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Abstract

We introduce several families of multidimensional ARCH models, possibly with

a very large number of parameters. The corresponding conditions of stationarity

and of positive definiteness are studied. Through penalized OLS methods (sparse

group-lasso), we consistently estimate such models. We evaluate the relevance of

such strategies by simulation.

JEL classification: C13, C32, G17.
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1 Introduction

Modeling the joint behavior of several financial assets has become a key challenge

for academics and practitioners. Indeed, it is not easy to build a realistic model

that is statistically relevant and consistent with some well-known stylized features

of financial asset returns (fat tails, volatility clustering, autocorrelation of absolute

returns, etc). In such discrete time multivariate framework, the usual key quantities

are yielded by the covariance matrices of the current asset returns, given their

past values. Indeed, an accurate estimation of covariance risk is crucial for risk

management, asset pricing and portfolio management purpose.

In the literature, many specifications for discrete-time multivariate dynamic

models have been proposed. Broadly speaking, most of them belong to the multi-

variate GARCH family or to the multivariate stochastic volatility family: see the

surveys of Bauwens et al. (2006) and Asai et al. (2006), respectively. By specifying

the dynamics of the first two conditional moments of the underlying distributions

on one side, and the law of the innovations on the other side, such models are easy to

simulate and to forecast one-step ahead. Nonetheless, in practical terms, a classical

hurdle is related to the so-called “curse of dimensionality” as the specification of

a general multivariate dynamic model often induces an explosion of the number of

free parameters, inducing practical problems of inference and possibly overfitting.
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Concerning N -dimensional GARCH models, the framework we adopt in the pa-

per, inference is usually led by quasi-likelihood functions (see Francq and Zaköıan

2010, e.g.). The corresponding QML criteria are highly nonlinear - multivariate

Gaussian or Student - with O(N2) free parameters and they necessitate fast solving

optimization procedures. Therefore, strongly reduced versions of such multivariate

models are most often considered as soon as N is larger than four or five, typically:

the scalar BEKK of Engle and Kroner (1995), the scalar Dynamic Conditional Cor-

relation (DCC) of Engle (2002) when modeling correlation processes, the Quadratic

Flexible DCC of Billio and Caporin (2006), among others. However, it would be

unrealistic to capture heterogenous patterns with such simplistic dynamic models,

especially when N is “large”. Indeed, with scalar models, the influence of past

returns is similar for all components of the variance covariance matrix, a strong

assumption.

Another approach is given by factor modeling, which aims at reducing the model

complexity. Among others, Fan et al. (2008) emphasized the relevance of factor

models for high-dimensional precision matrix estimation. However, this modeling

ideas require the identification of corresponding factors. An “expert” approach is

based on some priors regarding the leading underlying factors. Otherwise, latent

unobserved factors induce particular estimation issues and their number is ques-

tionable.

The objective of this paper consists in modeling high-dimensional variance-

covariance matrices within the multivariate GARCH framework, in a flexible way

and breaking the curse of dimensionality. To do so, we introduce some extensions

of the univariate ARCH model to multivariate ones, and we estimate such models

through a convenient penalized ordinary least squares (OLS) procedure. Indeed,

multivariate ARCH models admit a linear representation with respect to the pa-

rameters, contrary to GARCH ones. Note that any “invertible” GARCH process

may be written as an infinite order ARCH model, under some conditions on its co-

efficients. Therefore, we argue that highly parameterized ARCH models (with nu-
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merous lags) should behave at least as well as more usual GARCH models, in terms

of realism and flexibility. Nonetheless, for the purpose of parsimony and to avoid

overfitting, we have to enforce the nullity of possibly numerous model coefficients.

The OLS objective function is particularly adapted for regularization procedures

and fast closed form-algorithms can be applied. A natural regularization procedure

is given by the Sparse Group Lasso (SGL) of Simon et al. Tibshirani (2013), as it

fosters sparsity at a group level and within a group, where the coefficients in the

same group are associated to the same lag. We will consider an adaptive version

of the SGL to satisfy the oracle property, which ensures the right identification of

the underlying set of nonzero coefficients (Fan and Li 2001, Poignard 2016). In

other words, we propose penalized OLS objective functions for a wide range of

multivariate ARCH processes.

One of our main challenges is the non negativeness constraint for the generation

of “true” conditional variance-covariance matrices. Indeed, in general, the model

parameters must then satisfy highly nonlinear constraints. Then, the estimation

problem is no longer convex and this prevents from using fast solving algorithms.

Besides, the oracle property cannot be satisfied as it heavily relies on the con-

vex property of the optimization criterion. To fix this issue, we propose several

multivariate ARCH parameterizations that ensure non negativeness: the so-called

homogeneous and heterogeneous ARCH models, and the Choleski-GARCH specifi-

cation. To the best of our knowledge, the two former ones are new.

The paper is organized as follows. In Section 2, we describe the multivariate

ARCH framework and our penalized ordinary least squares criteria. In Section 3,

we introduce several highly parameterized ARCH-type models and discuss their

stationarity property. In Section 4, we compare the performances of our penalized

multivariate ARCH processes with other competitors by simulation.
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2 The framework

2.1 High-dimensional ARCH-type specifications

We consider a N -dimensional vectorial stochastic process (rt)t=1,··· ,T and we denote

by θ the vector of its model parameters. Typically, rt is the vector of returns that

is associated to a portfolio of financial assets. Typically, we decompose rt as the

sum of its conditional expected return and a residual:

rt = µt + εt, εt = H
1/2
t (θ)ηt.

The expected return given the past is µt = E[rt|Ft−1] := Et−1[rt], where Ft de-

notes the market information until (and including) time t. To be short, Ft is the

filtration induced the returns rt−k, k = 0, 1, 2, . . .. We set Ht(θ) = Var(rt|Ft−1) :=

Vart−1(rt) = Vart−1(εt) is a N ×N that is a nonnegative matrix. The series (ηt) is

supposed to be a strong white noise, i.e. a sequence of independent and identically

distributed random variables s.t. E[ηt] = 0 and Var(ηt) = IN , the identity matrix

in RN . For convenience, we will denote Ht(θ) = Ht = [hk,l,t]1≤k,l≤N .

The specification of the model above is complete when the law of ηt is specified

and when the functional form of both µt and Ht(θ) are given. In this paper, we will

focus on the centered dynamics (εt) after removing the first conditional moments.

Now, these residuals will be considered as our observations (still denoted by εt). In

practice, µt is estimated from the past returns and is Ft−1-measurable. Therefore,

keeping the same notations as above, the model we consider is actually εt = H
1/2
t ηt

for all t, where (ηt) is a F-martingale difference: E[ηt|Ft−1] = 0 for all t. Moreover,

we will assume that Ft = σ(εs, s ≤ t).

The quantity of interest is Ht and we would like to directly specify its dynamics.

