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Abstract

Most procedures for detecting stock return predictability rely on linear regression models. When
assessing the null hypothesis of no predictive power in a possibly nonlinear model, practitioners
essentially have two choices. One could resort to a suitable nonparametric test and be prepared
to lose power because of leaving the parametric framework. Since the model is linear under the
null of no predictability, one could also conduct inference in a linear model, and be prepared
to lose power because of the misspecification under the alternative hypothesis. To help decide
which approach to use, the paper focuses on size and local power under the additional difficulty
that the persistence of the regressors, as quantified by their largest autoregressive roots, is
unknown. Regarding nonparametrics, the statistics employed by Juhl (2014, JBES 32, 387-394)
and Kasparis et al. (2015, J. Econometrics 185, 468-494), have x? limiting null distributions
for both low and high regressor persistence, but are asymptotically dominated in terms of
local power by simple linear procedures. We show, theoretically and in simulations, that an
overidentified IV testing scheme following Kostakis et al. (2015, Review of Financial Studies 28,
1506-1553) and Breitung and Demetrescu (2015, J. Econometrics 187, 358-375), is particularly
well suited for inference in additive predictive models with uncertain predictor persistence.
The proposed test is robust to the degree of persistence of the regressors and to time-varying
volatility. An analysis of predictability of S&P 500 stock returns finds significant predictability,
part of which is nonlinear in nature. For log dividend yields and the long-term rate of return
we find a monotonic regression function, while log earnings price ratios exhibit a U-shaped
relation. The latter is driven entirely by the 2008 financial crisis, suggesting that, during crises,
firm-specific characteristics such as valuation ratios may be inconsistent signals of stock price
performance.
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1 Introduction

Predictive regressions for stock returns are an important practical aspect of quantitative finance and
financial econometrics; see e.g. Campbell (2008) and Phillips (2015) for recent reviews. Practitioners
must however face several methodological and empirical challenges. For instance, the signal-to-
noise ratio of the typical (linear) predictive regression involving financial ratios is quite low; see
e.g. Figure 1. Moreover, under endogeneity,' the properties of the usual OLS-based ¢ statistic in
linear regression depend on the degree of persistence of the regressors: Stambaugh (1999) proved
the OLS estimator in a predictive regression with endogenous, autocorrelated regressors to exhibit
serious bias, and Elliott and Stock (1994) show the distribution of the associated ¢ statistic to
depend on the degrees of persistence and endogeneity of the (near-integrated) regressor. Many
potential predictors exhibit indeed high persistence without having an exact unit root; and if
the regressor is well described as being nearly integrated, limiting distributions depend under
endogeneity on a parameter that cannot be consistently estimated. To deal with this issue in the
linear case, Amihud and Hurvich (2004); Amihud et al. (2009, 2010) propose bias corrections that
apply under stationarity conditions for the predictors, while Campbell and Yogo (2006) propose
an improved Bonferroni-based procedure that requires specifying lower and upper bounds for the
unknown persistence of the (near-integrated) regressor. Kostakis et al. (2015) adapt the extended
IV [IVX] procedure of Magdalinos and Phillips (2009) to the predictive regression framework, and

Breitung and Demetrescu (2015) study powerful extensions of the instrumental variable approach.

Still, predictability of stock returns is elusive in practice, in spite of the well-developed theoretical
foundations. As emphasized by Lettau and Van Nieuwerburgh (2008), predictability is plagued
by inconsistencies between in-sample and out-of-sample performance of predictive regressions. To
explain this, there is a growing trend in the literature positing the existence of a nonlinear dimension
in the breakdown of the linear present value model; see e.g. McMillan (2001), McMillan (2003) or
Kanas (2005); in fact, the idea that a nonlinear model may improve forecasting performance for
stock returns can be traced back at least to Chung and Zhou (1996). This is by no means far-
fetched: the relation between stock returns and dividend yields, say, grows exponentially over
time (Ang and Bekaert, 2007), such that the basic linear model may indeed be a less appropriate

representation of the true relation between financial ratios and asset returns.?

Indeed, examining Figure 2 giving local linear regression curve estimates, one may notice that the
slope appears to vary over the range of the predictors, in particular it is smaller in magnitude
around the center of the distribution of the regressors, where most observations lie. A linear fit
would be closer to the slope around the center, and would therefore forecast badly if the out-of-
sample predictor comes from the tails. And we may notice in Figure 1 that especially the log(D/P)
series is decisively below its long-run average from the late 90s onwards, which is largely the period

where out-of-sample predictability is not found; see e.g. Welch and Goyal (2008).

It is therefore quite reasonable to allow for nonlinear regression functions when testing the null

hypothesis of no predictability. But technical developments on testing predictive ability have mostly

!In this context, one speaks of endogenous regressors when the shocks to the series to be predicted are contem-
poraneously correlated with the innovations to the regressors.

2Slope parameter instability is another possible explanation for such phenomena; see, among others, Viceira
(1997), Paye and Timmermann (2006), Ang and Bekaert (2007), and Henkel et al. (2011); this may also be interpreted
as a nonlinear model, with the slope coefficient depending on time or other variables.



Stock Returns

Financial Ratios
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Figure 1: S&P 500 returns, log dividend yield and log earnings/price ratio — monthly observations,

December 1926 to December 2016; see Section 5 for details
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Figure 2: Local linear regression curves of stock returns against lagged financial ratios; see Section
5 for details on the computation

been confined to linear models sofar. Only more recently did Juhl (2014) propose a U statistic to
test the predictive ability of a near-integrated or stationary regressor; building on the work of Wang
and Phillips (2012) and Fan and Li (1999), he shows that the limiting distribution of the U statistic
is the same for either stationary or near-integrated regressors.> Kasparis et al. (2015) study the
Nadaraya-Watson estimator and related test statistics under several types of persistence; their test
statistics can immediately be used for inference in nonlinear predictive regressions, with the same
advantage that the asymptotic distributions are the same irrespective of the actual persistence of
the regressor. Practitioners have in fact continusouly pitted parametric vs. nonparametric methods
even earlier, and there is evidence that linear models cannot fully capture predictability because of

nonlinear predictable components; see e.g. McMillan (2003) or Chen and Hong (2010).

In this paper we argue however that, contrary to the intuition that nonparametric methods can

capture nonlinear dynamics better, mispecified linear models actually have better chances of un-

3In the predictive regression setup, the U statistics of Wang and Phillips (2012) and Juhl (2014) are essentially
the same. Wang and Phillips (2012), however, discuss a more general testing problem, aiming to detect misspeci-
fication in nonlinear cointegrating regressions with near-integrated regressors; similarly, Fan and Li (1999) discuss
misspecification tests in the stationary case.



covering significant predictive relations. To make the point, we focus on an additive nonlinear

predictive regression model,

yt:BQ+B1f($t_1)+ut, t:2,...T. (1)

This nests of course the linear case. Such models have been recently studied by Chang and Park
(2010) and Shi and Phillips (2012) for integrated regressors. In line with the literature, the regressor

x¢—1 has an autoregressive structure,
xp—p=p(@—1—p)+e, t=2,...,T. (2)

with e; a short-memory linear process given as e; = ) | >0 bjvi—; with suitable summability condi-
tions on the Wold coefficients b; and v; is zero-mean uncorrelated such that p is the mean of the
process irrespective of its persistence. We take p to be either fixed and belonging to the stationar-
ity region (cf. Amihud et al., 2009), or near to unity, p = 1 — ¢/ (cf. Campbell and Yogo, 2006),
thus allowing for flexibility in modelling the persistence of the posited predictor. Moreover, x;_1 is
allowed to be endogenous as captured by non-zero contemporaneous correlation of the zero-mean
serially uncorrelated sequence (uy,v;)’; such endogeneity is a typical feature of predictive regres-
sions for stock returns, say. The situation relevant in practice is when p and f are unknown, and

the paper studies inference on $; under such circumstances.

The main interest lies in achieving correctly-sized inference without significant losses of power,
without having to specify the functional form of f (up to regularity conditions) and without having
to decide whether the regressor is stationary or (near) integrated. In particular, it is the local power
that is relevant (cf. Phillips and Lee, 2013) since the prototypical predictive regression (stock returns

on dividend yields) exhibits small coefficients and a low signal-to noise ratio (cf. Figure 1 again).

Bluntly put, the practitioner’s dilemma is as follows. Should one run a linear regression of y; on
x4—1 instead of estimating the nonlinear relation (1), power may be lost when testing 81 = 0 due
to having misspecified f to be linear under the alternative. If, on the other hand, one uses a
nonparametric regression method, power is lost again due to lower convergence rates, say, than for
a parametric (even misspecified) setup; moreover, the problem worsens in a nonparametric multiple
regression setup, where convergence rates may further be reduced by the curse of dimensionality.
One has the choice between a rock and a hard place: should inference rely on a misspecified (under

the alternative) linear model, or on typically less powerful nonparametric techniques?

To answer the question of which approach to use, we exploit the fact that modelling f appropriately
is not always a strictly necessary step in answering the “yes/no” question on predictive ability,
even in a possible nonlinear framework; modelling f could well be done after deciding whether
there is predictive power at all. This is because of two reasons. First, the null hypothesis of no
predictability is, trivially, linear: v, = o 4+ 0 - 241 + us. Second, local alternatives in (1) imply
local departures from linearity, so power losses due to misspecification may not be as serious as
in a textbook situation. We consider power against sequences of local alternatives of the form
B1 = b/1v for suitable v > 0 depending on the properties of the regression function under the
alternative (the case b = 0 recovers the null hypothesis and thus size). Since f is unknown, we
make minimal identifying assumptions, and consider in a first step alternatives where the regression

function f is monotonic and asymptotically homogenous of some degree v > 0 in the sense of Park



and Phillips (1999). For the typical financial predictive regression with predictors such as the log
dividend price ratio (for which theory predicts an upwards sloping relation), monotonicity is a
reasonable requirement. Among others, this allows f to be a (signed) power function, and includes
piecewise linearity as a particular case. A (misspecified) linear model can be interpreted as a linear
approximation of the unknown function f, and our approach may alternatively be formulated in
terms of the Taylor expansion approach of Luukkonen et al. (1988). This perspective then allows
us to deal with potential violations of monotonicity by simply using a higher-order expansion.

Therefore, we are able to relax the monotonicity requirement in a second step.

In more detail, our contributions are as follows. Section 2 provides the model framework. To keep
this paper self-contained, the section also gives a preliminary analysis showing that, not surpris-
ingly, the local power of OLS-based tests building on knowing the true functional form depends
on the homogeneity degree « of the regression function f for nearly integrated regressors with
nontrivial power given against alternatives of the type 1 = bT— 5. Then, for nearly integrated
regressors, we show the local power of the test assuming a linear relation to be nontrivial in the
same T~ 3 neighbourhoods of the null as that of the unfeasible OLS; this is quite surprising given
the misspecification to linearity of the predictive model. Moreover, the test statistics considered
by Juhl (2014) and Kasparis et al. (2015) for testing predictive ability of unknown functional form
have reduced power in the sense that it has power equal to size in neighbourhoods of the null of
type T' ~°3". The same ranking holds, at a different scale, in the stationary case, where parametric
procedures typically exhibit /T convergence rates compared to lower rates in the nonparametric

approach.

Since linear OLS-based testing is size-distorted in the misspecified linear regression case, we shall
resort in Section 3 to robust IV estimation and testing as advocated by Breitung and Demetrescu
(2015) to provide a test with asymptotic size control and, as we shall see, power in the “optimal”
neighbourhoods of the null.* Breitung and Demetrescu propose a two-stage least squares [2SLS]
procedure using two instrument variables: one instrument (so-called of type I) is designed to
work when x; is stationary, whereas the other (so-called of type II) works under regressor near

® While they discuss several type-l instruments in the linear case, we provide here

integration.
arguments that the IVX instrument (already employed in linear regression by Kostakis et al.,
2015) is the more suitable choice as a type-l instrument in the nonlinear setup. The choice for a
type-1I instrument is not affected by the potential nonlinearity, and we resort to the deterministic
instrument motivated by Phillips (1998) and used by Breitung and Demetrescu (2015); this is a
sine transformation of the scaled time index. In the limit, the 2SLS combination of these two
instruments puts all weight on the instrument suitable for the underlying data generating process
without requiring user input. At the same time, the limiting distribution is chi square in all cases.
Thus, the 2SLS IV procedure has the nice feature that it does not require any additional data or

information about the persistence of the regressors.

Section 4 shows our procedure to perform well against competing methods in finite samples, in

particular so against nonparametric methods. It should be emphasized that, although we favour

*Following Breitung and Demetrescu (2015), optimality refers here to the rate achievable by the OLS estimator
for the concrete persistence of the data generating process.

*Breitung and Demetrescu (2015) show that several type-I instruments may be used for the 2SLS procedure in
principle, but only one of the possible type-II instruments; in practice they find that one instrument of each kind is
sufficient to exploit the potential of the procedure.



the 2SLS IV procedure, the point we make is more general and refers to the power losses of

nonparametric methods compared to linear methods, even if locally misspecified.

We then examine the possibly nonlinear predictability of S&P 500 stock returns in Section 5
using logarithmized dividend-price ratio [log(D/P)] and logaritmized earnings-price ratio [log(E/P)|
as predictor variables. Following Lettau and Van Nieuwerburgh (2008), we further adjust these
predictors for possible permanent breaks in their mean to improve predictability. To find the breaks,
we resort to a testing procedure due to Perron and Yabu (2009), which is designed to work in the
presence of time-varying volatility and uncertain persistence of the examined series; this results in
different break dates compared with Lettau and Van Nieuwerburgh (2008). After finding significant
predictability, driven in particular by log earnings-price ratio, we find evidence of nonlinear or, for
log(E/P), even nonmonotonic relations. It appears, however, that the nonmonotonicity is driven by
the 2008 crisis. Robstness checks further find some evidence of predictability when using long-term

rates of return as predictor.

The final section concludes, and the proofs have been gathered in the Appendix, which also contains

details on all robustness checks performed.

2 Setup

For simplicity, we start by setting the intercept Sy to equal zero. We include it of course in our
final proposal (see Proposition 3), but an intercept is of secondary importance for the prelimi-
nary discussions of this section. Let us now discuss the functional form under the alternative of

predictability.

Assumption 1 Let f be asymptotically homogenous of some order o > 0 in the sense that f (-) =
H, (-)+ I () where Hy, (sz) = s*H, (x) for any x € R and s > 0, and I (-) is Lipschitz-continuous

and integrable, [*_|I (z)|dx < oo. Let furthermore I(0) =0 and assume that f is monotonic.

The centering condition 7(0) = 0 implies that f (0) = 0 since H, (0) = 0 for o > 0. Because we
allow for an intercept in Section 3, which can be set to equal By + S1f (0), the centering condition

18 not restrictive.

