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Abstract

Forecast evaluation is a long-standing issue in applied econometrics. Standard tests su�er how-
ever from the presence of time-varying volatility in many applications. Besides heteroskedastic-
ity, we tackle the important issues of time-variation in relative forecast ability and estimation
uncertainty. To this end, we study the �uctuation test of Giacomini and Rossi (2010) and of
two new CUSUM- and Cramér-von Mises based tests. While ��xed-b� arguments (Kiefer and
Vogelsang, 2005) provide re�nements in the use of heteroskedasticity and autocorrelation con-
sistent variance estimators, the resulting limiting distributions of test statistics depend on the
unconditional variance changes over time for both small-b and �xed-b approaches. To restore
asymptotically pivotal inference, we employ a wild bootstrap approach. After establishing nec-
essary theoretical results, simulations quantify the size distortions from using the original �xed-b
approach and show the suggested bootstrap to work reliably. The empirical part studies the
(time-varying) superiority of professional forecasters relative to naive no-change predictions in
real-time. We exploit the most comprehensive database of the Survey of Professional Forecast-
ers (SPF) and analyze forecasts for several key macroeconomic variables over a sample from
1969 to 2017. Our �ndings suggest that not accounting for heteroskedasticity seriously a�ects
outcomes of tests for equal predictive ability and time-variation: wild bootstrap inference yields
convincing evidence for the superiority of the SPF in most cases, while tests using asymptotic
critical values provide remarkably less. Moreover, we �nd signi�cant evidence for time-variation
of relative predictive power; the dominance of the SPF appears to weaken considerably after
the �Great Moderation�.
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1 Introduction

Forecasting plays a crucial role in economics, �nance and many other disciplines. Policy makers,

�rms, investors and households have various needs for macroeconomic predictions. Several macroe-

conomic forecasts are available to the public, e.g., from international institutions like the IMF and

OECD, governmental forecasts like `Green Book' forecasts from the Federal Reserve and those cre-

ated by commercial forecasters (e.g. Blue Chip Economic Indicators, Data Resources Inc. and the

Survey of Professional Forecasters). We shall focus on the Survey of Professional Forecasters (SPF),

which publishes quarterly forecasts for key macroeconomic variables since 1968. It is the most com-

prehensive database available to assess the performance of professional forecasters and widely used

in academic research. A fundamental question is then whether SPF forecasts outperform simple

alternatives. An extensive study by Zarnowitz and Braun (1993) reveals e.g. that SPF forecasts

perform well in comparison to standard time series models (see also Croushore, 1993; Stark, 2010).

With data from 1969 to 2017, we re-evaluate SPF forecasts for US output growth, GDP de�ator

in�ation, unemployment rate and changes in housing starts using robust inference methods.

The long evaluation period contains subsamples with structural breaks mainly in connection to the

�Great Moderation�, but also with respect to the �Great Financial Crisis�. The �Great Moderation�

is a period of considerable reduction in macroeconomic volatility, but also of a sharp decline in pre-

dictability (Campbell, 2007). The �Great Financial Crisis� did increase volatility, yet less is known

about its consequences on predictability. The changing macroeconomic volatility and predictability

have important implications for forecast evaluation tests. While the �rst feature typically leads to

time-varying volatility in forecast error loss di�erentials, the second might imply an instability of

its mean. Ignoring these features may lead to signi�cant size distortions and power losses. There

is a rich literature on forecasting in unstable environments (e.g. Giacomini and Rossi, 2010). We

develop tests for the cases of (i) constant relative forecast performance and (ii) time-variation by

considering CUSUM and Cramér-von Mises statistics alongside the �uctuation test by Giacomini

and Rossi (2010). These tests are robust to time-varying volatility (via the wild bootstrap) and may

take estimation errors into account (by appropriate modi�cations of the bootstrap algorithms).

All tests use the ��xed-b� paradigm as proposed by Kiefer and Vogelsang (2005). This delivers

more accurately sized tests than the standard ones based on heteroskedasticity- and autocorrelation

consistent [HAC] standardization. The HAC framework�see the seminal contributions of Newey

and West (1987) and Andrews (1991)�permits to use critical values from standard distributions,
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like the χ2 or standard normal. These asymptotic distributions, however, turn out to be rather

poor approximations to the actual �nite-sample distributions. As a consequence, substantial size

distortions are likely to arise in practice. In particular, test results turn out to be sensitive to the

choice of bandwidth B →∞ and kernel k employed for estimating the long-run variance. The poor

performance of the asymptotic approximation can be explained by the �small-b� requirement that a

vanishing fraction b := B/T → 0 of the number of observations T be used, while of course b > 0 in

�nite samples. To tackle this issue, Kiefer et al. (2000); Kiefer and Vogelsang (2002a,b, 2005) propose

��xed-b� asymptotics, in which it is not required that b→ 0. This leads to nonstandard distributions

(reviewed in Section 2) for the test statistics. Conveniently and unlike in the standard small-b

framework, the new distributions re�ect the choice of B and k even in the limit. The above papers

convincingly demonstrate that the new distributions provide substantially better approximations to

actual �nite-sample distributions. In fact, the usefulness of such procedures has spawned an active

literature; recent contributions include Sun et al. (2008), Yang and Vogelsang (2011), Vogelsang

and Wagner (2013) or Sun (2014). Choi and Kiefer (2010) suggest the use of Diebold and Mariano

(1995) statistics with �xed-b critical values; see also Li and Patton (2015).

Time-varying variances, however, change �xed-b limiting distributions and thus lead to a loss of

asymptotic pivotality; see Müller (2014, p. 314). This actually emphasizes the strength of the �xed-

b approach, as it implies that the variability of the variances�in�uencing �nite-sample behavior�is

re�ected in the limiting distribution, but comes at the cost of di�erent critical values for the tests of

interest. Such time-varying variances are pervasive in applied work in general and in our empirical

application in Section 4 speci�cally.1 We �rst show how time-varying volatilities change the �xed-b

asymptotics of tests for equal predictive accuracy. The �xed-b Diebold and Mariano (1995) statistic

is not pivotal in the limit, but we establish the validity of a wild bootstrap correction (Section 2.1).

Then, we address the issue of changes in the relative predictive power of competing forecasts and

discuss the small-b and �xed-b asymptotics of the �uctuation test of Giacomini and Rossi (2010) as

well as of two new CUSUM- and Cramér-von Mises based test statistics (Section 2.2). We also show

how to implement the wild bootstrap to obtain asymptotically correct critical values under time-

varying variances, as neither the small-b nor the �xed-b approach deliver pivotality here. Section 2.3

discusses the issue of estimation error. In particular, we characterize the additional terms a�ecting

1Indeed, Groen et al. (2013) �nd that structural breaks in the variance play an important role for real-time
in�ation forecasting. More generally, time-varying volatility is present in many macroeconomic (see e.g. Stock and
Watson, 2002; Sensier and van Dijk, 2004; Justiniano and Primiceri, 2008; Clark and Ravazzolo, 2015) and �nancial
(see among others Guidolin and Timmermann, 2006; Rapach and Strauss, 2008; Amado and Teräsvirta, 2013) time
series such as economic growth, in�ation rates and excess returns.
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the �xed-b distribution of the tests for a fairly general class of GMM estimators and develop suitable

wild bootstrap algorithms replicating these features of the asymptotic distribution.

Section 3 quanti�es �nite-sample distortions due to time-varying volatility. They are considerable,

even as the sample size increases. At the same time, the bootstrap is shown to work well. Moreover,

we �nd the CUSUM- and Cramér-von Mises tests to be more powerful than the �uctuation test.

Section 4 returns to the empirical research question. We compare the predictive ability of survey

forecasts to a naive no-change approach. We focus on nowcasts, one-quarter and one-year ahead

forecasts and evaluate these by considering the �rst and the �nal release of data. Overall, we �nd

forecast error loss di�erentials to exhibit substantial heteroskedasticity. This is expected to have a

direct impact on test decisions when comparing outcomes of traditional and our new robust tests.

While the bootstrap provides strong evidence for the superiority of SPF forecasts (especially for

nowcasts), there are notably fewer rejections when using asymptotic critical values. Our �ndings

strongly suggest that SPF forecasts perform better early in the sample, but also that this advantage

shrank considerably in the 1980s, leading to equal predictive ability starting in the mid-1980s. There

are signs of recoveries of forecast superiority around 2000 for unemployment and GDP de�ator

in�ation. We discuss our �ndings in relation to the literature on SPF accuracy, in general as well

as with emphasis on the loss in relative predictability related to the �Great Moderation�.

Section 5 concludes. The online appendices A-D collect proofs (unless indicated otherwise in the

main text), other derivations, additional simulation results and further empirical results.

2 Fixed-b inference under time-varying volatility

2.1 The baseline case

We test the null of equal predictive ability of two competing forecasts, either generated by models

or derived from surveys. We follow Giacomini and White (2006) and examine the loss di�erentials

∆Lt,h = Lt,h (zt+h, f1,t,h)− Lt,h (zt+h, f2,t,h)

where fi,t,h, i = 1, 2, denote the competing h-step ahead forecasts at time t for the target series z

and Lt,h the loss function relevant at time t for horizon h, t = 1, . . . , P . We shall not assume a

speci�c loss function but work with generic di�erentials directly. Here, ∆Lt,h may be nonstationary
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due to nonstationarity in the series to be forecasted, the forecast series itself, or even changes in the

loss function (such as di�erent weights attached to the losses at di�erent t).

The forecasts fi,t,h depend on the observed sample of z and on parameters θi. Should θi be

unknown, we have f̂i,t,h = fi,h
(
xi,t, θ̂i,h,(t)

)
where xi,t are a vector of predictors and the notation

θ̂i,h,(t) emphasizes that one may update the estimators as t increases. Often, though, one focusses

on one horizon h at a time, and we shall suppress the dependence of fi,t,h, Lt,h and θ̂i,h,(t) on h.

Tests of equal conditional predictive ability are derived by leveraging the observed loss di�erentials

with a vector ht of K suitable test functions (which are measurable w.r.t. the relevant information

set; see Giacomini and White, 2006); in this framework, ht = 1 leads to testing unconditional

predictive ability. Let yt = ht∆Lt for all relevant t, such that the null becomes

H0 : E (yt) = E (ht∆Lt) ≡ µ = 0.

The baseline alternative is µ 6= 0; in the univariate case we shall also consider one-sided alterna-

tives. In Section 2.2, we follow Giacomini and Rossi (2010) and allow for time-variation in relative

forecasting ability under the alternative, i.e. for changes in µ over time. In the simplest case, θi

is known, and we write fi,t = fi (xi,t,θi) as an �ideal forecast� vs. f̂i,t = fi
(
xi,t, θ̂i,(t)

)
based on

estimated parameters. We return to the issue of estimation error in Section 2.3.

Testing the null µ = 0 is done in the baseline case via a Wald-type statistic (Diebold and Mariano,

1995). With P denoting the number of (pseudo) out-of-sample predictions available, de�ne

TK =
1

P

(
P∑
t=1

yt

)′
Ω̂
−1

(
P∑
t=1

yt

)
. (1)

Here, given suitable choices for the kernel k and the bandwidth B (see Newey and West, 1987;

Andrews, 1991), Ω̂ =
∑P−1

j=−P+1 k (j/B) Γ̂j is a HAC covariance matrix estimator with Γ̂|j| =

P−1
∑P

t=|j|+1 (yt − ȳ)
(
yt−|j| − ȳ

)′
and Γ̂−|j| = Γ̂

′
|j|. Standard regularity conditions assumed, the

small-b limiting distribution is χ2
K ; see Diebold and Mariano (1995). Although this asymptotic

result does not depend on the particular choice of k and b, Kiefer and Vogelsang (2005) show that

the �nite-sample dependence on k and b translates into poor �nite-sample behavior of T1. This

leads Choi and Kiefer (2010) to develop �xed-b asymptotics for Diebold and Mariano type tests.

To make the dependence of the distribution of TK on k and B explicit, Kiefer and Vogelsang (2005)

let b ∈ (0, 1] in the limit. The resulting limiting distribution is free of nuisance parameters (any
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scale matrix cancelling out), but is nonstandard, depending on k and B (via b). E.g. for K = 1,

T1
d→ Bk,b with Bk,b = W 2(1)/Θk,b(W ) and

Θk,b(W ) ≡


−
∫ 1

0

∫ 1
0

1
b2
k′′
(
r−s
b

)
W̄ (r)W̄ (s) drds for kernels with smooth derivatives

2
b

∫ 1
0 W̄ (r)2dr − 2

b

∫ 1−b
0 W̄ (r + b)W̄ (r)dr for the Bartlett kernel,

where W̄ (s) ≡ W (s) − sW (1) for a standard Wiener process W (s). The corresponding critical

values for T1 are tabulated as a function of k and b in Kiefer and Vogelsang (2005). For b→ 0, we

have Θk,b(W )
d→ 1 and Bk,b

d→ χ2
1. In this sense, small-b asymptotics are a particular case.

The functional Bk,b depends on the entire path of the Wiener processW (s) � and not only onW (1),

like for small-b. As we show below, this has important consequences for �xed-b when the volatility

of yt varies in time. The following assumption states the variance non-stationarities we allow for.

Assumption 1. Let yt = µ+G (t/T )vt where G(s) is a matrix of deterministic, piecewise Lipschitz

functions, full-rank at all s ∈ [0, 1]. Furthermore, vt has zero mean and unit long-run covariance

matrix, and is L2+δ-bounded for some δ > 0, strictly stationary and strong mixing with mixing

coe�cients α(j) satisfying
∑

j≥0 α(j)1/p−1/(2+δ) <∞ for some 2 < p < 2 + δ.