A significant stream of the literature has been developed into this direction. A

general formulation of Ht-dynamics has been proposed by Bollerslev et al. (1988):

in their general VEC model, each element of Ht is a linear function of the lagged

squared residuals, their cross-products and the components of lagged Ht matrices.
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The most general formulation of a VEC(p, q) model is then

hi,j,t = ai,j +

q∑
k=1

ε′t−kBijkεt−k +

p∑
l=1

Cij,lvec(Ht−l), (2.1)

for every t and every indices i, j in {1, . . . , N}. The model parameters are the

unknown N × N matrices Bijk and Cij,l, i, j ∈ {1, . . . , N}, k = 1, . . . , q and l =

1, . . . , p. Moreover, A := [aij ] is a N(N + 1)/2 unknown vector. Some tedious

constraints have to be fulfilled to ensure that Ht is non negative in such a general

parametrization. In this paper (and for some reasons that will appear hereafter),

we will not consider the auto-regressive part in (2.1). Then, all matrices Cij,l are

assumed to be zero and the model can now be rewritten as

Ht = A+

q∑
k=1

(IN ⊗ ε′t−k)Bk(IN ⊗ εt−k), (2.2)

where Bk is the N2×N2 block matrix given by Bk := [Bijk]1≤i,j≤N and ⊗ denotes

the usual Kronecker product. In Gouriéroux (1997), it is stated that sufficient

conditions for obtaining nonnegative covariance matrices Ht are the following ones:

(i) A and Bk, k = 1, . . . , q, are symmetric, and

(ii) A and Bk, k = 1, . . . , q, are non-negative.

Clearly, (i) can be imposed easily in the model specification and during the infer-

ence procedure, contrary to (ii). Indeed, in general, the latter condition imposes

complex nonlinear constraints on the model parameters. Moreover, it is not realis-

tic to estimate general non-negative matrices B, due to their sizes (qN2(N2 + 1)/2

unknown parameters!) and due to the tedious nonlinear constraints imposed by

non-negativeness (particularly at the optimization stage). Therefore, we have to

exhibit flexible but realistic sub-families of models given by (2.2). This will be done

in Section 3.

Note that (2.2) can be written as a linear model

εtε
′
t = A+

q∑
k=1

(IN ⊗ ε′t−k)Bk(IN ⊗ εt−k) + ζt, E[ζt|Ft−1] = 0. (2.3)
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To avoid redundancies, introduce the usual operator Vech(.) that transforms any

m×m symmetric matrixM into them(m+1)/2 vector of its component. Then, (2.3)

is equivalent to

Vech(εtε
′
t) = Vech(A) +

q∑
k=1

Vech
(
(IN ⊗ ε′t−k)Bk(IN ⊗ εt−k)

)
+ Vech(ζt).

This can be rewritten more explicitly: for every couple (i, j) ∈ {1, . . . , N}2 such

that i ≤ j, we have

εi,tεj,t = ai,j +

q∑
k=1

N∑
r,s=1

bijk,rsεr,t−kεs,t−k + ζij,t, E[ζij,t|Ft−1] = 0, (2.4)

where Bijk = [bijk,rs]1≤r,s≤N . Note that the elements of the N2-squared matrix Bk

may be indexed by quadruplets (i, j, r, s), 1 ≤ i, j, r, s ≤ N . The latter elements are

related to the coefficients of Bk that define the dynamics of εi,tεj,t. Moreover, note

that Bijk = Bjik and ζij,t = ζji,t for every couple (i, j) and every k. Hereafter and if

necessary, the couples of indices (i, j) and (r, s) will be sorted in the lexicographical

order

(1, 1), (1, 2), . . . , (1, N), (2, 1), (2, 2), . . . , (N,N − 1), (N,N),

even when we restrict ourselves to the couples (i, j) s.t. i ≤ j.

The previous linear model will be estimated by a penalized least squares pro-

cedure. In terms of inference, this is a dramatic advantage w.r.t. the usual QML

estimation procedure of GARCH models. Therefore, in practical terms, it will

be easier to estimate ARCH-type models with a lot of assets and lags (N >> 1,

q >> 1) than a GARCH model with the same N and q = 1.

2.2 A penalized empirical criterion

Contrary to GARCH-type dynamics that require the optimization of a nonlinear

objective function (Gaussian- or Student-type likelihoods, typically), multivariate

ARCH process have the advantage of allowing direct estimation by ordinary least
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squares. Assume that the true model is (2.4), with the true indices p0 and q0. A

regularization procedure with q larger than q0 would likely set the parameters bijk,rs

to zero when k > q0. Moreover, note that, if the true model is a GARCH process,

then it can be rewritten as in (2.4) with q = ∞ (if a convenient bock-companion

matrix of the autoregressive parameters is invertible, strictly speaking). In such

a case, the model (2.4) may produce relevant approximations of usual GARCH

processes. Since q0 is unknown, these arguments call for choosing a “sufficiently

large” q ex ante.

For the sake of parsimony, the estimated parameters need to be constrained to

avoid overfitting. The OLS objective function is particularly adapted to penalized

procedures. The asymptotic properties of the associated estimators can be found in

Fan and Li (2001), for instance. Such a regularization procedure aims at identifying

the relevant subset of parameters, to describe the instantaneous covariances. A

priori, the parameter θ belongs to a bigger set formed by some (possibly numerous)

lagged variables. Both estimation and variable selection will be performed through

regularization.

Now, let us specify such a well-suited procedure to be applied to some high-

dimensional ARCH models. Our “non-penalized” least squares objective function

will be 
GT l(θ) =

1

T

T∑
t=1
l(εt; θ),

l(εt; θ) = ‖Vech(εtε
′
t)−Ψ(εt−1)θ‖22,

(2.5)

where Ψ(εt−1) is a Ft−1-measurable random matrix, whose particular analytic form

depends on the model specification. For instance, for the process (2.4) and without

any additional constraint on the parameters, the parameter vector can be decom-

posed as θ = (θ(ij), 1 ≤ i ≤ j ≤ N), such that the ij-th sub-vector is

θ(ij) := (aij , θ
(ij1), . . . , θ(ijq)),

θ(ijk) := (bijk,11, 2bijk,12, · · · , 2bijk,1N , bijk,22, 2bijk,23, . . . , 2bijk,(N−1)N , bijk,NN )′.
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This means that the number of unknown parameters is d(1 + qd), with d = N(N +

1)/2. Then, in such a case, Ψ(εt) is the d× d(1 + qd) matrix

Ψ(εt) =



ψ(εt) 01+qd 01+qd 01+qd · · · 01+qd

01+qd ψ(εt) 01+qd 01+qd · · · 01+qd

...
...

...
...

...
...

01+qd 01+qd 01+qd · · · 01+qd ψ(εt)


,

where 01+qd is a 1 + qd-row vector of zeros and

ψ(εt) = (1,Vech(εt−1ε
′
t−1)′, . . . ,Vech(εt−qε

′
t−q)

′).

Note that the latter criterion has most often to be rewritten when some con-

straints on the model parameters are taken into account. Indeed, in such a case,

the number of free parameters is typically reduced, and/or some parameters are

shared by several univariate linear equations of the type (2.4). See, for instance,

the so-called “homogeneous model” in Subsection 3.2.

Moreover, in a lot of situations, it is likely that the most recent observations

should have a higher level effect on the current covariance matrix than older ob-

servations. Think of a usual univariate GARCH(1, 1) process and its ARCH(∞)

rewriting, for instance. In this setting it is natural to assume that the model param-

eters bijk,rs decay with k, i.e. as we move farther away from the current observation.

We could consider a procedure that would impose inequality constraints among the

coefficients to recover such ordering effects. Following the same intuition, Tibshirani

and Suo (2016) proposed an order-constrained version of the Lasso. Such additional

constraints can easily be added into our framework. To lighten the presentation,

we have not explicitly considered them hereafter. At least, we only assume that all

the coefficients are zero from a certain rank k ≤ q on.

