Since both q̃b,τ and qb,τ are
uniformly Lδ-bounded, |ξb,τ | must itself be Lδ-bounded where, recall, δ > max {4, 4α}.

The homogeneity of order α > 1 of h implies h′ to be homogenous of order α−1 > 0 such that h′(x)
xα−1 = O (1)

as x → ±∞. Hence, h′ (ξt) is uniformly L δ
α−1

-bounded where δ
α−1 > 2, such that the Cauchy-Schwarz

inequality applies, leading to

‖h (µ+ qb,τ )− h (µ+ q̃b,τ )‖1 ≤
C

T
.

Then, ergodicity of νt implies that

1

nT

nT∑
τ=1

h

(
µ+ σv

(
bnT
T

)
x̃(b−1)nT+τ

)
p→ E

(
h

(
µ+ σv

(
bnT
T

)
x̃1

))
;

given uniform integrability of h (µ+ q̃t) this implies L1 convergence. Moreover, strict stationarity and
boundedness of σv imply that convergence must take place at the same rate, so

max
b

E

(
1

nT

nT∑
τ=1

h

(
µ+ σv

(
bnT
T

)
x̃(b−1)nT+τ

)
− E

(
h

(
µ+ σv

(
bnT
T

)
x̃1

)))
→ 0.
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Thus, ∥∥∥∥∥ 1

B

B∑
b=1

1

nT

nT∑
τ=1

h
(
x(b−1)nT+τ

)
− 1

B

B∑
b=1

E

(
h

(
µ+ σv

(
bnT
T

)
x̃1

))∥∥∥∥∥
1

≤ 1

B

B∑
b=1

1

nT

nT∑
τ=1

‖h (µ+ qb,τ )− h (µ+ q̃b,τ )‖1

+
1

B

B∑
b=1

∥∥∥∥∥ 1

nT

nT∑
τ=1

h

(
µ+ σv

(
bnT
T

)
x̃(b−1)nT+τ

)
− E

(
h

(
µ+ σv

(
bnT
T

)
x̃1

))∥∥∥∥∥
1

→ 0.

For 1 ≥ α > 0, note that h (s) = sαh (1) for s > 0 and h (s) = sαh (−1) for s < 0 so h satis�es a uniform
Hölder condition of order α such that

|h (µ+ qb,τ )− h (µ+ q̃b,τ )| ≤ C |qb,τ − q̃b,τ |α .

With α ≤ 1, Jensen's inequality implies that

E (|qb,τ − q̃b,τ |α) ≤ (E (|qb,τ − q̃b,τ |))α

such that

‖h (µ+ qb,τ )− h (µ+ q̃b,τ )‖1 ≤
C

Tα
;

this way, ∥∥∥∥∥ 1

B

B∑
b=1

1

nT

nT∑
τ=1

h
(
x(b−1)nT+τ

)
− 1

B

B∑
b=1

E

(
h

(
µ+ σv

(
bnT
T

)
x̃1

))∥∥∥∥∥
1

→ 0

for 1 ≥ α > 0 as well.

Finally,

1

B

B∑
b=1

E

(
h

(
µ+ σv

(
bnT
T

)
x̃1

))
→ Eµ [h]

thanks to the integrability of σv, leading to the desired result. Analog convergence to E∗µ [h] follows along
the same lines.

Proof of Lemma 3

1. Use the Phillips-Solo decomposition to write et = λvt + ∆v̄t where v̄t is a linear process in vt with
absolutely summable coe�cients. It holds that

wt−1 =

t−3∑
j=0

%j∆xt−1−j =

t−3∑
j=0

%j
(
et−1−j −

c

T
xt−2−j

)

= λw̄t−1 +

t−3∑
j=0

%j
(

∆v̄t−1−j −
c

T
xt−2−j

)
.

Also, we have

E
(
w̄4
t−1

)
=

t−3∑
j=0

t−3∑
k=0

t−3∑
l=0

t−3∑
m=0

%j%k%l%m E (vt−1−jvt−1−kvt−1−lvt−1−m)
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which, upon exploiting the md property of vt, gives

E
(
w̄4
t−1

)
=

t−3∑
j=0

%4j E
(
v4
t−1−j

)
+ 3

t−3∑
j=0

t−3∑
k=0

j 6=k

%3j%k E(v3
t−jvt−k)

+3

t−3∑
j=0

t−3∑
k=0

j 6=k

%2j%2k E
(
v2
t−1−jv

2
t−1−k

)
+ 6

t−3∑
j=0

t−3∑
k=0

t−3∑
l=0

j 6=k 6=l

%2j%k%l E
(
v2
t−1−jvt−1−kvt−1−l

)
.