The following lemma, whose proof follows from Smeekes and Urbain (2014, Lemma 1) and is omitted,

describes the resulting limiting behavior of P−1/2
∑[sP ]

t=1 yt.

Lemma 1. Let W a vector of independent standard Wiener processes. Under Assumption 1 and

the null µ = 0, P−1/2
∑[sP ]

t=1 yt ⇒
∫ s

0 G(r)dW (r) ≡ BG(s) as P →∞.

The processBG(s) is Gaussian with independent, zero-mean increments, but not a Brownian motion

as its quadratic variation process [BG] (s) =
∫ s

0 G(r)G′(r)dr is nonlinear due to time-variation of

G(·). Still, Ω̄ =
∫ 1

0 G(s)G′(s)ds may be interpreted as �average� long-run covariance matrix of yt.

The process BG being Gaussian, it then holds true that BG(1) ∼ N
(
0, Ω̄

)
, ensuring asymptotic

pivotality of the small-b approach (since it can be shown that Ω̂
p→ Ω̄ for small-b; see Cavaliere,

2004, Assumption K and Lemma 4 for the univariate case). The �nite-sample in�uence of G(s) is

not removed, though. This is more accurately re�ected by the �xed-b approach, as shown in

Proposition 1. Under the assumptions of Lemma 1, it holds for P →∞, B/P → b ∈ (0, 1], that

TK
d→ B′G(1) Θ−1

k,b (BG)BG(1),
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where, for any process X(s) with a.s. continuous paths and X̄(s) = X(s)− sX(1),

Θk,b (X) ≡


− 1
b2

∫ 1
0

∫ 1
0 k
′′ ( r−s

b

)
X̄(r)X̄(s)′ drds

1
b

(
2
∫ 1

0 X̄(r)X̄(r)′dr −
∫ 1−b

0 X̄(r + b)X̄(r)′ dr −
∫ 1−b

0 X̄(r)X̄(r + b)′ dr
)

for kernels with smooth derivatives and the Bartlett kernel, respectively.

We employ a wild bootstrap procedure to account for heteroskedasticity. While there are alternative

ways to deal with time-varying (co)variances, we �nd in related work (Demetrescu et al., 2017) that

the wild bootstrap's performance is superior. The algorithm is as follows:

Algorithm 1

1. Generate T iid standardized random variables r∗t , where E
(
|rt|k

)
< ∞ ∀k ∈ N. Typical

choices are the Gaussian, Rademacher, or Mammen (1993) distributions.

2. Generate the wild bootstrap sample y∗t = (yt − ȳ) r∗t (a scalar r∗t preserves the covariance

matrix of yt in the bootstrap world). Compute the bootstrap statistic T ∗K based on y∗t , i.e.

T ∗K =
1

P

(
P∑
t=1

y∗t

)′
Ω̂
∗−1

(
P∑
t=1

y∗t

)
,

Ω̂
∗

=
∑P−1

j=−P+1 k (j/B) Γ̂
∗
j , Γ̂

∗
|j| =

1
P

∑P
t=|j|+1 (y∗t − ȳ∗) (y∗t−|j| − ȳ

∗)′ and Γ̂
∗
−|j| = Γ̂

∗′
|j|.

3. Repeat Steps 1-2 to obtain a set of M resampled statistics
{
T ∗K,m

}
m=1,...,M

and use their

(1− α)-quantile, say q∗1−α, as critical value.

Proposition 2. Under Assumption 1, the null µ = 0 and E (vtv
′
t) = c · IK with c > 0, it holds as

M,P →∞ that P
(
TK ≥ q∗1−α

) p→ α.

Remark 1. The wild bootstrap is asymptotically valid under the additional condition that E (vtv
′
t) =

c · IK , namely that the covariance and long-run covariance matrices of vt are proportional. This

is trivially ful�lled in the case K = 1 of comparing unconditional predictive accuracy, and may

often be justi�ed in the multivariate case as well. Should it be violated, one should resort to a

sieve wild bootstrap (see e.g. Cavaliere et al., 2010, for an implementation in co-integrated models

with time-varying volatility) or, in a less parametric vein, to a block wild bootstrap (Smeekes and

Urbain, 2014). Our focus being on univariate tests in Sections 3 and 4, we omit the details.

Remark 2. An examination of the proof in Appendix B reveals that, under µ 6= 0, q∗1−α is bounded

in probability while TK
p→∞, so that consistency of the bootstrap test is given.
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Remark 3. We focus on deterministic variance changes here; nonstationary stochastic volatility

leads to a representation similar to that in Lemma 1,
∫ s

0 G(r)dW (r), but with random G. Cavaliere

and Taylor (2009) show the wild bootstrap to be valid in several such situations as well.

2.2 Time variation in relative forecast ability

We now turn our attention to the situation in which E (yt) = µt is time-varying under the alterna-

tive. As pointed out by Giacomini and Rossi (2010) in a univariate unconditional setup, one may

expect some loss of power and reduced interpretability of the outcomes based on TK .

The �rst method used here for such situations is the �uctuations test of Giacomini and Rossi (2010).

In a K-variate setup, the procedure is as follows. Compute for each t = S/2 + 1, . . . , P − S/2 + 1 a

moving-window based version of (1),

Ft,S =
1

S

t+S/2−1∑
j=t−S/2

yj

′ Ω̂−1

t+S/2−1∑
j=t−S/2

yj

 ,

with Ω̂ based on all P observations available (see also Giacomini and Rossi, 2010). Consider

T FK = max
t∈{S/2+1,...,P−S/2+1}

Ft,S , S/P = ν ∈ (0, 1) , (2)

rejecting for large values of the test statistic. The limiting distribution is given under the assump-

tion that S is a �xed fraction ν of P . For K > 1, the test in (2) is two-sided by construction, a

consequence of the employed quadratic form; one may then use the procedure suggested by Giaco-

mini and White (2006) to decide which forecast is better in which period. Yet, more importantly,

the limit distribution is a�ected by time-varying volatility, as shown in Proposition 3 below.

We consider two additional solutions for dealing with situations where the relative predictive power

varies in time, a CUSUM-type and a Cramér-von Mises functional.2 The statistics are computed

as follows. First, the CUSUM-type statistic is directly based on the partial sums of yt,
3

T QK = max
1≤t≤P

1√
P

√
S′tΩ̂

−1
St with St =

t∑
j=1

yj . (3)

2These appear to be more popular in the statistical literature, with prominent econometric exceptions such as the
KPSS test for stationarity, and have the advantage of not requiring speci�cation of the tuning parameter ν.

3The (perhaps more familiar) CUSUM statistic for a break in mean involves St/t−SP /P . This e�ectively demeans
the series, and such a test is rather for a break in relative predictive power. We however test for departures from the
null 0 rather than from a constant unknown mean, so centering St at 0 is more natural here.

8



Also, for K = 1, one may work directly with the maximum and minimum of the normalized partial

sums to obtain one-sided tests. Second, the Cramér-von Mises statistic: with the same St =
∑t

j=1 yj

(and the same remark on demeaning), compute

T CK =
1

P 2

P∑
t=1

S′tΩ̂
−1
St. (4)

For some vector process X and (stochastic) matrix T, (a.s.) invertible, de�ne the functionals

F(X,T) = sup
s∈[ν/2;1−ν/2]

1

ν

(
X
(
s+

ν

2

)
−X

(
s− ν

2

))′
T−1

(
X
(
s+

ν

2

)
−X

(
s− ν

2

))
,

Q(X,T) = sup
s∈[0,1]

√
X ′ (s) T−1X (s) and C(X,T) =

∫ 1

0
X ′ (s) T−1X (s) ds.

Under small-b asymptotics, Lemma 1 and the continuous mapping theorem yield, analogously to

Giacomini and Rossi (2010), T FK ⇒ F(BG, Ω̄). Moreover, T QK ⇒ Q(BG, Ω̄) and T CK ⇒ C(BG, Ω̄).

Hence, under time-varying G(·), all three limiting distributions di�er from the homoskedastic case

even under small-b asymptotics. Proposition 3, whose proof is analogous to that of Proposition 1

and omitted, shows that the distortions do not disappear for �xed-b versions of the tests:

Proposition 3. Under the assumptions of Proposition 1,

T FK ⇒ F (BG,Θk,b(BG)) , T QK ⇒ Q (BG,Θk,b(BG)) and T CK ⇒ C (BG,Θk,b(BG)) .

Given the dependence on time-varying variances, the application of a wild bootstrap suggests itself.

(See also Zhou, 2013 for a related test of constant means.) For T FK , T QK and T CK , the implementation

of the wild bootstrap is analogous to that of the TK test. Concretely, obtain M resamples y∗t,m as

in Algorithm 1, compute M bootstrap test statistics {T x∗K,m}m=1,...,M for x = {F,Q,C} based on

y∗t,m and use their (1− α)-quantile, say qx∗1−α, as critical value for the test based on T xK . Then, we

obtain Proposition 4, whose proof is analogous to that of Proposition 2 and omitted:

Proposition 4. Under the assumptions of Proposition 3, the null and E (vtv
′
t) = c · IK with c > 0,

it holds as M,P →∞ for x = {F,Q,C} that P
(
T xK ≥ qx∗1−α

) p→ α.

Remark 4. As in Remark 1, one should use a sieve or a block wild bootstrap if the condition

E (vtv
′
t) = c · IK is not met.
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2.3 Estimation error

As a leading case in forecasting practice, we now consider the case where the unknown θi are recur-

sively estimated.4 We follow closely the setup pioneered by West (1996).5 There are R preliminary

observations available, which are used for obtaining estimates θ̂1,(R) and θ̂2,(R). These are used to

set up the forecasts f̂1,R+1 and f̂2,R+1 which are compared with zt+h for t = R+ 1. The estimation

sample is expanded by one observation and repeat the procedure for t = R + 2. In total, P obser-

vations are available for forecast comparison, zR+1+h, . . . , zR+P+h together with f̂i,R+1, . . . , f̂i,R+P .

In this setup, R and P go to in�nity jointly, with P/R → π > 0 to ensure, as is well known, that

the estimation e�ect is re�ected in the asymptotics.

The forecast losses are given by Lt
(
zt+h, f̂i,t

)
= Lt

(
zt+h, fi

(
xi,t, θ̂i,(t)

))
, so one uses

ŷt = ht
(
Lt
(
zt+h, f̂1,t

)
− Lt

(
zt+h, f̂2,t

))
, t = R+ 1, . . . , R+ P, (5)

for testing. We set ŷt = 0 for 1 ≤ t ≤ R since they do not enter the test statistics. Following

Giacomini and White (2006) we assume that pseudo-true value θi exist, such that, as R,P → ∞

with P/R→ π, θ̂i,(t)
p→ θi for all t > R (see also Assumption 4 below). The �ideal� loss at time t is

Lt (zt+h, fi (xi,t,θi)) = Lt (zt+h, fi,t) , i = 1, 2.

In line with the literature (again, see West, 1996), we assume Lt and fi to be smooth enough to

allow for an evaluation of the estimation noise. The following assumption di�ers slightly e.g. from

the analogous one of West, but is convenient for dealing with the bootstrap later on. Let

Di(a, b) = ht ·
∂Lt
∂u2

∣∣∣∣
u1=zt+h

u2=a

∂fi
∂θ′

∣∣∣∣
xi,t
θ=b

.

Assumption 2. There exists 0 < ε < 1/2 such that, for the neighbourhood ΦP = ×i=1,2

{
θ̃i :∥∥θ̃i − θi∥∥ < CP−1/2+ε, C > 0

}
of
(
θ′1;θ′2

)′
, it holds as R,P →∞ with P/R→ π that

sup
θ̃1,2∈ΦP ;t=R+1,...,P

∥∥∥Di(f̃i,t, θ̃i)−Di(fi,t,θi)
∥∥∥ p→ 0

where f̃i,t = fi
(
xi,t, θ̃i

)
, i = 1, 2.

4Rolling windows estimation is dealt with analogously; we mention the di�erences whenever needed.
5For (approximately) �nite-memory estimators, one may also use the approach of Giacomini and White (2006).
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As a consequence, we may write for i = 1, 2

Lt
(
zt+h, f̂i,t

)
= Lt (zt+h, fi,t)−Di(fi,t,θi) ·

(
θ̂i,(t) − θi

)
+ op (1) , t = R+ 1, . . . , R+ P, (6)

where the op (1) term is negligible uniformly in t (see the proof of Lemma 3). To describe the e�ect

of the additional terms Di(fi,t,θi) ·
(
θ̂i,(t) − θi

)
, we make the following assumption.

Assumption 3. We have as R,P → ∞ with P/R → π that R−1
∑[uR]

t=1 Di(fi,t,θi) ⇒ Ti(u) on

[0, 1 + π], where Ti is deterministic and Lipschitz.

The quantities Ti are de�ned for convenience for the full sample t = 1, . . . , R + P , but, as can be

seen in (6), one only needs observations at times R+ 1, . . . , R+ P . So let

Hi(s) = (Ti(1 + sπ)−Ti(1)) /π, s ∈ (0, 1) , such that
1

P

R+[sP ]∑
t=R+1

Di(fi,t,θi)⇒ Hi(s).

A su�cient condition for the negligibility of the estimation e�ect is that Hi(s) = 0 for all s (see e.g.

West, 1996). Verifying whether this holds in a particular application requires additional information

beyond the observed forecast errors: the estimation e�ect depends the examined forecasting methods

via ∂fi
∂θ and θ̂i,(t). In order to compare two forecasts, one therefore requires information regarding

their construction, i.e., information in addition to the point forecasts and the actual realizations.