Now, let us penalize the previous OLS criterion to foster parsimony. The intu-

ition is as follows: after having specified a large number of lags q a priori, assume
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that only a subset of potential lagged variances and covariances produce a statis-

tically significant effect on the current covariances (the sparsity assumption). A

penalization procedure enables to recover this unknown subset by enforcing some

estimated coefficients to zero. Among a lot of competitors (Lasso, SCAD, elastic-

net, etc), the Sparse Group Lasso seems to be the most relevant regularizer as it

fosters sparsity both at a group level and within a group. Intuitively, the natural

groups should be all the parameters that are associated to a given lagged vector

εt−k (i.e. all quantities bijk,rs for every quadruplet (i, j, r, s)), but other choices are

possible, obviously.

To fix the ideas, potentially every component of θ belongs to some subvector

θ(k), k = 1, . . . ,m, whose size is denoted by ck. In other words, the concatenation

of all θ(k) provides θ (or a subset of θ), after a rearrangement of its components. In

our “core” example, m = q and we concatenate into θ(k) all coefficients bijk,rs for

every (i, j, r, s). Even possible, we will not penalize the coefficients ai,j because we

will propose to estimate them in a preliminary stage through a targeting procedure

(see Subsection 2.3).

Then, our statistical problem consists in minimizing over some finite-dimensional

parameter space Θ a penalized criterion of the form

θ̂ = arg min
θ∈Θ

{GTϕ(θ)}, (2.6)

where GT l(θ) + p1(λT , θ̃, θ) + p2(γT , θ̃, θ). Both penalties are specified as


p1 : R+ ×Θ×Θ→ R+, p2 : R+ ×Θ×Θ→ R+,

(λT , θ̃, θ) 7→ p1(λT , θ̃, θ) =
λT

T

m∑
k=1

ck∑
i=1
α

(k)
T,i|θ

(k)
i |, (γT , θ̃, θ) 7→ p2(γT , θ̃, θ) =

γT

T

m∑
l=1

ξT,l‖θ(l)‖2,

with α
(k)
T,i = |θ̃(k)

i |−η and ξT,l = ‖θ̃(l)‖−µ2 , where η > 0, µ > 0, and θ̃ is a first step

estimator of θ, which is supposed to be
√
T -consistent. For instance, θ̃ can be an

unpenalized OLS estimator. Its
√
T -consistency is necessary to satisfy the oracle

property. The tuning parameters λT and γT typically tend to zero when T → ∞
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(see Poignard 2016).

This program reduces to the classic OLS estimator when there is no penalization.

The proposed penalization framework includes the usual Lasso criterion when γT =

0, the Group Lasso when λT = 0 and the Sparse Group Lasso when λT and γT are

non zero.

Obtaining the non negativeness of the conditional covariance matrices induced

by (2.4) is the main technical challenge in practice. To ensure this constraint, the

parameters in (2.4) must satisfy eigenvalue-type constraints such that Θ will not be

convex. This is a drawback from both an empirical and theoretical point of views:

empirically, it hampers fast solving algorithms; theoretically, the non-convexity

prevents the Sparse Group Lasso estimator from satisfying the oracle property of

Fan and Li (2001). Thus, in Section 3, we propose parameterizations that allow for

generating non negative matrices while remaining flexible and linear with respect

to the parameters. This would discard processes that require a normalization step

or non convex constraint sets for the parameters.

2.3 Evaluation of A

As a digression, let us focus on a covariance targeting procedure for the estimation

of A. Although this parameter could be estimated with B simultaneously, the

covariance targeting step fosters dimension reduction as it splits the problem. This

will allow to satisfy the non-negativeness of the estimated matrix A more easily.

To do so, note that taking the unconditional expectation of (2.4), we have

E[εi,tεj,t] = ai,j +

q∑
k=1

N∑
r,s=1

bijk,rsE[εr,t−kεs,t−k],

for every couple (i, j). If the coefficients bijk,rs were known, and assuming we

have estimated consistently E[εi,tεj,t] by ĉovi,j , then the coefficients ai,j could be

estimated as

âi,j = ĉovi,j −
q∑

k=1

N∑
r,s=1

bijk,rsĉovr,s.

11



When T is large and assuming the model is well specified, âi,j will converge towards

ai,j and we would observe that the estimated matrix Â := [âi,j ] is definite positive if

this is the case for A. Nonetheless, at finite distance, it is likely the latter condition

will not be satisfied. Fortunately, our OLS estimation procedure does not require

per se that we manipulate nonnegative matrices A and B. This is required only

for prediction and likelihood-based methods. Therefore, to estimate (2.2) (and

then (2.4)), we propose to replace ai,j by âi,j , and the model is then parameterized

by B only. Once B is estimated by B̂, the matrix A will be approximated by Ã

whose components are

ãi,j = ĉovi,j −
q∑

k=1

N∑
r,s=1

b̂ijk,rsĉovr,s.

Afterwards, a projection of Ã on the cone of nonnegative matrices would provide

the final estimate of A.

As an alternative strategy, we can invoke a parametrization of A in the cone of

nonnegative matrices directly. The natural basis would be provided by the spectral

decomposition of E[εtε
′
t] (or its empirical approximation [ĉovi,j ] instead). Indeed,

there exists an orthonormal family (v1, . . . ,vN ) in RN s.t.

E[εtε
′
t] ' [ĉovi,j ]1≤i,j≤N =

N∑
l=1

νlvlv
′
l,

where (ν1, . . . , νN ) is the associated spectrum, ν1 ≥ ν2 ≥ · · · ≥ νN ≥ 0. Then,

we could assume that there exist nonnegative real numbers πl, l = 1, . . . , N s.t.

A =
∑N

l=1 πlvlv
′
l. Then, we have replaced the N(N + 1)/2 unknown coefficients of

A by only N parameters (π1, . . . , πN ). And such a matrix A will be nonnegative

by construction.

In our applications, we have used the first targeting method for A. From now

on, we focus on the evaluation of B-type matrices in (2.4).
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3 Our ARCH-type specifications

In this section, we propose several ARCH-type parameterizations of (2.2) to ensure

the non negativeness of Ht. Remind that our main objective is to obtain linear

processes whose parameters possibly satisfy linear constraints. These are sufficient

conditions to obtain a convex objective function on a convex parameter set. First,

we propose a constraint free multivariate ARCH dynamics (the B-parameters are

unconstrained) and the corresponding (Ht) process is projected onto the space of

nonnegative matrices. The second model is called “homogeneous” and is relevant

for random vectors with positively correlated components. Then, we propose a

“heterogenous” parametrization that it is adapted to random vectors with discor-

dant patterns. Finally, a model based on Choleski decompositions is discussed.

3.1 Constraint free and matrix projection

This “brute-force” approach consists in projecting a matrix process, which may not

be necessarily non negative, onto M+
N×N (R), the cone of non negative matrices.

This method allows flexibility because one can independently specify and estimate

the processes that are associated to each component of vec(εtε
′
t). We rewrite the

general dynamics given by (2.4) for each component of the εtε
′
t matrix as

εi,tεj,t = ai,j+

q∑
k=1

N∑
r=1

bijk,rrε
2
r,t−k+

q∑
k=1

N∑
r,s=1,r<s

2bijk,rsεr,t−kεs,t−k+ζi,j,t, E[ζi,j,t|Ft−1] = 0,

(3.1)

if i ≤ j. Through inference by OLS, the symmetric matrices A and B are not

necessarily non negative. Nonetheless, these matrices can be approximated by

nonnegative ones. Here is a cost to be paid: eventually, we no longer satisfy (3.1)

strictly speaking, to generate true conditional covariance matrices (Ht).