The assumption excludes purely integrable functions. For integrated regressors, integrable trans-
formations were analyzed by Chang and Park (2010) and Shi and Phillips (2012); see also Marmer
(2008). Such functions, however, which must converge to zero as their argument goes to plus or
minus infinity, imply that a predictor would lose predictive power as it moves away from some
equilibrium value or region. Since we do not find such a restriction reasonable, we do not consider
purely integrable regression functions here. Monotonicity, which we do find plausible for the typ-
ical predictive regression with stock returns and financial ratios as potential predictors, plays an
important role under regressor stationarity guaranteeing nontrivial local power; see Proposition 2
and the discussion following it, as well as Section 3 for more details. (In Section 3, we also discuss
how to deal with violations of the monotonicity requirement in practice.) Actually, monotonicity
could completely be disposed of under persistence. Still, we require it in both cases for coherence

of the exposition.



Assumption 2 The series y; and xy are generated according to Equations (1) and (2) with e; a
linear process with 1-summable Wold coefficients, i.e. e, = 3~ bjve—j such that 3~ 7 |bj| < oo,

where A = ijo bj > 0 and the shocks (us,v;)" are serially uncorrelated as specified below.

Assumption 3 Let v; = owy and upy = v + oeer where (et,ut)' 15 a strictly stationary and
ergodic martingale difference [md] sequence w.r.t. the natural filtration, with finite moments of

some order 0 > max {4,4a}. Let furthermore v = v (Y1), ow = 0y (YT) and oy = oy, ({/T) =

VA2 (1) 02 (H1) + 02 (t/1) where vy (), 0c (+) and oy, (+) are piecewise Lipschitz functions. Finally,
let sup;ey, ’E (VB —E () vi—ju—i)| < C (jk:)_l/z_"/2 and sup;cy ‘E ((e7 —E (7)) et,jst_kﬂ <
C (k)" vk > 0.

The assumption allows for conditional heteroskedasticity as well as time-varying unconditional vari-
ance and covariance. This makes (uz, v;)" a uniformly modulated (Priestley, 1988, p. 165) or locally
stationary process (see e.g. Dahlhaus, 2012, for a recent review). Indeed, such stylized facts have
been reported in the literature; see e.g. Amado and Terdsvirta (2014) and the references therein.
The finite kurtosis requirement is standard in the literature and plausible for monthly or quarterly
stock returns, while the bounds on E ((Vt2 —E (Vtz)) Vt,jyt_k) and E ((6,52 —E (5?)) €t—j€t—k) re-
strict the serial dependence in the second-order moments of the innovations; cf. also Assumption
1 in Breitung and Demetrescu (2015), which is only slightly more general. The assumption allows

e.g. for asymmetric responses in the conditional heteroskedasticity.

Under Assumptions 2 and 3, the following limiting behaviour arises for suitably normalized partial

sums of the innovations and is relevant for the near-integrated case.

Lemma 1 Let @? fo s)ds be the average variance of u; and 02 = fol o2 (s)ds be the average

variance of vy. Under Assumptwns 2 and 3, it holds as T — oo that

[SZT /s oe (8) oy (8)7(s) AW (s) = ouWg, (8)
0 0 oy (s) Wy Vo, (5)
where “=" stands for weak convergence in a suitable space of cadlag functions, W (s) = (W1 (s), Wa (s))’

is a two-dimensional vector of independent Wiener processes, (W, (s),Vy, (5)) is a vector of so-

called time-transformed Wiener processes also exhibiting with time-varying correlation.
Moreover, for p=1—¢/T,
1 _
ﬁ x[ST] = AWUJC:UU (S)
where convergence is joint and J.q, (s) is the Ornstein-Uhlenbeck type process with mean rever-

sion pammeter ¢ driven by the time-transformed Wiener process Vi, (S), Jeo, () = Vi, (s) —

N —els=nV, (r)dr.,

Proof: see Appendiz C.

For the examination of the low-persistence case where |p| < 1 fixed and hence z; a stable autore-

gression, where sample averages of nonlinear transformations of locally stationary processes are



involved, we define for some continuous function h (-) the functional
1
Em[h] = / E(h(m+ oy, (s)2¢))ds
0

where &, = (1 —pL)™~! (ijo bjLJ) vy with L the lag operator is strictly stationary for |p| < 1

fixed. We shall also require a weighted version thereof,

& [h] = /01 E (h (m + 0y (5) &) (7 (5) v + 02 (3) 5t)2) ds.

Note that, in the case where the regressor is a stable autoregression, the nonhomogenous component
of h is not asymptotically negligible anymore and £ or £* depend on it too. Also, both &, [h] and
Er [h] are positive if h (-) is positive and negative if & (-) is negative. The functionals are then used

to express the probability limit of sample averages, as shown in the following

Lemma 2 Under Assumptions 2 and 3, we have for any function h satisfying Assumption 1 and
lp| <1 fized that

T

1
Zh (z-1) 2 E,[h]
t:l

and
T

1
Zh (zi—1)ui B &5 [h]
t:l

as T — 0.

Proof: see Appendiz C.

Let us now examine the unfeasible OLS estimator assuming known shape of the regression function
f to assess what is achievable in terms of power. Denote by tlﬁs the t statistic from a regression
of y; on f (z4—1) with the usual standard errors computed for simplicity under the null hypothesis

B =0,62=1r ZtT:l y2.5 The asymptotic behaviour of tlﬁs is summarized in the following

Proposition 1 Under Assumptions 1, 2 and 3, we have the following limiting behavior as T — oo.

1. Ifp=1—¢/T and B = then

__b
T(a+1)/29

75ls d fo cov( )) dWa“ \/ H CUU )d .
o \/fo H2 (Jug, (5 ))ds /

2. If |p| <1 fized and 8 = —l7, then

d & 13 Eu[f?]
tﬁ -z @%Z‘u [f2] o Wy,

5The usual residual variance estimator can easily be shown to work under the considered local alternative as well,
in spite of the linear misspecification; we omit the details.



where Z 1s a standard normal variate and &), [fg] = wgé’ﬂ [fQ] when u; 15 conditionally and

unconditionally homoskedastic.

Proof: see Appendiz C.

Under persistence and endogeneity, the null distribution is nonstandard and depends on nuisance
parameters, so corrective action would have been required even when the regression had been
feasible. The null distribution under regressor stationarity is standard normal only if there is no
time-varying volatility and no conditional heteroskedasticity. But, as can be seen from the proof
and from Section 3, Eicker-White heteroskedasticity-robust standard errors would correct for this
problem in the low-persistence case, while, in the near-integrated case, Eicker-White standard errors

would not affect the limiting results; see Proposition 3.

Armed with knowledge about what the upper bounds for the local power are, let us examine the
local power of tests based on a misspecified linear regression. Denote by tlﬁm the resulting ¢ statistic

with residual variance computed again under the null. We then obtain the following

Proposition 2 The following limiting behavior results as T — oo under the assumptions of Propo-

sition 1:

1. Ifp=1—¢r andﬂzw, then

1 oo (1
t%n A fo Jeo, (5) AW, (5) b A%y fo Jeo, (8) Ha (Je, (5)) ds

\/ fOl J02707} (S) dS (Du \/ fOl JC%O-U (S) dS

2. If |p| < 1 fized and B = =L, then, with i the identity function, i(s) = s Vs,

T1/2°
4 E* [42 .
tir 4 2 ,2“[ .]2 1y Cull ]
wugﬂ [Z ] Wy gp, [12}
where Z is a standard normal variate and &) (%] = wZ&, [i%] when u; is conditionally and

unconditionally homoskedastic.

Proof: see Appendiz C.

This result serves to pin down the bounds on power offered by linear models. We note that
parametric local alternatives are achieved in spite of the nonlinearity; this is not the case with
nonparametric procedures, who have power equal to size against such alternatives by construction.
Since the limiting distribution depends on nuisance parameters, a test based on this result is
infeasible, of course. Predictability testing in linear models with regressors of uncertain persistence

is however well understood and we may resort to existing procedures; see Section 3.

Note that regressor endogeneity always leads to a non-standard distribution of the ¢ statistic if the
regressor is highly persistent, but the test has local power in optimal neighbourhoods (optimal in

the sense that the rates of the unfeasible OLS test are achieved). Should the regressor z;_1 be



stable, however, the test has nontrivial power only when &, [f -] # 0.7 Having assumed that f
is monotonic with f(0) = 0, the condition is fulfilled in our setup. One could actually require
Eulf 1] # 0 as identifying condition, which is considerably more general than the monotonicity
requirement on f. We stick to monotonicity, though, and do so for several reasons: first, it is a
reasonable requirement for a regression function many setups, including stock return predictability,
and second, it does not involve the distributional properties of x; and is thus easier to check, at
least in principle. Third, should monotonicity be violated, simply adding #? ; as regressor in the
predictive regression would side-step the problem (recall that any function can be written as the

sum of an odd and an even function, so 7 _; would correlate with the even component of f (z4_1)).

Summing up, inference in the misspecified linear model has the potential to outperform nonpara-
metric procedures, provided of course that size control is given. To achieve both goals, we discuss
the local power of a test based on overidentified IV estimation following Breitung and Demetrescu

(2015) and show that it is not affected by the local nonlinearity of our setup in a critical manner.

3 A robust combination test

In the linear case, Breitung and Demetrescu (2015) argue that simple IV-based tests using carefully
chosen instruments for the regressor z;_1 may be used to obtain a test statistic that on the one hand
possesses a standard limiting distribution (chi square) irrespective of the type of regressor dynamics,
and on the other hand has power in the optimal neighbourhood of the null, again irrespective of
whether the regressors have low or high persistence. Concretely, they recommend the combination
of instruments with different properties via 2SLS. Their so-called type-I instruments are allowed
to be endogenous, but must have lower persistence than the nearly integrated regressor, while
the so-called type-II instruments are trending in an essentially deterministic manner (to exclude

endogeneity) but may exhibit high persistence.®

Intuitively, type-II instruments share the trending behaviour with the time-varying OU process
(the limit of the regressor in the highly persistent case), so they are not weak instruments when
the regressor is near integrated; the correlation with the instrumented variable is random, however;
see Phillips (1998). Thus, type-1I instruments achieve the optimal rate of the OLS estimator in
the linear model, while still implying a standard normal null distribution of the corresponding test
statistic, since they are exogenous by construction. The 2SLS statistic advocated by Breitung and
Demetrescu (2015) has the nice feature that it puts, asymptotically, all the weight on the instrument
optimal for the degree of persistence of the regressor given in the data generating process, without

having to actually specify the persistence.

So let us examine this procedure from a “nonlinear alternatives” perspective. In this respect, one
contribution of the paper is to show that the IV-based test using a type-II instrument (concretely,
the sine of % recommended by Breitung and Demetrescu, 2015) has power against the same

sequences of local alternatives as the unfeasible test based on tlﬁs with knowledge of the true shape

"Since it is not specified whether f is increasing or decreasing, two-sided testing would be required even when
the sign of b is known under the alternative.

8Breitung and Demetrescu (2015) also discuss the so-called Cauchy instrument as a type-II instrument, which
is employed by Choi et al. (2016) in conjunction with a time transformation approach to account for time-varying
volatility.
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of the relation. Moreover, it has a null limiting distribution not depending on the persistence
of a near-integrated regressor, namely Gaussian. But this is only the case for near integration:
deterministic functions are not valid instruments for low-persistence variables, the latter not being

(stochastically) trending. See Proposition 3 below and its proof.

While type-II instruments do fulfill their role under persistence and endogeneity, we need a type-1
instrument to account for the possibility of stable regressors under our assumptions. Breitung and
Demetrescu (2015) discuss type-I instruments that are a causal filter of Ax;_1, less persistent than
the levels x;—1. This would typically lead to local power in 1/vT neighbourhoods of the null in
the stable linear case. Such filters require some care in the nonlinear case; to see why, consider
as a (counter-)example the simplest instrument z;_1 = Azy—1. In our case, its application would
require the covariance E (f (z4—1) Azy—1) to be non-zero. Uncorrelatedness of f (z;—1) and z;_; is
unfortunately a case which we cannot always plausibly exclude for any type-I instrument, since
f is not known in advance. The validity of the type-I instruments discussed by Breitung and

Demetrescu (2015) therefore requires instrument-specific double-checking.

We therefore show in Proposition 3 that the IVX instrument employed by Kostakis et al. (2015)
does meet validity requirements in the stable nonlinear case.? The IVX instrument is constructed
as wy = Z;;% o Azy_j where 9 = 1 — A for some a > 0 and 1 € (0,1) and has, under near-
integration, less persistence than x;. The nice feature of IVX under stability is that ¢ is close
enough to unity to practically undo the differencing, and hence w; is a valid instrument whenever
x¢ is itself a valid instrument in the nonlinear case, which is the case in our setup according to

Proposition 2.

Then, we only need to operationalize the test by including deterministic components, by considering

both instruments at the same time, and by accounting for time-varying volatility.

So let us now examine the test statistic with demeaning; denote by * the demeaned variables,
i.e. 41 = x4_1 — T etc. Then, with Eicker-White standard errors, computed for simplicity under

the null, the proposed test statistic results as

—1

T - = T -~ = T - -
. D Tt-124 4 (Zt:2zt—1zt71) D im2 Zt—10t
t

6 =
—1 —1
T = =/ T =/ T = = =2 T = =/ T = ~
\/th Tt—1%¢1 (Zt:Q folzt—l) D i Zt-121_17; <Zt:2 thlzt—l) >t Z—1T4-1

s Tt

S1N 5

zZ = 2T
Wi

and wy is the IVX instrument. Kostakis et al. (2015) propose not to demean w; (while still demean-

)

where

ing regressor and dependent variable), since demeaning w; is asymptotically negligible in the TVX
test statistic, and not demeaning reduces the endogeneity bias in finite samples; this allows to pick
7 closer to unity such that the local power of IVX-based tests is improved. Let hence w; = wy, and
note that w; does not depend on p in either stable or near-integrated cases, since wy is obtained

by filtering Az; which washes out a nonzero mean of x;.

Upon squaring, t%s follows a chi-square distribution with one degree of freedom under the null

“Breitung and Demetrescu (2015) recommend a fractionally integrated filter, but it is not clear that the fractional
instrument is a valid instrument under nonlinearity and stability, unlike the IVX instrument.

11



hypothesis, and has local power in the respective optimal neighbourhood (corresponding to the
actual persistence of the regressor x;_1); we prove this in Proposition 3 below. More importantly,
specifying whether x is (near-)integrated or low-persistence is not necessary, the 2SLS procedure

automatically picks the “correct” instrument, as can be seen in

Proposition 3 Under Assumptions 1, 2 and 3, we have the following limiting behavior as T — oo.