Now,
∣∣E(v3

t−jvt−k)
∣∣ ≤ E(

∣∣v3
t−jvt−k

∣∣) ≤ ∥∥v3
t−j
∥∥

4/3
‖vt−k‖4 thanks to the Hölder inequality, where the

norms are uniformly bounded, so∣∣∣∣∣∣∣∣
t−3∑
j=0

t−3∑
k=0

j 6=k

%3j%k E(v3
t−jvt−k)

∣∣∣∣∣∣∣∣ ≤ C
t−3∑
j=0

t−3∑
k=0

j 6=k

%3j%k ≤ C

t−3∑
j=0

%3j

(t−3∑
k=0

%k

)
≤ CT 2η,

and a similar argument shows that 3
∑t−3
j=0

∑t−3
k=0

j 6=k
%2j%2k E

(
v2
t−1−jv

2
t−1−k

)
= O

(
T 2η

)
as well.

Furthermore, since E (vt−1−kvt−1−l) = 0 and E
(
v2
t−1−jvt−1−kvt−1−l

)
= 0 for j 6= k 6= l whenever

j ≥ l or j ≥ k,∣∣E (v2
t−1−jvt−1−kvt−1−l

)∣∣ ≤ Var
(
v2
t−1−j

)
|E (vt−1−kvt−1−l)|

+
∣∣E ((v2

t−1−j −Var
(
v2
t−1−j

))
vt−1−kvt−1−l

)∣∣
≤ C√

(k − j)1+ψ
(l − j)1+ψ

for all t, and thus, with σv uniformly bounded,∣∣∣∣∣∣∣∣
t−3∑
j=0

t−3∑
k=0

t−3∑
l=0

j 6=k 6=l

%2j%k%l E
(
v2
t−1−jvt−1−kvt−1−l

)∣∣∣∣∣∣∣∣ ≤
≤ C

t−3∑
j=0

%4j
t−3∑

k=j+1

t−3∑
l=j+1

k 6=l

%k−j%l−j√
(k − j) (l − j)

≤ C
t−3∑
j=0

%4j
t−3∑

k=j+1

t−3∑
l=j+1

k 6=l

%k−j%l−j√
(k − j)1+ψ

(l − j)1+ψ

≤ C
t−3∑
j=0

%4j
t−3∑

k=j+1

t−3∑
l=j+1

%k−j%l−j√
(k − j) (l − j)

≤ C
t−3∑
j=0

%4j


√√√√t−j−3∑

k=1

%2k

√√√√t−j−3∑
k=1

1

k1+ψ

2

,

≤ C

T−1∑
j=0

%4j

(T−1∑
k=0

%2k

)(
T−1∑
k=1

1

k1+ψ

)

where the positivity of the summands was used in the last step. Summing up, we have for all
t = 2, . . . , T that

E
(
w̄4
t−1

)
≤ CT 2η

as required. Examining now rt−1 =
∑t−3
j=0 %

j∆v̄t−1−j − c
T

∑t−3
j=0 %

jxt−2−j , we have �rst that

t−3∑
j=0

%j∆v̄t−1−j = v̄t−1 − %t−3v̄1 − (1− %)

t−4∑
j=0

%j v̄t−2−j

where v̄t is uniformly L4-bounded since its coe�cients are absolutely summable and its shocks are
(at least) uniformly L4-bounded, which leads to

sup
t=2,...,T

‖v̄t−1‖4 = C < CT
η/2 and sup

t=2,...,T

∥∥%t−3v̄1

∥∥
4

= C%t−3 < CT
η/2;
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furthermore, ∥∥∥∥∥∥
t−4∑
j=0

%j v̄t−2−j

∥∥∥∥∥∥
4

≤
t−4∑
j=0

%j ‖v̄t−2−j‖4 ≤ CT
η

hence (1− %)
∑t−4
j=0 %

j v̄t−2−j is uniformly L4 bounded as required. To complete the result, note that∥∥∥∥∥∥ cT
t−3∑
j=0

%jxt−2−j

∥∥∥∥∥∥
4

≤ C 1

T

t−3∑
j=0

%j ‖xt−2−j‖4 ≤ CT
η−1/2

since T−1/2xt is uniformly L4 bounded (which can be shown along the lines of showing that
T−η/2w̄t−1 is uniformly L4 bounded). The bounds on the L4 norms of the summands imply also
that T−η/2wt−1 is itself uniformly L4 bounded.

2. Follows with the continuous mapping theorem [CMT] after noting that the integrable component of
f is a bounded function (as it is Lipschitz with vanishing tails) so I (xt−1) vanishes upon division by
Tα uniformly in t.

3. Follows from item 2 with the CMT.

4. Follows by the arguments of Kurtz and Protter (1991) from joint convergence in item 2 and Lemma
1, since ut has the martingale di�erence property.

5. Using item 1 of the lemma, we obtain immediately with the Markov inequality that

1

T 1+η/2

T∑
t=2

wt−1 =
λ

T 1+η/2

T∑
t=2

w̄t−1 +
1

T

T∑
t=2

rt−1

T η/2
=

λ

T 1+η/2

T∑
t=2

w̄t−1 + op (1) ;

to arrive at the desired result, note that, after re-arranging the summands of
∑T
t=2 w̄t−1,

1

T 1+η/2

T∑
t=2

w̄t−1 =
1

T 1+η/2

T−1∑
t=2

1− %T−t

1− %
vt = T

η/2−1/2 1√
T

T−1∑
t=2

(
1− %T−t

)
vt

where T η/2−1/2 → 0 and vt is a md sequence and 0 <
∣∣1− %T−t∣∣ < 1, so 1√

T

∑T−1
t=2

(
1− %T−t

)
vt =

Op (1).