We next describe suitable corrections when such information is available. We let θ̂i,(t) be (overiden-

ti�ed) GMM estimators, with at least as many moment conditions Ni as parameters Mi.

Assumption 4. For t = R+ 1, . . . , R+ P , let the following decomposition hold:

θ̂i,(t) = θi +

 t∑
j=1

C′i,j,(θi) Wi,(θi)

t∑
j=1

Ci,j,(θi)

−1
t∑

j=1

C′i,j,(θi) Wi,(θi)

t∑
j=1

ai,j,(θi) + ri,t

with symmetric Wi,(θi) > 0, where supR<t≤R+P ‖ri,t‖ = op
(
R−1/2

)
as R,P →∞ with P/R→ π.

The moment conditions, jointly with yt, are speci�ed in a time-varying framework as follows.

Assumption 5. For ξt = (a′1,t,(θ1),a
′
2,t,(θ2), (yt − µ)′)′ ∈ RN1+N2+K , let ξt = G̃(t/T )ṽt, where

G̃(t/T ) =


G11 (t/T ) G12 (t/T ) G1y (t/T )

0 G22 (t/T ) G2y (t/T )

0 0 G (t/T )
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and ṽt =
(
u′1,t,u

′
2,t,v

′
t

)′
, with vt and G from Assumption 1, and G11(s) (N1×N1) and G22(s) (N2×

N2) matrices of piecewise Lipschitz functions, full-rank at all s ∈ [0, 1]. Furthermore, ṽt satis�es

the same conditions as vt in Assumption 1. Finally, there exist matrices Ci(u) of deterministic

Lipschitz functions, full-rank for all u > 0, such that R−1
∑[uR]

t=1 Ci,t,(θi) ⇒ Ci(u) on [0, 1 + π].

The assumption simply extends Assumption 1 to cover all random components. The upper triangu-

lar structure of G̃ is not restrictive, since its role is to generate arbitrary symmetric, positive de�nite

localized (long-run) covariance matrices for ξt; this is easily checked to be the case. That we require

E
(
ai,t,(θi)

)
= 0 is nothing else than specifying moment conditions for the estimation of θi. The

dependence on θi comes from possibly having nonlinear moment conditions which are linearized for

obtaining the decomposition. Just like in Lemma 1, we obtain (after setting w.l.o.g. yt = µ for

1 ≤ t ≤ R, since they do not enter the statistics of interest) the following partial sum behavior:

Lemma 2. Under Assumptions 4 and 5 with BG from Lemma 1 and yt = µ for 1 ≤ t ≤ R,

R−1/2
∑[uR]

t=1 ξt ⇒
∫ u

0 G̃(s)dW (s) ≡ (A′1 (u) ,A′2 (u) ,
√
πB′G ((max (r, 1)− 1)/π))′ on [0, 1 + π].

This implies a di�erent behavior of the relevant partial sums.

Lemma 3. Under Assumptions 1�5, under the null and as R,P →∞ with P/R→ π,

1√
P

R+[sP ]∑
t=R+1

ŷt ⇒ BG (s) +
√
π

2∑
i=1

(−1)i
(∫ s

0
N ′i(r)Mi(r)

−1dH′i(r)

)′
≡ BG,π (s)

on [0, 1], where Mi(s) ≡ C′i(1 + πs) Wi,(θi) Ci(1 + πs) and N i (s) ≡ C′i(1 + πs) Wi,(θi)Ai(1 + πs).

Remark 5. Note that BG,0 (s) ≡ BG (s), and one recovers the case without estimation for π → 0.

At the same time, for π →∞, the estimation e�ect dominates.

Remark 6. Analogous arguments lead for rolling window estimation of θi,

θ̂
rol

i,(t) = θi+

 t∑
j=t−R+1

C′i,j,(θi) Wi,(θi)

t∑
j=t−R+1

Ci,j,(θi)

−1
t∑

j=t−R+1

C′i,j,(θi) Wi,(θi)

t∑
j=t−R+1

ai,j,(θi)+r
rol
i,t

(7)

with rroli,t negligible in the sense of Assumption 4, to the following result under the null:

1√
P

R+[sP ]∑
t=R+1

ŷt ⇒ BG (s) +
√
π

2∑
i=1

(−1)i
(∫ s

0
Ñ
′
i (r) M̃−1

i (r) dH′i(r)

)′
≡ Brol

G,π (s)
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on [0, 1], where we de�ne M̃i(s) ≡ (Ci(1 + πs)−Ci(πs))
′ Wi,(θi) (Ci(1 + πs)−Ci(πs)) and Ñ i (s) ≡

(Ci(1 + πs)−Ci(πs))
′ Wi,(θi) (Ai(1 + πs)−Ai(πs)).

Lemma 3 implies, along the lines of the proof of Proposition 3, non-pivotal null distributions:

Proposition 5. Under the assumptions of Lemma 3 and the null µ = 0, we have that

TK
d→ B′G,π(1) Θ−1

k,b(BG,π)BG,π(1) and

T FK ⇒ F (BG,π,Θk,b(BG,π)) , T QK ⇒ Q (BG,π,Θk,b(BG,π)) , T CK ⇒ C (BG,π,Θk,b(BG,π)) .

To correct for inherent non-pivotality via the bootstrap, one must replicate the properties of

BG,π (s), which depends, among others, on H(·) and the joint behavior of BG and Ai. Given

such information, a wild bootstrap can be used to replicate the above limiting null distributions.

One must resort to estimated quantities since θi are unknown, though. While ŷt is a natural esti-

mator for yt, estimates of ai,t,(θi), Wi,(θi) and Ci,t,(θ̂i,(t))
, say âi,t, Ŵi and Ĉi,t, require plugging-in:

Algorithm 2

1. Compute ŷt from (5) (and, for t = 1, . . . , R, ŷt = 0); for t = 1, . . . , R+ P , compute Ĉi,t, Ŵi

and âi,t as Ci,t,(θ̂i,(t))
, Wi,(θ̂i,(t))

and ai,t,(θ̂i,(t))
(alternatively, one may evaluate at θ̂i,(R+P )).

2. For t = 1, . . . , R+ P , draw multipliers r∗t and construct
(
a∗′1,t,a

∗′
2,t,y

∗′
t

)′
as
(
â′1,t, â

′
2,t, ŷ

′
t

)′
r∗t .

3. Compute for t = R+ 1, . . . , R+ P

θ̂
∗
i,(t) =

 t∑
j=1

Ĉ′i,j Ŵi

t∑
j=1

Ĉi,j

−1
t∑

j=1

Ĉ′i,j Ŵi

t∑
j=1

a∗i,j + θ̂i,(R+P ).

4. Letting f̂∗i,t = fi
(
xi,t, θ̂

∗
i,(t)

)
, compute for t = R+ 1, . . . , R+ P

ŷ∗t = y∗t −D1(f̂∗1,t, θ̂
∗
1,(t)) ·

(
θ̂
∗
1,(t) − θ̂1,(R+P )

)
+ D2(f̂∗2,t, θ̂

∗
2,(t)) ·

(
θ̂
∗
2,(t) − θ̂2,(R+P )

)
.

5. Compute the test statistics of interest using the bootstrap sample ŷ∗t , t = R+ 1, . . . , R+ P .

6. Repeat steps 2�5 M times and obtain the desired quantile(s).

Some mild additional conditions are required for establishing the validity of the bootstrap.

Proposition 6. Let Wi,(θi) be continuous in θi, and, for 1 ≤ t ≤ R+P , supt
∥∥Ĉi,t−Ci,t,(θi)

∥∥ p→ 0.

Moreover, ∃γ > 0 such that supt ‖Di(fi,t,θi)‖ = Op
(
P 1/2−γ) and supt

∥∥âi,t−ai,t,(θi)∥∥ = Op (P−γ).
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Under the assumptions of Proposition 5, under the null and if E (ṽtṽ
′
t) = c · IK with c > 0,

P
(
T xK ≥ qx∗1−α

) p→ α, x = {F,Q,C}, as M,P →∞ with P/R→ π.

Remark 7. While the above corrections are feasible when a researcher possesses all the necessary

information regarding the construction of the forecast, some external sources (cf. Section 4) only

publish point forecasts and actual realizations. Such information is not su�cient to assess the

relative strengths of privately constructed forecast models. Essentially, the covariance of Ai and

BG is often not known to �outsiders�, making it impossible to apply a suitable bootstrap.

Remark 8. In the case of rolling windows estimation errors θ̂
rol

i,(t) − θi from (7) with analogous

conditions on the components, we compute the estimated components as C
i,t,

(
θ̂
rol
i,(t)

), W
i,
(
θ̂
rol
i,(t)

) and

a
i,t,

(
θ̂
rol
i,(t)

); for t ≤ R we set θ̂
rol

i,(t) = θ̂
rol

i,(R). Steps 4 and 5 must be modi�ed accordingly.

3 Numerical Evidence

3.1 Setup

This section investigates the �nite-sample properties of the di�erent statistics, in view of the asymp-

totic arguments from Sections 2.1-2.3. Here, we focus on the most general case discussed: we con-

sider both potential time-varying forecasting ability and estimation uncertainty. For concreteness,

we shall investigate the simple and widely relevant case of regression-based prediction through com-

peting univariate predictors. Algorithm 3 in Appendix A summarizes the corresponding bootstrap

procedure for replicating the non-pivotal distributions from Propositions 3 and 5.

Our main DGP is as follows. We aim to predict an ARMA(1,1)-process zt = 0.4zt−1 + εt + 0.3εt−1

through two competing AR(1)-processes xi,t = 0.5xi,t−1 + ui,t, i = 1, 2. The predictions of zt

via the xi,t are obtained by simple (recursive) OLS as in (9), taking h = 0 for simplicity. Here,

t = 1, . . . , R+P , where R ∈ {100, 200, 300} (estimation sample) and P ∈ {50, 100, 200} (prediction

sample) for the size experiments. For power, P ∈ {50, 100, 200, 500}, including 500 to shed more

light on test consistency. Let ut = (εt, u1,t, u2,t)
′ denote the vector of innovations of zt and xj,t,

generated from a multivariate normal distribution. Its correlation matrix is labeled as Υt. The

size experiments take Υt = Υ to be an equicorrelation matrix with identical o�-diagonal elements

σu = 0.5. This yields a scenario in which x1,t and x2,t have equal predictive ability for zt so that
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the null hypothesis of the tests is true. For conciseness, we take ht = 1 throughout and thereby

investigate the case of unconditional predictive ability.

In our power experiments we specify two distinct scenarios. First, we consider a time-invariant

so-called �Toeplitz� structure for Υt. More speci�cally, both εt and u1,t as well as u1,t and u2,t

are correlated (with a correlation coe�cient of σu ∈ {−0.4,−0.2, . . . , 0.6}) while εt and u2,t are

uncorrelated. Thus, x2,t is independent of zt and therefore has no predictive power, in contrast

to x1,t. In order to generate time-varying forecasting ability, we specify a simple switch from an

equicorrelated matrix to a �Toeplitz� matrix at time τ := [R+ P/4]. Thus, the structural break in

predictive power emerges from a time-varying correlation matrix Υt. The break date is located in

the �rst quarter of the prediction sample and renders the DGP practically relevant.6

Time-varying variance is introduced by generating a structural break in the covariance matrix by

scaling Υt by δ1 ∈ {1/3, 1, 3} at time [ζ ·(R+P )], where ζ ∈ {0.3, 0.6, 0.9} (for the size experiments)

and at time point τ = [R + P/4] for the time-varying forecasting ability power experiment. For

instance, δ1 = 1/3 and ζ = 0.9 yield a late downward break in variance.

We consider the Bartlett and Quadratic Spectral (QS) kernel, the �xed-bandwidth parameter b ∈

{0, 0.1, 0.2, . . . , 1} for size experiments and, to reduce the computational burden, b ∈ {0, 0.4, 0.8}

for power.7 Large values of the test statistics provide evidence against equal predictive ability, so

that we test against right-tailed alternatives at a nominal signi�cance level of α = 0.1. The number

of replications equals 5, 000 (size) or 2, 500 (power). We use M = 500 bootstrap replications for

the wild bootstrap tests. In step 4 of Algorithm 3, we draw r∗t from the Mammen (1993) two-point

distribution. These choices are common in the literature. In view of the �ndings of Giacomini and

Rossi (2010, Table II), we choose a relative window size of ν = 0.3 for T FK .

We also investigate �asymptotic� �xed-b tests for completeness. These are �xed-b versions of T QK , T CK

and T FK ignoring time-varying variances which thus su�er from non-pivotality. Directly extending

the approach of Kiefer and Vogelsang (2005), we obtain �xed-b critical values for these tests from

simulating the distributions from Proposition 3 under the traditional assumption that G(r) = I.8

6We also experimented with later values of τ . Of course, a smaller sample in which the predictors' forecasting
ability di�ers translates into lower power, but the general qualitative conclusions of our study remain the same.

7For b = 0, we use the automatic estimator for B, B̂ = d(4ρ̂2(1 − ρ̂)−4T )1/g with ρ̂ from an approximating
AR(1) model for the series (see Andrews, 1991, eqs. (6.2) and (6.4)). Here, d = 1.1447, g = 3 for the Bartlett and
d = 1.3221, g = 5 for the QS kernel.

8Table 19 in the Appendix reports these critical values.
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abbreviates the bootstrap versions, cf. Algorithm 3. �asy� uses standard non-robust critical values, cf. the
last paragraph of Section 3.1. R denotes the estimation sample, P the prediction sample, ν the relative
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K (see (2)), δ1 the post-break variance and ζ the breakfraction. See Section 3.1 for
further details. Bartlett denotes the Bartlett kernel, QS is short for quadratic spectral (in later �gures).