1. If the regressor x+—1 is nearly integrated and 1 = W, then
25\2 d 2
(tﬁ ) - 1,k2

g X202 ([ (sin T2 — 1) Ho (Je 0, (5))ds)

with noncentrality parameter k> =b

2. If x; is stable and B = %, then

2 _ 2 Eulfil=E, (€001
* 2} .

with noncentrality parameter K ol
0

Proof: see the Appendiz.

The result in 1 involves some abuse of notation, since the noncentrality parameter 2 is random and,
for b # 0, the distribution is not “the textbook” noncentral x? distribution; see the proof for details.
Concretely, (t%s >2 A (Z + /@)2, where Z is standard normal but not necessarily independent of x,
which is zero under the null and nonzero, but random, under the alternative. Under the null, the
limiting distribution in item 1 of the proposition is therefore x?, like in item 2; there, however, the
noncentral x? distribution is genuine, so we use this notation to give a summary of the limiting

behavior of t%s in both studied cases.

In the case of a multivariate predictive regression with K potential predictors, we stick to the
additive model and write y; = 8y + Zle B fr (xgi—1) + us. To test, one simply resorts to several
linear independent functions of the time, one for each regressor, as type-Il instruments, while type-
I instruments are easily built as in the single-regressor case; see Subsection 3.3 of Breitung and
Demetrescu (2015). The resulting limiting null distribution of the Wald-type statistic is y% and
the test has power against the same types of local alternatives. We omit the technical details since

they are straightforward multivariate extensions of the proof of the above proposition.

Finally, should f (z;) be orthogonal to x; in the weakly persistent case, one may resort to the Taylor
expansion argument of Luukkonen et al. (1988) and employ a predictive regression with x;_1 and
x?_, as potential predictors. To deal with this situation, we simply use the squared IVX instrument
and a second sine frequency as instruments intended to work for z7_;. Note that building an TVX
instrument on the basis of the differences of #7_; would lead to technical difficulties, but w:_l could
be dealt with using existing IVX results; we omit however the technical details here. Furthermore,

we find the procedure to work quite well in finite samples; see the following section.
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4 Finite-sample comparison of parametric and nonparametric meth-

ods

In this section we compare Juhl’s (2014) nonparametric U test and the Fsum test based on the
Nadaraya-Watson estimator (Kasparis et al., 2015) with the IVX procedure of Kostakis et al.
(2015) and the combination test discussed in the previous section.!® Finally, we include a size-
corrected version of the OLS based test to have some idea about the power level, although this test
is of course not feasible. Given the theoretical results, we expect the power advantage of linear

methods to increase as T grows and the differences in local power become more evident.

Juhl’s (2014) U-statistic can be expressed as the ratio Z/v2W with

T T
Ti_1 — Ts— -
7=Y"YK (tlhl> 5. and
=1 s=1
t#s

where K (+) is a kernel, which we choose here to be the Gaussian one, and ¢; denotes the demeaned
observations. Note that there is a misprint in Theorem 4.1 of Juhl (2014); cf. Wang and Phillips
—0.2

(2012, Eq. (2.2)) and Fan and Li (1999, Eq. (1)). We resort to Juhl’s bandwidth choices h = 6, T
and h = 6a,T7°2.

The Nadaraya-Watson based test of Kasparis et al. (2015, Eq. 16), i.e. the Floum test statistic, is
computed with two bandwidth choices, concretely h = 6,77 %! and h = 6,72 following the
implementation in Section 6 of Kasparis et al. (2015, p. 478). The standard deviation &, of the

residuals of an AR(1) fit for x4 is used to ensure approximate scale invariance of the properties of

Fsum~

The IVX procedure is implemented without instrument demeaning, i.e. w; = w; where the IVX
instrument w; is computed using p = 1 — 1/7°9 as proposed by Kostakis et al. (2015). Finally, the
t%s statistic from Section 3 is computed with the same choice p = 1 — 1/709 as for the pure IVX

instrument.

We consider the following data generating process (t = 1,...,7T) for T' = 250:

yr = Bsgn(xi—1) |zi—1|" + w,

Ty = PTy—1 + g,

(ut)wiidj\/'<0,at2<1 5))
(% 0 1

where p is either near-integrated, p = 1 — ¢/7 for ¢ € {0,5,15}, or stable p € {0.7,0.8,0.9},
and B is chosen in the relevant neighbourhood of the null: 8 = b/+/T for stable regressors and
8= Z)/T(O‘H)/2 for highly persistent regressors.

and

10The alternative Fmam-test statistic discussed by Kasparis et al. (2015) yielded the lowest power of all tests in
our simulations so we do not report the corresponding results.
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The baseline simulation setup is based on constant variance, o2 (s) = 02 (s) = 1. Without loss
of generality, we consider negative correlations § between the disturbances u; and v;. We set the

correlation § causing endogeneity to —0.95, and rely on 5000 replications for each parameter setting.

The top panel of Table 1 displays rejection frequencies for the case a = 0.5, i.e. when the influence
of x4—1 on y; grows less than linearly. The empirical sizes of the tests are displayed in the row
B = 0. The U test is severely undersized for both suggested bandwidth choices, while the Fsum—
test is oversized especially for one of its bandwidths at ¢ = 0. This oversizedness of F sum almost
vanishes as c increases. The IVX test as well as the robust combination test tend to be undersized,
more so for smaller autoregressive coefficient p. Moving away from the null, the U tests almost
always have the lowest power which is not too surprising since they are undersized. Although the
Fsum—tests are oversized, they have lower power than the robust combination test. The IVX test
performs similar to the robust combination test for stable regressors while the robust combination

test has more power for nearly-integrated regressors.

The results change to some extent when the influence of the regressor on returns grows more than
linearly in z;. Rejection rates under this scenario are displayed in the bottom panel of Table
1 for @« = 1.5. The size of all tests does not depend on « and therefore stays the same as for
a = 0.5. The power however turns out to depend on « in our setup. The U tests still have the
lowest power, followed by the Flum-test. IVX improves its power relative to the nonparametric
approaches compared to the case « = 0.5. The robust combination test has again the largest power
but its advantage over IVX decreases. The growth in power while moving away from the null is
slower for a = 1.5 than for o = 0.5 for all tests. The reason for the power drop is that the function
f has zero slope at the origin, where more observations tend to be available, and the “effective”

alternative is thus closer to the null. All tests are equally affected.

The purely linear case (the middle panel of Table 1) checks the advantage of exploiting (correct)
information about the structure of the model. The performance of all tests in terms of power lies

between the cases & = 0.5 and o = 1.5, and the ranking of the examined tests does not change.

We then provide results for 7' = 1000 (Table 2). We note that power drops for the nonparametric
procedures, but not for the linear ones. This illustrates the lower, nonparametric, convergence
rates of the kernel-based procedures. The power even tends to increase a bit for linear procedures.
Furthermore we observe that the oversizedness of the IVX test of Kasparis et al. (2015) decreases

but it remains marginally oversized.

Our simulation results suggest that the IVX test and especially the robust combination test are
able to outperform the nonparametric approaches in terms of power in spite of the linear missspec-

ification, while controlling size.

Finally, we study three cases which are not covered by our monotonicity assumptions, f (z) = |:1:]0‘5,
f(z) = |z| and f (z) = |&|*® for T = 250 (Table 3). We find in line with Juhl (2014) that the linear
procedures are not able to compete with the nonparametric ones in such cases. One exception is
2SLS for ¢ = 0 and small b, i.e. alternatives very close to the null. The power of the linear procedures
is much lower for stable regressors especially when the persistence of the regressor decreases. We
included further instruments to deal with this problem. For IVX? we added the square of the regular
IVX instrument and in 252 we furthermore added the sine of 3% as additional type-1I instrument.

It can be seen that IVX? and 252 are able to compete with the nonparametric approaches in terms
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Table 1: Size and local power of nonparametric and misspecified linear procedures: T' = 250

b OLS U1l UD1 F1 F2 IVvX  2SLS OLS Ul UD1 F1 F2 IvX  2SLS
z) = |z|°® sgnx
fx) =|=|"" sg
Local alternative: g = W Local alternative: 8 = %
c=0(p=1) p=0.9
0 5.0 1.3 3.6 9.4 6.5 4.9 6.7 5.0 1.2 2.0 6.7 6.2 3.3 3.4
2 10.0 3.7 6.1 19.7 11.6 18.0 24.5 35.5 9.4 8.1 35.2 26.8 33.2 32.0
5 69.5 39.2 18.4 58.9 35.0 57.0 77.9 99.9 91.8 78.3 99.4 96.8 99.1 99.2
10 98.7 93.5 70.7 97.4 85.9 84.1 98.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0  100.0 98.6  100.0 99.9 97.4  100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
c=5(p=0.98) p=0.8
0 5.0 0.9 .0 6.6 4.9 3.3 3.5 5.0 1.6 1.9 7.0 7.2 3.5 3.3
2 9.8 2.1 3.8 13.5 8.9 11.7 11.5 32.1 10.5 10.2 37.6 31.2 32.8 31.9
5 57.4 15.5 11.1 45.3 28.8 50.7 56.4 99.6 89.0 82.5 99.4 98.0 98.8 98.7
10 99.2 90.7 67.3 97.9 90.1 95.5 98.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 99.9 98.7  100.0 99.9 99.9  100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
c=15 (p =0.94) p=0.7
0 5.0 1.1 2.6 6.5 5.6 3.7 3.9 5.0 1.1 1.4 6.2 6.8 2.9 2.8
2 8.5 2.1 3.2 11.4 8.6 8.6 8.5 36.4 11.2 11.1 40.0 34.1 34.3 33.7
5 38.1 10.2 8.1 35.1 25.1 37.1 35.3 99.5 88.4 85.2 99.4 98.6 98.5 98.5
10 98.5 73.5 50.1 94.4 82.9 94.5 96.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
z) = |z|*Osgnx
fz) =lz|" " sg
Local alternative: g = m Local alternative: g = %
c=0(p=1) p=0.9
0 5.0 1.3 3.6 9.4 6.5 4.9 6.7 5.0 1.2 2.0 6.7 6.2 3.3 3.4
2 11.2 4.8 5.8 19.0 10.9 11.3 22.4 45.8 7.0 6.7 38.4 28.7 42.1 40.8
5 62.0 33.4 16.7 55.4 30.4 56.4 77.6 100.0 97.2 80.3  100.0 99.9 99.9  100.0
10 99.4 92.6 62.6 98.1 87.0 93.4 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 100.0 99.7 100.0 100.0 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
c=15 (p=0.98) p=0.8
0 5.0 0.9 3.0 6.6 4.9 3.3 3.5 5.0 1.6 1.9 7.0 7.2 3.5 3.3
2 5.4 1.2 3.5 9.5 6.3 6.8 6.4 42.5 8.5 8.5 41.7 34.7 40.8 40.2
5 19.2 3.1 4.7 19.0 12.2 19.3 20.1 100.0 92.9 83.7 100.0 99.9 99.9  100.0
10 90.9 24.8 13.9 65.9 40.1 78.2 87.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 99.8 89.0 100.0 99.8 99.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
c=15 (p=0.94) p=0.7
0 5.0 1.1 2.6 6.5 5.6 3.7 3.9 5.0 1.1 1.4 6.2 6.8 2.9 2.8
2 3.6 1.2 2.6 7.1 6.2 4.8 4.6 46.4 9.7 9.2 44.8 38.5 43.4 42.5
5 9.5 1.8 3.4 12.5 8.9 10.3 10.0 100.0 90.7 85.6  100.0 99.9 99.8 99.9
10 34.9 5.8 5.9 29.0 20.0 33.7 32.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 99.8 50.3 28.6 94.5 78.6 96.7 98.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
@) = |a|*? sgna
Local alternative: 8 = W Local alternative: 8 = %
c=0(p=1) p=0.9
0 5.0 1.3 3.6 9.4 6.5 4.9 6.7 5.0 1.2 2.0 6.7 6.2 3.3 3.4
2 15.0 8.4 6.6 20.8 11.6 8.4 22.9 70.9 7.4 7.1 51.5 37.9 62.2 61.2
5 51.7 36.4 22.2 54.4 35.8 51.2 68.3 100.0 99.8 94.3 100.0 100.0 100.0 100.0
10 93.5 74.9 56.1 90.1 75.8 95.4 98.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 98.2 89.7  100.0 98.9 99.9  100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
c=5 (p=10.98) p=0.38
0 5.0 0.9 3.0 6.6 4.9 3.3 3.5 5.0 1.6 1.9 7.0 7.2 3.5 3.3
2 3.7 1.0 3.3 7.9 5.5 5.3 4.9 65.2 8.7 8.5 55.7 46.1 60.0 59.8
5 9.2 1.4 3.8 11.9 7.8 10.0 9.8 100.0 99.4 96.1 100.0 100.0 100.0 100.0
10 38.4 5.7 6.2 29.8 18.4 34.9 37.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 99.4 62.8 34.8 95.1 76.4 93.6 98.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0
c=15 (p =0.94) p=0.7
0 5.0 1.1 2.6 6.5 5.6 3.7 3.9 5.0 1.1 1.4 6.2 6.8 2.9 2.8
2 2.8 1.2 2.6 6.7 5.7 3.9 3.7 67.0 10.0 9.6 58.0 50.4 60.5 60.3
5 4.7 1.2 2.9 7.8 6.2 5.3 4.9 100.0 98.8 96.7 100.0 100.0 100.0 100.0
10 8.9 1.7 3.5 11.5 8.6 9.3 8.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 37.6 4.2 4.9 29.7 19.7 35.2 33.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Notes: The tables displays rejection rates for the unfeasible size-corrected OLS test (OLS), the U test of Juhl
(2014) (U1 and UD1 denote two different bandwidth choices), the Fi, test of Kasparis et al. (2015) (F1 and F2
denote two different bandwidth choices), the IVX test of Kostakis et al. (2015) (IVX) and for the combination/IV

test (2SLS). Results for different values of the autoregressive coefficient p are displayed in the corresponding panels.