6. Let St−1 =
∑t−1
j=1 wj and, with item 1, write

‖St−1‖4 = |λ|

∥∥∥∥∥∥
t−1∑
j=1

w̄j

∥∥∥∥∥∥
4

+

t−1∑
j=1

‖rj‖4 ,

where
∑t−1
j=1 ‖rj‖4 ≤ C (t− 1) sup2≤t≤T ‖rt−1‖4 = o

(
T 1+η/2

)
and∥∥∥∥∥∥

t−1∑
j=1

w̄j

∥∥∥∥∥∥
4

=

∥∥∥∥∥∥
t−2∑
j=1

1− %t−j−1

1− %
vj+1

∥∥∥∥∥∥
4

= T η

∥∥∥∥∥∥
t−2∑
j=1

(
1− %t−j−1

)
vj+1

∥∥∥∥∥∥
4

.

Now, 0 <
∣∣1− %t−j−1

∣∣ < 1 so the arguments in the proof of item 1 establish uniform boundedness of∥∥∥ 1√
T

∑t−2
j=1

(
1− %t−j−1

)
vj+1

∥∥∥
4
, such that

sup
2≤t≤T

‖St−1‖4 = O
(
T η+1/2

)
= o

(
T 1+η/2

)
.

Then, recall that sup2≤t≤T ‖xt−1‖4 = O
(√

T
)
and the result follows with

1

T 3/2+η/2

T∑
t=2

xt−1wt−1 =
1

T 3/2+η/2
ST−1xT−1 −

1

T 3/2+η/2

T−1∑
t=2

St−1vt +
c

T 5/2+η/2

T−1∑
t=2

St−1xt−1

and the md property of vt (for the evaluation of the 2nd term on the r.h.s.).
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7. Write

1

T 1+η/2

T∑
t=2

(
sin

πt

2T
− sin

)
wt−1 =

1

T 1+η/2

T∑
t=2

sin
πt

2T
wt−1 − sin

1

T 1+η/2

T∑
t=2

wt−1

where the second term on the r.h.s. is op (1) thanks to item 5 of this lemma; for the �rst term we
have that

1

T 1+η/2

T∑
t=2

w sin
πt

2T
wt−1 =

1

T 1+η/2

T∑
t=2

sin
πt

2T
w̄t−1 +

1

T 1+η/2

T∑
t=2

sin
πt

2T
rt−1.

Since w̄t−1 =
∑t−3
j=0 %

jvt−1−j , we have that 0 < E (w̄t−1w̄s−1) and consequently

Var

(
1

T 1+η/2

T∑
t=2

sin
πt

2T
w̄t−1

)
=

1

T 2+η

T∑
t=2

T∑
s=2

sin
πt

2T
sin

πs

2T
E (w̄t−1w̄s−1)

≤ 1

T 2+η

T∑
t=2

T∑
s=2

E (w̄t−1w̄s−1) .

Then, since w̄t−1 is an AR(1) process with uniformly L2bounded md innovations, it follows that

E (w̄t−1w̄s−1) ≤ C%|s−t|
min{s,t}−3∑

j=0

%2j ≤ CT η%|s−t|,

and, consequently,

Var

(
1

T 1+η/2

T∑
t=2

sin
πt

2T
w̄t−1

)
≤ C (T − 1)

T 2
+ 2C

1

T

T−2∑
h=1

T − h
T

%h ≤ C

T
+ 2C

1

T

T−2∑
h=1

%h

≤ CT η−1.

The result follows with Markov's inequality if 1
T 1+η/2

∑T
t=2 sin πt

2T rt−1 = op (1). But this is indeed the
case since

E

(∣∣∣∣∣ 1

T 1+η/2

T∑
t=2

sin
πt

2T
rt−1

∣∣∣∣∣
)
≤ 1

T 1+η/2

T∑
t=2

E (|rt−1|) ≤ CT−
η/2 sup

t=1,...,T
‖rt−1‖2 → 0

thanks to item 1 of this lemma.

8. Note �rst that maxt=1,...,T |xt−1| = Op
(
T 1/2

)
thanks to weak converge of T−1/2x[sT ] to a process

bounded in probability on [0, 1]; with ū = 1
T

∑T
t=2 ut = Op

(
T−1/2

)
, f (x) = 1

T

∑T
t=2 f (xt−1) = Tα/2

(cf. item 3 of this Lemma) and β1 = O
(
T−(α+1)/2

)
, it follows that

max
t
|ỹt − ut| = Op

(
T−1/2

)
.