To this goal, consider the singular value decomposition of a symmetric matrix

M as M = P ′diag(λ1, · · · , λN )P , where P is an orthogonal matrix composed with

N eigenvectors. We define two projections fk :MN×N (R)→M+
N×N (R), k = 1, 2.

A first projection is f1(M) = P ′diag(λ+
1 , · · · , λ

+
N )P , with λ+

k the positive part of
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λk. A second projection is f2(M) = (M+λ−minId)/(1+λ−min), with λ−min the negative

part of the minimum eigenvalue of M . The eigenvectors remain the same as for

M in both cases. Note that we can even impose the positive definiteness (no zero

eigenvalue) of the projected matrices by adding cIN to fk(M), for some arbitrarily

small positive number c.

The first stage estimated matrix is denoted by H̃t = [h̃ij,t], whose components

are given by

h̃ij,t = âi,j +

q∑
k=1

N∑
r=1

b̂ijk,rrε
2
r,t−k +

q∑
k=1

N∑
r,s=1,r<s

2b̂ijk,rsεr,t−kεs,t−k,

for any couple (i, j). For any projection method k ∈ {1, 2}, the final estimated

covariance matrix of εt given Ft−1 would be Ht = fk(H̃t).

This method allows for an equation-by-equation estimation procedure, where

each equation corresponds to a couple (i, j). This feature is particularly adapted

for high-dimensional regression settings. Such dynamics are linear with respect to

the parameters so that the estimation can be carried out by the ordinary least

squares objective function or by penalized OLS.

3.2 The homogeneous portfolio model

Here, we particularize the general ARCH model (2.4). We will need some matrix

notations:

• For any subset J of indices in I := {1, . . . ,m}, the m-column vector em,J of

zeros and ones is defined by em,J := [1(i ∈ J)]1≤i≤m. When its size is obvious,

it is written eJ simply. Moreover, em,I = em is the m-vector of ones.

• For any vector x ∈ Rm, D(x) denotes the m ×m diagonal matrix given by

D(x) = [1(i = j)xi]1≤i,j≤m.
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Set J = {1, N + 2, 2N + 3, . . . , (N − 2)N +N − 1, (N − 1)N +N}, a subset of

{1, . . . , N2}. Let us consider the parametric family B of matrices given by

B = {M ∈MN2×N2(R) |M = αeN2e′N2 + βeJ e
′
J + γD(eJ ), (α, β, γ) ∈ [0, 1]3}.

Clearly, all matrices in B are non-negative. By assumption, we will choose our

matrices Bk, k = 1, . . . , q, inside B. More explicitly, in the homogenous ARCH

model, we have for every indices i, j and time t

εitεjt = aij+

q∑
k=1

(αk + βk + γk1(i = j))εi,t−kεj,t−k + αk
∑

(r,s)6=(i,j)

εr,t−kεs,t−k

+ζij,t,

where ζij,t = εitεjt − hij,t. Note that the matrix eJ e
′
J can be rewritten as a block-

matrix [Eij ]1≤i,j≤N , where Eij = [1((i, j) = (r, s))]1≤r,s≤1.

This model specification tries to simultaneously capture three effects on the

dynamics of εi,tεj,t:

(i) a uniform effect of all past cross-product among the components of εtε
′
t through

the αk coefficients;

(ii) a more important bump caused by the past values of εi,tεj,t on itself through

βk;

(iii) an additional bump when variances are managed (ie when i = j) through the

parameters γk.

As for the estimation step, the underlying unknown parameter corresponds to

θ = (α1, . . . , αq, β1, . . . , βq, γ1, . . . , γq, ),

when the constant ai,j has been removed as explained in Subsection 2.3. In this

case, we can apply the penalized OLS procedure, as detailed in Subsection 2.2. The
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matrix Ψ(εt−1) of regressors is then

Ψ(εt−1) =



st−1 . . . st−q ~ε11,t,q ~ε11,t,q

st−1 . . . st−q ~ε12,t,q 0

...
...

...
...

...

st−1 . . . st−q ~εNN,t,q ~εNN,t,q


,

where st−k :=
∑N

r,s=1 εr,t−kεs,t−k, for k = 1, . . . , q and ~εij,t,q := (εi,t−1εj,t−1, · · · , εi,t−qεj,t−q).

Note that the size of Ψ(εt−1) is here N(N + 1)/2× 3q because there remain 3q free

parameters after the targeting of A. Moreover, the regressors in the last column of

Ψ(εt−1) are zero, except when i = j (lexicographical order).

3.3 The heterogenous portfolio model

Now, the underlying portfolios is composed of two homogeneous sub-portfolios

whose dynamics behave differently. This situation is commonly met in finance,

when several asset classes have to be managed simultaneously. The first (resp.

second) portfolio corresponds to the assets that are numbered {1, . . . , p} (resp.

{p + 1, . . . , N}). This necessitates to extend the previous model and to introduce

more parameters. We need additional notations:

• For any real numbers α1, α2, α3, α1 and α3 being nonnegative, and two integers

n and m, n < m, set the m×m matrix

M(α1, α2, α3,m, n) :=

 α1ene
′
n α2ene

′
m−n

α2em−ne
′
n α3em−ne

′
m−n

 ·
By some standard algebraic calculations, we can prove that the characteristic

polynomial of the symmetric matrix M(α1, α2, α3,m, n) is

x 7→ (−1)mxm−2
[
(x− nα1)(x− (m− n)α3)− n(m− n)α2

2

]
.

Therefore, the associated spectrum is {x+, x−, 0}, x± := (nα1 + (m− n)α3 ±
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√
∆)/2, where ∆ := (nα1 + (m− n)α3)2 − 4n(m− n)(α1α3 − α2

2) ≥ 0. These

eigenvalues x+ and x− are nonnegative iff α1α3 ≥ α2
2, and then the matrix

M(α1, α2, α3,m, n) is nonnegative. Note that this can be achieved in an opti-

mization program with linear constraints by imposing that α2 ≤ min(α1, α3).

• Set the partitioned matrix M̃(β1, β2, β3, p) = [M̃i,j ]1≤i,j≤N , where

M̃i,j = [1((r, s) = (i, j)).{β11(r ≤ p, s ≤ p) + β31(r > p, s > p)

+ β21(r ≤ p, s > p) + β21(r > p, s ≤ p)}]1≤r,s≤N .

By a similar reasoning as previously, it can be proved that the matrix M̃(β1, β2, β3, p)

is nonnegative iff β1β3 ≥ β2
2 . Again, it is sufficient that β2 ≤ min(β1, β3).

• Let γ1 and γ2 be two arbitrary nonnegative real numbers, and an integer

p ≤ N . Let J := {1, N + 2, 2N + 3, . . . , (p − 1)N + p} and J̃ := {pN + p +

1, (p+ 1)N + p+ 2, . . . , (N − 1)N +N}. Set the diagonal matrix

N(γ1, γ2, p) := D
(
γ1eN2,J + γ2eN2,J̃

)
=

[
1((r, s) = (i, j)).

{
γ11(i = j ∈ J) + γ21(i = j ∈ J̃)

}]
.