For further details see the text.
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Table 2: Size and local power of nonparametric and misspecified linear procedures: T = 1000

b OLS Ul UD1 F1 F2 IvX  2SLS OLS U1l UD1 F1 F2 VX 2SLS
f(@) = o] sgn o
Local alternative: 8 = W Local alternative: 8 = %
c=0(p=1) p =09
0 5.0 1.0 4.3 5.9 5.9 5.1 7.1 5.0 1.7 3.1 7.3 5.2 3.4 3.2
2 9.5 3.3 5.1 10.8 8.5 20.2 26.7 33.2 9.6 7.9 30.9 19.3 33.5 32.8
5 69.9 35.8 11.2 29.1 15.1 59.0 79.6 99.5 86.6 71.7 98.5 92.1 98.9 99.0
10 99.0 93.2 52.1 81.4 46.2 86.5 99.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0  100.0 93.4 99.7 90.9 979 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
c=5 (p=0.995) p=0..8
0 5.0 1.3 3.5 4.2 4.1 3.7 3.9 5.0 1.6 2.0 6.4 5.1 3.8 3.5
2 9.9 2.2 4.4 6.4 5.5 12.0 11.7 31.7 10.5 9.1 36.5 26.5 33.2 33.5
5 57.1 13.7 7.6 21.8 12.4 53.4 59.5 98.8 85.1 77.9 98.6 94.9 98.3 98.5
10 99.3 89.1 39.6 83.2 46.9 96.3 99.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 99.8 96.1 99.8 97.6 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
¢ =15 (p = 0.985) p=0.7
0 5.0 1.1 4.3 5.7 5.3 4.2 4.9 5.0 1.6 1.9 7.1 7.2 3.7 3.6
2 10.8 3.0 4.6 9.2 7.4 11.1 16.7 30.5 10.6 10.1 37.3 28.5 32.9 32.4
5 56.6 27.8 9.3 24.5 14.0 49.9 63.9 98.6 85.0 80.9 99.1 96.9 97.8 98.0
10 89.8 69.0 40.5 67.1 38.0 84.1 92.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 99.7 95.2 76.1 92.5 78.6 984 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0
f(@) =|z|"Osgna
Local alternative: g = W Local alternative: g = %
c=0(p=1) p=0.9
0 5.0 1.0 4.3 5.9 5.9 5.1 7.1 5.0 1.7 3.1 7.3 5.2 3.4 3.2
2 9.6 3.8 5.2 10.2 8.1 13.2 23.2 44.3 7.5 6.3 34.2 21.6 43.3 43.0
5 61.3 30.0 10.4 25.2 13.3  59.8 80.4 100.0 87.9 67.6 99.8 97.9  100.0 99.9
10 99.3 89.6 41.4 77.4 38.0 95.2 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 100.0 94.4 100.0 92.9 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
c=15 (p=0.995) p=0.8
0 5.0 1.3 3.5 4.2 4.1 3.7 3.9 5.0 1.6 2.0 6.4 5.1 3.8 3.5
2 5.0 1.5 4.3 4.6 4.9 7.2 6.8 42.8 8.5 7.9 41.5 29.9 44.3 44.2
5 19.0 3.2 4.9 9.6 7.1 20.5 21.2 100.0 86.1 75.9 99.8 98.8 99.8 99.9
10 92.2 20.4 9.2 30.4 159 81.7 90.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 99.8 59.7 99.3 70.4 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
¢ =15 (p = 0.985) p=0.7
0 5.0 1.7 4.0 4.4 4.2 3.2 3.3 5.0 1.6 1.9 7.1 7.2 3.7 3.6
2 4.4 1.4 4.2 4.7 4.1 4.8 4.7 41.2 8.8 8.2 43.1 32.0 43.2 43.0
5 10.4 2.1 4.6 7.4 5.7 103 9.7 100.0 84.6 79.2 99.8 99.1 99.8 99.8
10 36.8 4.5 5.1 14.1 8.6 332 32.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 41.7 15.0 66.5 322 975 98.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0
f(@) = |z|""sgnz
iver B — b ive: B — b
Local alternative: g8 = TaTa)/2 Local alternative: g = e
c=0(p=1) p=0.9
0 5.0 1.0 4.3 5.9 5.9 5.1 7.1 5.0 1.7 3.1 7.3 5.2 3.4 3.2
2 13.2 7.1 5.4 10.9 8.4 9.9 23.9 66.7 7.7 6.4 45.8 28.9 63.7 64.0
5 51.9 34.4 14.8 29.1 15.4 56.9 71.7 100.0 98.6 82.5 100.0 100.0 100.0 100.0
10 91.4 71.6 41.4 66.9 40.0 96.8 98.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 100.0 97.4 79.6 97.3 81.3 999 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
c=5 (p=0.995) p=0.38
0 5.0 1.3 3.5 4.2 4.1 3.7 3.9 5.0 1.6 2.0 6.4 5.1 3.8 3.5
2 3.7 1.3 4.3 4.0 1.6 5.2 5.2 63.1 8.8 8.0 54.8 40.2 63.2 63.7
5 9.4 1.9 4.6 7.0 5.9 10.6 10.2 100.0 95.7 88.4 100.0 100.0 100.0 100.0
10 38.6 5.9 5.8 14.0 9.2 36.9 41.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 99.6 58.4 20.3 64.5 31.0 95.1 98.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
c=15 (p = 0.985) p=0.7
0 5.0 1.7 4.0 4.4 4.2 3.2 3.3 5.0 1.6 1.9 7.1 7.2 3.7 3.6
2 3.2 1.3 4.2 4.5 3.9 3.7 3.8 62.2 9.2 8.4 56.2 43.9 61.8 63.0
5 4.9 1.7 4.3 5.0 1.6 5.2 5.0 100.0 94.1 90.2 100.0 100.0 100.0 100.0
10 9.8 1.7 4.1 7.0 5.1 9.0 8.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 39.5 3.9 4.8 14.3 9.0 35.6 34.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Notes: See Table 1.

16



Table 3: Size and local power of nonparametric and misspecified linear procedures: T' = 250

b OLS U1l F2 IVX VX2 2SLS 252 OLS U1l F2 IVX VX2 2SLS 252
symmetric f(z) = |z|°®
Local alternative: 8 = W Local alternative: 8 = %
c=0(p=1) p=0.9
0 5.0 1.1 6.2 4.9 6.8 6.5 4.0 5.0 1.4 6.2 3.4 2.8 3.5 2.5
2 3.9 1.5 7.1 5.2 8.8 8.1 5.2 2.7 1.7 7.7 3.8 4.2 3.8 3.4
5 13.4 6.4 10.8 9.3 18.7 20.6 14.8 4.9 10.2 21.1 6.3 14.7 6.6 11.1
10 36.7 37.8 27.8 32.3 44.1 50 44.7 11.9 56.6 71.0 13.0 57.2 13.7 51.1
20 61.3 79.9 73.8 63.0 79.2 74.9 80.8 31.2 99.8 100.0 31.1 95.5 32.3 97.4
c=5 (p=0.98) p=0.8
0 5.0 0.9 4.6 3.4 2.7 3.5 2.0 5.0 1.1 6.6 3.0 2.8 3.3 2.4
2 2.3 1.2 5.3 3.6 2.9 3.8 2.0 2.9 2.6 10.2 3.5 5.0 3.8 3.7
5 4.6 2.6 7.0 5.9 5.9 6.4 4.1 4.0 9.4 24.1 4.6 15.4 4.8 11.3
10 12.3 11.7 15.8 14.2 16.8 16.8 15.3 7.4 55.7 75.2 7.8 58.2 7.8 51.4
20 33.2 65.6 61.5 36.1 58.5 41.1 57.7 20.5 99.9 100.0 18.6 96.7 18.8 98.4
c=15 (p =0.94) p=0.7
0 5.0 1.2 5.5 3.5 2.7 3.6 2.3 5.0 1.3 7.2 3.4 3.2 3.2 2.7
2 2.5 1.6 5.7 3.5 2.8 3.6 2.3 2.6 2.3 10.5 3.4 4.5 3.2 3.2
5 2.9 2.7 7.0 4.0 4.4 4.3 3.2 3.5 9.9 26.2 4.1 16.2 4.1 12
10 4.3 6.7 13.6 6.3 10.6 6.9 8.2 5.4 56.1 .7 6.1 59.7 6.1 52.8
20 13.4 39.9 49.1 15.0 42.6 16.1 35.9 13.2 99.9 100.0 12.6 96.4 12.9 98.8
symmetric f(z) = |z|*°
Local alternative: 8 = W Local alternative: 8 = %
c=0(p=1) p=0.9
0 50 11 61 49 68 65 4.0 5.0 1.6 67 3.2 28 33 27
2 57 24 76 53 1.2 109 75 3.7 3.9 124 47 95 48 7.0
5 23.8 17.4 15.6 16.0 29.1 33.0 26.1 12.8 33.8 54.0 13.5 50.7 14.1 42.6
10 47.7 50.7 42 47.1 58.2 59.7 56.9 31.8 96.8 99.4 30.1 93.7 30.8 95.8
20 711 834 811 731 874 803 859 539 100.0 1000 47.6  98.8  49.2 993
c=5(p=0.98) p=0.8
0 5.0 1.0 4.5 3.4 2.5 3.5 2.1 5.0 1.2 7.2 3.1 3.0 3.2 2.5
2 3.4 1.4 5.5 4.0 3.3 4.2 2.4 3.5 4.0 15.3 3.8 10.1 4.1 7.6
5 4.7 2.8 6.8 5.9 4.7 6.7 4.5 7.5 33.4 59.6 7.9 52.6 7.8 44.3
10 15.1 10.0 14.3 15.6 18.7 18.6 16.5 20.8 97.4 99.8 17.3 95.7 18.4 97.6
20 39.0 54.9 54.1 39.9 60.2 44.4 58.4 42.1 100.0 100.0 32.5 99.6 33.5 99.7
c=15 (p =0.94) p=0.7
0 5.0 1.4 5.1 3.3 2.7 3.3 2.1 5.0 1.4 6.9 3.4 3.1 3.1 2.5
2 2.9 1.6 5.3 3.4 2.9 3.3 2.4 3.3 4.3 16.3 3.7 9.9 3.8 7.2
5 3.2 1.9 6.6 3.6 3.3 3.9 3.0 5.5 32.9 62.7 5.8 54.2 5.9 45.0
10 5.0 3.8 9.7 5.6 7.7 6.1 6.5 15.0 98.0 99.8 12.3 95.8 12.4 97.6
20 11.6 16.2 26.6 13.2 27.9 13.6 22.6 32.9 100.0 100.0 22.7 99.6 23.4 99.8
symmetric f(z) = |z|*°
ve: B — b ive: B — b
Local alternative: g = TAFa)7z Local alternative: g = s
c=0(p=1) p=0.9
0 5.0 1.1 6.1 4.9 6.8 6.5 4.0 5.0 1.6 6.7 3.2 2.8 3.3 2.7
2 8.6 5.0 8.3 5.5 14.1 13.9 11.0 6.5 8.0 21.1 7.4 20.6 7.6 16.2
5 28.8 23.8 21.1 22.6 34.6 37.1 31.5 26.2 66.5 86.5 25.0 82.9 25.7 80.8
10 51.3 51.3 47.6 52.1 60.5 61.6 58.5 48.4 99.9 100.0 42.5 97.9 43.7 98.7
20 71.0 78.3 .7 74.2 86.2 79.0 82.4 65.2 100.0 100.0 54.0 99.3 54.9 99.5
c=5 (p=0.98) p=0.8
0 5.0 1.0 4.5 3.4 2.5 3.5 2.1 5.0 1.2 7.2 3.1 3.0 3.2 2.5
2 3.4 1.3 5.4 3.9 3.2 4.1 2.3 5.1 7.4 25.9 5.4 21.9 5.5 16.7
5 3.9 2.3 6.2 5.4 4.4 6.0 3.9 16.2 67.4 91.2 14 86.5 14.3 84.5
10 12.1 6.5 10.8 12.8 14.4 15.1 12.4 37.0 100.0 100.0 27.5 99.0 28.5 99.5
20 33.7 34.6 38.0 34.2 47.5 38.0 44.2 54.5 100.0 100.0 37.4 99.9 38.2 99.8
c=15(p=0.94) p=0.7
0 5.0 1.4 5.1 3.3 2.7 3.3 2.1 5.0 1.4 6.9 3.4 3.1 3.1 2.5
2 2.9 1.6 5.2 3.3 2.8 3.3 2.4 4.4 7.5 27.3 4.5 22.3 4.5 16.3
5 2.9 1.5 6.0 3.4 2.6 3.7 2.5 11.7 68.5 92.6 10.0 87.5 10.0 85.8
10 3.8 2.0 6.9 4.5 4.9 4.8 4.3 28.6 100.0 100.0 19.1 99.0 19.5 99.3
20 6.5 5.7 13.4 7.6 12.8 8.4 10.2 46.2 100.0 100.0 27.3 99.9 27.8 99.9

Notes: See Table 1.
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of power in spite of being seriously undersized; in terms of size control, IVX? might be preferred.

5 Nonlinear predictability of S&P 500 stock returns

We now turn our attention to the issue of whether stock returns may be predicted, be it in a
linear or a nonlinear fashion. We take advantage of the superior performance of linear methods
(represented here by IV-based tests) in terms of power to detect the alternative of predictability.
We test the null hypothesis of no predictability of S&P 500 stock returns by applying the tests
compared in the previous sections, i.e. the tests by Juhl (2014), Kasparis et al. (2015) and Kostakis
et al. (2015), as well as the two-stage least squares test from Section 3. For a particular emphasis
of the nonlinearity aspect, we also include quadratic terms and use the statistics IVX? and 2S2; see
Section 4 for implementation details. For the nonparametric approaches we only include results
for one bandwidth each; we include the Ul test with bandwidth h = 6,792 and the F2 test with

h = 6,772 as the two performed better in simulations.

5.1 Data processing

The analysis is conducted using monthly data provided on the webpages of Amit Goyal and Robert
Shiller.!* We focus on log dividend-price and earnings-price ratios as possible predictors, as is com-
mon in the literature (see e.g. Campbell and Yogo, 2006). The log dividend-price ratio |log(D/P)|
is computed as difference of log moving one-year average dividends and log prices of the S&P 500
index. The log earnings-price ratio [log(E/P)] is defined analogously but using log moving one-year
average earnings. The dependent variable stock returns is computed including dividends. For fur-
ther details to the data we refer to Welch and Goyal (2008). The considered dataset includes the
most recent update (as to August 2017), with data from January 1926 to December 2016 and a

total of 1092 observations (see Figure 1 again).

In what concerns the stability of the financial ratios, their logs are seen to have dropped to lower
levels towards the turn of the millenium. This is an issue, since Lettau and Van Nieuwerburgh
(2008) point out that persistent changes in the mean of valuation ratios can have a substantial
impact on the inference of return forecasting regressions; in fact, they find stable in-sample stock
return predictability when log(D/P) is adjusted for one or two breaks (but not for log(D/P) itself).

We therefore account for changes in the level of the predictor series, but choose not to adopt the
break dates suggested by Lettau and Van Nieuwerburgh. Rather, we conduct a new break analysis
in the mean of log(D/P) and log(E/P). We do this for two reasons. First, the method employed by
Lettau and Van Nieuwerburgh (2008) to identify breaks is not valid under uncertain persistence,
while we apply a procedure proposed by Perron and Yabu (2009) which is designed to be robust.
Second, Lettau and Van Nieuwerburgh (2008) use a different data set and the longer time span
of the data used here allows for a more precise timing of the breaks, even if we had used the
original break detection tool. Indeed, we find differences in the time of the breaks; see below.
After identifying structural changes in the mean of log(D/P) and log(E/P), we adjust the series

for permanent shifts accordingly.