Figure 1: Size under homoskedasticity, asymptotic and bootstrap tests

3.2 Size results

When considering the full amount of experiments, we obtain (with |A| the number of elements of a

set A) |R| · |P | · |δ1| · |ζ| · |b| · |kernels| = 1782 experiments in total. In the following, we report some

selected and representative results from the above grid of parameter and sample sizes.9

First, Figure 1 shows that both asymptotic and bootstrap �xed-b tests perform well across b under

the benchmark case of homoskedasticity (δ1 = 1). The asymptotic �uctuation test T FK is a possible

exception (but unreported simulations for larger P reveal this to be, as expected, a small-sample

phenomenon). Also, the �ndings are reminiscent of Kiefer and Vogelsang (2005)�while �xed-b tests

yield good �nite-sample size, there are �nite-sample size distortions for the small-b versions (Newey

and West, 1987; Andrews, 1991), i.e., for b = 0.

The non-pivotality of the asymptotic tests under heteroskedasticity becomes apparent in Figure 2.

Here, the break occurs at observation [0.9 · (300 + 100)] = 360. The �rst R = 300 preliminary

observations have been used for parameter estimation. In particular, the asymptotic tests are

undersized as soon as b takes moderate or large values. That is, �xed-b versions of the tests, as

9TO THE REFEREES: The full results are of course available upon request. In case of publication, we shall make
these available in MonteCarlo objects (R Core Team, 2017; Leschinski, 2017) on the JAE data archive.
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Figure 2: Size under heteroskedasticity (late break), asymptotic and bootstrap tests

predicted by Proposition 5, no longer provide accurate �nite-sample size in the presence of time-

varying variance. In turn and as a result of Proposition 6, the bootstrap �xed-b versions maintain

good size. Again, they are slightly less successful at correcting the well-known small-sample small-b

size distortions. Also, the �xed-b approximations work slightly less well for smaller b, still being

close to the standard small-b case (b = 0) which is in line with Kiefer and Vogelsang (2005). For

about b > 0.2, the bootstrap tests generally perform very well.10

Focussing on the robust bootstrap tests, Figure 3 reveals that there is little to choose between the

Bartlett and QS kernel in terms of size. Both perform similarly well. Figure 4 demonstrates, for

T QK , that P has a minor e�ect on the bootstrap tests. Size appears to improve for the asymptotic

tests, but this �nding is not robust with respect to other ζ and δ1.

3.3 Power results

We now discuss the power of the procedures described above. We �rst consider a few of the

|R| · |P | · |δ1| · |ζ| · |b| · |kernels| · |σu| = 3240 �Toeplitz� experiments. Here, x2,t has no predictive

power for zt over the full sample, unlike x1,t.

10There is some small and unsystematic variation in the empirical sizes when varying b. We consider this to be
due to simulation variability given the relatively small number of Monte Carlo replications for each case.
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Figure 3: Bootstrap size under heteroskedasticity, di�erent kernels
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Figure 4: Size of T Q
K under heteroskedasticity for di�erent P , asymptotic and bootstrap tests

First, Figure 5 shows that the power of both bootstrap and asymptotic tests increases in P . Second,

observing that this power experiment corresponds to the size study reported in Figure 2 (right panel),

it comes as no surprise that the power ranking is strongly a�ected by whether a tests accurately

exhausts or even exceeds nominal size. For example, the asymptotic CUSUM statistic T QK is fairly

undersized for b = 0.4, negatively a�ecting its power. The asymptotic Cramér-von Mises statistic

T CK is slightly oversized, with corresponding positive impact on power. Recall, however, that Section

3.2 revealed that the bootstrap tests generally e�ectively exhaust nominal size, implying that their
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Figure 5: Power vs. P , constant relative forecasting ability, asymptotic and bootstrap tests
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Figure 6: Power bootstrap tests vs. σu, both kernels

power is either better than that of the asymptotic tests when the latter are undersized, or more

credible when the latter are oversized. Third, T QK and T CK perform quite similar in terms of power,

while the power of T FK is less convincing.

Figure 6 compares the power for the two kernels in the bootstrap case. Here, we plot power against

σu. First and as expected, the power of all tests increases in |σu|. This is because the predictive

power of x1,t for zt then increases, while x2,t has none throughout. The Bartlett kernel leads to
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Figure 7: Power vs. P , time-varying relative forecasting ability, asymptotic and bootstrap tests
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Figure 8: Loss di�erential series (no-change versus SPF) for output growth (RGDP), GDP de�ator
in�ation (PGDP), unemployment rate (UNEMP) and the growth rate of housing starts (HOUSING).
Nowcasts are evaluated against the �rst release for mean squared error loss.

more powerful tests. This is noteworthy, as both variants fairly e�ectively exhaust nominal size

(cf. the entries at σu = 0). Figure 6 also reveal that T QK and T CK outperform T FK for any σu.

We now present some of the results for the time-varying forecasting ability case in which the predic-

tive power of x2,t for zt is identical to that of x1,t until τ . After τ , the predictive power of x2,t for zt
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vanishes. First, Figure 7 demonstrates (for the Bartlett kernel) that the power increases in P (here

also including P = 1000), the reason being that the time span during which a change in forecasting

ability can be detected also increases. A comparison of Figures 5 and 7 reveals that power of the

tests is lower in the time-varying forecasting ability case, as there is a smaller period (R + P ) − τ

during which they may detect di�erences in forecasting power.

4 Empirical results

4.1 The SPF data

The survey started in 1968 (conducted by the American Statistical Association and the National

Bureau for Economic Research) and is administered by the Federal Reserve Bank of Philadelphia

since 1990. Participants are asked to predict key US macroeconomic variables in the middle of

each quarter for the current and the following four quarters. We consider four variables from the

SPF forecast error statistics database:11 real GDP growth (RGDP), GDP price de�ator in�ation

(PGDP), the unemployment rate (UNEMP) and the growth rate of housing starts (HOUSING).

These four series re�ect di�erent key aspects of the US economy and are available from the start

of the SPF up to 2017Q2, yielding the longest possible series of forecasts to evaluate from this

database. Given our focus on time-variation in relative forecast performance, a long sample is

particularly interesting as di�erent episodes in relative forecast performance might be identi�ed.

Our sample includes several important economic phases. Among these are the 1970s with severe

oil price shocks leading to increases in macroeconomic volatility and conversely, the �Great Mod-

eration� lasting until the mid-1980s which exhibited a sharp decline in volatility and predictability

(see Campbell, 2007). It is well-documented that the �Great Moderation� led to enhanced macroe-

conomic stability which eased forecasting in general, but also made it more di�cult to beat simple

time series models (see, e.g., Stock and Watson, 2007). Similarly, Groen et al. (2013) �nd that

structural breaks in the variance play an important role for real-time in�ation forecasting. In addi-

tion, the �Great Financial Crisis� in 2007/2008 with further volatility changes (and possibly changes

in predictability) is also included.

We consider three horizons (nowcasting (h = 0), one-quarter ahead (h = 1) and one-year ahead (h =

4) forecasts) and two vintages. Macroeconomic data is often revised signi�cantly, see Croushore and

11The exact data �les are located at https://www.philadelphiafed.org/research-and-data/real-time-center/survey-
of-professional-forecasters/data-�les/error-statistics.
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Table 1: Summary statistics for output growth (RGDP), GDP de�ator in�ation (PGDP), unem-
ployment rate (UNEMP) and the growth rate of housing starts (HOUSING) using the �rst data
release and the MSE loss function. RelLoss(NC/SPF) denotes the relative RMSE loss of the no-
change and the SPF forecasts. SD(·) labels the standard deviation of the loss di�erentials in the
subsample I (1969-1984), II (1985-2006) or III (2007-2017). AC(1) denotes the empirical �rst-order
autocorrelation coe�cient of the loss di�erential series.

Statistic RelLoss(NC/SPF) SD(I) SD(II) SD(III) AC(1)
Sample 1969-2017 1969-1984 1985-2006 2007-2017 1969-2017

RGDP h = 0 1.69 28.67 4.95 6.02 0.24
h = 1 1.51 60.61 5.49 14.02 0.14
h = 4 1.40 55.26 8.17 15.76 0.44

PGDP h = 0 1.38 5.88 1.68 2.41 0.08
h = 1 1.23 9.82 2.01 1.91 0.26
h = 4 1.12 6.62 2.33 2.57 0.29

UNEMP h = 0 2.38 0.50 0.09 0.31 0.33
h = 1 1.76 1.15 0.17 0.95 0.58
h = 4 1.43 2.21 0.48 2.16 0.67

HOUSING h = 0 1.40 0.05 0.01 0.01 0.07
h = 1 1.32 0.08 0.02 0.02 0.26
h = 4 1.20 0.25 0.05 0.07 0.61

Stark (2001). Faust et al. (2013) and Stark (2010) discuss and demonstrate the importance of the

vintage structure when evaluating SPF (in�ation) nowcasts and forecasts. We consider the �rst and

the �nal data release. We compare SPF forecasts to no-change forecasts using the �rst data release

to enable a fair comparison with regard to the available information in real-time; see also Stark

(2010), D'Agostino et al. (2006) and Coroneo and Iacone (2016). The involvement of professional

judgment might be expected to lead to advantages over uninformed no-change predictions.

Figure 8 displays some representative loss di�erentials for nowcasting evaluated against the �rst

data release. It reveals that (i) loss di�erentials are mostly, but not always, positive indicating

superiority of SPF forecasts, (ii) there is potentially some time-variation in the mean, (iii) there are

some striking volatility changes and (iv) there is some mild to intermediate autocorrelation.

Table 1 provides some summary statistics for the full sample which covers P = 191 quarterly

observations from 1969Q4 to 2017Q2.12 We report RMSE ratios of no-change versus SPF, such

that values above unity indicate superiority of SPF. The ratio always exceeds one, suggesting a

better performance of the SPF over the full sample. However, the ratios take values in a range of

1.12 to 2.38, indicating notable heterogeneity. We also observe a clear monotonicity with regard to

the horizon: SPF is particularly successful at nowcasting (most strongly for unemployment with a

ratio of 2.38 and least, but still considerable, for GDP de�ator in�ation with 1.38). The advantages

12Some series contain a few missing values. Details on imputation are provided in Appendix C. As there are
relatively many missing values in the �rst year of the survey, we decided to start in 1969Q4.
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shrink with an increasing forecast horizon. This result, using the latest observations available,

strengthens earlier �ndings (see the discussion in Section 4.4). The monotonicity is robust with

respect to the vintage structure.13 For output growth and GDP de�ator in�ation rates, professional

forecasts seem to be more successful at predicting the �rst than the �nal release.

Next, we report estimated unconditional standard deviation for three subsamples merely for the

purpose of illustration: subsample I (1969Q1-1984Q4, T = 61), II (1985Q1-2006Q4, T = 88) and III

(2007Q1-2017Q2, T = 42). Volatility breaks associated with the �Great Moderation� are strongest

for real GDP growth (with break factors even smaller than 1/5), followed by unemployment, housing

starts and GDP de�ator changes. In all cases, volatility changes are considerable. Comparing the

relatively low volatility regime II to the one including the recent �nancial crisis (subsample III)

reveals that volatility is either almost stable (for housing starts and PGDP) or increasing (slightly

so for output and noticeably for unemployment). Di�erences between releases are negligible. Such

substantial changes in unconditional volatility underline the need for suitable inferential procedures.

Finally, the �rst-order autocorrelation coe�cient in the loss di�erentials unsurprisingly increases

with h. Crucially for autocorrelation-robust �xed-b inference, there is rather strong dependence

for unemployment and housing starts (up to 0.67 for one-year ahead forecasts). For nowcasts,

autocorrelation coe�cients range between 0.07 and 0.42.

4.2 Tests for equal predictive ability and time-variation

For all statistics T , T FK , T QK and T CK (here with K = 1) we consider b ∈ {0, 0.1, . . . , 1} for the

�xed-b bandwidth parameter. We thus include a classic Newey-West type statistic (b = 0, see also

fn. 7) and also the �xed-b versions proposed by Choi and Kiefer (2010). We focus on the Bartlett

kernel due to its higher power relative to the Quadratic Spectral kernel, where both have similar

size (cf. Section 3). We consider tests based on asymptotic and wild bootstrap critical values. The

latter are robust to time-varying volatility as observed for the loss di�erentials (cf. Table 1), while

the former are not. Hence, allowing for changes in volatility may have important implications for

the test results. Section 3 demonstrated that the tests work well for P = 200 observations.

As we compare the SPF to a simple no-change competitor, we apply statistics without a correction

for estimation error. For no-change forecasts we do not estimate any parameters as the predictions

are past values of �rst data releases of the respective variable. For the SPF, the estimation error

13The only slight exception is output growth, �nal release, one-quarter (1.39) and one-year forecasts (1.41).
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Table 2: Test decisions for the full-sample T -statistic either based on wild bootstrap ('bs') or asymptotic critical
values ('asy'). Nowcasts (h = 0), one-quarter (h = 1) and one-year ahead forecasts (h = 4) are evaluated against the
�rst data release under MSE loss. Evaluation sample runs from 1969Q4 to 2017Q2.