Then,

1

T 1+η/2

T∑
t=2

sin
πt

2T
wt−1ỹ

2
t =

1

T 1+η/2

T∑
t=2

sin
πt

2T
wt−1u

2
t +

2

T 1+η/2

T∑
t=2

sin
πt

2T
wt−1ut (ỹt − ut)

+
1

T 1+η/2

T∑
t=2

sin
πt

2T
wt−1 (ỹt − ut)2

where

E

(∣∣∣∣∣ 1

T 1+η/2

T∑
t=2

sin
πt

2T
wt−1u

2
t

∣∣∣∣∣
)
≤ 1

T 1+η/2

T∑
t=2

E
(∣∣wt−1u

2
t

∣∣) ≤ 1

T 1+η/2

T∑
t=2

‖wt−1‖2
∥∥u2

t

∥∥
2

= O (1)

thanks to the Cauchy-Schwarz inequality (recall, both ut and T
−η/2wt−1 are uniformly L4 bounded).

Moreover, 1
T 1+η/2

∑T
t=2 |wt−1| |ut| = Op (1) thanks to Markov's and the cauchy-Schwarz inequalities
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again, so ∣∣∣∣∣ 2

T 1+η/2

T∑
t=2

sin
πt

2T
wt−1ut (ỹt − ut)

∣∣∣∣∣ ≤ Cmaxt |ỹt − ut|
T 1+η/2

T∑
t=2

|wt−1| |ut|
p→ 0,

just like 1
T 1+η/2

∑T
t=2 sin πt

2T wt−1 (ỹt − ut)2
, and the result follows.

9. We have that ∣∣∣∣∣ 1

T α/2+1+η/2

T∑
t=2

wt−1f (xt−1)

∣∣∣∣∣ ≤ sup
t=2,...,T

∣∣∣∣f (xt−1√
T

)∣∣∣∣ 1

T 1+η/2

T∑
t=2

|wt−1| .

Then, with T−1/2xt−1 uniformly bounded in probability thanks to the weak convergence in Lemma

1, we have supt

∣∣∣f (xt−1√
T

)∣∣∣ = Op (1) thanks to the continuity of f . Then, T−η/2wt−1 is uniformly

L2-bounded, such that

E

(
1

T 1+η/2

T∑
t=2

|wt−1|

)
= O (1) ;

the result then follows with Markov's inequality.

10. Write

1

T 1+η

T∑
t=2

w2
t−1 =

λ2

T 1+η

T∑
t=2

w̄2
t−1 +

2λ

T 1+η

T∑
t=2

w̄t−1rt−1 +
1

T 1+η

T∑
t=2

r2
t−1

To establish the result, it su�ces to show that 0 < C1 < E
(

1
T 1+η

∑T
t=2 w̄

2
t−1

)
< C2 for suitable

constants C1,2 and that 1
T 1+η

∑T
t=2 r

2
t−1 = Op (1). We have indeed

E

(
1

T 1+η

T∑
t=2

w̄2
t−1

)
=

1

T 1+η

T∑
t=2

E
(
w̄2
t−1

)
< C2

since T−η/2w̄t−1 is uniformly L2-bounded. It is also easily shown that that E
(
T−ηw̄2

t−1

)
is bounded

away from zero. To complete the result, recall that T−η/2rt−1 is uniformly L2-bounded and apply
Markov's inequality.

11. Following the arguments of item 8, we �rst have that

1

T 1+η

T∑
t=2

w2
t−1ỹ

2
t =

1

T 1+η

T∑
t=2

w2
t−1u

2
t + op (1) .

Then,

E

(∣∣∣∣∣ 1

T 1+η

T∑
t=2

w2
t−1u

2
t

∣∣∣∣∣
)
≤ 1

T 1+η

T∑
t=2

E
(∣∣w2

t−1u
2
t

∣∣)
and, exploiting the uniform L4 boundedness of T−η/2wt−1 and ut, the result follows with the Cauchy-
Schwarz and Markov's inequalities.

12. Analogously to the proof of item 11,

1

T

T∑
t=2

(
sin

πt

2T
− sin

)2

ỹ2
t =

1

T

T∑
t=2

(
sin

πt

2T
− sin

)2

u2
t + op (1) ,

and the result follows with arguments analog to the ones in the proof of Lemma 2.

Proof of Lemma 4

1. Begin by noting that

wt−1 = (xt−1 − µ)− %t−3 (x1 − µ) + (%− 1)

t−4∑
j=0

%j (xt−2−j − µ) ,
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where

(%− 1)

t−4∑
j=0

%j (xt−2−j − µ) = − a

T η

t−4∑
j=0

%j (xt−2−j − µ) = − a

T η
dt−2

with dt−2 zero-mean mildly integrated. With arguments as in the proof of item 1 Lemma 3, it is
straightforward to show that T−η/2dt−2 is uniformly L4-bounded.

2. Write

1

T

T∑
t=2

x̃t−1 sin
πt

2T
=

1

T

T∑
t=2

((xt−1 − µ)− (x− µ)) sin
πt

2T

=
1

T

T∑
t=2

(xt−1 − µ) sin
πt

2T
− x− µ

T

T∑
t=2

sin
πt

2T
,

where the second term on the r.h.s is op (1). The expected value of the �rst term is zero and for its
variance it holds

Var

(
1

T

T∑
t=2

(xt−1 − µ) sin
πt

2T

)
≤ 1

T 2

T−1∑
t=1

T−1∑
s=1

|E ((xt − µ) (xs − µ))| .