1We would like to thank Amit Goyal and Robert Shiller for making the data freely available on their webpages
http://wuw.hec.unil.ch/agoyal/ and http://www.econ.yale.edu/~shiller/data.htm.
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Figure 3: Sequential break identification, five steps in total; Left: log(D/P), right: log(E/P); see
the text for more details and Table 4 for exact figures.

Table 4: Sequential break identification, test results of the five consecutive steps to identify struc-
tural breaks in the full sample

Step Start 1st 2nd End Exzp—Wrs CViyos Significant
1 1926:M01  1940:M04 2016:M12 6.65 1.74 v'(0.990)
2 1926:M01  1940:M04 1987:M09 2016:M12 10.75 1.69 v'(0.990)
log(D/P) 3 1940:M04 1987:M09 2016:M12 10.79 1.74 v'(0.990)
4 1940:M04 1974:M09  1987:MO09 2016:M12 11.48 1.69 v'(0.990)
5 1940:M04  1974:M09 1987:M09 1.16 1.74
1 1926:M01  1940:M04 2016:M12 3.07 1.74 v (0.975)
2 1926:M01  1940:M04 1987:M09 2016:M12 4.97 1.69 v'(0.990)
log(E/P) 3 1940:M04 1987:M09 2016:M12 4.69 174 v(0.990)
4 1940:M04 1974:M09  1987:MO09 2016:M12 4.35 1.69 v'(0.990)
5 1940:M04  1974:M09 1987:M09 1.22 1.74

Notes: For details see the text.

Regarding implementation details of the Perron and Yabu (2009) procedure (concretely, we use the
Exp — Wgg test statistic of Perron and Yabu with parameter ¢ = 0.15.), Perron and Yabu only
provide critical values to test for either one or two breaks which makes testing for more breaks less
straightforward. This is why we apply five consecutive steps to identify structural breaks in the full
sample. As a result, we identify identical break dates for log(D/P) and log(E/P) as follows. In the
first two steps we test for one and for two breaks in the full sample. We find one significant break
in April 1940 and two jointly significant breaks in April 1940 and September 1987. The third step
serves as robustness check of the break in 1987. We test the subperiod beginning in April 1940 for
one break and confirm the break in September 1987. In the fourth step we search for two breaks in
the aforementioned subperiod and find jointly significant breaks in September 1974 and September
1987. The last step is a robustness check for the break in 1974. On the subperiod from April 1940
to September 1987 we find again a break in 1974 but it turns out to be insignificant. The findings

are summarized in Figure 3 and the precise test results can be found in Table 4.

Thus, we find one significant break in April 1940 and a second significant break in September
1987. A third break can be found in September 1974. The latter break turns out to be only jointly
significant with the break in 1987 while it is marginally insignificant if taken alone. For comparison,
Lettau and Van Nieuwerburgh (2008), report one break in the early 1990s or two breaks around
1954 and 1994 for log(D/P) but they apply a different method and use an annual sample from 1927
to 2004.

The observed break dates roughly correspond to critical economic events. While the break identified
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Figure 4: Demeaned and break-adjusted predictor variables; left: log(D/P), right: log(E/P), upper
panels are adjusted for one break, lower panels adjusted for two breaks.

in April 1940 might be a late indicator for the Great Depression in the early 1930s, it is actually
more likely that it is tied to the beginning of World War II. The break in September 1987 is only
one month prior to the Black Monday. We do not consider the break in September 1974 since it is
insignificant, although it is a plausible break date around the First Oil Crisis. The demeaned and
break adjusted series log(D/P) and log(E/P) are displayed in Figure 4. We do not treat the peak in
log(D/P) and the drop in log(E/P) in 2009 as permanent shifts but as outliers since the values for
Dividends, Earnings and Prices return to levels comparable to 2008 until 2010. The reason for the
outliers is that Dividends, Earnings as well as Prices decreased in 2008-2009 during the financial
crisis. Dividends, however, decreases much less than Earnings since Dividends are long dated while
Earnings react immediately. The effect on Prices is smaller than for Earnings but larger than for
Dividends which leads to an increase in the ratio log(D/P) and a decrease in the ratio log(E/P).
In the following analysis, we shall use the original series, the series adjusted for one break, as well

as the series adjusted for two breaks as putative predictors, for both log(D/P) and log(E/P).

Before proceeding to the analysis, note that adjusting for permanent shifts in the mean tends to
reduce the degree of persistence of a series. This can be shown by fitting the best (as indicated by
Akaike’s Information Criterion) AR(p) process to the data and adding up the estimated autore-
gressive parameters; the cumulated autoregressive coefficients serve as an (indirect) indicator for
the degree of persistence of a series; see Cochrane (1988). Table 5 suggests that the more breaks are
adjusted for, the less persistent the series are. The decrease in persistence is of course not an issue
here since the considered tests cope with stable as well as nearly integrated regressors. However,

the drop in persistence is not very large in absolute terms.

5.2 Data analysis

The starting step of the analysis is to fit a local polynomial regression of stock returns on the lagged

financial ratios from above to get an idea about the shape of the predictive relations; this also

20



Table 5: Sum of autoregressive parameters of autoregressive model fits for series adjusted for 0, 1
or 2 breaks

Data PDaic f;ilc i Data Paic f;ilc i
log(D/P)Fs;o 22 09935 lOg(E/P)Fs;() 12 09831
log(D/P)Fs;l 6 09891 1Og(E/P)Fs;1 12 09831
log(D/P)Fs;2 6 0.9723 log(E/P)rs;2 6 0.9634

Notes: Model order selection conducted via AIC.

allows for a quick check of whether the monotonicity assumptions are fulfilled. The nonparametric
regression curves are computed as local quadratic regressions using the closest 75% data points
at each z-value with tricubic weighting; the local regressions also give the pointwise asymptotic

confidence bands.

The findings are largely consistent with the preliminary discussion in Figure 2, even after adjusting
for breaks; see Figure 5. This suggests that nonlinear predictive power, should it be confirmed
statistically, is no artifact of the persistence of the predictors. A pointwise confidence band is
computed as fitted conditional mean plus/minus two times standard error of the fits. The fact
that it is a pointwise band implies that inferece on predictability cannot be based on it; see Juhl
(2014). The monotonicity assumption appears to hold for log(D/P) while it is apparently violated
for log(E/P). For this reason, we shall also discuss the outcomes of tests relying on IV regressions

with quadratic terms, i.e. IVX? and 25? from the previous section.
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Figure 5: Stock returns against lagged financial ratios in full sample, including pointwise confidence
band computed as fit plus/minus two times standard error, dashed line is mean of regressor, see
the text for computation details; left to right: demeaned, adjusted for one break, adjusted for two
breaks, top: log(D/P), bottom: log(E/P).
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Table 6: Test significance of nonparametric and linear test procedures, log(D/P) and log(E/P) with
0, 1 or 2 breaks as predictors; full sample (1926:M01 - 2016:M12).

Predictor Ul F2 IVX IVX? 2SLS 252
log(D/P)o  0.612 0.738 0.111 0.223 0.316 0.442
log(D/P);  0.336 0.227 0.056 (*)  0.157 0.045 (**)  0.118
log(D/P),  0.936 0.424 0.049 (**)  0.054 (*) 0.047 (**) 0.033 (**)
log(E/P)y  0.192 0.081 (*)  0.037 (**) 0.084 (*) 0.038 (**) 0.029 (*¥)
log(E/P);  0.200 0.062 (*)  0.037 (**) 0.085 (*) 0.039 (**) 0.030 (*¥)
log(E/P)2  0.070 (*) 0.003 (***) 0.028 (**) 0.054 (*) 0.020 (**¥) 0.003 (***)
%

Notes: Significance: (*) p<0.10, (**) p < 0.05, (* *) p < 0.01; for further details see the text.

We conduct a series of tests for predictability of stock returns with null hypothesis of no predictabil-
ity. The predictor variables are lagged log(D/P) and lagged log(E/P). The series log(D/P) and

log(E/P) are demeaned and adjusted for either zero, one or two breaks.

Table 6 summarizes the resulting p-values for all of these tests of predictability. (We display the
p-values instead of test statistics to maintain comparability since the test statistics are of different

magnitude and have different critical values.)

The test according to Juhl (2014) shows almost no predictability of S&P 500 stock returns in the
full sample, neither for log(D/P) nor for log(E/P). This result is not too surprising since the test
is undersized and has low power as seen in the previous section. The tests based on Kasparis et al.
(2015) show no predictability for log(D/P) but some predictability for log(E/P) in the full sample.
One has to keep in mind that the test tends to be a bit oversized, though.

In contrast to the nonparametric approaches, both linear procedures show substantial rejections of
the null hypothesis of no predictability. It shows that log(D/P) is able to predict stock returns when
adjusted for permanent shifts in its mean: both linear procedures yield significant predictability (at
the 5% level). The series log(E/P) on the other hand is able to significantly predict stock returns

in this sample regardless of whether it is adjusted for breaks or not.

Both IVX? and 252 show less predictability than IVX and 2SLS for log(D/P); however, for log(E/P)
it looks the other way round. This is in line with the derivations in Chapter 4 since the monotonicity
assumptions are violated for log(E/P) but appear to hold for log(D/P). We furthermore summarize
the individual t-statistics for the parameters of the linear and the quadratic terms in IVX? and
25% in Table 7 to check whether the quadratic terms are significant or not. Significance of the
quadratic term would point towards a U-shaped predictive relation, but they are only significant
for the log(E/P) series adjusted for two breaks, indicating a weak, at most moderate, U-shaped

relation as hinted upon by Figure 5.

Note that, in line with the results of our Monte Carlo experiments, IVX and 2SLS are able to
outperform the nonparametric approaches on the log(D/P) samples where the monotonicity as-
sumption appears to hold. IVX and 2SLS still perform quite well on the log(E/P) samples even
if the monotonicity assumption appears to be violated. Adding quadratic terms (IVX? and 2S?)
leads to further refinements, with 2S? indicating a U-shaped predictive relation for the log(E/P)

series.

Summing up, we find evidence of stock return predictability. Adjusting for permanent shifts in
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Table 7: Summary of t-statistics for individual parameters of quadratic predictive regressions esti-
mated via IVX2 and 252

Predictor VX2 v X2 1252 1252
log(D/P)o  0.948 0.569 1.094 0.215
log(D/P);  1.841 (*) 0.786 2.011 (**) 0.571
log(D/P)2 2412 (***) 0.364 2.072 (**) 0.575
log(E/P)o  2.168 (*¥*) 1.316 2.052 (**) 0.439
log(E/P)1  2.160 (**) 1.315 2.044 (**) 0.436
log(E/P)2  2.373 (***) 1.730 (*) 2.486 (***) 0.785

Notes: t1 denotes the t-statistic associated to the linear term, t2 the t-statistic associated to the quadratic term.

the mean always leads to more significant results for the linear procedures. For log(E/P), there is

evidence of a nonmonotonic predictive relation.

5.3 Refinements

We now conduct a detailed subsample analysis. The purpose of this further discussion is to refine
the results coming from the full-sample analysis. We also become more precise on the differences in
outcomes when using different inferential procedures, and do this in a compact manner that is not
biased by choosing a “suitable” subsample by data snooping, as argued by Scheithauer (2008).2
Concretely, we test for predictability in each possible subperiod beginning in January and ending
in December. Therefore, we obtain 4186 subperiods in total (91 subperiods of a one year length,

90 subperiods of two year length, etc.).

The results for all nonparametric and linear tests, periods and predictor variables are summarized
in Figures 6 and 7. Following Scheithauer (2008), the results are shown in colored upper triangular
matrices with 4186 cells each (so-called p-value surfaces). Every cell represents a different test
period where the rows and columns denote different starting and end points. A white cell denotes
no significant predictability of S&P 500 stock returns for the corresponding period on a 10% level;
otherwise, the higher the significance, the darker the cell color. Significance is not to be taken at
face value because there are multiple tests conducted to set up the matrices: we simply use the
full-scale subsample analysis to pin down the periods of stronger predictability which are likely to

have driven the significant full-sample findings.

Even in the subsample analysis, the test according to Juhl (2014) shows almost no predictability of
S&P 500 stock returns, neither for dividend price ratio nor for earnings price ratio (except for the
series adjusted for one break and longer subsamples starting before the war). This result is not too
striking since the test is undersized and has less local power, as seen in the previous section. The
tests based on Kasparis et al. (2015) show predictability for several periods but one has to keep
in mind that the test tends to be a bit oversized. Predictability is featured for different periods,
depending on the utilized predictor variable (log(E/P) or log(D/P)).

The two linear procedures yield stronger evidence for predictability. For each predictor variable,
the p-value surfaces show predictability for roughly the same periods, whereby the evidence for

two-stage least squares is, expectedly, slightly stronger than for IVX. The results for log(E/P) and

12See Hansen and Timmermann (2012) for a discussion of the effects of different subsample splits in the context
of pseudo out-of-sample forecasting evaluations.
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Figure 6: Subsample-wise tests of predictive power of log(D/P): p-values for the Ul, the Flouim,

the IVX and the combination/IV tests for all possible subsamples starting (ending) in January
(December). For further details see the text
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Figure 9: Subsample-wise results for quadratic predictive regressions with log(E/P); for details see

Figure 8
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log(D/P) do not fully coincide for the linear tests, like in the nonparametric discussion. Some pre-
dictive power is indicated for log(D/P) between the mid-thirties and mid-nineties, while log(E/P)
would rather predict in periods staring prior to the mid-forties and ending after 1950; again, there
are differences in timing between nonparametric and linear procedures. After adjusting log(D/P)
for one break, there seems to be additional predictability in samples starting before the fifties and
ending past 2000. Adjusting for two breaks leads to predictability in most samples with length of
at least 30 years. For log(E/P) there appears to be predictability in samples starting prior to the
fifties. Adjusting the data for one break has no large impact here. After adjusting for a second
break, also the samples ending between 2002 and 2008 indicate a relation. In comparison, the Foum
test (as the more powerful nonparametric test) finds predictability in relatively different times and

overall less often when compared to the linear tests.