Obviously, N(γ1, γ2, p) is nonnegative when γ1 and γ2 are nonnegative.

Now, let us define the “heterogeneous portfolio” model. With the notations

above, we will choose the matrices Bk of (2.2) in the following parametric family:

B̃ = {B ∈MN2×N2(R) |B = M(α1, α2, α3, N
2, Np) + M̃(β1, β2, β3, p) +N(γ1, γ2, p),

α1 ≥ 0, α3 ≥ 0, α1α3 ≥ α2
2, β1 ≥ 0, β3 ≥ 0, β1β3 ≥ β2

2 , γ1 ≥ 0, γ2 ≥ 0}.(3.2)

The non negativeness of such a B ∈ B̃ is guaranteed when it is the case for the

corresponding M(α1, α2, α3, N
2, Np), M̃(β1, β2, β3, p) and N(γ1, γ2, p).
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To be more explicit, the latter model is defined by

εitεjt = aij+

q∑
k=1

(α
(k)
ij + β

(k)
ij + γ

(k)
i 1(i = j))εi,t−kεj,t−k + α

(k)
ij

∑
(r,s) 6=(i,j)

εr,t−kεs,t−k

+ζij,t,

α
(k)
i,j = α

(k)
1 1((i, j) ∈ J2)+α

(k)
3 1((i, j) ∈ J̃2)+α

(k)
2 1((i, j) ∈ J × J̃ or (i, j) ∈ J̃ ×J),

β
(k)
i,j = β

(k)
1 1((i, j) ∈ J2) +β

(k)
3 1((i, j) ∈ J̃2) +β

(k)
2 1((i, j) ∈ J × J̃ or (i, j) ∈ J̃ ×J),

γ
(k)
i = γ

(k)
1 1(i ∈ J) + γ

(k)
2 1(i ∈ J̃),

for any k = 1, . . . , q. This parametric model seeks to capture three effects on the

dynamics of εi,tεj,t:

(i) a uniform effect of all past cross-products on every εi,tεj,t through the coeffi-

cients α·; when i and j belong to the first (resp. second) group of assets, we

use α1 (resp. α3). When i and j do not belong to the same group, we invoke

α3.

(ii) a more important bump caused by the past values of εi,tεj,t on itself, through

the β·; as above, such effects depend on the group of i and j.

(iii) an additional bump when variances are managed (ie when i = j) through the

parameters γ·; if i belongs to the first or the second group of assets, we apply

γ1 or γ2 respectively.

Actually, the latter heterogeneous model specification can be criticized because

the effect of εr,t−kεs,t−k on εi,tεj,t, (r, s) 6= (i, j), is transmitted through the same

coefficient α
(k)
ij , independently of the identify of the (r, s)-group. For instance, it is

likely that this effect should be stronger when (r, s) and (i, j) belong to the same

subset, typically. Therefore, a more general parametric model could be considered,

where there would exist different cross-effects on the dynamics of εi,tεj,t, depending

on the considered couples of indices (r, s), with our previous notations.

This so-called “extended heterogeneous model” would be the same as previously,

except that the matrices M(·) have to be chosen differently. To be specific, instead
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of choosing M(α1, α2, α3, N
2, Np) to build an element of B̃, we select a N2 ×N2-

block matrix inside M̄ := {M̄ = [M̄i,j ]1≤i,j≤N}, where the N × N matrices M̄i,j

are defined as

M̄i,j = M(α
(1)
1 , α

(1)
2 , α

(1)
3 , N, p) if i and j belong to the first group,

M̄i,j = M(α
(2)
1 , α

(2)
2 , α

(2)
3 , N, p) if i and j belong to the second group, and

M̄i,j = M(δ1, δ2, δ3, N, p) if i and j do not belong to the same group.

This would enrich the flexibility and the realism of the model. Unfortunately, the

calculation of the spectrum of matrices M̄ ∈ M̄ is difficult. And only highly non-

linear conditions will be able to guarantee that such matrices will be nonnegative.

Nonetheless, we are convinced that it is valuable to study the impact of cross-

effects on any product dynamics εi,tεj,t differently. To stay tractable and with the

same notations as above, we simplify the latter extended model by assuming that

δ1 = δ2 = δ3 := δ. This means that the effect of all past cross products of returns

on the dynamics of εi,tεj,t is uniform, when i and j do not belong to the same

portfolio. Therefore, under this simplifying assumption, any matrix M̄ in M̄ is

written as

M̄(α(1), α(2), δ) :=



M(α(1)) · · · M(α(1)) M(δ) · · · M(δ)

... · · ·
...

... · · ·
...

M(α(1)) · · · M(α(1)) M(δ) · · · M(δ)

M(δ) · · · M(δ) M(α(2)) · · · M(α(2))

... · · ·
...

... · · ·
...

M(δ) · · · M(δ) M(α(2)) · · · M(α(2))

,


(3.3)

where

M(α(1)) := M(α
(1)
1 , α

(1)
2 , α

(1)
3 , N, p) appears p2 times in the upper left square,
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M(α(2)) := M(α
(2)
1 , α

(2)
2 , α

(2)
3 , N, p) appears (N − p)2 times in the lower right square, and

M(δ) := δeNe
′
N , δ ∈ R+, appears 2p(N − p) times.

Proposition 3.1. A matrix M̄ defined as in (3.3) is nonnegative iff

(α
(1)
1 , α

(1)
3 , α

(2)
1 , α

(2)
3 , α

(1)
2 , α

(2)
2 , δ) ∈ R4

+ × R3,

∆(k) := α
(k)
1 α

(k)
3 − (α

(k)
2 )2 ≥ 0, k = 1, 2, and

∆(1)∆(2) ≥ δ2
(
α

(1)
1 + α

(1)
3 − 2α

(1)
2

)
×
(
α

(2)
1 + α

(2)
3 − 2α

(2)
2

)
. (3.4)

The latter condition (3.4) is nonlinear. Nonetheless, it is satisfied if α
(k)
2 ≤

min(α
(k)
1 , α

(k)
3 ), k = 1, 2 and δ ≤ min(α

(1)
2 , α

(2)
2 )/2. Note that all the latter con-

straints are linear and can easily been taken into account in a convex optimization

program.

Proof of Proposition 3.1. First let us study the positiveness of the quadratic form

q0 that is associated to the pN × pN symmetric matrix

B0 =


M(α) · · · M(α)

... · · ·
...

M(α) · · · M(α)

 , (3.5)

where α = (α1, α2, α3). Let the two sets of indices

I := {1, . . . , p,N+1, . . . , N+p, 2N+1, . . . , 2N+p, . . . , (p−1)N+1, . . . , (p−1)N+p}, and

J := {p+1, . . . , N,N+p+1, . . . , 2N, 2N+p+1, . . . , 3N, . . . , (p−1)N+p+1, . . . , pN}.
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Obviously, {1, . . . , pN} = I ∪ J . Then, for any x ∈ RpN ,

q0(x) = α1

∑
(i,j)∈I2

xixj + α3

∑
(i,j)∈J 2

xixj + 2α2

(∑
i∈I

xi

)
.

∑
j∈J

xj


= α1

∑
i∈I

xi +
α2

α1

∑
j∈J

xj

2

+
α1α3 − α2

2

α1

∑
j∈J

xj

2

.