We can rewrite (xt − µ) = B(L) (1− %L)
−1
vt = ˜B(L)vt with b̃j 1-summable. It follows that

1

T 2

T−1∑
t=1

T−1∑
s=1

∣∣∣∣∣∣E
∑

j≥0

b̃jvt−j

∑
k≥0

b̃kvs−k

∣∣∣∣∣∣ =

=
1

T 2

T−1∑
t=1

T−1∑
s=1

∑
j≥0

∑
k≥0

∣∣∣b̃j b̃kσv,t−jσv,s−k∣∣∣ |E (νt−jνs−k)|

≤ max
t

(
σ2
vt

) C
T 2

T−1∑
t=1

T−1∑
s=1

∑
j≥0

∑
k≥0

∣∣∣b̃j b̃k∣∣∣ = max
t

(
σ2
vt

) C
T 2

T−1∑
t=1

T−1∑
s=1

∑
j≥0

∣∣∣b̃j∣∣∣
2

.

Exploiting the absolute summability of b̃j , Var
(

1
T

∑T
t=2 (xt−1 − µ) sin πt

2T

)
is thus seen to be bounded

as required.

3. Rewriting the original term yields

1

T

T∑
t=2

wt−1

(
sin

πt

2T
− sin

)
=

1

T

T∑
t=2

wt−1 sin
πt

2T
− sin

T

T∑
t=2

wt−1,

where the second term on the r.h.s expands to

sin

T

T∑
t=2

wt−1 =
sin

T

T∑
t=2

(xt−1 − µ)− x1 − µ
T

sin

T∑
t=2

%t−3 +
sin

T 1+η/2

T∑
t=2

rt−1T
η/2.

It is easy to see that the �rst two terms on the r.h.s are op (1). The third term is op (1) as well since
rt−1T

η/2 is uniformly L4-bounded as shown in item 1 of this Lemma. Regarding the remaining term

1

T

T∑
t=2

wt−1 sin
πt

2T
=

1

T

T∑
t=2

(xt−1 − µ) sin
πt

2T
− x1 − µ

T

T∑
t=2

%t−3 sin
πt

2T
+

1

T

T∑
t=2

rt−1 sin
πt

2T
,

it is again easy to see that the second part on the r.h.s is op (1) and the �rst part is also op (1) as
previously shown in item 2 of this Lemma. Finally, with the uniformly L1-boundedness of rt−1T

η/2

follows

E

(∣∣∣∣∣ 1

T

T∑
t=2

rt−1 sin
πt

2T

∣∣∣∣∣
)
≤ 1

T 1+η/2
E

(
T∑
t=2

∣∣∣T η/2rt−1

∣∣∣) ≤ C

T η/2
→ 0.

The result follows since all single terms are op (1).
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4. We have

E

(∣∣∣∣∣ 1

T

T∑
t=2

wt−1

(
sin

πt

2T
− sin

)
ỹ2
t

∣∣∣∣∣
)
≤ 1

T

T∑
t=2

E

(
|wt−1|

∣∣∣∣sin πt

2T
− sin

∣∣∣∣ ∣∣ỹ2
t

∣∣)

≤ 1

T

T∑
t=2

√
E
(
w2
t−1

)
E (ỹ4

t ) =
1

T

T∑
t=2

‖wt−1‖2 ‖ỹt‖
2
4 .

Furthermore it holds that wt−1 = (xt−1 − µ)− %t−3 (x1 − µ) + rt−1 is uniformly L2-bounded since xt
as well as T η/2rt−1 are (at least) uniformly L2-bounded. Moreover,

‖ỹt‖4 ≤ |β1| ‖f (xt−1)‖4 + ‖ut‖4 + |β1|
∥∥∥f (x)

∥∥∥
4

+ ‖u‖4 ,

‖f(xt−1)‖4 ≤ |Hα(1)| ‖xt−1‖α4α + ‖I(xt−1)‖4

With Hα(1) bounded, I (xt−1) a bounded function and xt−1 uniformly L4α-bounded, f(xt−1) turns
out to be uniformly L4-bounded. By applying Minkowski's inequality it follows that f (x) is also
uniformly L4-bounded and u is uniformly L4-bounded since ut is. Hence ỹt is uniformly L4-bounded
and the result follows with Markov's inequality.

5. It holds

1

T

T∑
t=2

w2
t−1 =

1

T

T∑
t=2

(xt−1 − µ)
2

+
(x1 − µ)

2

T

T∑
t=2

(
%t−3

)2
+

1

T

T∑
t=2

r2
t−1

− x1 − µ
T

T∑
t=2

(xt−1 − µ) %t−3 +
1

T

T∑
t=2

(xt−1 − µ) rt−1 −
x1 − µ
T

T∑
t=2

%t−3rt−1.