To discuss the type of nonlinearity (monotonic vs. nonmonotonic), we give in Figures 8 and 9
the subsample t-statistics for the linear and quadratic terms to see where nonmonotonicity is
strong. (Recall, the linear term captures a monotonic relation, while the quadratic term indicates
a possible U-shaped predictive relation.) There is little difference in the periods of predictability
when considering different numbers of breaks adjusted for; if anything, predictability increases
slightly with more breaks adjusted for, but just for log(D/P). The quadratic terms for log(D/P)
are practically never significant, confirming that the predictive relation is monotonic. In fact,
examining Figure 5, it even looks reasonably close to linearity, with slightly different slopes for
very large or very small values of log(D/P). For log(E/P), the quadratic term is always significant
for, and only for, subsamples starting before 2008 and ending after 2009, strongly indicating that the
U-shaped relation is largely driven by the large drop in log(E/P) during and in the aftermath of the
2008 crisis. The changing predictability of the log(E/P) ratio during the crisis lends support to the
findings of Gupta et al. (2013), who find that stock markets are less efficient in incorporating firm-
specific information in stock prices. This is likely because a significant reduction in risk arbitrage
activities of investors during the crisis leads to an overall reduction in the flow and transparency

of information.

5.4 Robustness checks

First, conducting the analysis for D/P and E/P in levels rather than logs lead to similar results.
One particularity is that stability tests tend to find more breaks in the predictors; this is likely due
to the presence of more spikes in the series, spikes that are dampened when taking logs. For two
breaks we choose April 1940 and September 1974 and for four breaks additionally September 1987
and September 2008 (2009 for EP) as break dates. The results for the detailed subsample analysis

for zero, two or four breaks can be found in Appendix A.1.

Second, we also considered interest rates and long term rates of return as possible predictors beyond
the “classical” financial ratios. As proxy for interest rates we take treasury bills, since they have
been found to have predictive power (e.g. Campbell and Yogo, 2006). The data analysis is given
in Appendix A.2. One particularity of the treasury bill subsample analysis is that we excluded
all subsamples starting and ending between 1942 and 1947 since treasury bills are constant in the
mid fourties for a span of five years. For both, treasury bills and long-term rates, we find at most

one break in mean. In short, the long-term rates provide some evidence in favour of predictability
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as well, e.g. for samples beginning between the thirties and the seventies, albeit weaker than the

earnings-price ratio in its logarithmized form. The evidence for treasury bills is weak at best.

Finally, we also conducted a subsample analysis for linear predictive regressions involving bivariate
combinations of log(D/P), log(E/P), treasury bills and long term rates of return for the linear
models. We do not add more predictor variables and also stick to data without break adjustment
to not inflate the amount of results. It turns out that combinations including long term rates of
return seem to perform best in predicting stock returns; nevertheless, predictibility seems to have
decreased since the seventies. The results of the subsample analysis with two predictor variables

can be seen in Appendix A.3.

6 Concluding remarks

The paper argued in favor of the use of linear models to test the forecasting ability of possibly
nonstationary regressors in potentially nonlinear models, on the grounds that the loss in local power
caused by possible misspecification of the functional form is outweighed by the loss in power caused
by resorting to nonparametric estimation and testing procedures. Estimation can be conducted in

a flexible manner after having established the existence of a predictive relation.

To correct the size problem of linear procedures in predictive regressions with endogenous regres-
sors of uncertain persistence, we recommend the 25LS combination of two types of instruments,
exogenous yet persistent ones working under persistent regressors only, and certain nonlinear trans-
formations of the regressors, working under stable regressors only. Overall, this IV procedure fares
better than alternative nonparametric statistics, under the null and under nonlinear local alterna-
tives, provided that the regression curve is monotonic under the alternative. But if one chooses
nonparametric models, say because the monotonicity requirement is violated in an obvious manner,
one should rather use the Fi.., test by Kasparis et al. (2015) than the U test by Juhl (2014). Also,
adding a quadratic term in the IVX regression is a competitive solution for cases of nonmonotonic-
ity.

The methodological and experimental findings are complemented by an analysis of the predictability
of monthly S&P 500 returns. We find that the predictive power of log(D/P) is stronger between the
40s and the 90s, while that of log(E/P) diminished in the post-war period. For log(E/P) we find
some evidence of an U-shaped regression function. This appears, however, to be driven by a few
abnormal observations during and after the peak of the financial crisis in 2008-2009. Furthermore,
long-term rates of return may also predict stock returns, with no evidence of U-shaped relations.

As a byproduct, we find that linear methods are well-suited to detect even nonlinear predictability.
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Appendix

A Tables and Plots for further predictors

A.1 Financial ratios in levels

D/P, Full Sample E/P, Full Sample
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Figure 10: (In-) Significant breaks in D/P and E/P in the full sample based on a significance level
of a = 0.05.

Table 8: Sequential break identification, test results of twelve consecutive steps to identify structural
breaks in the full sample

Step Start 1st 2nd End Exp—Wps CVyges Significant
D/P 1 1926:M01  1940:MO04 2016:M12 7.62 1.74 v'(0.990)
2 1926:M01  1940:M04 1974:MO08 2016:M12 7.39 1.69 v'(0.990)
3 1940:M04 1974:M09 2016:M12 4.00 1.74 v'(0.990)
4 1940:M04  1974:M09 1987:M09 2016:M12 6.88 1.69 v'(0.990)
5 1974:M09  1987:M09 2016:M12 8.71 1.74 v'(0.990)
6 1974:M09  1987:M09 2008:M09 2016:M12 9.38 1.69 v'(0.990)
7 1987:M09  2008:M09 2016:M12 5.32 1.74 v'(0.990)
8 1987:M09  2002:M08 2008:M09 2016:M12 9.99 1.69 v'(0.990)
9 1926:M01  1938:MO02 1974:M09 7.88 1.74 v'(0.990)
10 1926:M01  1938:M02 1948:M10 1974:M09 7.33 1.69 v'(0.990)
11 1926:M01  1938:M02 1987:M09 9.34 1.74 v'(0.990)
12 1926:M01  1938:M02 1974:M08 1987:M09 8.79 1.69 v'(0.990)
E/P 1 1926:M01  1940:MO04 2016:M12 13.22 1.74 v'(0.990)
2 1926:M01  1940:M04 1974:M09 2016:M12 18.51 1.69 v'(0.990)
3 1940:M04 1974:M09 2016:M12 9.56 1.74 v'(0.990)
4 1940:M04  1974:M09 1987:M09 2016:M12 12.61 1.69 v'(0.990)
5 1974:M09  1987:M09 2016:M12 4.51 1.74 v'(0.990)
6 1974:M09  1987:M09 2009:M09 2016:M12 6.12 1.69 v'(0.990)
7 1987:M09  2009:M09 2016:M12 6.42 1.74 v'(0.990)
8 1987:M09  2003:M10 2009:M09 2016:M12 6.47 1.69 v'(0.990)
9 1926:M01  1940:MO04 1974:M09 9.29 1.74 v'(0.990)
10 1926:M01  1940:M04  1948:M10 1974:MO09 12.36 1.69 v'(0.990)
11 1926:M01  1940:M04 1987:M09 9.00 1.74 v'(0.990)
12 1926:M01  1940:M04  1974:M09 1987:MO09 12.03 1.69 v'(0.990)

Notes: Test results of consecutive steps to identify structural breaks in the full sample.
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Figure 11: Subsample-wise tests of predictive power of D /P: p-values for the U1, the F. sum, the IVX

and the combination/IV tests for all possible subsamples starting (ending) in January (December).
For further details see Figure 6
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Figure 12: Subsample-wise tests of predictive power of E/P; for details see Figure 11
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Figure 13: Subsample-wise results for quadratic predictive regressions with D/P; p-values for the
VX2, the 25% and the individual ¢-statistics of the linear and the quadratic term in TVX?
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Figure 14: Subsample-wise results for quadratic predictive regressions with E/P; for details see
Figure 13
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Table 9: Test results on nonparametric and linear test procedures, D/P and E/P; full sample
(1926:M01 - 2016:M12) with 0, 2 or 4 breaks.

Predictor U1 F2 IVX IVX? 2SLS 252
D/Prso  0.600 0.119 0.214 0.362 0.311 0.514
D/Prs2  0.469 0.070 (*)  0.130 0.208 0.120 0.137
D/Prsa  0.932 0.014 (¥*) 0.174 0.269 0.167 0.202
E/Prso  0.062 (*) 0.146 0.020 (**¥) 0.051 (*)  0.017 (**) 0.062 (*)
E/Prsp  0.112 0.156 0.019 (**) 0.041 (**) 0.014 (**) 0.044 (**)
E/Prsa  0.187 0.053 (*)  0.032 (**) 0.095 (¥)  0.021 (**) 0.040 (**)

Notes: Significance: (*) p<0.10, (**) p < 0.05, (***) p < 0.01; for further details see the text.
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A.2 Treasury bills and long-term rates of return
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Figure 15: Treasury Bill Rate and Long Term Rate of Returns — monthly observations from De-
cember 1926 to December 2016; see Section 5.4 for details
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Figure 16: (In-) Significant breaks in Treasury Bill Rate and Long Term Rate of Returns in the
full sample based on a significance level of « = 0.05.
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Table 10: Sequential break identification, test results of five (and seven, respectively) consecutive
steps to identify structural breaks in the full sample

Step Start 1st 2nd End Exzp—Wgrgs CViyos Significant
TBill 1 1926:M01  1980:M04 2016:M12 86.66 1.74 v'(0.990)
2 1926:M01  1958:M01  1980:M04 2016:M12 86.20 1.69 v'(0.990)
3 1926:M01  1958:M01 1980:M04 0.38 1.74
4 1958:M01  1980:M04 2016:M12 62.38 1.74 v'(0.990)
5 1958:M01  1971:M01  1980:M04 2016:M12 61.60 1.69 v'(0.990)
6 1958:M01  1974:M07 1980:M04 1.37 1.74 v'(0.900)
7 1980:M04  2008:M02 2016:M12 -0.22 1.74
LTR 1 1926:M01  1981:M09 2016:M12 2.49 1.74 v'(0.975)
2 1926:M01  1959:M12  1981:M09 2016:M12 2.38 1.69 v'(0.975)
3 1926:M01  1970:MO05 1981:M09 0.06 1.74
4 1926:M01  19753M05 1970:M05 1981:M09 -1.12 1.69
5 1981:M09  1987:M02 2016:M12 -0.12 1.74

Notes: Test results of consecutive steps to identify structural breaks in the full sample.

Table 11: Test results on nonparametric and linear test procedures, Treasury Bill Rate and Long
Term Rate of Returns with 0 or 1 breaks; full sample (1926:MO01 - 2016:M12).

Predictor U1 F2 IVvX IvX® 2SLS 2§

TBillrs,e  0.501 0.642 0.801 0.701 0.824 0.785
TBillrs; 0.395 0.348 0.707 0.520 0.722 0.615

LTRFs;0 0.273 0.190 0.115 0.240 0.115 0.260
LTRFs;2 0.256 0.459 0.128 0.265 0.130 0.288

Notes: Significance: (*) p<0.10, (**) p < 0.05, (***) p < 0.01; for further details see the text.

Table 12: Summary of ¢-statistics for individual parameters of quadratic predictive regressions
estimated via IVX? and 252

Predictor ~ ¢{VX? v X2 1252 1252

TBillrs,o 0.168 -0.711 -0.317  -0.676
TBillrs.:  0.035 -1.025 -0.493  -0.958
LTRrso 1.654 (*) -0.655 1.522 -0.238
LTRrs.2 1.562 -0.576 1.463 -0.301

Notes: t1 denotes the t-statistic associated to the linear term, ts the t-statistic associated to the quadratic term.
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Figure 17: Stock returns against lagged financial ratios in full sample, including pointwise confidence
band computed as fit plus/minus two times standard error, dashed line is mean of regressor, left
to right: demeaned, adjusted for one break, top: Treasury Bill Rate, bottom: Long Term Rate of
Returns.
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Figure 18: Subsample-wise tests of predictive power of Treasury Bill Rate: p-values for the Ul,
the Fyyum, the IVX and the combination/IV tests for all possible subsamples starting (ending) in
January (December), subsamples starting and ending between 1942 and 1947 are excluded since
treasury bills are constant in mid fourties. For further details see Figure 6 and Section 5.4
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Figure 19: Subsample-wise tests of predictive power of Long Term Rate of Returns; for details see
Figure 18
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Figure 20: Subsample-wise results for quadratic predictive regressions with Treasury Bill Rate;
p-values for the IVX? the 252 and the individual ¢-statistics of the linear and the quadratic term

in IVX?. Subsamples starting and ending between 1942 and 1947 are excluded since treasury bills
are constant in mid fourties
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Figure 21: Subsample-wise results for quadratic predictive regressions with Long Term Rate of
Returns; for details see Figure 20
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A.3 Combination of two predictors

IVX, log(DIP) & log(E/P) IVX, log(D/P) & TBill IVX, log(DIP) & LTR
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Figure 22: Subsample-wise tests of predictive power for bivariate combinations of log(D/P),
log(E/P), Treasury Bill Rate and Long Term Rate of Returns: upper triangle shows p-values
for IVX, lower triangle for the combination/IV tests for all possible subsamples starting (ending)
in January (December). Subsamples starting and ending between 1942 and 1947 are excluded if
tests includes treasury bills since they are constant in mid fourties. For further details see the text
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Figure 23: Subsample-wise tests of predictive power for bivariate combinations of log(D/P),
log(E/P), Treasury Bill Rate and Long Term Rate of Returns: individual ¢-statistics of IVX for
the first instrument which is defined by the corresponding row (individual t-statistics of second
instruments can be achieved by transposing this figure). Subsamples starting and ending between
1942 and 1947 are excluded if tests includes treasury bills since they are constant in mid fourties
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Figure 24: Subsample-wise tests of predictive power for bivariate combinations of log(D/P),
log(E/P), Treasury Bill Rate and Long Term Rate of Returns: individual t-statistics of the com-
bination/IV tests for the first instrument which is defined by the corresponding row (individual
t-statistics of second instruments can be achieved by transposing this figure). Subsamples start-
ing and ending between 1942 and 1947 are excluded if tests includes treasury bills since they are
constant in mid fourties

45



B Auxiliary results

Throughout, C denotes a generic constant whose value may change from occurrence to occurrence. We also
k(t+1)

make use of Z;—o oM = % < CT"forallt =2,...,7 and k = 1,2. The L, norm of a random
= 0

variable is denoted by ||-[|, = {/E (|-[*)-

Lemma 3 Under the Assumptions of Proposition 3, we have for near-integrated x, as T — oo that

1. Fort=2,...,T, wy_1 = AM0y_1 + ri_1 where wy;_1 = Zz;% ijt,l,j fort >3 and 0 fort = 2, with
supy @1, = O (T"?), and sup, ||r; 1|, = o (T"?);

2. W f (x[sT}_l) = H, (Je o, (9);

3. sz Loiea 2 (@m1 1) = fy H2 (Jeo, (5)) ds;

4 segararsres Liea f (@) e = [§ Ha (Juo, (5)) dWo, (5);

5. et Lot Wim1 = 0p (1);

6. mos Yoien T—1Wi—1 = 0p (1);

7. TIM/Q Zt 5 (sm o — sm) wi—1 = 0, (1) where sin T1 Zt 5 sin 3% 2T,
8. Wzt:2 (sin 25 — sin) w157 = O, (1);

9 gt Lims Wit (w11) = Op (1);

10. =t Z?—z w? | = 0, (1) with ©, denoting an exact order of magnitude;
11 7 Zt oW1 = Op (1);

12. % Zt 5 (sin 2% sm) 77 = fo (sin Z8 — %)205 (s)ds.
Proof: see Appendix C.