RGDP h = 0 h = 1 h = 4 PGDP h = 0 h = 1 h = 4
b Tbs Tasy Tbs Tasy Tbs Tasy Tbs Tasy Tbs Tasy Tbs Tasy
0 *** *** *** *** *** *** *** *** * **

0.1 *** *** *** ** *** ** *** *** *** ***
0.2 *** ** *** * ** * *** *** *** ***
0.3 ** * *** ** *** ** *** ** *
0.4 ** ** * *** ** *** ** *
0.5 ** ** * *** ** *** ** *
0.6 ** ** * *** ** *** ** *
0.7 ** ** * *** ** *** ** **
0.8 ** ** * *** ** *** ** **
0.9 ** ** * *** ** *** ** *
1 ** ** * *** ** *** ** *

UNEMP h = 0 h = 1 h = 4 HOUSING h = 0 h = 1 h = 4
b Tbs Tasy Tbs Tasy Tbs Tasy Tbs Tasy Tbs Tasy Tbs Tasy
0 *** *** *** *** *** *** *** *** *** *** ** **

0.1 *** *** *** *** *** *** *** ** *** ** ** *
0.2 *** *** *** ** *** *** ** * ** * *
0.3 *** ** ** ** *** ** ** **
0.4 *** ** ** ** ** ** * *
0.5 *** ** *** ** ** ** *
0.6 ** ** ** ** ** ** *
0.7 ** ** *** ** ** ** *
0.8 *** ** *** ** *** ** *
0.9 ** ** ** ** ** ** *
1 ** ** ** ** *** ** *

is not available and therefore, no correction of estimation error is applied, see the discussion in

Giacomini and Rossi (2010) and Rossi and Sekhposyan (2016). Therefore, we employ the bootstrap

algorithm 1 modi�ed for the T x statistics using M = 5, 000 replications.

First, we test for equal predictive ability using the full-sample statistic T , which is not explicitly

designed to capture potential time-variation in mean loss di�erentials. We compare T to asymptotic

(�asy�) and wild bootstrap (�bs�) critical values. Table 2 reports rejections at signi�cance levels of

one, �ve and ten percent. These are labeled as '***', '**' and '*' to ease the presentation of the

many results and to conserve space by not reporting six di�erent critical values for each statistic.

In general, the tests are two-sided due to their quadratic form. As all RMSE ratios exceed one (cf.

Table 1), the corresponding sample means of loss di�erentials are positive. Hence, a rejection of a

two-sided test implies that SPF signi�cantly outperforms the competing no-change approach.

Starting with output growth, the bootstrap version (subscript 'bs') rejects equal predictive ability

across the full sample in all cases � at least at the nominal ten percent level, but mostly at the

�ve percent level or lower. This �nding holds for all horizons h (albeit not as strong for h = 4) and
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all values of the bandwidth-parameter b. It thereby clearly suggests the superiority of the SPF. On

the contrary, using asymptotic critical values leads to far less rejections.

For GDP de�ator in�ation, bootstrap inference leads to rejections at the one percent level in nearly

all cases for the shortest horizons h = 0 and h = 1. The traditional approach relying on asymptotic

critical values mainly rejects at the �ve percent level. We �nd a clear di�erence in test decisions

for one-year ahead forecasts (h = 4): while the bootstrap �nds signi�cant di�erences, asymptotic

inference does not indicate any signi�cant deviation from equal predictive ability.

We see a similar pattern for unemployment, with the exception of additional rejections for h = 4.

Finally, we �nd evidence in favor of the SPF for nowcasts of changes in housing starts. For longer

horizons, the evidence is weaker. In any case, the usage of bootstrap critical values robust to

time-varying volatility leads to rejections at lower signi�cance levels.14

We next consider tests suitable for time-variation in the relative forecast performance. To this

end, we employ the T F (with ν = 0.3 as suggested in Giacomini and Rossi (2010)), T Q and T C

statistics presented in Section 2. We see similar test decisions for output growth as for the full-

sample statistics. Bootstrapped versions of the test statistics provide stronger rejections than their

asymptotic counterparts. This is especially true for the T Cbs statistic for all h. For GDP de�ator

in�ation, we also �nd an almost identical pattern of rejections across the di�erent statistics in

comparison to the preceding full-sample analysis. For h = 4, only the T Cbs statistic provides evidence

against the null. For unemployment and housing starts, the general conclusion that bootstrap

inference provides more and stronger rejections holds true as well.15

The time-varying components of the �uctuation and the CUSUM statistic may explain the previous

�ndings. In particular, we look at the squared (i) rolling standardized MSE di�erence and (ii)

scaled partial sum of the loss di�erential.16 One explanation for the strong agreement between the

full-sample and the time-variation tests might be that the SPF outperforms the benchmark at all

time points. Even though the full sample tests might indicate this, it is not clear if the advantages

of the SPF really existed over the entire period from 1969 to 2017. Looking at the statistics (i) and

(ii) over time helps identifying di�erent episodes of relative predictability, if present.

Figure 9 (nowcasting, �rst release, b = 0.2, ν = 0.3) visualizes the time-varying components of

14These conclusions generally hold as well for the evaluation against the �nal release of data, as reported in Table
8. The di�erences in the results are relatively minor. The robustness with respect to the vintage structure is in line
with Stark (2010), who �nds data revisions to be of less importance in the relative performance of the SPF.

15The test outcomes are quite similar for the �nal data release, see Tables 9 and 10.
16The �uctuation and CUSUM statistics search for the maximum of these statistics over the evaluation period.
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Figure 9: The plots show the time-varying components of the �uctuation statistic (left axis, solid
black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations (2) and (3).
Horizontal dashed lines are the corresponding �ve percent critical values for the maximum of the
displayed statistics. Nowcasts are evaluated against the �rst release for MSE loss; b = 0.2, ν = 0.3.

the tests. The �uctuation statistic reveals two striking patterns: Judging from the statistic and

the associated �ve percent bootstrap critical value, there is a sizable deterioration in predictability

in the early 1980s associated with the �Great Moderation�. This breakdown is signi�cant, while

the recoveries observed for GDP de�ator in�ation and unemployment in the early 2000s are too

weak for a rejection. For output growth and housing starts, the results suggest that there is no

comeback in relative predictive ability of the SPF. Interestingly, relative forecast performance did not

change a lot during the �Great Financial Crisis� even though volatility increased somewhat, but to

a much lesser extent when compared to the �Great Moderation�. These results holds more generally

for other horizons and the �nal data release, see Figures 14-18 in the Appendix. Figures 19-24

show the unscaled rolling window MSE di�erence between the SPF and no-change forecasts. They

support the previous interpretation and reveal that, at least, no-change forecasts never signi�cantly
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outperform the SPF. The CUSUM statistic indicates a breakdown in relative forecast performance

as it also turns signi�cant in the 1980s, implying that the accumulated changes are large enough

for a rejection.17

Our interpretation is that the full sample results are mainly driven by �rst of part of the sample

(until the mid-1980s) in which the SPF clearly performed better. As the statistics for time-variation

further indicate clearly and robustly, the advantages in relative predictability largely disappear in

the mid-1980s. Most of the evidence for time-variation, however, would not have been detected by

a traditional analysis using asymptotic critical values.

4.3 Asymmetric loss

We additionally consider an asymmetric loss function (e.g., Elliott et al., 2005):

Lt,h = [α+ (1− 2α) · 1(zt+h − ft+h < 0)](zt+h − ft+h)2 .

For α = 0.5, a symmetric loss function arises as a special case. In line with Rudebusch and

Williams (2009) and Wang and Lee (2014), we consider a value of α = 0.7. Such a value re�ects an

intermediate asymmetry where over-predictions receive higher weight than under-predictions. The

appendix provides detailed results. Here, we give a brief comparison to the symmetric case. The

summary statistics in Tables 11 and 12 show the same patterns as reported for MSE loss. The

full-sample test decisions are broadly similar. The only noticeable di�erence is the lack of evidence

against the null for one-year GDP de�ator in�ation. We �nd very similar results (with the same

exception) regarding relative time-varying forecasting performance. Overall, the vintage still plays

a minor role, except for GDP price de�ator in�ation for which we �nd a lack of any evidence against

the null not only for h = 4, but also for h = 1. Notably, the strong evidence persists for h = 0.

Moreover, patterns of time-variation (Figures 25�30 in the Appendix) based on asymmetric loss

are fully consistent with the ones for MSE loss for output growth, housing starts and unemployment.

For GDP de�ator in�ation, however, the general movement is the same, but the stronger weighting

of forecast errors in the 1970s (due to large oil price shocks) introduces more erratic behavior.

17Its behavior at the beginning and end of the sample provides additional information which T F
K cannot provide

due to trimming. Before 1976, there are signs for time-variation in all series. Unemployment and GDP de�ator
in�ation apparently exhibit some further time-variation after 2010 (less for output growth), unlike housing starts.
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4.4 Discussion of our results in light of the related literature

We now provide a comparison of our �ndings and those of previous studies on the performance of

the SPF. Most of these use the Diebold and Mariano (1995) test for di�erences in MSE. One strand

of the literature deals with the accuracy of the SPF in general, while a second smaller one focusses

on the decline of predictability in connection to the �Great Moderation�. A comparison is generally

complicated by the fact that studies obviously use di�erent variables (and partly also de�nitions

thereof), benchmarks, vintages, horizons, samples etc. However, two articles, viz. D'Agostino et al.

(2006) and Coroneo and Iacone (2016), are particularly close to the scope of our work. Therefore,

we provide a more extensive treatment of these studies towards the end of this discussion.

The general notion in the literature is that the SPF provides accurate forecasts, especially nowcasts,

for real output growth, in�ation and unemployment, but less so for housing starts. Zarnowitz and

Braun (1993) and Croushore (1993) (see also references therein) provide early evidence on the good

performance of SPF forecasts for real GDP and in�ation. Ang et al. (2007) �nd that surveys

(including the SPF) forecast in�ation better than macro variables, time series models and asset

markets. They also �nd that when allowing for time-variation, the SPF dominates throughout the

whole sample. Croushore (2010) uses real-time data instead and �nds con�rmatory evidence.

The superiority of SPF nowcasts has been documented in several in�uential studies, e.g. Giannone

et al. (2008). Liebermann (2014) considers real-time nowcasting for output growth and compares

the performance of professional forecasters and a dynamic factor model to simple autoregressive

and no-change forecasts. She �nds that gains in forecasting accuracy are pronounced for h = 0

and decrease in h. For a sample from 1985Q1 to 2007Q4, Stark (2010) similarly �nds that the

accuracy of the SPF declines signi�cantly for h > 1. Moreover, he �nds the SPF to outperform no-

change forecasts (except for housing starts). For unemployment, Montgomery et al. (1998) provide

early evidence for the superiority of SPF forecasts. Interestingly, the authors �nd that the relative

performance (evaluated against time series models) is particularly good at short horizons up to

h = 3, supporting the general �nding that the SPF has relative advantages for short horizons.

We now turn to the discussion of D'Agostino et al. (2006) and Coroneo and Iacone (2016). Both use

a naive benchmark under MSE loss and deal with time-variation by running tests on subsamples.

In contrast to our approach, the applied tests are not robust to time-varying volatility and do not

exploit the full sample to formally test for time-variation in an endogenous way.

Coroneo and Iacone (2016) apply a Diebold and Mariano (1995) statistic with �xed-smoothing
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asymptotics. Their full-sample test has good size even in samples of only 40 observations, while

tests using standard asymptotics are oversized. In addition, they consider a stationary block-

bootstrap version of the test and �nd it to yield better size than standard asymptotics, and to be

equally powerful as the �xed-smoothing approach. In a sample ranging from 1985Q1 to 2014Q4 for

real GNP/GDP growth, GNP/GDP in�ation, unemployment rate and the three-month Treasury

bill rate, the SPF sometimes signi�cantly outperforms a naive random walk. For output growth,

there is virtually no evidence against the null. The SPF seems to provide more accurate in�ation

forecasts at horizons h = {0, 1, 2}, but not beyond. The evidence for unemployment suggests the

superiority of the SPF in particular for h = 0. For other horizons, the evidence is relatively weak.

For the short-term interest rate, SPF is clearly found to perform better for all horizons except the

longest one (h = 4). In a subsample analysis with blocks of ten years of data, the authors investigate

time-variation and �nd: (i) for output growth, there is no single decade in which the SPF performs

better; (ii) relative advantages of the SPF observed for the period from 1985 to 1994 vanished at

all horizons for in�ation, unemployment and the interest rate between 1995 and 2004; (iii) in the

most recent subsample, the superiority of the SPF is re-established mostly for in�ation, and partly

for unemployment and interest rates; in particular when considering the bootstrap version of the

test. The �xed-smoothing test, however, provides much less evidence against the null.

Thus, our �ndings partly corroborate those of Coroneo and Iacone (2016), with some notable dif-

ferences. Unlike Stark (2010), we and Coroneo and Iacone (2016) do not �nd that the SPF easily

outperforms naive forecasts after 1985. This might be due to the di�erent tests applied in the

analysis. An important di�erence to the results of Coroneo and Iacone (2016) regards the period

from 1985 to 1995, for which we do not �nd evidence for superiority of the SPF at any h.

D'Agostino et al. (2006) �nd a signi�cant decline in relative predictive accuracy of the SPF for

in�ation and output growth for h = 1 to h = 4. Their full sample (1975Q1 to 1999Q4) results

indicating the superiority of the SPF seem to be driven by the period prior to 1985 in which the

SPF outperformed the naive benchmark. After 1985, the results indicate that the SPF no longer

has a signi�cant advantage. This strongly suggests instabilities in relative forecast performance.

Our �ndings corroborate their results and sharpen them in showing that this phenomenon carries

over to unemployment and housing starts as well and that is also holds for the case of nowcasting.