With Lemma 2 follows 1
T

∑T
t=2 (xt−1 − µ)

2 p→ E0
[
i2
]
. Each of the remaining terms is op (1) thanks

to the Markov inequality, since

E

(∣∣∣∣∣ (x1 − µ)
2

T

T∑
t=2

(
%t−3

)2∣∣∣∣∣
)
≤

E
(

(x1 − µ)
2
)

T
CT η = Var (x1)

C

T 1−η → 0

E

(∣∣∣∣∣ 1

T

T∑
t=2

r2
t−1

∣∣∣∣∣
)

=
1

T η
1

T

T∑
t=2

∣∣T ηr2
t−1

∣∣ ≤ C

T η
→ 0

with the crossproducts easily dealt with using the Cauchy-Schwarz inequality.

6. Note �rst that maxt
∥∥ỹ2
t − u2

t

∥∥
2
→ 0 since

ỹ2
t − u2

t = 2ut

(
β1f (xt−1)−

(
ū+ β1f (x)

))
+
(
β1f (xt−1)−

(
ū+ β1f (x)

))2

,

where, with xt−1 uniformly L4α-bounded and thus f (xt−1) uniformly L4-bounded,

‖utβ1f (xt−1)‖2 ≤ |β1| ‖ut‖4 ‖f (xt−1)‖4 ≤
C√
T

;

furthermore, f (x) is itself uniformly L4-bounded and ‖ū‖4 → 0 (using the arguments from the proof

of item 1, Lemma 3, it can be shown that T−1/2
∑T
t=1 ut is uniformly L4-bounded) so, uniformly in t,∥∥∥ut (ū+ β1f (x)

)∥∥∥
2
≤ ‖ut‖4 ‖ū‖4 + |β1| ‖ut‖4

∥∥∥f (x)
∥∥∥

4
= o (1) ,

and, similarly,∥∥∥∥(β1f (xt−1)−
(
ū+ β1f (x)

))2
∥∥∥∥

2

=
∥∥∥β1f (xt−1)−

(
ū+ β1f (x)

)∥∥∥2

4

≤ ‖β1f (xt−1)‖24 + 2 ‖β1f (xt−1)‖4
∥∥∥ū+ β1f (x)

∥∥∥
4

+
∥∥∥ū+ β1f (x)

∥∥∥2

4
= o (1)
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uniformly in t. Then,

1

T

T∑
t=2

w2
t−1ỹ

2
t =

1

T

T∑
t=2

w2
t−1u

2
t +

1

T

T∑
t=2

w2
t−1

(
ỹ2
t − u2

t

)
where

E

(∣∣∣∣∣ 1

T

T∑
t=2

w2
t−1

(
ỹ2
t − u2

t

)∣∣∣∣∣
)
≤ 1

T

T∑
t=2

E
(∣∣w2

t−1

(
ỹ2
t − u2

t

)∣∣) ≤ 1

T

T∑
t=2

‖wt−1‖24
∥∥ỹ2
t − u2

t

∥∥
2

≤
(

max
t
‖wt−1‖4

)2

max
t

∥∥ỹ2
t − u2

t

∥∥
2
→ 0

since wt−1 is uniformly L4-bounded, see item 1 of this lemma, so T−1
∑T
t=2 w

2
t−1

(
ỹ2
t − u2

t

) p→ 0. It is

not di�cult to show that maxt
∥∥w2

t−1 − x2
t−1

∥∥
2
→ 0, so we obtain analogously that

1

T

T∑
t=2

w2
t−1u

2
t =

1

T

T∑
t=2

x2
t−1u

2
t + op (1) ,

and the result follows with Lemma 2.

7. Note that, along the lines of the above items,

1√
T

T∑
t=2

wt−1ũt =
1√
T

T∑
t=2

(xt−1 − µ)ut + op (1) .

Then, with T−1
∑T
t=2 (xt−1 − µ)

2
u2
t

p→ E∗0
[
i2
]
according to Lemma 2 and (xt−1 − µ)ut possessing

the md property, it su�ces to show that max1≤t≤T |(xt−1 − µ)ut| = op
(
T 1/2

)
in order to be able to

apply a CLT for md arrays (e.g. Davidson, 1994, Theorem 24.3) to establish the result. To this end,
note that

max
1≤t≤T

|(xt−1 − µ)ut| ≤ max
1≤t≤T

|xt−1 − µ| max
1≤t≤T

|ut|

where both ut and xt−1 are uniformly L4α-bounded, so both maxima are easily shown to beOp
(
T 1/4α

)
=

op
(
T 1/4

)
as required.

8. Follows along the lines of item 12 of Lemma 3 and we omit the details.

Proof of Proposition 1

The OLS-based t statistic is given by

tlsβ =

∑T
t=2 f (xt−1)ut

σ̂u

√∑T
t=2 f

2 (xt−1)
+

β

σ̂u

√√√√ T∑
t=2

f2 (xt−1).