Lemma 4 Under the Assumptions of Proposition 3, we have as T — oo for |p| < 1 fized that

1wy =1 —p— 073 (w1 —p) + 14y fort =2,..., T, where T"?ry_1 is uniformly Ls-bounded,
1Tl < C vt

2. T thg Ty_1sin 3% = o, (1);

3. 23:2 w1 (sin & — sin) = o, (1);

4o 7 Limp wen (sin 5 = 5in) 57 = Op (1);

5. S Wiy B & [12];

6. % Zthz wi_1J; > & [ZQ];

7. = Y w5 N (0,6 [12]);

8 + LT, (sin 2% sm) 77 = fo (sin T8 — %)203 (s)ds.

Proof: see Appendix C.

C Proofs

Proof of Lemma 1

Note that, upon division by v/7T', the mean y is asymptotically negligible. The result follows e.g. with the
arguments of Cavaliere et al. (2010).
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Proof of Lemma 2

Split the sample in B blocks of length n; and write

nr

B
1
T Z h(xi—1) E Z nf Z m(b—l)nT+T)

where T'—1 = B-ny for simplicity. Let ; denote the coefficients of the lag polynomial (1 — pL)f1 (ijo b; Lj)

and note that they also fulfill the 1-summability condition fulfilled by b; since (1 — pL)_1 has exponentially
decaying coefficients. Examining now the B block sums individually, we have that

1 & b—1)np+7—j
E Z h (x(b—l)nT-f-T = Z hl|p+ Z Bjow T Vo-1)nr+r—j
T=1

7>0

Using Proposition 1 from Demetrescu and Sibbertsen (2014), note that, for all b and 7,

b-Dnp+7—3j bnT c
Zﬁ]av V(bfl)nTJr‘rfj — Oy Z/Bjy(b Dnpr+7—3 < =
T T

2

7>0 7=>0
with ||-[|, the Ly norm of a random variable. Let gy = > 5 800 (%) V(p—1)nptr—; and Gy r =

o, (222) 350 Bi¥(b-1)np+r—; and note that both quantities are uniformly Ls-bounded since |p| < 1 s fixed

and o, is bounded.

We now examine the approximation error h (u+ gp,r) — h (4 + ,-). To this end it suffices to focus on
homogenous functions h, since the nonhomogenous part is Lipschitz and shall not affect the following
derivations. We distinguish two cases, > 1 and 1 > «a > 0.

For o > 1, use the mean-value theorem to obtain
h (/14 + Qb,r) =h (:Uf + Qb,r) + h/ (gb,r) (qb,‘r - qb,‘r) 5

where &, ; lies between p1+ Gy - and p+ gy~ 50 |&p,-| < |p| +max {|Gs.+|;|gp,-|}- Since both Gy » and gy, . are
uniformly Ls-bounded, |&, -| must itself be Ls-bounded where, recall, § > max {4, 4a}.

The homogeneity of order o > 1 of h implies 4’ to be homogenous of order o —1 > 0 such that — (7”) =0(1)

as x — *oo. Hence, h' (&) is uniformly L%—bounded where ﬁ > 2, such that the Cauchy Schwarz

inequality applies, leading to
1h (e + qo,r) = B (n+ o)y < -
Then, ergodicity of v, implies that

1 < bnr\ . bnr\ .
a2t (000 (5 ) fecmmrse ) B8 (0 (b (O ) 1) )

given uniform integrability of A (u + @) this implies L; convergence. Moreover, strict stationarity and
boundedness of o, imply that convergence must take place at the same rate, so

maXE( Zh<u+av (bT> (- 1>nT+T> —E(h <u+0v (b”TT> w1>)> — 0.

47



Thus,

1& 1 &= 18 bng\ -
52 2 (@e-nrir) = 5 D (h (“ tow (T) xl))

b=1 =1 b=1 1
1 B 1 nr
s 1 _ _
< 52 DGt dor) = b+ o)l
b=1 T7=1
1 B 1 nr bn bn
T\ -~ T\ .
T3 bz:; o 2 h (M + 0o, (T) x(b—1)nT+T) -E <h (M + o, <T) x1)> 1

For 1 > « > 0, note that h(s) = s*h (1) for s > 0 and h(s) = s*h (—1) for s < 0 so h satisfies a uniform
Holder condition of order « such that

lh(p+apr) = h(p+ @) < Clapr — Gor|”
With a < 1, Jensen’s inequality implies that
E(lgo,r = @.r|”) < (E(lav,r — @or]))”
such that

1A (e +ao.r) =R (p+ o)y < 7

this way,
B
1 1 bn .
Bz zh somtrsr) = 3 S (0 (ko () 1))

for 1 > a > 0 as well.

Finally,

0o ()2) o

thanks to the integrability of o,, leading to the desired result. Analog convergence to &£ [h] follows along
the same lines.

Proof of Lemma 3

1. Use the Phillips-Solo decomposition to write e; = Avy + Av; where o; is a linear process in v; with
absolutely summable coefficients. It holds that

-3
4 c
= AWy 1+JZ%Q’(A% 1—j = -2 J)

Also, we have
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which, upon exploiting the md property of v, gives

t—3t-3
E ( wt 1) ZQ4JE v, — +SZZQ3JQkE v JUt—k)
j ]o?i 0
t—3t-3 t—3 -3 t—3
+3ZZQZjQ2kE(Ugflfjthflfk)+6 ZZ 798" E (v} _jvr—1-kvi—1-1) -
i P

Now, |E(v]_jv—1)| < E(|vf_ju—k|) < ||U§Lj||4/3 lve—k], thanks to the Hélder inequality, where the

norms are uniformly bounded, so

t—3 t—3 -3 t-3 t—3 t—3
R P o S el et ( w) <o,
=0 k=0 =0 k=0 =0 k=0
J#k J#k

and a similar argument shows that 32;:8 Sep0¥ PR E (v2_jv? ) = O (T?7) as well.

Jj#k
Furthermore, since E (v;—1_xvs—1-;) = 0 and E (vf_l_jvt,l,kvt,l,l) =0 for j # k # | whenever
j>lorj >k,

IN

Var (”Ut2—1—j) |E (vi—1-xVi—1-1)]
+ ’E ((th—l—j — Var (th—l—j)) Ut—l—kvt—l—l) ]
C

k= = )

for all ¢, and thus, with o, uniformly bounded,

|E (v 1 jvi—1-kvi—1-1)|

IA

t—3 t—3 t—3

7j=0k
J#
t—3 t—3 t—3 k—j l—j t—3 t—3 t—3 k—j l—j
<C Q4J o 0 <C Q4j o 0
j=0  k=j+ll=j+1 (k—=7) (1 =7) J=0  k=j+li=j+1 \/(k J)Hw (1 J)1+w
k#l k#l
2
t—3 t—3 t—3 k—j 1—j t—3 t—j—3 t—j—3 1
4] Y 0 47 2k
<C e Z (kfl)(lf )SC 0 Y Z JEERY ’
J=0  k=j+1l=j+1 J J j=0 k=1 h=1

where the positivity of the summands was used in the last step. Summing up, we have for all
t=2,...,T that
E (wf_,) < CT*"

. .. t—3 A - t—3
as required. Examining now r;_1 = ijo AV — & ijo o’z _o_j, we have first that

-3 -4
Z AV ;=0 — 0" 01— (1—0) Y 004o;
j=0 J=0

where v, is uniformly L4-bounded since its coefficients are absolutely summable and its shocks are
(at least) uniformly Ls-bounded, which leads to

sup |-, =C < cT"? and sup |}gt*361H4 =Co 3 < T

t=2,..,T

=2,...,
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furthermore,

t—4 t—4
Z v o < ZQj 1012, < CT"
=0 , =0

hence (1 — o) Z;;é 0 U4_o_; is uniformly L4 bounded as required. To complete the result, note that

t—

w

-3
1 . 1
r_o_j|| < OT JZ:O o |xi—2—jll, L CT" /2

J 4

Nla
I

since T~"/?z, is uniformly L4 bounded (which can be shown along the lines of showing that
T2, 4 is uniformly L, bounded). The bounds on the L, norms of the summands imply also
that 7~ "/2w;_, is itself uniformly L4 bounded.

. Follows with the continuous mapping theorem [CMT] after noting that the integrable component of
f is a bounded function (as it is Lipschitz with vanishing tails) so I (x;—1) vanishes upon division by
T uniformly in ¢.

. Follows from item 2 with the CMT.

. Follows by the arguments of Kurtz and Protter (1991) from joint convergence in item 2 and Lemma
1, since u; has the martingale difference property.

. Using item 1 of the lemma, we obtain immediately with the Markov inequality that

1 d PR e re_1 PR
T1+7/2 Zwt*l = T1+7/2 Zwt*l + T Z T7/2 = T1+7/2 Zwt*l +0p (1);
t=2 t=2 t=2

t=2

to arrive at the desired result, note that, after re-arranging the summands of Zthz Wy_1,

1 T A= o7t =
_ _ - — nf2—1/2 ~ _ T-t
T4/ ;wtq T1+7/2 ; -0 v =T JT ; (1 Y )’Ut

where T"/27"/2 — 0 and v; is a md sequence and 0 < |1 — o"~*| < 1, so % 23;21 (1—0""") v =
0, (1).

. Let S;_1 = Z;;i w; and, with item 1, write

t—1 t—1
1Se—1lly = M| D@yl + D Nl
=t ||, =t

where Y01 [|rjll, < C'(t = 1) supyey < [re-1lly = 0 (T7+"/2) and

t—1 t—2 1 _ Qt_j_l t—2 )
E:@’::E:gﬁtggmﬁl =T (1= v
Jj=1 j=1 j=1

4 4 4

Now, 0 < ‘1 — Qt_j_l{ < 1 so the arguments in the proof of item 1 establish uniform boundedness of

o (1 1) | s

sup ||Si_1], = O (Tn+1/2) -0 <T1+n/2) .
2<t<T

Then, recall that supy<, <7 [|2¢—1], = O (\/T) and the result follows with

T 1 1 T-1 T-1

1 c
W th—lwt—l = WST—lfT—l - W Z Si—1vp + W Z Si—1w—1
t=2 t=2

t=2

and the md property of v; (for the evaluation of the 2nd term on the r.h.s.).
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7. Write
1 (. 7w 1 . w 1
Wt:ZQ Slnﬁ — SN | We—1 = W;Sm ﬁwt_l 7Slnmt:z2wt_1
where the second term on the r.h.s. is o, (1) thanks to item 5 of this lemma; for the first term we

have that

1 . mt mt
m X;UJSID ﬁwt_l T1+"/2 ZSIH wt 1+ T1+"/2 Zbln oT Tt—1.
t=

Since wy_q1 = Z;;g 0’vi_1_j, we have that 0 < E (w;_1ws_1) and consequently

1 I mt 1 K& it s
Var (Wtz_;sln 21_"117151) = m2281nﬁ81nﬁE(1ﬁt,1w5,1)
A
< m;;E(wt—lws—l)~
Then, since w;_; is an AR(1) process with uniformly Lsbounded md innovations, it follows that
min{s,t}—3
E (@ 1@s1) < Col*™ Y 0¥ < OTol M,
§=0
and, consequently,
T T2 T—2
1 . mt C’( -1) C 1 A
ar (TH-MZSIDQth_1> < —|—2C' Z T QCTZQ
t=2 h=1
< o1t

The result follows with Markov’s inequality if ztvs 3, sin Zkr,_1 = o, (1). But this is indeed the
case since

T
1 .7t 1 —n/s
' ( 7o 2 g ) < ok LBl £ OT s iy 0
t= 1,...,
thanks to item 1 of this lemma.
8. Note first that max;—1_ 7 |z¢—1| = O, (T/?) thanks to weak converge of T‘l/Qx[ST] to a process

bounded in probability on [0,1]; with @ = + Zthz uy =0, (T2, f(z) = % Zthz fzi_q) =T/?
(cf. item 3 of this Lemma) and 8 = O (T~(®*1/2) it follows that

max |9 — w| = Oy (T_l/z) .

Then,
2 mt
Tl"‘”/"‘ Zsln wt 1yt = T1+”/2 me wt 1ut + Tt Zsln wy—1ug (Yo — ue)
1 .t - 2
+W Z S ﬁﬂ)t—l (yt - Ut)
t=2
where

T g sm wt 1ut

1 1 <
( ) = iz ZE |we-1ui) < Ti4+7/2 Z [lwe-1ll, ||uf||2 =0(1)
t=2

thanks to the Cauchy-Schwarz inequality (recall, both u; and T~"/?w,_; are uniformly Ls bounded).
Moreover, zrims Sy, |wi—1||us| = O, (1) thanks to Markov’s and the cauchy-Schwarz inequalities
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again, so

maxy gy — ul
S szhUt 1‘ |Ut| —) O

T1+"/2 Zsm wt 1ue (G — )

just like mrtoy S/, sin Zw,_y (§: — ue)®, and the result follows.

9. We have that

T
Tt—1 1
< —_— E _
t—i?%‘f ( fT)‘ T 2

Then, with 7~ "/2z,_; uniformly bounded in probability thanks to the weak convergence in Lemma
1, we have sup, ‘f (zt‘l)’ = O, (1) thanks to the continuity of f. Then, T~"/?w,;_; is uniformly

VT
Lso-bounded, such that
T
1
E <Tl+'/2 Zz |wt—1|> =0(1);
t=
the result then follows with Markov’s inequality.
10. Write

1
Ta/2+1+n/2 Z wtflf (xtfl)
t=2

T T

1 A2
m;wil:mg TH”ZU% 14— 1+T1+nz7"t 1

To establish the result, it suffices to show that 0 < C; < E (ﬁ 23;2 wf_1> < (4 for suitable
constants Cy 2 and that i Z?:z r?_1 = 0, (1). We have indeed

1 & 1 KL
£ <T1+77 Zw?l) = T d_E(@,) <C
=2

t=2

since T~ "2w;_1 is uniformly Ls-bounded. It is also easily shown that that E (T‘”@fﬁl) is bounded
away from zero. To complete the result, recall that T~"/?r,_; is uniformly Ls-bounded and apply
Markov’s inequality.