Therefore, the non-negativeness of q0 (or B0) is equivalent to α1 ≥ 0, α3 ≥ 0 and

α1α3 ≥ α2
2.

Now, we consider the quadratic form q that is associated to M̄ ∈ M̄. Introduce

I∗ := {1, . . . , N−p,N+1, . . . , 2N−p, 2N+1, . . . , 3N−p, . . . , (N−p−1)N+1, . . . , (N−p−1)N+N−p},

J ∗ := {N−p+1, . . . , N, 2N−p+1, . . . , 2N, 3N−p+1, . . . , 3N, . . . , (N−p−1)2N−p+1, . . . , (N−p)N},

Ĩ = I∗ +Np, and J̃ = J ∗ +Np,

with obvious notations. Note that {1, . . . , (N−p)N} = I∗∪J ∗, {Np+1, . . . , N2} =

Ĩ ∪ J̃ , and {1, . . . , N2} = I ∪ J ∪ Ĩ ∪ J̃ . Set y1 :=
∑

i∈I xi, y2 =
∑

i∈J xi,

y3 :=
∑

i∈Ĩ xi and y4 =
∑

i∈J̃ xi. By simple calculations, we get

q(x) = α
(1)
1 y2

1 + α
(1)
3 y2

2 + 2α
(1)
2 y1y2 + α

(2)
1 y2

3 + α
(2)
3 y2

4 + 2α
(2)
2 y3y4 + 2δ(y1 + y2)(y3 + y4)

= α
(1)
1

(
y1 +

α
(1)
2

α
(1)
1

y2 +
δ

α
(1)
1

(y3 + y4)

)2

+
∆(1)

α
(1)
1

(
y2 −

α
(1)
2 δ

∆(1)
(y3 + y4)

)2

+ y2
3

(
α

(2)
1 −

δ2

α
(1)
1

− (α
(1)
1 − α

(1)
2 )2δ2

α
(1)
1 ∆(1)

)
+ y2

4

(
α

(2)
3 −

δ2

α
(1)
1

− (α
(1)
1 − α

(1)
2 )2δ2

α
(1)
1 ∆(1)

)

+ 2y3y4

(
α

(2)
2 −

δ2

α
(1)
1

− (α
(1)
1 − α

(1)
2 )2δ2

α
(1)
1 ∆(1)

)
.

Its non-negativeness is guaranteed when

(
α

(2)
1 −

δ2

α
(1)
1

− (α
(1)
1 − α

(1)
2 )2δ2

α
(1)
1 ∆(1)

)
×

(
α

(2)
3 −

δ2

α
(1)
1

− (α
(1)
1 − α

(1)
2 )2δ2

α
(1)
1 ∆(1)

)

≥

(
α

(2)
2 −

δ2

α
(1)
1

− (α
(1)
1 − α

(1)
2 )2δ2

α
(1)
1 ∆(1)

)2

,
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providing the result after some simplifications.

Therefore, we propose a second family of parametric matrices Bk in the case of

heterogenous portfolios (with two groups):

B̄ = {B ∈MN2×N2(R) |B = M̄(α(1), α(2), δ) + M̃(β1, β2, β3, p) +N(γ1, γ2, p),

α(j) ∈ R3
+, j = 1, 2, (α(1), α(2), δ) satisfies the conditions of Proposition 3.1,

β1 ≥ 0, β3 ≥ 0, β1β3 ≥ β2
2 , γ1 ≥ 0, γ2 ≥ 0}.

Therefore, we automatically obtain non-negative covariance matrices in such an

“extended heterogeneous” (simplified) model.

The latter ideas can be extended by considering more than two homogeneous

sub-portfolios, at the price of more notational and algebraic complexities.

3.4 Conditions of stationarity

The model dynamics are specified by the N2 equations (2.4). Strictly speaking,

they define a Vectorial Autoregressive model of order p and dimension N2 (or

N(N + 1)/2 to avoid redundant equations). The vector of noises (~ζt) is a difference

martingale. In other words, setting the N2 vector ~vt = [εitεjt](i,j)∈N2 , its dynamics

is

~vt = A+

q∑
k=1

Ckvt−k + ~ζt, Et−1[~ζt] = 0, (3.6)

where Ck := [bijk,rs]{(i,j),(r,s)∈N2}, with the previous notations. Obviously, there

is a one-to-one mapping between (C1, . . . , Cq) and (B1, . . . , Bq). For instance, in

the case of an homogeneous portfolio, the parametrization that we proposed in

Subsection (3.1) induces the matrices Ck := [αk + βk1((i, j) = (r, s)) + γk1(i = j =

r = s)](i,j),(r,s), k = 1, . . . , q.

It is well-known that the system given by (3.6) has a unique strongly stationary
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solution when all complex number λ s.t.

det(λqIN2 − λq−1C1 − . . .− λCq−1 − Cq) = 0

satisfies |λ| < 1. See Hamilton (1994), for instance. Those λ are the eigenvalues of

the qN2 × qN2 matrix

MC :=



0N2 IN2 0N2 . . . . . . 0N2

... 0N2 IN2
. . . . . .

...

...
. . .

. . .
. . .

...

...
. . .

. . . 0N2

... 0N2 IN2

Cq Cq−1 . . . . . . . . . C1


.

Unfortunately, the calculations of MC ’s eigenvalues in some particular cases rapidly

show that the stationarity conditions are written as complex nonlinear functional

of the model parameters.

For instance, when q = 1 and in the case of an homogeneous portfolio, the

stationarity condition is equivalent to the following: the modulus of the eigenvalues

of C1 are strictly smaller than one. In this case, simple algebraic calculations show

that the characteristic polynomial of MC is

χ(x) = (β+γ−x)N−1(β−x)N
2−N−1

(
x2 − (N2α+ 2β + γ)x+ (N2α+ β + γ)β + αγ

)
.

Its roots are strictly smaller than one iff

β + γ < 1, and (N2α+ β + γ)(1− β) < 1− β + αγ. (3.7)

The latter condition is nonlinear. Note that it is fulfilled if N2α + β + γ < 1.

Moreover, when N → ∞, (3.7) can be satisfied only if α(N) tends to zero as

O(1/N2).
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When p = 2, similar calculations allow the calculation of the characteristic

polynomial of MC , but its roots cannot be easily calculated analytically due to a

four-order factor. Such analytic problems are exacerbated with larger p.

Despite that lack of explicit eigenvalues of MC , some sufficient conditions for

stationarity can be obtained. For instance, following Higham and Tisseur (2003)

(Equation (2.12)), any eigenvalue λ of MC satisfies

|λ| ≤ max

(
‖Cp‖1
‖Cp−1‖1

, 2
‖Ck+1‖1
‖Ck‖1

, k = 1, . . . , p− 2

)
,

where ‖M‖1 denotes the usual `1-matrix norm of any matrix M . In the case of our

“homogeneous portfolio” model, ‖Ck‖1 = N2αk + βk + γk, and the latter sufficient

condition means N2αk+1+βk+1+γk+1 ≤ 1
2(N2αk+βk+γk), for any k = 1, . . . , p−1.

In other words, we get stationarity when the autoregressive coefficients of successive

lags decrease to zero exponentially fast with the lag index k.

Therefore, in general, it is difficult to explicitly introduce conditions of station-

arity during the inference stage. Indeed, such conditions are hardly ever written

as linear constraints. When this is the case, this is most often obtained through

strong restrictions on the set of admissible parameters. This is why we recommend

to check the stationarity of such ARCH processes (by numerically calculating the

spectrum of MC , for instance) ex post, after having estimated these models through

a penalized OLS criterion.