In addition, Campbell (2007), D'Agostino and Whelan (2008) and Gamber and Smith (2009) �nd

by analyses of various subsamples, consistent with our results, declining predictability of the SPF

after the �Great Moderation� for output growth and in�ation. Explanations about the causes of the
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forecast breakdown di�er across these studies and remain an open issue.

By applying tests (which are agnostic regarding structural breaks and robust to time-varying volatil-

ity and autocorrelation) to a comparably long sample of more than 40 years of data, we obtain

results which support several previous �ndings. Among these are (i) the superiority of the SPF

for shortest horizons, but less advantages for one-year ahead forecasts; (ii) a signi�cant decline in

relative predictability during the 1980s; (iii) the robustness of the relative performance of the SPF

to data revisions. Our results yield the following new insights: (i) results for the full-sample analysis

and time-variation continue to hold under an asymmetric loss function; (ii) advantages of the SPF

forecasts are minimal in the 1990s, with weak signs of recoveries for GDP de�ator in�ation and

unemployment later on and (iii) relative forecast performance did not change during the �Great

Financial Crisis�, even though volatility increased.

These recoveries possibly turn into a signi�cant comeback of SPF forecasts in the future. In this

case, the exact timing would be certainly unknown, rendering a subsample analysis inappropriate.

In general, the ad hoc choice of break points may easily lead to biases. Moreover, it is not always

possible (especially in view of recent developments) to invoke economic reasons like the well-studied

�Great Moderation�. In contrast, the methods proposed here are suitable for data containing possibly

multiple unknown breakpoints in forecast performance alongside changes in volatility.

5 Concluding remarks

This paper proposes wild bootstrap tests for equal predictive ability that can be applied when

volatility and relative forecast performance are time-varying, and proves their validity. Both data

features are present in many macroeconomic and �nancial forecast comparisons. We also provide

suitable rolling and recursive estimation adjustments of the procedures when estimation error is

relevant. The considered tests are either full sample tests (similar to existing ones like Diebold and

Mariano (1995)) or CUSUM, Cramér-von Mises and �uctuation statistics when testing for time-

variation. All employ �xed-b asymptotics which deliver more accurately sized tests in �nite-samples.

Our simulation study demonstrates that the tests work well in empirically relevant situations.

Our empirical application investigates the (time-varying) forecast performance of professional fore-

casters obtained from the SPF relative to simple no-change forecasts in real-time. The analysis

suggests that ignoring time-varying variance seriously a�ects conclusions regarding the null of equal
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predictive ability. Traditional tests provide considerably weaker evidence against the null than the

wild bootstrap versions. Tests allowing for time-variation indicate that the SPF had signi�cant

advantages until the mid-1980s, but not thereafter. Further research might address to what extent

the time-varying relative forecast performance can be explained (e.g. Campbell, 2007). Another

interesting avenue is to investigate the Fed's `Green Book' forecasts which receive a lot of attention

(e.g. Romer and Romer, 2000; D'Agostino and Whelan, 2008; Rossi and Sekhposyan, 2016).
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Appendix

A Bootstrap implementation for linear regression forecasts

Here, we work out the corresponding wild bootstrap algorithm for the simple, but important case
of a regression-based prediction using two di�erent sets of predictors, x1,t and x2,t. Let us consider
the following linear predictive models

zt+h = θ′ixi,t + εi,t , t = 1, . . . , R+ P, i = 1, 2, (8)

which we estimate by OLS in an either recursive or rolling manner. The theoretical forecasts for
zt+h are given by

fi,t = θ′ixi,t, i = 1, 2,

at each step t. The line version gradient of fi,t is given by x′i,t. Note that x1,t and x2,t (and thus
θ1 and θ2) need not have the same dimensionality.

Then, at each t, the forecasts are generated as f̂i,t = θ̂
′
i,(t)xi,t with θ̂i,(t) computed recursively (or

in a rolling manner, θ̂
rol

i,(t)). The weighted loss di�erentials are computed using weights ht = 1 in

this example, so ŷt is a scalar, ŷt. We use a quadratic L(u) = u2 with derivative 2u. In the linear
regression case, the estimation e�ect depends on

Ci,t = xi,tx
′
i,t and ai,t,(θi) = xi,t

(
zt+h − θ′ixi,t

)
= xi,tεi,t.

To account for the estimation e�ect, one needs to replicate the behavior of partial sums of (ai,t, yt)
′;

to be more precise, we need estimates of these quantities since they are not observed directly. While
ŷt is the natural estimator for yt, computing estimates âi,t requires a set of residuals, say ε̂i,t.

For each t = R+ 1, . . . , R+ P , estimate the LS regression

zj+h = θ̂
′
i,(t)xi,j + êi,j,(t) , j = 1, . . . , t, (9)

where the extra index (t) in Equation (9) indicates the dependence of the estimates on the time at
which estimation is conducted. Moreover, residuals are denoted by êi,j,(t) to emphasize that a full
set of residuals is computed at each time t in a recursive manner; therefore, we do not have one
single set of residuals which we could call ε̂i,t.

For the recursive setup, we use
ε̂i,t = êi,t,(t) (10)

for all t = 1, . . . , R+ P , i.e. we use the most precise residuals available as bootstrap population.

We employ the following bootstrap algorithm:

Algorithm 3

1. Compute ŷt from (5) (and set ŷt = 0 for 1 ≤ t ≤ R)

2. For all t = 1, . . . , R+ P , compute Ci,t = xi,tx
′
i,t and âi,t = xi,tε̂i,t with ε̂i,t from (10).

3. Generate r∗t wild bootstrap draws, t = 1, . . . , R+ P .

4. Construct
(
a∗′1,t,a

∗′
2,t, y

∗
t

)′
as
(
â′1,t, â

′
2,t, ŷt

)′
r∗t for t = 1, . . . , R+ P .

5. Compute for t = R+ 1, . . . , R+ P

θ̂
∗
i,(t) =

(
t∑

j=1

Ci,j

)−1 t∑
j=1

a∗i,j + θ̂i,(R+P ).
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6. Compute for t = R+ 1, . . . , R+ P

ŷ∗t = y∗t − 2
(
zt+h − θ̂

∗ ′
1,(t)x1,t

)
x′1,t

(
θ̂
∗
1,(t) − θ̂1,(R+P )

)
+ 2

(
zt+h − θ̂

∗ ′
2,(t)x2,t

)
x′2,t ·

(
θ̂
∗
2,(t) − θ̂2,(R+P )

)
.

7. Compute the test statistics using the bootstrap sample ŷ∗t , t = R+ 1, . . . , R+ P .

8. Repeat the steps M times and obtain the desired quantile(s).

The wild bootstrap provides asymptotically pivotal inference if supt=1,...,R+P E
(
‖xi,t‖4

)
< ∞,

which su�ces to verify the additional conditions required by Proposition 6.

The procedure is similar for rolling window estimation. For each t = R+ 1, . . . , R+ P ,

zj+h =
(
θ̂
rol

i,(t)

)′
xi,j + êroli,j,(t) , j = t−R+ 1, . . . , t, (11)

At each time t, the forecasts are generated as f̂i,t =
(
θ̂
rol

i,(t)

)′
xi,t.

The bootstrap algorithm for the rolling windows case is very similar, but takes into account that we
only resort to estimates from the current window at each t. The biggest change is how we get the
residuals ε̂roli,t entering âroli,t (the rolling version estimate of ai,t). Again, we have multiple variants to

choose ε̂roli,t , given the multitude of computed residuals êroli,j,(t). The natural choice is for the rolling
window scheme to take

ε̂roli,t =

{
êroli,t,(R) t = 1, . . . , R

êroli,t,(t) t = R+ 1, . . . , R+ P.
(12)

That is, the last residual from each window is added to the series of residuals as the window rolls
on and the �rst R are the residuals from the �rst window. The changes in the algorithm are as
follows. First, compute âroli,t = xi,tε̂

rol
i,t for all t = 1, . . . , R+P , with ε̂roli,t from (12). Second, compute

for t = R+ 1, . . . , R+ P

θ̂
∗ rol
i,(t) =

(
t∑

j=t−R+1

Ci,j

)−1 t∑
j=t−R+1

a∗i,j + θ̂
rol

i,(R+P ).

Finally, compute

ŷ∗t = y∗t − 2
(
zt+h −

(
θ̂
∗ rol
1,(t)

)′
x1,t

)
x′1,t

(
θ̂
∗ rol
1,(t) − θ̂

rol

1,(t)

)
+ 2
(
zt+h −

(
θ̂
∗ rol
2,(t)

)′
x2,t

)
x′2,t ·

(
θ̂
∗ rol
2,(t) − θ̂

rol

2,(t)

)
for t = R+ 1, . . . , R+ P.

B Proofs

Proof of Proposition 1

The arguments in the proof of Theorem 2 in Kiefer and Vogelsang (2005) indicate that

Ω̂ = − 1

P 2

P−1∑
i=1

P−1∑
j=1

P 2

B2
k′′
(
i− j
B

)
1√
P

i∑
t=1

(yt − y)
1√
P

j∑
t=1

(yt − y)′ + op(1)
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for kernels with smooth derivatives, or

Ω̂ =
2

bP

P∑
i=1

(
1√
P

i∑
t=1

(yt − y)

)(
1√
P

i∑
t=1

(yt − y)

)′

− 1

bP

[(1−b)P ]∑
i=1

 1√
P

i+[bP ]∑
t=1

(yt − y)

( 1√
P

i∑
t=1

(yt − y)

)′

− 1

bP

[(1−b)P ]∑
i=1

(
1√
P

i∑
t=1

(yt − y)

) 1√
P

i+[bP ]∑
t=1

(yt − y)

′ + op(1)

for the Bartlett kernel. The continuous mapping theorem [CMT] implies together with Lemma 1
that

1√
P

[rP ]∑
t=1

(yt − y) =
1√
P

[rP ]∑
t=1

yt −
[rP ]

P

1√
P

[rP ]∑
t=1

yt ⇒ BG(r)− rBG(1);

a second applicaiton of the CMT leads to the desired limiting null distribution.

Proof of Proposition 2

Conditionally on the data, the bootstrap variables y∗t are independent so they obey the same
moment and serial dependence restrictions as yt. Therefore, we may obtain a representation of the
bootstrap long-run covariance estimator parallelling to the one in the proof of Proposition 1,

Ω̂
∗

= − 1

P 2

P−1∑
i=1

P−1∑
j=1

P 2

B2
k′′
(
i− j
B

)
1√
P

i∑
t=1

(
y∗t − y∗

) 1√
P

j∑
t=1

(
y∗t − y∗

)′
+ op(1)

for kernels with smooth derivatives, or

Ω̂
∗

=
2

bP

P∑
i=1

(
1√
P

i∑
t=1

(
y∗t − y∗

))( 1√
P

i∑
t=1

(
y∗t − y∗

))′

− 1

bP

[(1−b)P ]∑
i=1

 1√
P

i+[bP ]∑
t=1

(
y∗t − y∗

)( 1√
P

i∑
t=1

(
y∗t − y∗

))′

− 1

bP

[(1−b)P ]∑
i=1

(
1√
P

i∑
t=1

(
y∗t − y∗

)) 1√
P

i+[bP ]∑
t=1

(
y∗t − y∗

)′ + op(1)

for the Bartlett kernel. Note thatM →∞ for any T , such that the bootstrapped quantiles converge
in probability to the quantiles of the bootstrap distribution, and it then su�ces to establish weak
convergence in probability of the partial sums of y∗t to BG(s)

1√
P

R+[sP ]∑
t=R+1

y∗t
p⇒ BG (s) .

We now examine the case where the bootstrap variables r∗t are standard normal. Let S∗P (s) denote
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the normalized partial sums of the bootstrapped sample,

S∗P (s) =
1√
P

[sP ]∑
t=1

y∗t =
1√
P

[sP ]∑
t=1

(yt − ȳ) r∗t ,

which, conditional on the sample yt, t = 1, . . . , T , is a Gaussian process with independent incre-
ments. Its covariance kernel is given by

Cov (S∗P (s),S∗P (r)) =
1

P

[min{s,r}P ]∑
t=1

(yt − ȳ) (yt − ȳ)′ E
(

(r∗t )
2
)

=
1

P

[min{s,r}P ]∑
t=1

(yt − ȳ) (yt − ȳ)′ .

Note that, under Assumption 1, we obtain pointwise in s

1

T

[sT ]∑
j=1

(yt − ȳ) (yt − ȳ)′
p→
∫ s

0
G(r) E

(
vtv
′
t

)
G′(r)dr = c

∫ s

0
G(r)G′(r)dr (13)

via a Law of Large Numbers for strong mixing processes (see Davidson, 1994, Section 20.6).

Recall that the quadratic covariation process of the relevant Gaussian processBG is c
∫ s

0 G(r)G′(r)dr.
Then, like in the proof of Lemma A.5 in Cavaliere et al. (2010), weak convergence in probability
of the bootstrap partial sums to a Gaussian process with independent increments and quadratic
covariation process c

∫ s
0 G(r)G′(r)dr follows from uniformity of the convergence in (13).

Uniformity is indeed given, since the increments of the limit c
∫ s

0 G(r)G′(r)dr are positive semide�-
nite by construction, so any quadratic form thereof would be a continuous, nondecreasing function,
hence leading to uniform convergence of the corresponding quadratic forms of the l.h.s. of (13).
Given such univariate uniform convergence of any quadratic form, it follows that convergence in
probability in (13) must be uniform.

To complete the argument for Gaussian bootstrap multiplicators, note that c cancels out in the
expressions of the considered statistics as required for the result.