11. Following the arguments of item 8, we first have that

T T
1 N 1
mzwfqytz = Titn Zwt{ﬂ‘f +op(1).
t=2

t=2
1 <& 1 <&
o (| s Dt ) < sy B o)

and, exploiting the uniform L, boundedness of T~"?w,_; and w,, the result follows with the Cauchy-
Schwarz and Markov’s inequalities.

Then,

12. Analogously to the proof of item 11,

1 « mt 2
T (sin T~ sin) 7 = T Z <s1n — — sm> ui +o, (1),

and the result follows with arguments analog to the ones in the proof of Lemma 2.

Proof of Lemma 4

1. Begin by noting that

t—

Wi = (x4 —p) — 0" P (@1 —p)+ (0= 1)) o (w—2—j—p),
J

W

I§
=
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where

&~
|
S

t—4
, a . a
(0—=1) ) o (w2 —p)= ~Tn ZQJ (Tt—2-j —p) = — i -2
=0

J

I\
o

with d;_o zero-mean mildly integrated. With arguments as in the proof of item 1 Lemma 3, it is
straightforward to show that 7~"/2d;_s is uniformly L,-bounded.

. Write

T T

1 - . mt 1 _ . mt

72 Timisingn = o E ((x4—1 — p) — (T — p)) sin oT
t=2 t=2
T

1 o T—pu it
= T t:E - ($t71 — M) S ﬁ — T :E Sin ﬁ7

where the second term on the r.h.s is o, (1). The expected value of the first term is zero and for its
variance it holds

1 T it T-17T-1
ar(TZ(xtl—u)sinﬂ> < TQZZ\E Xy — — ).

t=2 t=1 s=1

We can rewrite (z; — u) = B(L) (1 — L)~ " v, = B(L)v with b; 1-summable. Tt follows that

% E Zi)j’l)t,j ngvsfk =
t=1 s=1 >0 k>0
T—1T-1
T2ZZZZ ’|El’t Vs—k)|
t=1 s=1 j>0 k>0
C T—-1T-1 L C T—1T-1 2
Smtax(agt)ﬁzzzz bjbk‘fmax ﬁzz ‘b‘
t=1 s=1 j>0k>0 t=1 s=1

Exploiting the absolute summability of Ej, Var (% ZtT:Q (x4—1 — p)sin %) is thus seen to be bounded
as required.

. Rewriting the original term yields

T — T
1 Z .ot sin
— wi—1 | sin — — sin E We_1 sm - — Wi_1
T —~ 2T T ’

t=2

where the second term on the r.h.s expands to

T
— U= =3 4 sin /2.
51n§ 0 T1+n/2 E re 1T
t=2

It is easy to see that the first two terms on the r.h.s are o, (1). The third term is o, (1) as well since
r+_1T"? is uniformly L,-bounded as shown in item 1 of this Lemma. Regarding the remaining term

Mth 3 sin 2T TZrt 1sm

it is again easy to see that the second part on the r.h.s is o, (1) and the first part is also o, (1) as
previously shown in item 2 of this Lemma. Finally, with the uniformly L;-boundedness of r,_,7"/2

follows
1 L / C
2
< 7T1+n/2E ;_2:‘17’ 7"t71’ < Tajz — 0.

The result follows since all single terms are o, (1).
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=
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E<T=

E r sin—m
= ar
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4. We have

“(f

Furthermore it holds that w;—1 = (-1 —p) — 0 x1 — p) + r¢—1 is uniformly Ly-bounded since x;
as well as T""/?r,_; are (at least) uniformly Lo-bounded. Moreover,

R
Sl —— — SIn
2T

)

T

_ 1 2
E(w?) E ) = 3 el Il

t=2

NI~

zwt (s g7 s a2

)g tZT:E(IwHI

2

<

Nl =
[M]=

~
||
N

t—3 (

A

el < 18IS @l + el + 18] [T+ Il
If@enly < 1 Ha] 2ol + 1)l

With H, (1) bounded, I (z;—1) a bounded function and x;_; uniformly L4,-bounded, f(z;_1) turns
out to be uniformly Ls-bounded. By applying Minkowski’s inequality it follows that f (z) is also
uniformly L4-bounded and @ is uniformly L4-bounded since u; is. Hence ¢, is uniformly L4-bounded
and the result follows with Markov’s inequality.

IN

5. It holds
1 & 2 1 o 2 (w1 —p)? ¢ t3y2 , 1 S 2
*Ewtl = *E (w4—1 — )" + E (Q )'1‘*27}1
T T T T
t—2 t—2 t—2 t—2
T I T 1 & "
1— t—3 — t—3
- T ;:2 (w1 —p)o +T;:2 (g1 —p) 11 — T ;:29 Ti1

With Lemma 2 follows 4 ZtT=2 (zi-1 —p)* B & [i?]. Each of the remaining terms is o, (1) thanks
to the Markov inequality, since

2

(21— p)° +
E( 1TM Z(Qt—32
t=2
1 <& r C
E<T§r?1> - TWTZ‘T7 | <7 20

with the crossproducts easily dealt with using the Cauchy-Schwarz inequality.

) E((xlT_u))CT" = Var (z1)

—0

IN

C
Ti-n

6. Note first that max; ||g7 — u?||, — 0 since

. _\\2
5 = uf = 2u (B1f (@) = (0t BT @) ) + (Buf (we0) = (2 + BT (@)
where, with ;1 uniformly L,,-bounded and thus f (z;—1) uniformly Ls;-bounded,

<.
VT’

furthermore, f (z) is itself uniformly L4-bounded and ||a||, — O (using the arguments from the proof
—1/2

JueBof (wi-1)lly < [BallJuelly 1 (ze-1)lly <

of item 1, Lemma 3, it can be shown that T’ Zthl uy is uniformly L4-bounded) so, uniformly in ¢,

u (a+ B F@) |, < el lally + 1B el [ 7G|, = 0 1),

and, similarly,

H Bif (zi_1) — <u+51f( )) *Hﬂlf Tp-1) — (u+[31f )H

2
4

u+ ﬁlmH =o0(1)

<181 @Il + 21181 f (@er) |+ BT (@)
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uniformly in ¢. Then,

*Zwt 1Y% = Zwt 1Ut+ Zwt 1 _th)

where

IN

Zwt 1 *Ut)

t=2

“(

since w;_; is uniformly Ly-bounded, see item 1 of this lemma, so T~ 32, w? | (57 —u?) 5 0. It is
not difficult to show that max; ||wf_, —z7_,||, — 0, so we obtain analogously that

*E wi qup = = E x7qui + o0, (1),

and the result follows with Lemma 2.

T
) LS R (i (3 <fz||wt 7 -],

IN

2
(max||wt 1lly ) mtaXHyt _UtH2 —0

7. Note that, along the lines of the above items,

T

T
1 1
— E W1l = — E (-1 — p)ur +0p(1).
VT = VT =

Then, with T2 Y7 (21 — p)°u? B & [i?] according to Lemma 2 and (z;—1 — p) u; possessing
the md property, it suffices to show that max;<;<7 [(z—1 — p) we| = o, (Tl/z) in order to be able to
apply a CLT for md arrays (e.g. Davidson, 1994, Theorem 24.3) to establish the result. To this end,
note that

_ < _
max |(we-1 — p)ue| < max |y — p| max ful

where both u; and z;_ are uniformly Ly,-bounded, so both maxima are easily shown to be O,, (T/4) =
Op (T1/4) as required.

8. Follows along the lines of item 12 of Lemma 3 and we omit the details.

Proof of Proposition 1

The OLS-based ¢ statistic is given by

T
s — Zt:2 J (1) us I ﬁ
B T S
Dot [ (1) “
Then, under near-integration,
T
s W Doteo [ (@e—1) ue To/2+0:5 g\ 1 )
t,B - R 1 T + & N2a2aa+l Zf (xtfl)
Y —— Y : P

Téﬁ Zf,T:Q f (ﬁxtA) Uy e |1 & 1

= + b — v — E f2 <O5It_1);
A 1 T 2 1 Oy T )\va :
Gur| T 2opma f (Wzt—l)

5%)



The result follows with the CMT and Lemma 3 if 6, = @, under the local alternative as well. We have
that

T

b 2
- Z (Ut + Wf (%—1))

t 1

T
Z
T

= Z (a+3/22f 33t1ut+Ta+QZf T1)
T
P

which leads to the desired result since E;F:l u? % &2 indeed (the latter convergence being a particular
case of Lemma 2).

Under stationarity, we have similarly that

Q>
ﬁm

ﬂ \

T
Z _w3+0p(1)a

and the result follows with Lemma 2 and a CLT for martingale difference arrays (e.g. Davidson, 1994,
Theorem 24.3).

Proof of Proposition 2

Write
flin _ DYl Y Tl L5 Yo f (w—1)
B - .
Ju\/wa_l Uu\/zxf—l Uu\/zwgq
such that
1 T o/t 1/2 pya o ——— ZT i1 f (z4-1)
tlm . m2t72 Tt—1Ut T 5)\ Wy Na+lgotlpayzi3/n t=24t—1 t—1
[—} - ~
0. 1 T 2
Uu N2@2T? 2T2 Zt 2mt 1 v \/A2ang2 Do Ti g

and note that x;—1 = Hj (x4—1) ; the result follows with Lemma 3 and the CMT. The proof is analogous to
that of Proposition 1 in the stable case, where &, [f - i] # 0 due to the monotonicity of f and f(0) =

Proof of Proposition 3

Write the test statistic with Eicker-White heteroskedasticity-consistent covariance matrix estimators as

s _ _ ArBr
P JArCrAL

where

T T -1
Ap =) #.% Dy ( "N zaz Dy > :

t=2

T T
Br=D;'Y %1 and Cr=D;'Y %1% ,§;Dp'
t=2 t=2

with Dr defined differently for the cases of near integration and stationarity as follows.
Proof of item 1. Under near-integration, let Dy = diag (7/2,7"/**"/2) and examine
%ATBT

v/ = ArCr Al

o6



Then, with J.,, = fo voy (s)ds and sin = /73] sin It

T

1 . _ _ ! . TS 2
T tz:;xt_lz;_lDTl = (/\wv (/0 Je,o, (8)sin ?ds —~ cm) , O) ,

since sin — fo sin Z8ds = 2 and 3/2 Zt o Ti—1 = AWy fo c.0, (8)ds, and, with Lemma 3 items 3, 5 and 6,

1 T 1 ) 1 T
W Zl’tflukfl - <TS/2 Z.’L‘t1> <Tl+"/2 Z’wt1> = 0p (1) .
t=2 t=2 t=2

Furthermore, we have with items 7 and 10 of Lemma 3 that
i, TS 22
Z sinr — =) " ds+o0,(1 0
T Zt— 1zt 1D 1 ( fO ( n 2 76) S OP( ) >

and

( Jo (sin % = 2)* 02 (s)ds + 0, (1) Oy (1) >
Op (1) Oy (1)

Note that it is not necessary to establish the precise limiting behavior of the O, (1) and © (1) terms since
they are multiplied with 0 in Ay and ArCrA/.. Summing up,

1 Ay, fo (Jewo, (s)sin %2 — 2], ;5 ) ds \/fo (sin %2 — ;)2 o2 (s)ds
75 ArCr AL = d )
V7 Ten%E-2)7as

Then, examine

T T T
D,Z_,l Zit_lgt = D/Z_—vl Z%t_lﬁt + 61Df1_'v1 Zzt—l (f (:Ct—l) - f (x—l)) (3)
t=2 t=2 t=2

with f(z_1) = % 23:2 f (z1—1) . Focusing on the first summand on the r.h.s., we observe that

T 2
_Z~ - Z sin 2% — = Z sm——f
Dr'p #-vi =Dy’ (wt 1—w7r1 ) r ( i >Ut+0p(1)
t=2

since wW_; = % ZtT=2 wi—1 = Oy (T"/z) is negligible (see Lemma 3). The first element of the vector converges

to )
2
B /O (sin %‘S - ﬂ) AW, (s)

which is normal with mean zero and variance fo sin? 2202 (s)ds — w2 2. The second summand on the
r.h.s. of (3) is given by

7rt

d bll’l 2
1 2T =
a+1)/2D Z ( wt 1 ) f <xt*1) +0op (1)

t=

o7



again since w_; is negligible. Recall from Lemma 3 item 9 that 7~ */>~1-"/> Zt swi—1f (z4—1) = Op (1),
so we have that

1
—ArB
T TDOT =
1 1 2
2 - 2
AWy (/ Jeo (S) sin Eds — JCA(,U) </ (Sinﬂ-s _ ) ds> %
0 ’ 2 s : 0 2 ™
1
s
Ou — — — | dW,
X @ /0 <s1n 5 7r> . (s)
1 1 2 -1
2 - 2
+o > igatt (/ Je.o, (8)sin T 4s — —J. av) (/ (Sin T ) ds) X
0 ’ 2 Vs ’ 0 2 Vs

> Ou fol (sin Z2 — 2) dW,, (s)
VI Gin% —2)" a3 (s)ds

s ows 2 H,(J., d 1 2__
+bA@ afo (sin 5 — 2) Ha (Joo, () ds sgn (/ Jeo, (8)sin %ds B ‘]C»"v) ;
0 ™

> \/fo (sin Z2 ;) 02 (s)ds

Jo (sin % — 2 )dw.

this completes the result (under the null, the sign cancels out upon squaring and the ratio =
\/101 (sm = — %) o2 (s)ds

is standard normal).

Proof of item 2. Should z; be stable, redefine Dy = diag (Tl/z, TI/Q) and consider a different standard-
ization of numerator and denominator of t%s ,

_ ﬁATBT
S ApCr AL

The behaviour of the term Zthg F4-1%,_1 D3 is different:

T
= > aaza Dt (0.8 7] - (6. 1)7)

thanks to Lemmas 2 and 4. Comparing with item 1, it is seen that the sample covariance of Z;_; and z;_4
acts as a selector (the limits in the two cases, stable and near integrated, are orthogonal); see Breitung and
Demetrescu (2015). The sample covariance matrix of the instruments satisfies according to Lemma 4

D Zzt 12, D;! (fo (Smfo— 2)%ds Eo([)iﬂ )

while

_ ! sinﬁ—%zaﬁ(s)ds—i—op(l) 0, (1)
o= (PR i)

&, [i2] — (&.10)° :

Consequently,
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while, with w;—1 = z4—1 — pt + 0p (1) from Lemma 4 item 1, it is easily shown that uniform L,-boundedness
of the o, (1) term leads to

b}iw (f @) - FG) =

T T

b S s =) (£ ) = T ) = b - (F o) = 1) +0p (1)

pos t=2
Bb(Eulf i) —EL[f1Eui)).

The result follows with the suitable items of Lemma 4.
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