3.5 The Cholesky-GARCH approach

Although the constraint free model of Subsection 3.1 is flexible, the uncertainty

induced by some projections on the cone of nonnegative matrices cannot be easily

evaluated. As for the previous homogeneous and heterogenous ARCH models, their

parameters are constrained to obtain nonnegative matrices. Now, we present alter-

native dynamics whose driving parameters are not constrained, since the generated

variance covariance matrices will be nonnegative by construction.

24



As in Darolles et al. (2017), we propose to invoke the Cholesky decomposition

of Ht, i.e. Ht = LtGtL
′
t, where Lt is lower triangular with ones on the diagonal, and

Gt is diagonal. Set Gt = diag(gi,t) and Lt = [`ij,t], where `ij,t = 0 when j > i. The

idea of the Cholesky-GARCH approach is to define the (Ht)-process by specifying

the dynamics of (Gt) and (Lt). Set the random vectors vt s.t. εt := Ltvt. Then,

given Ft−1, the components of vt are uncorrelated: Covt−1(vt) = Gt. Note that

v1t = ε1t is “observable”.

First, we set the dynamics of the conditional volatility of ε1t: E[ε2
1t|Ft−1] =

E[v2
1t|Ft−1] = g1t, and assume an ARCH-type model g1,t = a1,0 +

∑m
k=1 a11,kfk,t,

where every random factor fk,t is Ft−1-measurable, for some nonnegative constants

a1,0, a11,k, k = 1, . . . ,m. Typically, the factors fkt are functions of εt−1, εt−2, . . .

and of some of their cross-products. For instance, we will assume that

g1,t = a1,0 +
m∑
k=1

N∑
j=1

a11,jkε
2
j,t−k, (3.8)

for some nonnegative constants a1,0 and a11,jk. We can estimate the latter ARCH-

type linear equation by penalized OLS, as the latter equation may be rewritten

ε2
1,t = a1,0 +

m∑
k=1

N∑
j=1

a11,jkε
2
j,t−k + ζ11,t, E[ζ11,t|Ft−1] = 0.

Note that there are no auto-regressive lagged terms g1,t−k, k ≥ 1, on the r.h.s.

of (3.8), so that we stay inside the ARCH family.

Moreover, for every i > 1, we have by definition

εit =

i−1∑
j=1

`ij,tvjt + vit, or vit = −
i−1∑
j=1

βij,tεjt + εit,

by introducing L−1
t := [−βij,t]. Then, if i > j, we will assume

βij,t = aij,0 +

m∑
k=1

aij,kfk,t, i > j. (3.9)
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We can estimate all the latter coefficients thanks to an ordinary least squares ob-

jective function. Indeed, we have

ε2t = β21,tε1t + v2t = (a21,0 +
m∑
k=1

a21,kfk,t)ε1t + v2t, (3.10)

with v2t is uncorrelated with ε1t = v1t, given Ft−1. The latter property guarantees

the consistency of OLS estimates of (3.10) and we get the dynamics of (β12,t). A

similar reasoning can be led for every couple (i, j), i > j, using the fact that vit

is uncorrelated with ε1t, . . . , εi−1,t, given Ft−1. This provides the dynamics of the

processes (βij,t) and then (`ij,t), i > j. Note that we can now estimate any vector

vt by L̂−1
t εt. Contrary to Darolles et al. (2017), there are no lagged terms βij,t−k

of the r.h.s. of (3.9). While they propose QML-type procedures, possibly equation-

by-equation but without penalization, we can rely on OLS or even penalized OLS,

equation-by-equation.

Now, we evaluate the process (g2t) by setting v̂2t = ε2t − ˆ̀
12,tε1t, with obvious

notations. Then, as above , we can assume a process as

g2,t = a2,0 +
m∑
k=1

a22,kfk,t.

The corresponding linear regression is here

v̂2
2t = a2,0 +

m∑
k=1

a22,kfk,t + ζ22,t, E[ζ22,t|Ft−1] ' 0.

The latter linear model can be estimated by penalized OLS, snd so on: iteratively,

we estimate the processes (git), i > 1.

This latter procedure automatically generates non negative covariance matrices

by construction. The necessary and sufficient conditions to get stationary solutions

of (3.8) are provided by Darolles et al. (2017) for general Cholesky-GARCH spec-

ifications. Nonetheless, it seems impossible to explicitly take such conditions into

account during the estimation stage.
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To be able to compare the size of all these coefficients, it may be useful to

normalize the vector of returns. For instance, by centering and normalizing any

component of εt, using the unconditional volatility of every component and not by

their conditional volatilities. Indeed, otherwise, this would induce some annoying

constraints as
∑i−1

j=1 `
2
ij,tgj,t + gi,t = Et−1[ε2

i,t] = 1, for every i.

4 Empirical study

In this section, we carry out a simulation study to explore the accuracy performance

of sparse ARCH models. To do so, we consider three simulation settings, where we

will compare some estimated variance-covariance processes to the true ones. Based

on the DGP given by (2.4), and given some initial values, we simulate the successive

values of MGARCH processes of size N = 4 for the experiments 1 and 2, and of size

N = 4, 6, 10 for the experiment 3. We launch this procedure for T = 10000 and we

consider 100 different variance covariance matrix patterns, as described below. Once

a series is simulated, we estimate the model under different model assumptions: a

scalar DCC, a homogeneous ARCH, a constraint free ARCH, a Cholesky ARCH

and their penalized versions. The estimated parameters allow the calculation of

successive variance covariance matrices, which are here Ĥdcc
t for the DCC model,

Ĥhom
t (resp. Ĥhom?

t ) for the homogeneous ARCH (resp. penalized homogeneous

ARCH), Ĥcf
t (resp. Ĥcf?

t ) for the constraint free ARCH (resp. penalized constraint

free ARCH), and Ĥcho
t (resp. Ĥcho?

t ) for the Cholesky ARCH (resp. penalized

Cholesky ARCH).

The adaptive version of the Sparse Group Lasso estimator is implemented, where

the first step estimator is the unpenalized OLS estimator. By a cross-validation

(CV) procedure, we select the regularization parameter together with the system

that determines the convergence rate of the regularization parameters to satisfy

the oracle property. We emphasize that the standard CV developed for i.i.d. data

can not be used in our time series framework. Such a procedure for penalized

models is described in Hastie et al. (2015, Chapter 2), for instance. To fix this
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issue, we used the hv-CV procedure devised by Racine (2000), which consists in

leaving a gap between the test sample and the training sample, on both sides of the

test sample. The regularization parameters also should satisfy specific convergence

rates to satisfy the oracle property, as detailed in Poignard (2016, Section 6).

The lags in the homogeneous, constraint free and Cholesky models are defined

a priori as follows: in the experiments 1 and 2, q = 10 (resp. q = 8) for the

homogeneous model (resp. for the constraint free and Cholesky models). As for

the experiment 3, q = 20 (resp. q = 10) for the homogeneous model (resp. for

the constraint free and Cholesky models). These choices of q are set a priori. We

specified more lags for experience 3 since the simulation setting implies much more

heterogeneity due to the significant number of parameters to recover. We did not

significantly increase the number of lags for both the Cholesky and constraint free

since they are already complex models.