In the case where the bootstrap multiplicators r∗t are not standard normal but follow the Mammen
distribution, say, S∗P (s) is not Gaussian, but weak convergence to a Gaussian process holds condi-
tional on the sample (see e.g. Davidson, 1994, Corollary 29.14, with r∗t being iid and having �nite
moments of any order). The result follows along the lines of the Gaussian argument above.

Proof of Lemma 3

Note that

1√
P

R+[sP ]∑
t=R+1

ŷt =
1√
P

R+[sP ]∑
t=R+1

yt −
1

P

R+[sP ]∑
t=R+1

D1(f1,t,θ1) ·
√
P
(
θ̂1,(t) − θ1

)

+
1

P

R+[sP ]∑
t=R+1

D2(f2,t,θ2) ·
√
P
(
θ̂2,(t) − θ2

)
+Qs,P

where

Qs,P =
2∑
i=1

(−1)i+1 1

P

R+[sP ]∑
t=R+1

(
Di(f̂i,t, θ̂i,(t))−Di(fi,t,θi)

)√
P
(
θ̂i,(t) − θi

)
,
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such that, for 1 ≤ t ≤ P +R,

|Qs,P | ≤ 2 sup
i,t,θ̃i

∥∥∥Di(f̃i,t, θ̃i)−Di(fi,t,θi)
∥∥∥ sup

i,t

√
P
∥∥∥θ̂i,(t) − θi∥∥∥ .

Furthermore, it follows from Assumption 4 that, for some 0 < ε < 1, the following weak convergence

√
R
(
θ̂i,[u(R+P )] − θi

)
⇒
(
C′i (u) Wi,(θi)Ci (u)

)−1
C′i (u) Wi,(θi)Ai (u)

holds on [ε, 1 + π]. Hence, with P/R → π > 0 and t > R,
√
P
∥∥∥θ̂i,(t) − θi∥∥∥ is uniformly (in t)

bounded in probability, such that θ̂i,(t) ∈ ΦP for all t w.p.1 and Assumption 2 ensures sups∈[0,1] |Qs,P |
p→

0. Since the limit processes Hi are Lipschitz and deterministic, the result follows with the CMT.

Proof of Proposition 6

To establish the result, it su�ces to show that weak convergence in probability to BG,π (s) holds,

1√
P

R+[sP ]∑
t=R+1

ŷ∗t
p⇒ BG,π (s) .

Taking the supremums over 1 ≤ t ≤ R+P , note �rst that supt ‖Di(fi,t,θi)‖ = Op
(
P 1/2−γ) implies

for γ > 0 that supt ‖ŷt − yt‖
p→ 0 � given the behavior of θ̂i,(R+P ); see the proof of Lemma 3.

We then study the behavior (under the null µ = 0) of

1√
P

[uR]∑
t=1

 a∗1,t
a∗2,t
y∗t

 =
1√
P

[uR]∑
t=1

 â1,t − a1,t,(θ1)

â2,t − a2,t,(θ2)

ŷt − yt

 r∗t +
1√
P

[uR]∑
t=1

 a1,t,(θ1)

a2,t,(θ2)

yt

 r∗t

for u ≤ 1+π, where supt

∥∥∥∥( âi,t − ai,t,(θi)
ŷt − yt

)∥∥∥∥ p→ 0 implies that 1
P

∑R+[sP ]
t=R+1

∥∥∥∥( âi,t − ai,t,(θi)
ŷt − yt

)
r∗t

∥∥∥∥ p⇒

0 since supt |r∗t | = o (P−γ) for any γ > 0 whenever r∗t has �nite moments of any order. Furthermore,
like in the proof of Proposition 2, the change of variable s = (u− 1) /π for 1 ≤ u ≤ π gives

1√
P

R+[sP ]∑
t=R+1

 a1,t,(θ1)

a2,t,(θ2)

yt

 r∗t
p⇒

 A1 (1 + sπ)
A2 (1 + sπ)
BG (s)


on [0, 1]. Moreover, supt

∥∥∥Ĉi,t −Ci,t,(θi)

∥∥∥ p→ 0 implies that

1

R

[uR]∑
t=1

Ĉi,j ⇒ Ci (u)

such that, with Wi continuous,

√
R
(
θ̂
∗
i,(t) − θ̂i,(R+P )

)
p⇒
(
C′i (u) Wi,(θi)Ci (u)

)−1
C′i (u) Wi,(θi)Ai (u)

on [ε, 1 + π] for any 0 < ε < 1. Given the behavior of θ̂i,(R+P ) from the proof of Lemma 3, this

implies that supR≤t≤R+P

∥∥∥θ̂∗i,(t)∥∥∥ = Op
(
R−1/2

)
, and both θ̂i,(R+P ) and θ̂

∗
i,(t) belong w.p.1 to the set

ΦP . The result follows along the lines of the proof of Lemma 3.
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C Imputation

This appendix contains details on the imputed values for the missing observations in the SPF data
set from the �Forecast Error Statistics for the Survey of Professional Forecasters� obtained from the
Federal Reserve Bank of Philadelphia.

A few missing values in the SPF series and the are imputed via a bootstrap based expectation
maximization [EM] algorithm, see Honaker et al. (2011). The algorithm makes use of the standard
EM algorithm on multiple bootstrapped samples of the original data set (containing missing values)
to obtain imputed values. We use 10,000 bootstrap replications for the EM algorithm. The code
is written in R (by using the Amelia package) and available upon request from the authors. Tables
5�6 contain the imputed values (underlined) in connection to neighboring values. The obtained
bootstrap averages serve as imputed values which are plausible.

Table 5: Data entries for the �rst release of RGDP and PGDP series. #MV gives the number of
missing values in total. For underlined dates imputed values are obtained from the bootstrap-based
EM algorithm. Neighboring values are reported for comparison.

Date RGDP PGDP

1995Q3 4.20481 0.58927
1995Q4 2.41452 2.26685

1996Q1 2.80932 2.60573

#MV 1 1

Table 6: Data entries for four-quarters ahead SPF forecasts. #MV gives the number of missing
values in total. For underlined dates imputed values are obtained from the bootstrap-based EM
algorithm. Neighboring values are reported for comparison.

Date RGDP PGDP UNEMP HOUSING

1969Q4 4.03701 3.21260 3.9 1.7
1970Q1 3.55115 3.56122 4.51615 1.38393

1970Q2 3.90855 3.56355 4.32870 1.35874

1970Q3 4.05961 3.90631 4.68596 1.42407

1970Q4 3.10037 3.01866 4.3 1.6
1971Q1 4.54798 4.15267 5.40173 1.50692

1971Q2 4.26233 2.95183 4.4 1.52

1975Q2 5.40498 3.50332 5.55 1.895
1975Q3 5.33554 6.52413 8.88112 1.37777

1975Q4 5.02638 6.57499 7.0 1.6

#MV 5 5 5 5

41



D Additional empirical results

This appendix contains additional empirical results. First, it reports evaluations against the �nal
release, starting with summary statistics. Next, full-sample and time-variation test results are given.
They are followed by similar tables computed for the case of asymmetric loss and being evaluated
against the �rst and �nal release. The appendix ends with plots of forecast error loss di�erentials
and graphs for the analysis of time-variation in the relative forecast performance.

Table 7: Summary statistics for output growth (RGDP), GDP de�ator in�ation (PGDP), unemploy-
ment rate (UNEMP) and the growth rate of housing starts (HOUSING) using the �nal data release
and the MSE loss function. RelLoss(NC/SPF) denotes the relative RMSE loss of the no-change
and the SPF forecasts. SD(·) labels the standard deviation of the loss di�erentials in the sub-
sample I (1969-1984), II (1985-2006) or III (2007-2017). AC(1) denotes the empirical �rst-order
autocorrelation coe�cient of the loss di�erential series.

Statistic RelLoss(NC/SPF) SD(I) SD(II) SD(III) AC(1)
Sample 1969-2017 1969-1984 1985-2006 2007-2017 1969-2017

RGDP
h = 0 1.54 44.66 5.83 8.05 0.11
h = 1 1.39 51.28 7.42 10.57 0.21
h = 4 1.41 62.13 10.63 18.70 0.28

PGDP
h = 0 1.35 4.79 1.44 2.30 0.22
h = 1 1.18 9.04 1.61 2.29 0.14
h = 4 1.08 15.47 2.55 2.12 0.33

UNEMP
h = 0 2.45 0.44 0.08 0.36 0.42
h = 1 1.81 1.11 0.19 0.99 0.60
h = 4 1.43 2.22 0.50 2.16 0.67

HOUSING
h = 0 1.48 0.04 0.01 0.01 0.13
h = 1 1.35 0.08 0.02 0.02 0.34
h = 4 1.20 0.24 0.05 0.07 0.62
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Table 8: Test decisions for the full-sample T -statistic either based on wild bootstrap ('bs') or asymptotic critical
values ('asy'). Nowcasts (h = 0), one-quarter (h = 1) and one-year ahead forecasts (h = 4) are evaluated against the
�nal data release under MSE loss. Evaluation sample runs from 1969Q4 to 2017Q2.

RGDP h = 0 h = 1 h = 4
b Tbs Tasy Tbs Tasy Tbs Tasy

0 *** *** *** *** *** ***
0.1 *** *** *** ** *** **
0.2 *** * *** * *** *
0.3 ** ** **
0.4 ** ** **
0.5 ** ** *
0.6 ** ** *
0.7 ** * *
0.8 ** * *
0.9 ** *
1 ** * *

PGDP h = 0 h = 1 h = 4
b Tbs Tasy Tbs Tasy Tbs Tasy

0 ** ***
0.1 *** *** * **
0.2 *** *** ** **
0.3 *** ** ** **
0.4 *** ** *** **
0.5 *** ** *** **
0.6 *** ** *** *** *
0.7 *** ** *** ** **
0.8 *** ** *** ** **
0.9 *** ** *** ** **
1 *** ** *** ** **

UNEMP h = 0 h = 1 h = 4
b Tbs Tasy Tbs Tasy Tbs Tasy

0 *** *** *** *** *** ***
0.1 *** *** *** *** *** ***
0.2 *** *** *** *** *** ***
0.3 *** ** *** ** ** **
0.4 *** ** *** ** ** **
0.5 *** ** *** ** ** **
0.6 *** ** *** ** ** **
0.7 *** ** *** ** *** **
0.8 *** ** *** ** *** **
0.9 *** ** *** ** *** **
1 *** ** *** ** *** **

HOUSING h = 0 h = 1 h = 4
b Tbs Tasy Tbs Tasy Tbs Tasy

0 *** *** *** *** *** **
0.1 *** ** *** ** ** *
0.2 ** * ** * *
0.3 ** *
0.4 * *
0.5 *
0.6
0.7
0.8
0.9
1
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Table 11: Summary statistics for output growth (RGDP), GDP de�ator in�ation (PGDP),
unemployment rate (UNEMP) and the growth rate of housing starts (HOUSING) using the
�rst data release and the asymmetric loss function. RelLoss(NC/SPF) denotes the relative asym-
metric RMSE loss of the no-change and the SPF forecasts. SD(·) labels the standard deviation
of the loss di�erentials in the subsample I (1969-1984), II (1985-2006) or III (2007-2017). AC(1)
denotes the empirical �rst-order autocorrelation coe�cient of the loss di�erential series.

Statistic RelLoss(NC/SPF) SD(I) SD(II) SD(III) AC(1)
Sample 1969-2017 1969-1984 1985-2006 2007-2017 1969-2017

RGDP
h = 0 1.69 18.02 2.57 3.99 0.26
h = 1 1.62 41.12 3.13 9.88 0.17
h = 4 1.65 36.07 3.80 10.11 0.52

PGDP
h = 0 1.37 2.59 0.94 1.15 0.06
h = 1 1.17 3.92 1.04 0.83 0.33
h = 4 1.06 7.46 1.08 1.05 0.36

UNEMP
h = 0 2.71 0.34 0.06 0.22 0.36
h = 1 1.86 0.78 0.12 0.68 0.61
h = 4 1.40 1.45 0.29 1.58 0.67

HOUSING
h = 0 1.30 0.02 0.01 0.01 -0.01
h = 1 1.25 0.04 0.01 0.01 0.11
h = 4 1.27 0.12 0.03 0.02 0.72

Table 12: Summary statistics for output growth (RGDP), GDP de�ator in�ation (PGDP),
unemployment rate (UNEMP) and the growth rate of housing starts (HOUSING) using the
�nal data release and the asymmetric loss function. RelLoss(NC/SPF) denotes the relative asym-
metric RMSE loss of the no-change and the SPF forecasts. SD(·) labels the standard deviation
of the loss di�erentials in the subsample I (1969-1984), II (1985-2006) or III (2007-2017). AC(1)
denotes the empirical �rst-order autocorrelation coe�cient of the loss di�erential series.

Statistic RelLoss(NC/SPF) SD(I) SD(II) SD(III) AC(1)
Sample 1969-2017 1969-1984 1985-2006 2007-2017 1969-2017

RGDP
h = 0 1.53 30.32 3.32 4.36 0.09
h = 1 1.44 34.78 4.52 6.88 0.26
h = 4 1.57 41.89 6.27 11.9 0.37

PGDP
h = 0 1.30 2.58 0.70 0.91 0.20
h = 1 1.10 4.26 0.82 0.93 0.25
h = 4 1.01 7.47 1.11 0.98 0.42

UNEMP
h = 0 2.73 0.30 0.05 0.26 0.44
h = 1 1.91 0.75 0.13 0.71 0.62
h = 4 1.40 1.46 0.31 1.58 0.67

HOUSING
h = 0 1.37 0.02 0.01 0.01 0.05
h = 1 1.28 0.04 0.01 0.01 0.20
h = 4 1.28 0.12 0.03 0.02 0.74
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Table 13: Test decisions for the full-sample T -statistic either based on wild bootstrap ('bs') or asymptotic critical
values ('asy'). Nowcasts (h = 0), one-quarter (h = 1) and one-year ahead forecasts (h = 4) are evaluated against the
�rst data release under asymmetric loss. Evaluation sample runs from 1969Q4 to 2017Q2.