Then, under near-integration,

tlsβ =

1
ω̄αv T

α/2+0.5

∑T
t=2 f (xt−1)ut

σ̂u

√
1

ω̄2α
v Tα+1

∑T
t=2 f

2 (xt−1)
+
Tα/2+0.5βλαω̄αv

σ̂u

√√√√ 1

λ2αω̄2α
v Tα+1

T∑
t=2

f2 (xt−1)

=

1
T 0.5

∑T
t=2 f

(
1

ω̄vT 0.5xt−1

)
ut

σ̂u

√
1
T

∑T
t=2 f

2
(

1
ω̄vT 0.5xt−1

) + b
λαω̄αv
σ̂u

√√√√ 1

T

T∑
t=2

f2

(
1

λω̄vT 0.5
xt−1

)
;
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The result follows with the CMT and Lemma 3 if σ̂u
p→ ω̄u under the local alternative as well. We have

that

σ̂u =
1

T

T∑
t=1

y2
t =

1

T

T∑
t=1

(
ut +

b

T (α+1)/2
f (xt−1)

)2

=
1

T

T∑
t=1

u2
t +

2b

T (α+3)/2

T∑
t=1

f (xt−1)ut +
b2

Tα+2

T∑
t=1

f2 (xt−1)

=
1

T

T∑
t=1

u2
t + op (1)

which leads to the desired result since 1
T

∑T
t=1 u

2
t

p→ ω̄2
u indeed (the latter convergence being a particular

case of Lemma 2).

Under stationarity, we have similarly that

σ̂2
u =

1

T

T∑
t=1

u2
t + op (1) = ω̄2

u + op (1) ,

and the result follows with Lemma 2 and a CLT for martingale di�erence arrays (e.g. Davidson, 1994,
Theorem 24.3).

Proof of Proposition 2

Write

tlinβ =

∑
ytxt−1

σ̂u

√∑
x2
t−1

=

∑
xt−1ut

σ̂u

√∑
x2
t−1

+ β

∑
xt−1f (xt−1)

σ̂u

√∑
x2
t−1

such that

tlinβ =
1

λω̄uω̄vT

∑T
t=2 xt−1ut

σ̂u
ω̄u

√
1

λ2ω̄2
vT

2

∑T
t=2 x

2
t−1

+
T α/2+1/2βλαω̄αv

σ̂u

1
λα+1ω̄α+1

v Tα/2+3/2

∑T
t=2 xt−1f (xt−1)√

1
λ2ω̄2

vT
2

∑T
t=2 x

2
t−1

and note that xt−1 ≡ H1 (xt−1) ; the result follows with Lemma 3 and the CMT. The proof is analogous to
that of Proposition 1 in the stable case, where Eµ [f · i] 6= 0 due to the monotonicity of f and f(0) = 0.

Proof of Proposition 3

Write the test statistic with Eicker-White heteroskedasticity-consistent covariance matrix estimators as

t2Sβ =
ATBT√
ATCTA′T

where

AT =

T∑
t=2

x̃t−1z̃
′
t−1D

−1
T

(
D−1
T

T∑
t=2

z̃t−1z̃
′
t−1D

−1
T

)−1

,

BT = D−1
T

T∑
t=2

z̃t−1ỹt and CT = D−1
T

T∑
t=2

z̃t−1z̃
′
t−1ỹ

2
tD
−1
T

with DT de�ned di�erently for the cases of near integration and stationarity as follows.

Proof of item 1. Under near-integration, let DT = diag
(
T 1/2, T 1/2+η/2

)
and examine

t2Sβ =
1
T ATBT√
1
T 2ATCTA′T

.
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Then, with J̄c,σv =
´ 1

0
Jc,σv (s) ds and sin = 1/T

∑T
t=1 sin πt

2T ,

1

T

T∑
t=2

x̃t−1z̃
′
t−1D

−1
T ⇒

(
λω̄v

(ˆ 1

0

Jc,σv (s) sin
πs

2
ds− 2

π
J̄c,σv

)
, 0

)
,

since sin→
´ 1

0
sin πs

2 ds = 2
π and 1

T 3/2

∑T
t=2 xt−1 ⇒ λω̄v

´ 1

0
Jc,σv (s) ds, and, with Lemma 3 items 3, 5 and 6,

1

T 3/2+η/2

T∑
t=2

xt−1wt−1 −

(
1

T 3/2

T∑
t=2

xt−1

)(
1

T 1+η/2

T∑
t=2

wt−1

)
= op (1) .

Furthermore, we have with items 7 and 10 of Lemma 3 that

D−1
T

T∑
t=2

z̃t−1z̃
′
t−1D

−1
T =

( ´ 1

0

(
sin πs

2 −
2
π

)2
ds+ op (1) 0

0 Θp (1)

)
and

CT =

( ´ 1

0

(
sin πs

2 −
2
π

)2
σ2
u (s) ds+ op (1) Op (1)

Op (1) Op (1)

)
.

Note that it is not necessary to establish the precise limiting behavior of the Op (1) and Θ (1) terms since
they are multiplied with 0 in AT and ATCTA

′
T . Summing up,

√
1

T 2
ATCTA′T ⇒

λω̄v

∣∣∣´ 1

0

(
Jc,σv (s) sin πs

2 −
2
π J̄c,σv

)
ds
∣∣∣√´ 1

0

(
sin πs

2 −
2
π

)2
σ2
u (s) ds

´ 1

0

(
sin πs

2 −
2
π

)2
ds

.