We compare the true variance covariance processes and the estimated ones

through the aforementioned models. To do so, we specify a matrix distance, namely

the Frobenius norm, defined as ||A−B||F :=
√

Trace((A−B)′(A−B)). We com-

pute the previous norm for each t and for

A = Rt, and B ∈ {Ĥdcc
t , Ĥhom

t , Ĥhom?
t , Ĥcf

t , Ĥ
cf?
t , Ĥcho

t , Ĥcho?
t }.

We take the average of those quantities over T = 10000 periods of time. We obtain

an average gap for all those simulations as this procedure is repeated 100 times.

Simulated experiment 1. As a particular case of (2.4), we consider the following

data generating process, a simple version of the homogeneous portfolio model:

εitεjt = aij+

q∑
k=1

(αk + βk + γk1(i = j))εi,t−kεj,t−k + αk
∑

(r,s)6=(i,j)

εr,t−kεs,t−k

+ζij,t,

for any couple (i, j). All coefficients (αk, βk, γk) are set to zero except (α4, β4, γ4).
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Denoting ω = (α4, β4, γ4), we consider the grids

ω(1) = (0.001, 0.1, 0.2), ω(2) = (0.005, 0.3, 0.1),

ω(3) = (0.01, 0.5, 0.1), ω(4) = (0.01, 0.3, 0.2).

Beside, the nonnegative symmetric matrixA is simulated as follows: Aij ∼ U([−0.02, 0.02]),

i 6= j and Aii ∼ U([0.1, 0.2]) and we project this matrix on the cone of nonnega-

tive matrices. For each fixed value ω(j), j = 1, . . . , 4, the matrix A is simulated

100 times along these lines. We remind that q = 10 for the homogeneous model

and q = 8 for both the constraint free and Cholesky processes. See the results in

Table 1.

We can highlight some interesting remarks from this simulation study. First,

the DCC specification is outperformed by the competing models, especially by the

homogeneous model, which is not surprising. Moreover, there is a gain in preci-

sion when applying a regularization procedure for the constraint free model, which

is significantly parameterized: the penalized version outperforms the unpenalized

version. This support the need of constraining the parameters when considering a

large number of parameters, even when N = 4.

Simulated experiment 2. Here, we still consider that the “true” DGP is given by

an homogeneous portfolio model. We set all coefficients (αk, βk, γk) to zero except

for k = 4, 5, 6, where we consider different fixed values. A is parameterized as in the

simulated experiment 1. Denote ω = (α2, β2, γ2, α3, β3, γ3, α4, β4, γ4) and consider

the different grids

ω(1) = (0.02, 0.2, 0.02, 0.01, 0.1, 0.01, 0.001, 0.01, 0.01), and

ω(2) = (0.001, 0.3, 0.05, 0.0005, 0.2, 0.02, 0.00001, 0.1, 0.01).

For every fixed ω(j), j = 1, 2, A is simulated 100 times.

We remind that q = 10 for the homogeneous model and q = 8 for both the

constraint free and Cholesky processes. The results are detailed in Table 2.

The same remarks hold here as in simulated experiment 1.
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Simulated experiment 3. In this experiment setting, we simulate a more general

model (2.4). In matrix notation, it is written

Ht = A+

q∑
k=1

(IN ⊗ ε′t−k)Bk(IN ⊗ εt−k).

Concerning this “true” DGP, we select q = 5 and N = 4. The N2×N2 matrices Bk

are selected as Bij,k ∼ U([−0.2, 0.2]) and Bii,k ∼ U([0.1, 0.15]) such that they satisfy

the positive definite, stationarity conditions. Moreover, we impose an “ordering”

constraint: |Bij,k| ≤ |Bij,k−1| for k = 2, . . . , 5 and any couple (i, j). As for the

symmetric and positive definite matrix A, we define Aij ∼ U([−0.02, 0.02]), i 6= j

and Aii ∼ U([0.1, 0.2]). We consider two settings: in setting 1, he Bk, k = 1, . . . , 5,

and A matrices are independently drawn 100 times. Setting 2 is exactly similar,

except we impose that B1 and B2 are null matrices now.

Remind that q = 20 for the homogeneous model and q = 10 for both the

constraint free and Cholesky processes. See the results in Table 3.

These results emphasize the good performances of the constraint free and the

Cholesky processes when the observed patterns are heterogeneous. The gain in

precision is significant once the adaptive SGL regularization is applied. Not sur-

prisingly, the DCC and the homogeneous are outperformed in this simulated frame-

work.

5 Conclusion

We have proposed general multivariate ARCH model specifications that are linear

with respect to the underlying parameters. These models can be estimated thanks

to Ordinary Least Squares procedures. Moreover, it is possible to consider a large

number of lagged values, in particular to approximate multivariate GARCH pat-

terns. This can be managed through a regularization procedure, the Sparse Group

Lasso penalty, that fosters sparsity both at a group level and within a group. More-

over, this regularization procedure satisfies the oracle property and identifies the
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right underlying sparse model.

By simulation, there are no clear results showing the ability of any variance

covariance model to outperform the other ones in all circumstances. Our pro-

posed ARCH models most often outperformed the usual DCC model, but it is

difficult to establish a hierarchy among the models we introduced. Nonetheless,

the constraint-free approach seems to provide the best results when no clear model

structure (homogeneous/heterogeneous) is present. In the latter case, the use of the

penalized criterion with a large number of lags significantly improves the results.

More empirical work is surely necessary to evaluate the sensitivity of our estimators

w.r.t. misspecification, the number of lags, the regularizing parameters, etc.
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Table 1: Average distance between true and estimated covariance matrices. The true
DGP is the so-called “simulated experiment 1”. The estimated models are indicated at
the top of every column (the penalized versions are denoted with a star)

ω Ĥdcc
t Ĥhom

t Ĥhom?
t Ĥcf

t Ĥcf?
t Ĥcho

t Ĥcho?
t

ω(1) 0.2015 0.0776 0.1540 0.1042 0.0816 0.1516 0.1657

ω(2) 0.4647 0.1497 0.3117 0.1514 0.1401 0.3219 0.3346

ω(3) 1.2292 0.5341 0.7675 0.5063 0.3983 0.8386 0.8486

ω(4) 0.7353 0.2782 0.3545 0.2378 0.2047 0.4157 0.4350
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Table 2: Average distance between true and estimated covariance matricesThe true DGP
is the so-called “simulated experiment 2”. The estimated models are indicated at the top
of every column (the penalized versions are denoted with a star).

ω Ĥdcc
t Ĥhom

t Ĥhom?
t Ĥcf

t Ĥcf?
t Ĥcho

t Ĥcho?
t

ω(1) 0.4914 0.2512 0.4095 0.2079 0.1537 0.4488 0.4503

ω(2) 0.9787 0.5209 0.7895 0.3669 0.3364 0.7658 0.7812
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Table 3: Average distance between true and estimated covariance matrices. The true
DGP is the so-called “simulated experiment 3”. The estimated models are indicated at
the top of every column (the penalized versions are denoted with a star).

Ĥdcc
t Ĥhom

t Ĥhom?
t Ĥcf

t Ĥcf?
t Ĥcho

t Ĥcho?
t

Setting 1 0.4044 0.4181 0.4457 0.3780 0.2024 0.2833 0.2251

Setting 2 0.2870 0.2875 0.2952 0.1979 0.1121 0.1688 0.1440
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