RGDP h = 0 h = 1 h = 4
b T bs T asy T bs T asy T bs T asy

0 *** *** *** ** *** **
0.1 *** ** *** ** *** **
0.2 *** * *** * ** *
0.3 *** ** **
0.4 ** ** **
0.5 ** ** *
0.6 ** ** *
0.7 ** * *
0.8 ** *
0.9 ** *
1 ** * *

PGDP h = 0 h = 1 h = 4
b T bs T asy T bs T asy T bs T asy

0 *** *** *
0.1 *** *** ** ***
0.2 *** *** *** **
0.3 *** *** ** **
0.4 *** *** *** **
0.5 *** *** *** **
0.6 *** *** *** **
0.7 *** *** *** **
0.8 *** *** *** **
0.9 *** *** *** **
1 *** *** *** **

UNEMP h = 0 h = 1 h = 4
b T bs T asy T bs T asy T bs T asy

0 *** *** *** *** *** ***
0.1 *** *** *** *** *** ***
0.2 *** ** *** ** *** **
0.3 *** ** *** ** ** **
0.4 ** ** *** ** ** **
0.5 ** ** *** ** ** **
0.6 ** ** ** ** ** **
0.7 ** ** ** ** ** **
0.8 ** ** ** ** ** **
0.9 ** ** ** ** ** **
1 ** ** *** ** *** **

HOUSING h = 0 h = 1 h = 4
b T bs T asy T bs T asy T bs T asy

0 *** *** *** *** ** **
0.1 *** ** *** ** ** *
0.2 ** ** *
0.3 * *
0.4
0.5
0.6
0.7
0.8
0.9
1
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Table 14: Test decisions for the full-sample T -statistic either based on wild bootstrap ('bs') or asymptotic critical
values ('asy'). Nowcasts (h = 0), one-quarter (h = 1) and one-year ahead forecasts (h = 4) are evaluated against the
�nal data release under asymmetric loss. Evaluation sample runs from 1969Q4 to 2017Q2.

RGDP h = 0 h = 1 h = 4
b T bs T asy T bs T asy T bs T asy

0 *** *** *** *** *** ***
0.1 *** ** *** ** *** **
0.2 *** * ** * ** *
0.3 ** ** **
0.4 ** ** *
0.5 ** * *
0.6 ** * *
0.7 ** * *
0.8 ** * *
0.9 ** * *
1 ** * *

PGDP h = 0 h = 1 h = 4
b T bs T asy T bs T asy T bs T asy

0 ** ***
0.1 *** ***
0.2 *** ***
0.3 *** ***
0.4 *** ***
0.5 *** ***
0.6 *** ***
0.7 *** ***
0.8 *** ***
0.9 *** ***
1 *** ***

UNEMP h = 0 h = 1 h = 4
b T bs T asy T bs T asy T bs T asy

0 *** *** *** *** *** ***
0.1 *** *** *** *** *** ***
0.2 *** ** *** ** *** **
0.3 *** ** ** ** *** **
0.4 *** ** *** ** ** **
0.5 ** ** ** ** ** **
0.6 ** ** ** ** ** **
0.7 ** ** ** ** ** **
0.8 *** ** *** ** *** **
0.9 ** ** ** ** ** **
1 ** ** ** ** *** **

HOUSING h = 0 h = 1 h = 4
b T bs T asy T bs T asy T bs T asy

0 *** *** *** *** ** **
0.1 *** ** *** ** ** *
0.2 ** * ** *
0.3 * *
0.4
0.5
0.6
0.7
0.8
0.9
1
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Figure 10: RGDP loss di�erentials; (a/b) nowcast, evaluated against �rst/�nal release; (c/d) one-
quarter ahead forecast, evaluated against �rst/�nal release; (e/f) one-year ahead forecast, evaluated
against �rst/�nal release.
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Figure 11: PGDP loss di�erentials; (a/b) nowcast, evaluated against �rst/�nal release; (c/d) one-
quarter ahead forecast, evaluated against �rst/�nal release; (e/f) one-year ahead forecast, evaluated
against �rst/�nal release.
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Figure 12: UNEMP loss di�erentials; (a/b) nowcast, evaluated against �rst/�nal release; (c/d) one-
quarter ahead forecast, evaluated against �rst/�nal release; (e/f) one-year ahead forecast, evaluated
against �rst/�nal release.
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Figure 13: HOUSING loss di�erentials; (a/b) nowcast, evaluated against �rst/�nal release; (c/d)
one-quarter ahead forecast, evaluated against �rst/�nal release; (e/f) one-year ahead forecast, eval-
uated against �rst/�nal release.
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Figure 14: The plots show the time-varying components of the �uctuation statistic (left axis, solid
black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations (2) and
(3). Horizontal dashed lines are the corresponding �ve percent critical values for the maximum of
the displayed statistics. One-quarter ahead forecasts are evaluated against the �rst release for mean
squared error loss; b = 0.2, ν = 0.3.
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Figure 15: The plots show the time-varying components of the �uctuation statistic (left axis, solid
black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations (2) and
(3). Horizontal dashed lines are the corresponding �ve percent critical values for the maximum of
the displayed statistics. One-year ahead forecasts are evaluated against the �rst release for mean
squared error loss; b = 0.2, ν = 0.3.
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Figure 16: The plots show the time-varying components of the �uctuation statistic (left axis, solid
black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations (2) and (3).
Horizontal dashed lines are the corresponding �ve percent critical values for the maximum of the
displayed statistics. Nowcasts are evaluated against the �nal release for mean squared error loss;
b = 0.2, ν = 0.3.
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Figure 17: The plots show the time-varying components of the �uctuation statistic (left axis, solid
black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations (2) and (3).
Horizontal dashed lines are the corresponding �ve percent critical values for the maximum of the
displayed statistics. One-quarter ahead forecasts are evaluated against the �nal release for mean
squared error loss; b = 0.2, ν = 0.3.

60



F
−

st
at

1970 1990 2010

0
2

4
6

8
10

12

0.
0

0.
5

1.
0

1.
5

2.
0

C
U

S
U

M
 s

ta
t

RGDP

F
−

st
at

1970 1990 2010

0
2

4
6

8
10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

C
U

S
U

M
 s

ta
t

PGDP

F
−

st
at

1970 1990 2010

0
2

4
6

8
10

12

0
1

2
3

4
C

U
S

U
M

 s
ta

t

UNEMP

F
−

st
at

1970 1990 2010

0
2

4
6

8

0.
0

0.
5

1.
0

1.
5

C
U

S
U

M
 s

ta
t

HOUSING

Figure 18: The plots show the time-varying components of the �uctuation statistic (left axis, solid
black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations (2) and
(3). Horizontal dashed lines are the corresponding �ve percent critical values for the maximum of
the displayed statistics. One-year ahead forecasts are evaluated against the �nal release for mean
squared error loss; b = 0.2, ν = 0.3.

61



R
ol

lin
g 

M
S

E

1970 1990 2010

20
0

40
0

60
0

80
0

RGDP

R
ol

lin
g 

M
S

E

1970 1990 2010

20
40

60
80

10
0

12
0

PGDP

R
ol

lin
g 

M
S

E

1970 1990 2010

2
4

6
8

10
12

UNEMP

R
ol

lin
g 

M
S

E

1970 1990 2010

0.
0

0.
5

1.
0

1.
5

HOUSING

Figure 19: The plots show the rolling MSE di�erence (unscaled, ν = 0.3).
One-quarter ahead forecasts are evaluated against the �rst release.
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Figure 20: The plots show the rolling MSE di�erence (unscaled, ν = 0.3).
One-quarter ahead forecasts are evaluated against the �rst release.
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Figure 21: The plots show the rolling MSE di�erence (unscaled, ν = 0.3). One-year ahead forecasts
are evaluated against the �rst release.
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Figure 22: The plots show the rolling MSE di�erence (unscaled, ν = 0.3). Nowcasts are evaluated
against the �nal release.
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Figure 23: The plots show the rolling MSE di�erence (unscaled, ν = 0.3).
One-quarter ahead forecasts are evaluated against the �nal release.
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Figure 24: The plots show the rolling MSE di�erence (unscaled, ν = 0.3). One-year ahead forecasts
are evaluated against the �nal release.
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Figure 25: The plots show the time-varying components of the �uctuation statistic (left axis, solid
black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations (2) and (3).
Horizontal dashed lines are the corresponding �ve percent critical values for the maximum of the
displayed statistics. Nowcasts are evaluated against the �rst release for asymmetric loss; b = 0.2,
ν = 0.3.
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Figure 26: The plots show the time-varying components of the �uctuation statistic (left axis, solid
black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations (2) and
(3). Horizontal dashed lines are the corresponding �ve percent critical values for the maximum
of the displayed statistics. One-quarter ahead forecasts are evaluated against the �rst release for
asymmetric loss; b = 0.2, ν = 0.3.
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Figure 27: The plots show the time-varying components of the �uctuation statistic (left axis, solid
black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations (2) and
(3). Horizontal dashed lines are the corresponding �ve percent critical values for the maximum
of the displayed statistics. One-year ahead forecasts are evaluated against the �rst release for
asymmetric loss; b = 0.2, ν = 0.3.
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Figure 28: The plots show the time-varying components of the �uctuation statistic (left axis, solid
black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations (2) and (3).
Horizontal dashed lines are the corresponding �ve percent critical values for the maximum of the
displayed statistics. Nowcasts are evaluated against the �nal release for asymmetric loss; b = 0.2,
ν = 0.3.
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Figure 29: The plots show the time-varying components of the �uctuation statistic (left axis, solid
black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations (2) and
(3). Horizontal dashed lines are the corresponding �ve percent critical values for the maximum
of the displayed statistics. One-quarter ahead forecasts are evaluated against the �nal release for
asymmetric loss; b = 0.2, ν = 0.3.
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Figure 30: The plots show the time-varying components of the �uctuation statistic (left axis, solid
black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations (2) and
(3). Horizontal dashed lines are the corresponding �ve percent critical values for the maximum
of the displayed statistics. One-year ahead forecasts are evaluated against the �nal release for
asymmetric loss; b = 0.2, ν = 0.3.
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E Asymptotic critical values

b 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10% critical values

T Q
1

Bartlett 1.97 2.14 2.37 2.63 2.92 3.19 3.46 3.70 3.92 4.14 4.36
QS 1.97 2.25 2.71 3.30 4.08 4.99 5.97 7.02 8.17 9.38 10.68

T C
1

Bartlett 1.21 1.43 1.71 2.06 2.47 2.91 3.42 3.91 4.35 4.89 5.42
QS 1.22 1.57 2.14 3.08 4.47 6.38 9.09 12.29 16.47 21.75 28.04

T F
1 , ν = 0.3
Bartlett 8.05 8.46 9.87 12.13 15.50 19.38 23.27 27.00 30.46 34.01 37.76

QS 8.05 9.30 13.00 20.79 35.50 56.94 85.95 121.04 164.70 218.95 282.40

T F
1 , ν = 0.5
Bartlett 6.52 7.19 8.55 10.44 12.52 14.86 17.86 20.94 23.83 26.69 29.56

QS 6.53 7.95 11.34 16.57 25.37 39.12 58.27 83.59 115.38 153.14 197.37

T1
Bartlett 2.71 3.39 4.20 5.19 6.33 7.59 8.91 10.11 11.40 12.75 14.16

QS 2.71 3.76 5.31 7.83 11.52 16.47 22.92 30.83 41.03 53.50 68.53

5% critical values

T Q
1

Bartlett 2.25 2.49 2.81 3.17 3.50 3.87 4.19 4.49 4.76 5.03 5.30
QS 2.25 2.65 3.32 4.21 5.36 6.76 8.29 9.94 11.65 13.44 15.35
T C
1

Bartlett 1.69 2.03 2.46 3.07 3.69 4.44 5.16 5.94 6.67 7.44 8.24
QS 1.69 2.26 3.31 5.00 7.86 11.95 17.58 25.19 34.80 46.25 59.28

T F
1 , ν = 0.3
Bartlett 9.58 9.85 11.79 14.80 19.30 24.53 29.33 33.99 37.96 42.41 47.06

QS 9.59 11.17 16.96 29.94 54.87 94.61 150.47 222.97 317.35 428.42 559.59
T F
1 , ν = 0.5
Bartlett 8.14 8.92 10.87 13.57 16.49 19.52 23.79 28.14 31.83 35.77 39.47

QS 8.14 10.08 15.48 24.40 40.58 68.10 105.25 151.32 212.99 288.50 380.02
T1

Bartlett 3.83 4.97 6.45 8.04 9.79 11.90 13.92 15.91 17.96 20.12 22.26
QS 3.83 5.68 8.64 13.38 21.02 31.57 46.04 65.35 89.22 119.31 151.89

Table 19: Asymptotic critical values

Table 19 reports asymptotic critical values ignoring possible time-varying variance. �Small-b� χ2
1

quantiles are recovered as special cases for the squared Diebold and Mariano (1995) statistic T1 for
b = 0. Also note that, under small-b asymptotics, the critical values are independent of the kernel
(up to simulation variability).
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