Then, examine

D−1
T

T∑
t=2

z̃t−1ỹt = D−1
T

T∑
t=2

z̃t−1ũt + β1D
−1
T

T∑
t=2

z̃t−1

(
f (xt−1)− f (x−1)

)
(3)

with f (x−1) = 1
T

∑T
t=2 f (xt−1) . Focusing on the �rst summand on the r.h.s., we observe that

D−1
T

T∑
t=2

z̃t−1ũt = D−1
T

T∑
t=2

(
sin πt

2T −
2
π

wt−1 − w̄−1

)
ut = D−1

T

T∑
t=2

(
sin πt

2T −
2
π

wt−1

)
ut + op (1)

since w̄−1 = 1
T

∑T
t=2 wt−1 = Op

(
T η/2

)
is negligible (see Lemma 3). The �rst element of the vector converges

to

ω̄u

ˆ 1

0

(
sin

πs

2
− 2

π

)
dWσu (s)

which is normal with mean zero and variance
´ 1

0
sin2 πs

2 σ
2
u (s) ds − ω̄2

u
4
π2 . The second summand on the

r.h.s. of (3) is given by

b

T (α+1)/2
D−1
T

T∑
t=2

(
sin πt

2T −
2
π

wt−1

)
f (xt−1) + op (1)
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again since w̄−1 is negligible. Recall from Lemma 3 item 9 that T−α/2−1−η/2∑T
t=2 wt−1f (xt−1) = Op (1),

so we have that

1

T
ATBT ⇒

λω̄v

(ˆ 1

0

Jc,σv (s) sin
πs

2
ds− 2

π
J̄c,σv

)(ˆ 1

0

(
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πs

2
− 2

π

)2

ds

)−1

×

×ω̄u
ˆ 1

0

(
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2
− 2

π

)
dWσu (s)

+b λα+1ω̄α+1
v

(ˆ 1

0

Jc,σv (s) sin
πs

2
ds− 2

π
J̄c,σv

) (ˆ 1

0

(
sin

πs

2
− 2

π

)2

ds

)−1

×

×
ˆ 1

0

(
sin

πs

2
− 2

π

)
Hα (Jc,σv (s)) ds

leading to

t2Sβ = sgn

(ˆ 1

0

Jc,σv (s) sin
πs

2
ds− 2

π
J̄c,σv

)
ω̄u
´ 1

0

(
sin πs
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π

)
dWσu (s)√´ 1

0

(
sin πs

2 −
2
π
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σ2
u (s) ds

+b λαω̄αv

´ 1
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(
sin πs

2 −
2
π

)
Hα (Jc,σv (s)) ds√´ 1
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(
sin πs

2 −
2
π

)2
σ2
u (s) ds

sgn

(ˆ 1

0

Jc,σv (s) sin
πs

2
ds− 2

π
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)
;

this completes the result (under the null, the sign cancels out upon squaring and the ratio
´ 1
0 (sin πs

2 −
2
π )dWσu (s)√´ 1

0 (sin πs
2 −

2
π )

2
σ2
u(s)ds

is standard normal).

Proof of item 2. Should xt be stable, rede�ne DT = diag
(
T 1/2, T 1/2

)
and consider a di�erent standard-

ization of numerator and denominator of t2Sβ ,

t2Sβ =

1√
T
ATBT√

1
T ATCTA

′
T

.

The behaviour of the term
∑T
t=2 x̃t−1z̃

′
t−1D

−1
T is di�erent:

1√
T

T∑
t=2

x̃t−1z̃
′
t−1D

−1
T →

(
0, Eµ

[
i2
]
− (Eµ [i])

2
)

thanks to Lemmas 2 and 4. Comparing with item 1, it is seen that the sample covariance of x̃t−1 and z̃t−1

acts as a selector (the limits in the two cases, stable and near integrated, are orthogonal); see Breitung and
Demetrescu (2015). The sample covariance matrix of the instruments satis�es according to Lemma 4

D−1
T

T∑
t=2

z̃t−1z̃
′
t−1D

−1
T
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(
sin πs

2 −
2
π

)2
ds 0

0 E0
[
i2
] )

while
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Op (1) E∗0
[
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] ) .

Consequently, √
1

T
ATCTA′T ⇒

Eµ
[
i2
]
− (Eµ [i])

2

E0 [i2]

√
E∗0 [i2],
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while, with wt−1 = xt−1−µ+ op (1) from Lemma 4 item 1, it is easily shown that uniform L2-boundedness
of the op (1) term leads to

b
1

T

T∑
t=2

wt−1

(
f (xt−1)− f (x−1)

)
=

b
1

T

T∑
t=2

(xt−1 − x̄)
(
f (xt−1)− f (x−1)

)
− bx̄ 1

T

T∑
t=2

(
f (xt−1)− f (x−1)

)
+ op (1)

p→ b (Eµ [f · i]− Eµ [f ] Eµ [i]) .

The result follows with the suitable items of Lemma 4.
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